HAZARD MAPPING OF THE PHILIPPINES USING LIDAR (PHIL-LIDAR I)

LiDAR Surveys and Flood Mapping of Guiom River

University of the Philippines Training Center for Applied Geodesy and Photogrammetry Ateneo de Naga University

APRIL 2017

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

© University of the Philippines Diliman and Ateneo de Naga University 2017

Published by the UP Training Center for Applied Geodesy and Photogrammetry (TCAGP) College of Engineering University of the Philippines – Diliman Quezon City 1101 PHILIPPINES

This research project is supported by the Department of Science and Technology (DOST) as part of its Grants-in-Aid Program and is to be cited as:

E.C. Paringit and J.C. Plopenio (eds.) (2017), LiDAR Surveys and Flood Mapping of Guiom River, Quezon City: University of the Philippines Training Center for Applied Geodesy and Photogrammetry-137 pp.

The text of this information may be copied and distributed for research and educational purposes with proper acknowledgement. While every care is taken to ensure the accuracy of this publication, the UP TCAGP disclaims all responsibility and all liability (including without limitation, liability in negligence) and costs which might incur as a result of the materials in this publication being inaccurate or incomplete in any way and for any reason.

For questions/queries regarding this report, contact:

Ms. Joanaviva C. Plopenio Project Leader, Phil-LiDAR 1 Program

Ateneo de Naga University Naga City, Camarines Sur, Philippines 4400 E-mail: maogmang.aki@gmail.com

Enrico C. Paringit, Dr. Eng. Program Leader, Phil-LiDAR 1 Program University of the Philippines Diliman

Quezon City, Philippines 1101 E-mail: ecparingit@up.edu.ph

National Library of the Philippines

ISBN: 978-971-9695-66-0

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

TABLE OF CONTENTS

List of Tables	
List of Figures	
List of Acronyms and Abbreviations	
Chapter 1: Overview of the Program and the Guiom River	1
1.1 Background of the Phil-LIDAR 1 Program	1
1.2 Overview of the Guiom River Basin	1
Chapter 2: LIDAR Data Acquisition of the Guiom Floodplain	2
2.1 Flight Plans	3
2.2 Ground Base Station	5
2.3 Flight Missions	9
2.4 Survey Coverage	. 10
Chapter 3: LIDAR Data Processing of the Guiom Floodplain	. 12
3.1 Overview of the LiDAR Data Pre-Processing	. 12
3.2 Transmittal of Acquired LiDAR Data	. 13
3.3 Trajectory Computation	. 13
3.4 LiDAR Point Cloud Computation	
3.5 LiDAR Data Quality Checking	. 16
3.6 LiDAR Point Cloud Classification and Rasterization	
3.7 LiDAR Image Processing and Orthophotograph Rectification	.22
3.8 DEM Editing and Hydro-Correction	
3.9 Mosaicking of Blocks	
3.10 Calibration and Validation of Mosaicked LiDAR Digital Elevation Model	.27
3.11 Integration of Bathymetric Data into the LiDAR Digital Terrain Model	
3.12 Feature Extraction	
3.12.1 Quality Checking of Digitized Features' Boundary	.32
3.12.2 Height Extraction	
3.12.3 Feature Attribution	
3.12.4 Final Quality Checking of Extracted Features	
Chapter 4: LIDAR Validation Survey and Measurements of the Guiom River Basin	
4.1 Summary of Activities	
4.2 Control Survey	
4.3 Baseline Processing	
4.4 Network Adjustment	
4.5 Cross-section, Bridge As-Built and Water Level Marking	
4.6 Validation Points Acquisition Survey	
4.7 River Bathymetric Survey	
Chapter 5: Flood Modeling and Mapping	
5.1 Data Used for Hydrologic Modeling	
5.1.1 Hydrometry and Rating Curves	
5.1.2 Precipitation	
5.1.3 Rating Curves and River Outflow	
5.2 RIDF Station	
5.3 HMS Model	
5.4 Cross-Section Data	
5.5 FLO-2D Model	
5.6 Results of HMS Calibration	
5.7 Calculated Outflow Hydrographs and Discharge Values for Different	
Rainfall Return Periods	.75
5.7.1 Hydrograph using the Rainfall Runoff Model	
5.8 River Analysis (RAS) Model Simulation	
5.9 Flood Depth and Flood Hazard	
5.10 Inventory of Affected Areas	
5.11 Flood Validation	
REFERENCES	
ANNEXES	
Annex 1. OPTECH Technical Specifications	
	99
Annex 2. NAMRIA Certificates of Reference Points Used	100

Annex 4. The LiDAR Survey Team Composition	
Annex 5. Data Transfer Sheet for Guiom Floodplain	
Annex 6. Flight Logs	
Annex 7. Flight Status Report	
Annex 8. Mission Summary Report	
Annex 9. Guiom Model Basin Parameters	
Annex 10. Guiom Model Reach Parameters	
Annex 11. Guiom Flood Plain Field Validation Points	131

LIST OF TABLES

Table 1. Flight planning parameters for Pegasus LiDAR system	3
Table 2. Details of the recovered NAMRIA horizontal control point MST-34 used as base station for the LiDAR acquisition	5
Table 3. Details of the recovered NAMRIA horizontal control oint MST-40 used as base station for the LiDAR acquisition	6
Table 4. Details of the recovered NAMRIA horizontal control point MST-49 used as base station for the LiDAR acquisition	7
Table 5. Details of the recovered NAMRIA Benchmark MS-61 used as base station for the LiDAR acquisition	8
Table 6. Ground control points used during LiDAR data acquisition	9
Table 7. Flight missions for the LiDAR data acquisition of the Guiom Floodplain	9
Table 8. Actual parameters used during LiDAR data acquisition	10
Table 9. List of municipalities and cities surveyed of the Guiom Floodplain LiDAR acquisition	10
Table 10. Self-Calibration Results values for Guiom flights	15
Table 11. List of LiDAR blocks for Guiom floodplain	16
Table 12. Guiom classification results in TerraScan	20
Table 13. LiDAR blocks with its corresponding area	24
Table 14. Shift Values of each LiDAR Block of Guiom floodplain	25
Table 15. Calibration Statistical Measures	29
Table 16. Validation Statistical Measures	30
Table 17. Quality Checking Ratings for Guiom Building Features	32
Table 18. Building Features Extracted for Guiom Floodplain	34
Table 19. Total Length of Extracted Roads for Guiom Floodplain	34
Table 20. Number of Extracted Water Bodies for Guiom Floodplain	35
Table 21. List of Reference and Control Points occupied for Guiom River Survey	39
Table 22. Baseline Processing Summary Report for Guiom River Survey	43
Table 23. Control Point Constraints	44
Table 24. Adjusted Grid Coordinates	44
Table 25. Adjusted Geodetic Coordinates	45
Table 26. Reference and control points used and its location (Source: NAMRIA, UP-TCAGP)	46
Table 27. RIDF values for Guiom Rain Gauge computed by PAG-ASA	63
Table 28. Range of calibrated values for the Guiom River Basin	73
Table 29. Summary of the Efficiency Test of the Guiom HMS Model	73
Table 30. Outlines the peak values of the Guiom HEC-HMS Model outflow using the Catarman RIDF 24-hour values	75
Table 31. Municipalities affected in Guiom floodplain	76

Table 32. Affected areas in Cawayan, Masbate during the 5-Year Rainfall Return Period	84
Table 33. Affected areas in Cawayan, Masbate during the 5-Year Rainfall Return Period	84
Table 34. Affected areas in Palanas, Masbate during the 5-Year Rainfall Return Period	86
Table 35. Affected areas in Placer, Masbate during the 5-Year Rainfall Return Period	87
Table 36. Affected areas in Cawayan, Masbate during the 25-Year Rainfall Return Period	88
Table 37. Affected areas in Cawayan, Masbate during the 25-Year Rainfall Return Period	88
Table 38. Affected areas in Palanas, Masbate during the 25-Year Rainfall Return Period	90
Table 39. Affected areas in Placer, Masbate during the 25-Year Rainfall Return Period	91
Table 40. Affected areas in Cawayan, Masbate during the 100-Year Rainfall Return Period	92
Table 41. Affected areas in Cawayan, Masbate during the 100-Year Rainfall Return Period	92
Table 42. Affected areas in Palanas, Masbate during the 100-Year Rainfall Return Period	94
Table 43. Affected areas in Placer, Masbate during the 100-Year Rainfall Return Period	95
Table 44. Actual flood vs. Simulated flood depth at different levels in the Guiom River Basin	97
Table 45. The Summary of Accuracy Assessment in the Guiom River Basin Survey	97

LIST OF FIGURES

Figure 1. Map of the Guiom River Basin	
Figure 2. Flight plans and base stations used for Guiom floodplain	4
Figure 3. GPS set-up over MST-34 as recovered in Sagawsawan Bridge,	
Brgy. Umabay Exterior, municipality of Mobo, Masbate (a) and	
NAMRIA reference point MST-34 (b) as recovered by the field team.	5
Figure 4. GPS set-up over MST-40 as recovered in Buenavista Bridge in	
Brgy. Buenavista, municipality of Uson, Masbate (a) and	
NAMRIA reference point MST-40 (b) as recovered by the field team	6
Figure 5. GPS set-up over MST-49 as recovered in front of the	
Cataingan Municipal Hall, municipality of Cataingan, Masbate (a) and	
NAMRIA reference point MST-49 (b) as recovered by the field team	7
Figure 6. GPS set-up over MS-61 as recovered in Nabangig Bridge,	
Brgy. Nabangig, municipality of Palanas, Masbate (a) and	
NAMRIA reference point MS-61 (b) as recovered by the field team	8
Figure 7. Actual LiDAR survey coverage for Guiom floodplain.	
Figure 8. Schematic Diagram for Data Pre-Processing Component	
Figure 9. Smoothed Performance Metrics of Guiom Flight 1293P.	
Figure 10. Solution Status Parameters of Guiom Flight 1293P.	
Figure 10. Solution Status Parameters of Guiom Figure 1293P.	
Figure 12. Boundary of the processed LiDAR data over Guiom Floodplain	
Figure 13. Image of data overlap for Guiom floodplain.	
Figure 14. Pulse density map of merged LiDAR data for Guiom floodplain	
Figure 15. Elevation difference map between flight lines for Guiom floodplain.	
Figure 16. Quality checking for a Guiom flight 1293P using the Profile Tool of QT Modeler	
Figure 17. Tiles for Guiom floodplain (a) and classification results (b) in TerraScan.	
Figure 18. Point cloud before (a) and after (b) classification	21
Figure 19. The production of last return DSM (a) and DTM (b), first return DSM	
(c) and secondary DTM (d) in some portion of Guiom floodplain	
Figure 20. Guiom floodplain with available orthophotographs	23
Figure 21. Sample orthophotograph tiles for Guiom floodplain.	23
Figure 22. Portions in the DTM of Guiom floodplain – a bridge before	
(a) and after (b) manual editing; a mountain before (c) and after (d) data retrieval;.	24
Figure 23. Map of Processed LiDAR Data for Guiom Flood Plain	26
Figure 24. Map of Guiom Flood Plain with validation survey points in green	28
Figure 25. Correlation plot between calibration survey points and LiDAR data	
Figure 26. Correlation plot between validation survey points and LiDAR data	
Figure 27. Map of Guiom Flood Plain with bathymetric survey points shown in blue	
Figure 28. QC blocks for Guiom building features.	
Figure 29. Extracted features for Guiom floodplain.	
Figure 30. Guiom River Extent	
Figure 31. GNSS Network covering Guiom River	
Figure 32. GNSS base set up, Trimble [®] SPS 985, at MST-4549, located in	
Brgy. Canjunday, Municipality of Baleno, Masbate	40
Figure 33. GNSS receiver setup, Trimble [®] SPS 985, at UP-ASI, located	
Brgy. Cayabon, Municipality of Milagros, Masbate	40
Figure 34. GNSS receiver setup, Trimble [®] SPS 985, at MS-141, located in	
Brgy. San Vicente, Municipality of Cawayan, Masbate	/11
Figure 35. GNSS receiver setup, Trimble [®] SPS 985, at MST-41, located in	
Brgy. Gaid, Municipality of Dimasalang, Masbate	11
	41
Figure 36. GNSS receiver setup, Trimble [®] SPS 985, at MST-45, located in	40
Brgy. Villahermosa, Municipality of Cawayan, Masbate	42
Figure 37. GNSS receiver setup, Trimble [®] SPS 985, at UP-NAU3, located in	40
Brgy. Taboc, Municipality of Placer, Masbate	
Figure 38. Downstream side of Baldoza Bridge	
Figure 39. As-built survey of Baldoza Bridge	47
Figure 40. Location map of Guiom Bridge (also known as Baldoza Bridge)	
cross-section survey	
Figure 41. Baldoza Bridge cross-section diagram	49

Figure 42.	Bridge data form	
	Water surface elevation marking on Baldoza Bridge sidewalk	
	Water level markings on Baldoza Bridge	
	Validation points acquisition survey set-up for Guiom River	
	Validation points acquisition covering the Guiom River Basin Area	
	Bathymetric survey using Topcon [™] GR-5 in Guiom River	
	Manual bathymetric survey using a using Topcon [™] GR-5 in Guiom River	
-	Gathering of random bathymetric points along Guiom River	
	Bathymetric Survey Map of Guiom River	
	Quality checking points gathered along Guiom River by DVBC	
	Guiom Riverbed Profile	
	Guiom Riverbed Profile Tributary 1)	
•	Guiom Riverbed Profile (Tributary 2)	
	The location map of Guiom HEC-HMS model used for calibration	
Figure 56.	The cross-section plot of Baldosa Bridge	61
	The rating curve of Baldosa Bridge in Guiom, Masbate	
Figure 58.	Rainfall and outflow data of the Guiom River Basin, which was used for modeling	62
	The location of the Catarman RIDF station relative to the Guiom River Basin	
Figure 60.	The synthetic storm generated for a 24-hour period rainfall	
	for various return periods	64
	Soil map of Guiom River Basin	
Figure 62.	Land cover map of Guiom River Basin	66
Figure 63.	Slope map of Guiom River Basin	67
Figure 64.	Stream delineation map of Guiom River Basin	68
Figure 65.	The Guiom River Basin model generated in HEC-HMS	69
Figure 66.	River cross-section of Guiom River generated through Arcmap HEC GeoRAS tool	70
Figure 67.	Screenshot of subcatchment with the computational area	
	to be modeled in FLO-2D Grid Developer System Pro (FLO-2D GDS Pro)	71
Figure 68.	Outflow hydrograph of Guiom River Basin produced by the	
	HEC-HMS model compared with observed outflow	72
Figure 69.	The outflow hydrograph at the Guiom Basin, generated using the	
	simulated rain events for 24-hour period for Catarman station	
	The sample output map of the Guiom RAS Model	76
Figure 71.	100-year flood hazard map for the Guiom flood plain	
	overlaid on Google Earth imagery	77
Figure 72.	100-year flow depth map for the Guiom flood plain	
F'	overlaid on Google Earth imagery	/8
Figure 73.	25-year flood hazard map for the Guiom flood plain	70
F :	overlaid on Google Earth imagery	79
Figure 74.	25-year flow depth map for the Guiom flood plain	00
Figure 7F	overlaid on Google Earth imagery	80
Figure 75.	5-year flood hazard map for the Guiom flood plain	01
Figuro 76	overlaid on Google Earth imagery 5-year flow depth map for the Guiom flood plain	01
rigule 70.	overlaid on Google Earth imagery	07
Figuro 77		
-	Affected areas in Cawayan, Masbate during the 5-Year Rainfall Return Period	
-	Affected areas in Cawayan, Masbate during the 5-Year Rainfall Return Period	
-	Affected areas in Palanas, Masbate during the 5-Year Rainfall Return Period	
-	Affected areas in Placer, Masbate during the 5-Year Rainfall Return Period	
-	Affected areas in Cawayan, Masbate during the 25-Year Rainfall Return Period	
-	Affected areas in Cawayan, Masbate during the 25-Year Rainfall Return Period	
Figure 83.	Affected areas in Palanas, Masbate during the 25-Year Rainfall Return Period	90
Figure 84.	Affected areas in Placer, Masbate during the 25-Year Rainfall Return Period	91
	Affected areas in Cawayan, Masbate during the 100-Year Rainfall Return Period	
	Affected areas in Cawayan, Masbate during the 100-Year Rainfall Return Period	
	Affected areas in Palanas, Masbate during the 100-Year Rainfall Return Period	
	Affected areas in Placer, Masbate during the 100-Year Rainfall Return Period	
	The validation points for the 5-Year flood depth map of the Guiom floodplain	
Figure 90.	Flood map depth vs. Actual flood depth	97

LiDAR Surveys and Flood Mapping of Guiom River

LIST OF ACRONYMS AND ABBREVIATIONS

AAC	Asian Aerospace Corporation		
Ab	abutment		
ADNU	Ateneo de Naga University		
ALTM	Airborne LiDAR Terrain Mapper		
ARG	automatic rain gauge		
ATQ	Antique		
AWLS	Automated Water Level Sensor		
BA	Bridge Approach		
BM	benchmark		
CAD	Computer-Aided Design		
CN	Curve Number		
CSRS	Chief Science Research Specialist		
DAC	Data Acquisition Component		
DEM	Digital Elevation Model		
DENR	Department of Environment and Natural Resources		
DOST	Department of Science and Technology		
DPPC	Data Pre-Processing Component		
DREAM	Disaster Risk and Exposure Assessment for Mitigation [Program]		
DRRM	Disaster Risk Reduction and Management		
DSM	Digital Surface Model		
DTM	Digital Terrain Model		
DVBC	Data Validation and Bathymetry Component		
FMC	Flood Modeling Component		
FOV	Field of View		
GiA	Grants-in-Aid		
GCP	Ground Control Point		
GNSS	Global Navigation Satellite System		
GPS	Global Positioning System		
HEC-HMS	Hydrologic Engineering Center - Hydrologic Modeling System		
HEC-RAS	Hydrologic Engineering Center - River Analysis System		
HC	High Chord		
IDW	Inverse Distance Weighted [interpolation method]		

kts	_		
Kt5	knots		
LAS	LiDAR Data Exchange File format		
LC	Low Chord		
LGU	local government unit		
Lidar	Light Detection and Ranging		
LMS	LiDAR Mapping Suite		
m AGL	meters Above Ground Level		
MMS	Mobile Mapping Suite		
MSL	mean sea level		
NAMRIA	National Mapping and Resource Information Authority		
NSTC	Northern Subtropical Convergence		
PAF	Philippine Air Force		
PAGASA	Philippine Atmospheric Geophysical and Astronomical Services Administration		
PDOP	Positional Dilution of Precision		
РРК	Post-Processed Kinematic [technique]		
PRF	Pulse Repetition Frequency		
PTM	Philippine Transverse Mercator		
QC	Quality Check		
QT	Quick Terrain [Modeler]		
RA	Research Associate		
RIDF	Rainfall-Intensity-Duration-Frequency		
RMSE	Root Mean Square Error		
SAR	Synthetic Aperture Radar		
SCS	Soil Conservation Service		
SRTM	Shuttle Radar Topography Mission		
SRS	Science Research Specialist		
SSG	Special Service Group		
ТВС	Thermal Barrier Coatings		
UP-TCAGP	University of the Philippines – Training Center for Applied Geodesy and Photogrammetry		
UTM	Universal Transverse Mercator		
WGS	World Geodetic System		

CHAPTER 1: OVERVIEW OF THE PROGRAM AND THE GUIOM RIVER

Enrico C. Parigit, Dr. Eng., Ms. Joanaviva Plopenio, and Engr. Ferdinand Bien

1.1 Background of the Phil-LiDAR 1 Program

The University of the Philippines Training Center for Applied Geodesy and Photogrammetry (UP-TCAGP) launched a research program entitled "Nationwide Hazard Mapping using LiDAR" or Phil-LiDAR 1, supported by the Department of Science and Technology (DOST) Grant-in-Aid (GiA) Program. The program was primarily aimed at acquiring a national elevation and resource dataset at sufficient resolution to produce information necessary to support the different phases of disaster management. Particularly, it targeted to operationalize the development of flood hazard models that would produce updated and detailed flood hazard maps for the major river systems in the country.

Also, the program was aimed at producing an up-to-date and detailed national elevation dataset suitable for 1:5,000 scale mapping, with 50 cm and 20 cm horizontal and vertical accuracies, respectively. These accuracies were achieved through the use of the state-of-the-art Light Detection and Ranging (LiDAR) airborne technology procured by the project through DOST.

The implementing partner university for the Phil-LiDAR 1 Program is the Ateneo de Naga University (ADNU). ADNU is in charge of processing LiDAR data and conducting data validation reconnaissance, cross section, bathymetric survey, validation, river flow measurements, flood height and extent data gathering, flood modeling, and flood map generation for the 28 river basins in the Bicol Region. The university is located in Naga City in the province of Bicol.

1.2 Overview of the Guiom River Basin

Guiom river basin is under the jurisdiction of three (3) municipalities: Cawayan (second class), Uson (third class) and Dimasalang (fourth class). Based from the 2015 census, Cawayan is populated with a total of 67,033; Uson has 56,168 population and Dimasalang with 26,192. The DENR River Basin Control Office (RBCO) states that the Guiom River Basin has a drainage area of 152 km² and an estimated 206 cubic meter (MCM) annual run-off (RBCO, 2015).

Guiom River is approximately 20km long. It is among the twenty-four (24) river systems in Bicol Region. According to the 2015 national census of PSA, a total of 12,718 persons are residing within the immediate vicinity of the river, which is distributed among barangays Calapayan, Dalipe, Guiom, Itombato, Maihao, Pananawan, Villahermosa, Pin-As and Iraya in the Municipality of Cawayan. The surrounding areas are basically brushland as shown in the land cover map, with a small area dedicated to fishponds, specifically near the mouth of the river. There is a low mountain range to the east of the river basin, otherwise, the north and south are gently rolling land. The river basin area is still classified as Type III where rainfall is evenly distributed throughout the year except for the months of November to April when it is relatively dry.

The economy of Masbate Province largely rests on livestock and agriculture with coconut, rice, and corn as the main crops and top products (Philippine Statistics Authority, 2017).

As of December 7, 2014, 578 families in Cawayan, Masbate were affected by Typhoon Ruby as per NDRRMC report (National Disaster Risk Reduction and Management Council, 2014).

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

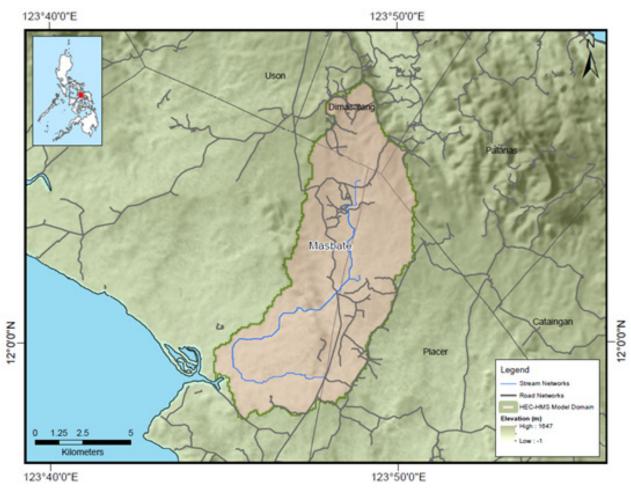


Figure 1. Map of the Guiom River Basin

CHAPTER 2: LIDAR DATA ACQUISITION OF THE GUIOM FLOODPLAIN

Engr. Louie P. Balicanta, Engr. Christopher Cruz, Lovely Gracia Acuña, Engr. Gerome Hipolito, Engr. Iro Niel D. Roxas, and Engr. Frank Nicolas H. Ilejay

The methods applied in this Chapter were based on the DREAM methods manual (Sarmiento, et al., 2014) and further enhanced and updated in Paringit, et al. (2017).

2.1 Flight Plans

Plans were made to acquire LiDAR data within the delineated priority area for Guiom floodplain in Masbate. These missions were planned for 10 lines that run for at most four hours and a half (4.5 hours) including take-off, landing and turning time. The flight planning parameters for the LiDAR system are found in Table 1. Figure 2 shows the flight plan for Guiom floodplain survey.

Block Name	Flying Height (m AGL)	Overlap (%)	Field of view (ø)	Pulse Repetition Frequency (PRF) (kHz)	Scan Frequency (Hz)	Average Speed (kts)	Average Turn Time (Minutes)
BLK 32H	600, 800	25, 30	40, 50	200, 250	30, 36	130	5
BLK 32I	1000, 1200	25, 40	50	200	30	130	5
BLK 32J	800, 1000, 1200	25	50	200	30	130	5

Table 1. Flight planning parameters for Pegasus LiDAR system

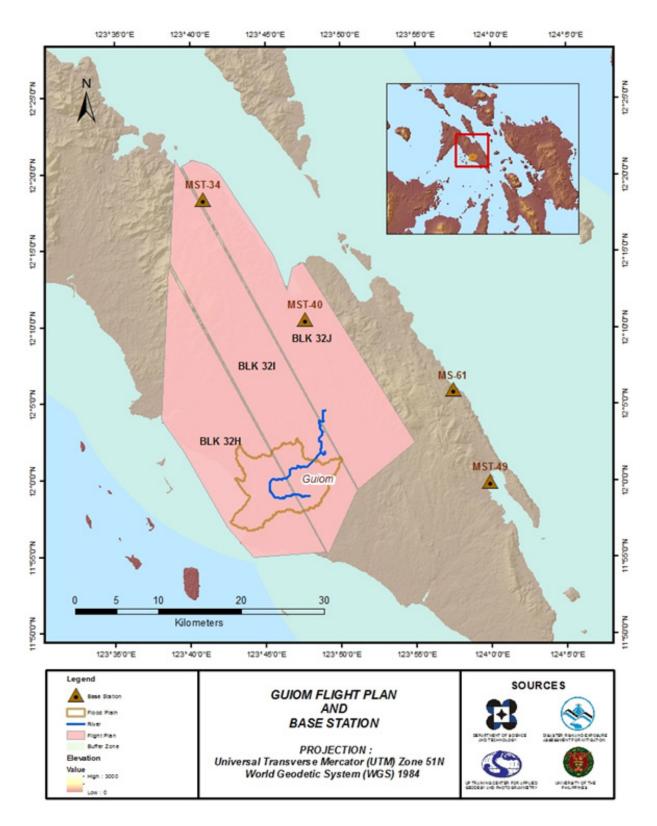


Figure 2. Flight plans and base stations used for Guiom floodplain.

2.2 Ground Base Stations

The project team was able to recover three (3) NAMRIA ground control points: MST-34, MST-40 and MST-49 which are of second (2nd) order accuracy. One NAMRIA (1) benchmark was recovered: MS-61 which is of first (1st) order accuracy. This benchmark was used as vertical reference point and was also established as ground control point. The certifications for the NAMRIA reference points and benchmark are found in Annex 2, while the baseline processing report for the NAMRIA benchmark is found in Annex 3. These were used as base stations during flight operations for the entire duration of the survey (March 21 - April 1, 2014). Base stations were observed using dual frequency GPS receivers, TRIMBLE SPS 852 and SPS 882. Flight plans and location of base stations used during the aerial LiDAR acquisition in Guiom floodplain are shown in Figure 2.

Figure 3 to Figure 6 show the recovered NAMRIA reference points within the area. Table 2 to Table 5 show the details about the following NAMRIA control stations and established points, while Table 6 shows the list of all ground control points occupied during the acquisition with the corresponding dates of utilization.

(a)

Figure 3. GPS set-up over MST-34 as recovered in Sagawsawan Bridge, Brgy. Umabay Exterior, municipality of Mobo, Masbate (a) and NAMRIA reference point MST-34 (b) as recovered by the field team.

Table 2. Details of the recovered NAMRIA horizontal control point MST-34 used as base station for the LiDAR acquisition.

Station Name	MST-34		
Order of Accuracy	2nd		
Relative Error (Horizontal positioning)	1 in 50,000		
Geographic Coordinates, Philippine Reference Of 1992 Datum (PRS 92)	Latitude Longitude Ellipsoidal Height	12° 18' 29.18323" North 123° 40' 46.86556" East 11.91000 meters	
Grid Coordinates, Philippine Transverse Mercator Zone 5 (PTM Zone 5 PRS 92)	Easting Northing	573933.177 meters 1361109.053 meters	
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Latitude Longitude Ellipsoidal Height	12° 18′ 24.53692″ North 123° 40′ 51.93952″ East 68.23000 meters	
Grid Coordinates, Philippine Transverse Mercator Zone 51 North (UTM 51N PRS 1992)	Easting Northing	573907.30 meters 1360632.64 meters	

(b)

(a)

Figure 4. GPS set-up over MST-40 as recovered in Buenavista Bridge in Brgy. Buenavista, municipality of Uson, Masbate (a) and NAMRIA reference point MST-40 (b) as recovered by the field team.

Table 3. Details of the recovered NAMRIA horizontal control point MST-40 used as base station for the LiDAR acquisition.

Station Name	MST-40	
Order of Accuracy	2nd	
Relative Error (Horizontal positioning)	1 in 50,000	
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Latitude Longitude Ellipsoidal Height	12° 10′ 39.45274″ North 123° 47′ 33.62147″ East 4.72600 meters
Grid Coordinates, Philippine Transverse Mercator Zone 3 (PTM Zone 5 PRS 92)	Easting Northing	586266.511 meters 1346708.7 meters
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Latitude Longitude Ellipsoidal Height	12° 10' 34.84826" North 123° 47' 38.70589" East 61.65900 meters
Grid Coordinates, Philippine Transverse Mercator Zone 51 North (UTM 51N PRS 1992)	Easting Northing	586236.32 meters 1346237.33 meters

(b)

(a)

Figure 5. GPS set-up over MST-49 as recovered in front of the Cataingan Municipal Hall, municipality of Cataingan, Masbate (a) and NAMRIA reference point MST-49 (b) as recovered by the field team.

Table 4. Details of the recovered NAMRIA horizontal control point MST-49 used as base station for the LiDAR acquisition.

Station Name	MST-49		
Order of Accuracy	2nd		
Relative Error (horizontal positioning)	1 in 50,000		
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Latitude Longitude Ellipsoidal Height	12° 00' 01.41677" North 123° 59' 46.24265" East 21.25500 meters	
Grid Coordinates, Philippine Transverse Mercator Zone 3 (PTM Zone 5 PRS 92)	Easting Northing	608487.281 meters 1327175.1 meters	
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Latitude Longitude Ellipsoidal Height	11° 59′ 56.87354″ North 123° 59′ 51.34085″ East 79.14000 meters	
Grid Coordinates, Universal Transverse Mercator Zone 51 North (UTM 51N PRS 1992)	Easting Northing	608449.31 meters 1326710.57 meters	

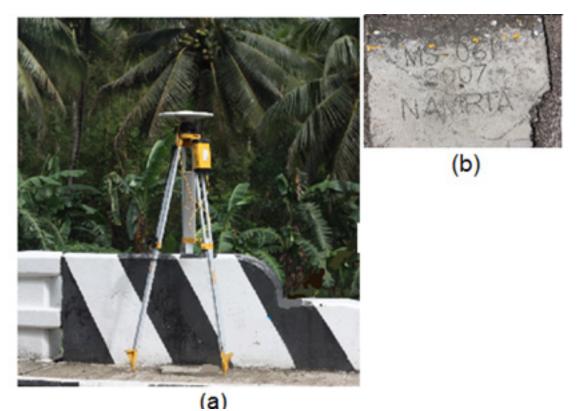


Figure 6. GPS set-up over MS-61 as recovered in Nabangig Bridge, Brgy. Nabangig, municipality of Palanas, Masbate (a) and NAMRIA reference point MS-61 (b) as recovered by the field team.

Table 5. Details of the recovered NAMRIA Benchmark MS-61 used as base station for the LiDAR acquisition.

Station Name	MS-61		
Order of Accuracy	2nd		
Relative Error (Horizontal positioning)	1:50000		
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Latitude Longitude Ellipsoidal Height	12° 06' 1.51238" North 123° 57' 21.24483" East 4.74 meters	
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Latitude Longitude Ellipsoidal Height	12° 05' 56.94091" North 123° 57' 26.33451" East 65.257 meters	
Grid Coordinates, Philippine Transverse Mercator Zone 51 North (UTM 51N PRS 1992)	Easting Northing	604178.664 meters 1337699.951 meters	

Date Surveyed	Flight Number	Mission Name	Ground Control Points
March 21, 2014	1247P	1BLK32IJ080A	MST-34 and MST-40
March 27, 2014	1271P	1BLK32H086A	MST-49 and MS-61
March 28, 2014	1275P	1BLK32HI087A	MST-40 and MST-49
March 29, 2014	1281P	1BLK32I088B	MST-40 and MST-49
April 1, 2014	1293P	1BLK32H091B	MST-40 and MST-49
November 12, 2015	2842P	1BLK2DSG319A	CGY-87, APA-13, CGY-110

Table 6. Ground control points used during LiDAR data acquisition.

2.3 Flight Missions

Five (5) missions were conducted to complete LiDAR data acquisition in Guiom Floodplain, for a total of fifteen hours and fourteen minutes (15+14) of flying time for RP-C9022. All missions were acquired using the Pegasus LiDAR systems. Table 7 shows the total area of actual coverage and the corresponding flying hours per mission, while Table 8 presents the actual parameters used during the LiDAR data acquisition.

Date	Flight	Flight Plan	Surveyed	Area	Area	No. of	Flying H	ours
Surveyed	Number	Area (km2)	Area (km2)	Surveyed within the Floodplain (km²)	Surveyed Outside the Floodplain (km2)	Images (Frames)	Hr	Min
March 21, 2014	1247P	276.40	327.01	3.51	323.50	846	4	0
March 27, 2014	1271P	267.86	169.46	22.75	146.71	1184	4	23
March 28, 2014	1275P	267.86	126.66	34.41	92.25	620	2	53
March 29, 2014	1281P	283.20	126.99	21.33	105.66	0	1	53
April 1, 2014	1293P	267.86	82.51	10.27	72.24	423	2	5
TOTA	AL.	1363.20	832.63	92.27	740.36	740.36	15	14

Table 7. Flight missions for the LiDAR data acquisition of the Guiom Floodplain.

Flight Number	Flying Height (m AGL)	Overlap (%)	FOV (θ)	PRF (khz)	Scan Frequency (Hz)	Average Speed (kts)	Average Turn Time (Minutes)
1247P	1000, 1200	25	50	200	30	130	5
1271P	800, 600	25, 30	50	200	30	130	5
1275P	800	25	40	250	36	130	5
1281P	1000	40	50	200	30	130	5
1293P	800	25	40	250	36	130	5
2854P	1100/900	30	50	200	30	130	5

Table 8. Actual parameters used during LiDAR data acquisition

2.4 Survey Coverage

Guiom floodplain is located in the province of Masbate, with majority of the floodplain situated within the municipality of Cawayan and Placer. Municipalities of Cawayan, Uson and Mobo are mostly covered by the survey. The list of municipalities and cities surveyed, with at least one (1) square kilometer coverage, is shown in Table 9. The actual coverage of the LiDAR acquisition for Guiom Floodplain is presented in Figure 7.

Province	Municipality/ City	Area of Municipality/City (km2)	Total Area Surveyed (km2)	Percentage of Area Surveyed
	Cawayan	261.38	245.26	94%
	Dimasalang	100.44	25.56	25%
	Milagros	530.43	82.98	16%
Masbate	Mobo	143.02	92.96	65%
	Palanas	138.17	16.07	12%
	Placer	253.55	106.79	42%
	Uson	183.76	133.69	73%
Tota	I	1610.75	703.31	43.66%

Table 9. List of municipalities and cities surveyed of the Pamplona Floodplain LiDAR acquisition.

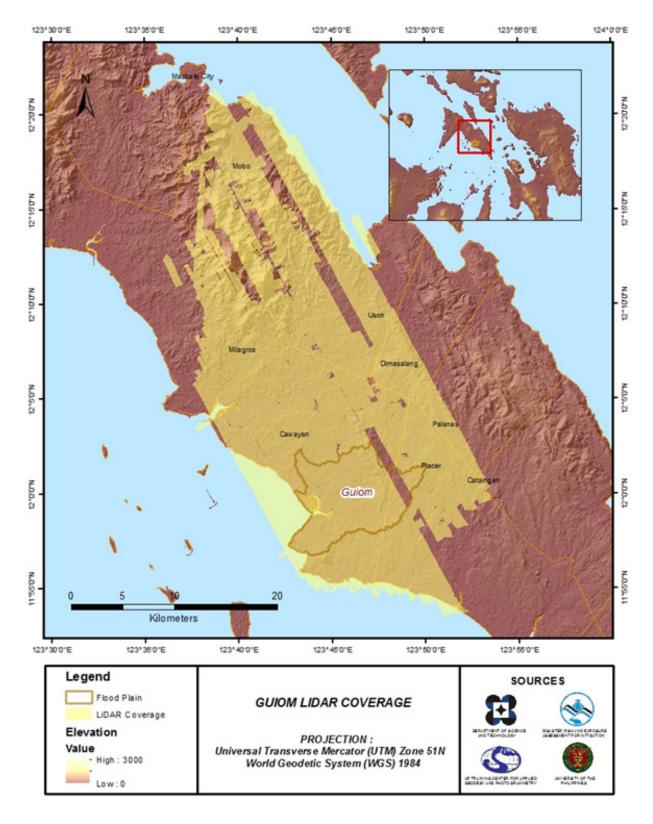


Figure 7. Actual LiDAR survey coverage for Guiom floodplain.

CHAPTER 3: LIDAR DATA PROCESSING OF THE GUIOM FLOODPLAIN

Engr. Ma. Rosario Concepcion O. Ang, Engr. John Louie D. Fabila, Engr. Sarah Jane D. Samalburo, Engr. Gladys Mae Apat, Engr. Harmond F. Santos, Engr. Ma. Ailyn L. Olanda, Engr. Jovelle Anjeanette S. Canlas, Engr. Christy T. Lubiano, Jerry P. Ballori, Jaylyn L. Paterno, Engr. Ferdinand E. Bien, Richmund P. Saldo, Arnulfo G. Enciso Jr., Carlota M. Davocol, Engr. Kevin Kristian L. Penaserada, Engr. Jan Karl T. Ilarde, and Engr. Francis Patray P. Bolanos, Engr. Jayrik T. San Buenaventura, and Engr. Jess Andre S. Soller

The methods applied in this Chapter were based on the DREAM methods manual (Ang, et al., 2014) and further enhanced and updated in Paringit, et al. (2017)

3.1 Overview of the LiDAR Data Pre-Processing

The data transmitted by the Data Acquisition Component are checked for completeness based on the list of raw files required to proceed with the pre-processing of the LiDAR data. Upon acceptance of the LiDAR field data, georeferencing of the flight trajectory is done in order to obtain the exact location of the LiDAR sensor when the laser was shot. Point cloud georectification is performed to incorporate correct position and orientation for each point acquired. The georectified LiDAR point clouds are subject for quality checking to ensure that the required accuracies of the program, which are the minimum point density, vertical and horizontal accuracies, are met. The point clouds are then classified into various classes before generating Digital Elevation Models such as Digital Terrain Model and Digital Surface Model.

Using the elevation of points gathered in the field, the LiDAR-derived digital models are calibrated. Portions of the river that are barely penetrated by the LiDAR system are replaced by the actual river geometry measured from the field by the Data Validation and Bathymetry Component. LiDAR acquired temporally are then mosaicked to completely cover the target river systems in the Philippines. Orthorectification of images acquired simultaneously with the LiDAR data is done through the help of the georectified point clouds and the metadata containing the time the image was captured.

These processes are summarized in the flowchart shown in Figure 8.

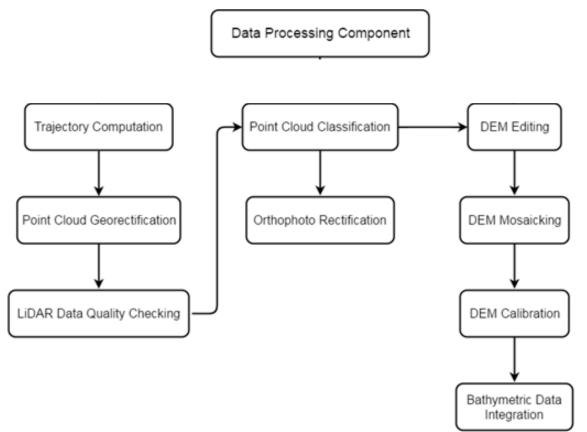


Figure 8. Schematic Diagram for Data Pre-Processing Component

3.2 Transmittal of Acquired LiDAR Data

Data transfer sheets for all the LiDAR missions for Guiom floodplain can be found in Annex 5. Missions flown during the two surveys conducted on March 2014 and April 2014 used the Airborne LiDAR Terrain Mapper (ALTM[™] Optech Inc.) Pegasus system over Cawayan, Masbate. The Data Acquisition Component (DAC) transferred a total of 125.10 Gigabytes of Range data, 0.88 Gigabytes of POS data, 32.85 Megabytes of GPS base station data, and 193.10 Gigabytes of raw image data to the data server on April 3, 2014 for the first survey and April 23, 2014 for the second survey. The Data Pre-processing Component (DPPC) verified the completeness of the transferred data. The whole dataset for Guiom was fully transferred on April 23, 2014, as indicated on the Data Transfer Sheets for Guiom floodplain.

3.3 Trajectory Computation

The Smoothed Performance Metrics of the computed trajectory for flight 1293P, one of the Guiom flights, which is the North, East, and Down position RMSE values are shown in Figure 9. The x-axis corresponds to the time of flight, which is measured by the number of seconds from the midnight of the start of the GPS week, which on that week fell on March 30, 2014 00:00AM. The y-axis is the RMSE value for that particular position.



Figure 9. Smoothed Performance Metrics of a Guiom Flight 1293P.

The time of flight was from 189500 seconds to 194000 seconds, which corresponds to morning of April 1, 2014. The initial spike that is seen on the data corresponds to the time that the aircraft was getting into position to start the acquisition, and the POS system starts computing for the position and orientation of the aircraft. Redundant measurements from the POS system quickly minimized the RMSE value of the positions. The periodic increase in RMSE values from an otherwise smoothly curving RMSE values correspond to the turn-around period of the aircraft, when the aircraft makes a turn to start a new flight line. Figure 9 shows that the North position RMSE peaks at 0.90 centimeters, the East position RMSE peaks at 1. 40 centimeters, and the Down position RMSE peaks at 2.40 centimeters, which are within the prescribed accuracies described in the methodology.

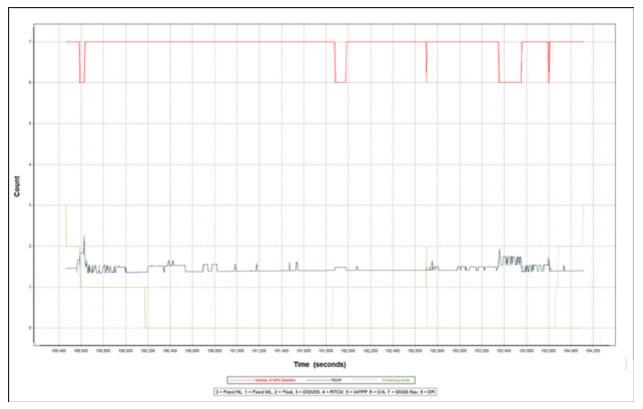


Figure 10. Solution Status Parameters of Guiom Flight 1293P.

The Solution Status parameters of flight 1293P, one of the Guiom flights, which are the number of GPS satellites, Positional Dilution of Precision (PDOP), and the GPS processing mode used, are shown in Figure 10. The graphs indicate that the number of satellites during the acquisition did not go down to 5. Majority of the time, the number of satellites tracked was between 6 and 7. The PDOP value also did not go above the value of 3, which indicates optimal GPS geometry. The processing mode stayed at the value of 0 for majority of the survey with some peaks up to 2 attributed to the turns performed by the aircraft. The value of 0 corresponds to a Fixed, Narrow-Lane mode, which is the optimum carrier-cycle integer ambiguity resolution technique available for POSPAC MMS. All of the parameters adhered to the accuracy requirements for optimal trajectory solutions, as indicated in the methodology. The computed best estimated trajectory for all Guiom flights is shown in Figure 11.

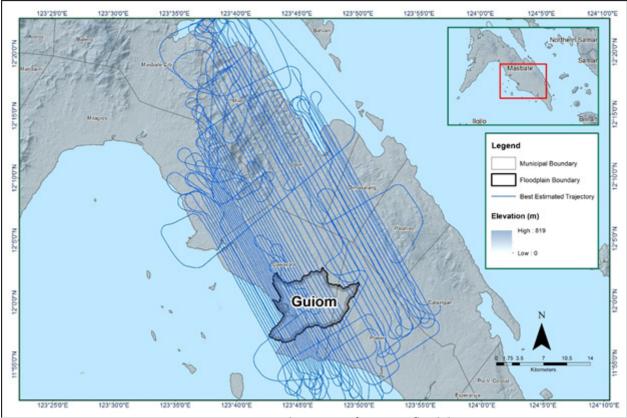


Figure 11. Best Estimated Trajectory for Guiom floodplain.

3.4 LiDAR Point Cloud Computation

The produced LAS data contains 81 flight lines, with each flight line containing two channels for the Pegasus system. The summary of the self-calibration results obtained from LiDAR processing in LiDAR Mapping Suite (LMS) software for all flights over Guiom floodplain are given in Table 10.

Parameter	Acceptable Value	Computed Value
Boresight Correction stdev	<0.001degrees	0.000200
IMU Attitude Correction Roll and Pitch Correction stdev	<0.001degrees	0.000846
GPS Position Z-correction stdev	<0.01meters	0.0022

Table 10. Self-Calibration Results values for Guiom flights.
--

The optimum accuracy is obtained for all Guiom flights based on the computed standard deviations of the corrections of the orientation parameters. Standard deviation values for individual blocks are available in the Annex 8. Mission Summary Reports.

3.5 LiDAR Data Quality Checking

The boundary of the processed LiDAR data on top of a SAR Elevation Data over Guiom Floodplain is shown in Figure 12. The map shows gaps in the LiDAR coverage that are attributed to cloud coverage.

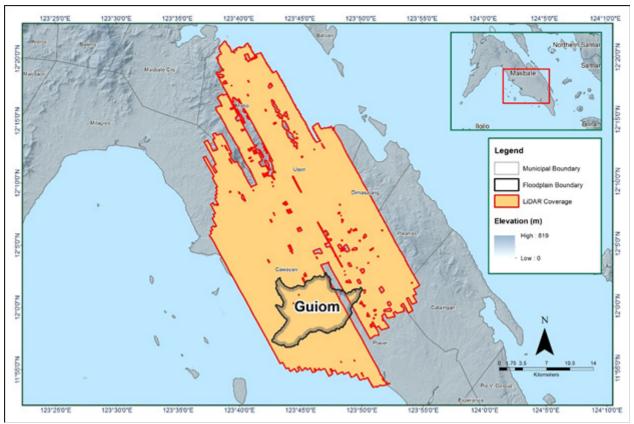


Figure 12. Boundary of the processed LiDAR data over Guiom Floodplain

The total area covered by the Guiom missions is 855.86 sq.km that is comprised of five (5) flight acquisitions grouped and merged into two (2) blocks as shown in Table 11.

LiDAR Blocks	Flight Numbers	Area (sq. km)	
Masbate Blk32IJ	1247P	F40 F2	
	1281P	540.53	
Masbate Blk32H	1293P	315.33	
	1275P		
	1271P		
TOTAL		855.86 sq.km	

The overlap data for the merged LiDAR blocks, showing the number of channels that pass through a particular location is shown in Figure 13. Since the Pegasus system employs two channels, we would expect an average value of 2 (blue) for areas where there is limited overlap, and a value of 3 (yellow) or more (red) for areas with three or more overlapping flight lines.

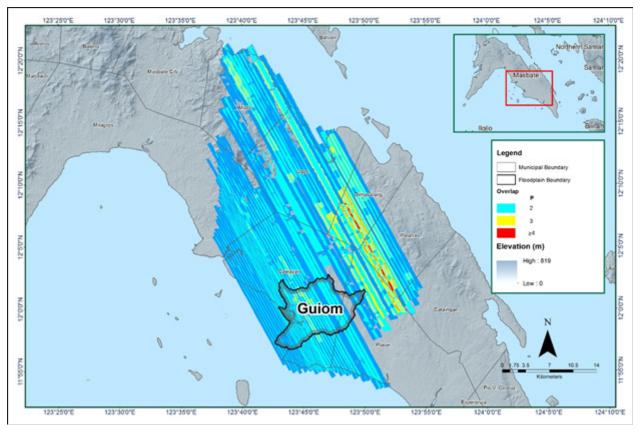


Figure 13. Image of data overlap for Guiom floodplain.

The overlap statistics per block for the Guiom floodplain can be found in Annex 8. One pixel corresponds to 25.0 square meters on the ground. For this area, the minimum and maximum percent overlaps are 2.25% and 17.09% respectively.

The density map for the merged LiDAR data, with the red parts showing the portions of the data that satisfy the 2 points per square meter criterion is shown in Figure 14. It was determined that all LiDAR data for Guiom floodplain satisfy the point density requirement, and the average density for the entire survey area is 2.52 points per square meter.

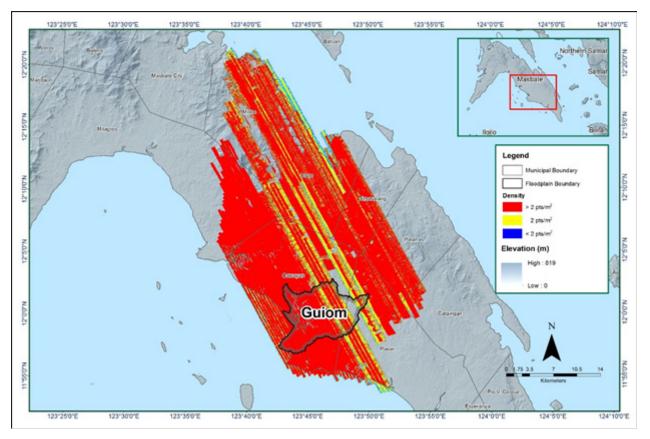


Figure 14. Density map of merged LiDAR data for Guiom floodplain.

The elevation difference between overlaps of adjacent flight lines is shown in Figure 15. The default color range is from blue to red, where bright blue areas correspond to portions where elevations of a previous flight line, identified by its acquisition time, are higher by more than 0.20m relative to elevations of its adjacent flight line. Bright red areas indicate portions where elevations of a previous flight line are lower by more than 0.20m relative to elevations of its adjacent flight line. Areas with bright red or bright blue need to be investigated further using Quick Terrain Modeler software.

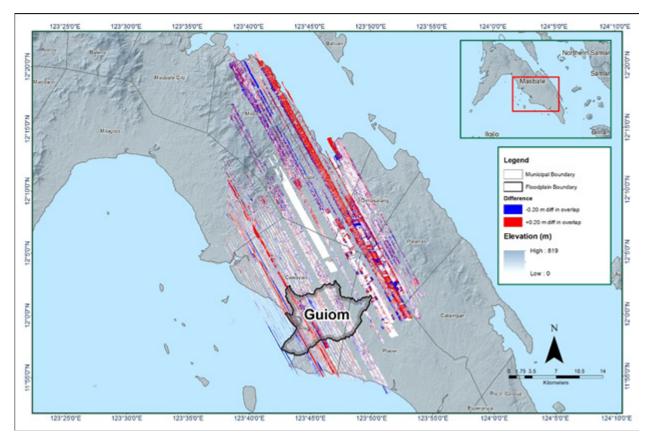


Figure 15. Elevation difference map between flight lines for Guiom floodplain.

A screen capture of the processed LAS data from a Guiom flight 1293P loaded in QT Modeler is shown in Figure 16. The upper left image shows the elevations of the points from two overlapping flight strips traversed by the profile, illustrated by a dashed red line. The x-axis corresponds to the length of the profile. It is evident that there are differences in elevation, but the differences do not exceed the 20-centimeter mark. This profiling was repeated until the quality of the LiDAR data becomes satisfactory. No reprocessing was done for this LiDAR dataset.

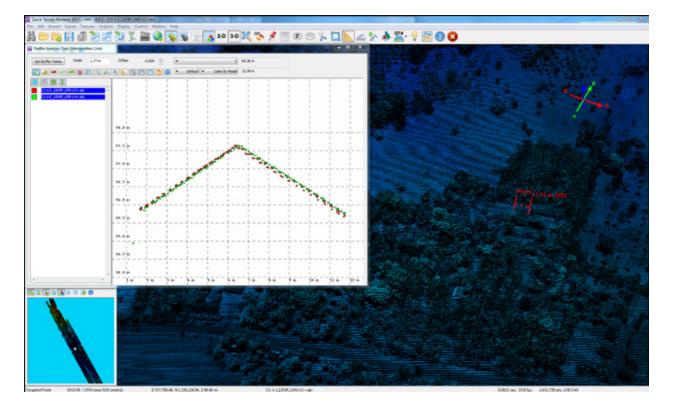


Figure 16. Quality checking for a Guiom flight 1293P using the Profile Tool of QT Modeler.

3.6 LiDAR Point Cloud Classification and Rasterization

Pertinent Class	Total Number of Points
Ground	977,567,939
Low Vegetation	585,853,057
Medium Vegetation	679,020,469
High Vegetation	343,997,895
Building	6,934,479

Table 12. Guiom classification results in TerraScan.

The tile system that TerraScan employed for the LiDAR data and the final classification image for a block in Guiom floodplain is shown in Figure 17. A total of 1,070 1km by 1km tiles were produced. The number of points classified to the pertinent categories is illustrated in Table 12. The point cloud has a maximum and minimum height of 603.95 meters and 42.31 meters respectively.

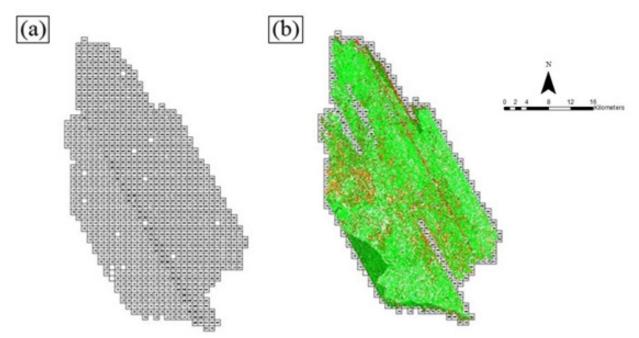


Figure 17. Tiles for Guiom floodplain (a) and classification results (b) in TerraScan.

An isometric view of an area before and after running the classification routines is shown in Figure 18. The ground points are in orange, the vegetation is in different shades of green, and the buildings are in cyan. It can be seen that residential structures adjacent or even below canopy are classified correctly, due to the density of the LiDAR data.

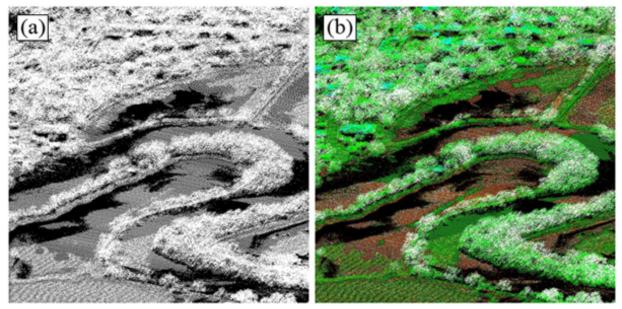


Figure 18. Point cloud before (a) and after (b) classification.

The production of last return (V_ASCII) and the secondary (T_ASCII) DTM, first (S_ASCII) and last (D_ASCII) return DSM of the area in top view display are shown in Figure 19. It shows that DTMs are the representation of the bare earth while on the DSMs, all features are present such as buildings and vegetation.

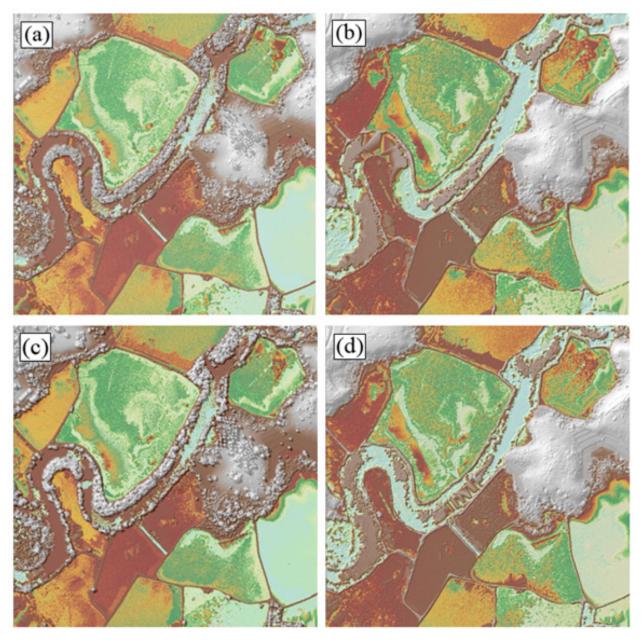


Figure 19. The production of last return DSM (a) and DTM (b), first return DSM (c) and secondary DTM (d) in some portion of Guiom floodplain.

3.7 LiDAR Image Processing and Orthophotograph Rectification

The 891 1km by 1km tiles area covered by Guiom floodplain is shown in Figure 20. After tie point selection to fix photo misalignments, color points were added to smoothen out visual inconsistencies along the seamlines where photos overlap. The Guiom floodplain has a total of 754.40 sq.km orthophotograph coverage comprised of 3,712 images. A zoomed in version of sample orthophotographs named in reference to its tile number is shown in Figure 21.

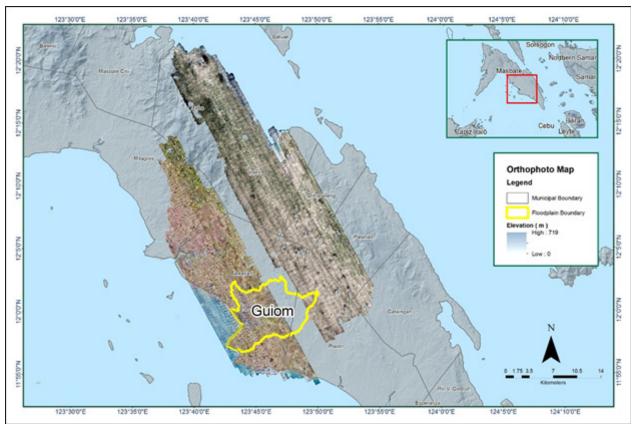


Figure 20. Guiom floodplain with available orthophotographs.

Figure 21. Sample orthophotograph tiles for Guiom floodplain.

3.8 DEM Editing and Hydro-Correction

Two (2) mission blocks were processed for Guiom flood plain. These blocks are composed of Masbate blocks with a total area of 855.86 square kilometers. Table 13 shows the name and corresponding area of each block in square kilometers.

LiDAR Blocks	Area (sq.km)
Masbate_Blk32H	315.33
Masbate_Blk32IJ	540.53
TOTAL	855.86 sq.km

Table 13. LiDAR blocks with its corresponding area.

Portions of DTM before and after manual editing are shown in Figure 22. It shows that the mountain ridge (Figure 22a) has been misclassified and removed during classification process and has to be retrieved to complete the surface (Figure 22b) to allow the correct flow of water. The triangulated riverbank (Figure 22c) is also considered to be an impedance to the flow of water along the river and has to be removed (Figure 22d) in order to hydrologically correct the river.

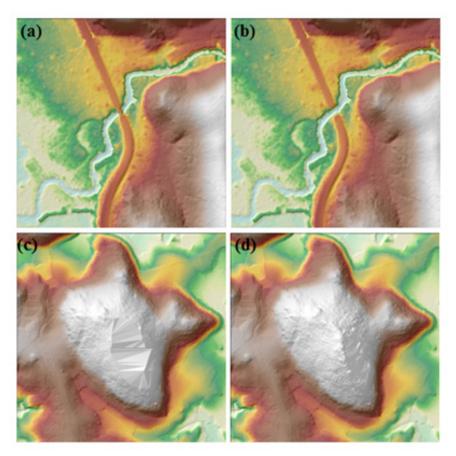


Figure 22. Portions in the DTM of Guiom floodplain – a bridge before (a) and after (b) manual editing; a mountain before (c) and after (d) data retrieval;

3.9 Mosaicking of Blocks

Masbate_Blk32D was used as the reference block at the start of mosaicking because it was referred to a base station with an acceptable order of accuracy. Table 14 shows the shift values applied to each LiDAR block during mosaicking.

Mosaicked LiDAR DTM for Guiom floodplain is shown in Figure 23. The entire Guiom flood plain is 94.49% covered by LiDAR data while portions with no LiDAR data were patched with the available IFSAR data.

Mission Blocks	Shift Values (meters)				
	х	У	Z		
Masbate_Blk32H	0.00	0.00	1.64		
Masbate_Blk32IJ	0.00	0.00	1.67		

Table 14. Shift Values of each LiDAR Block of Guiom floodplain.

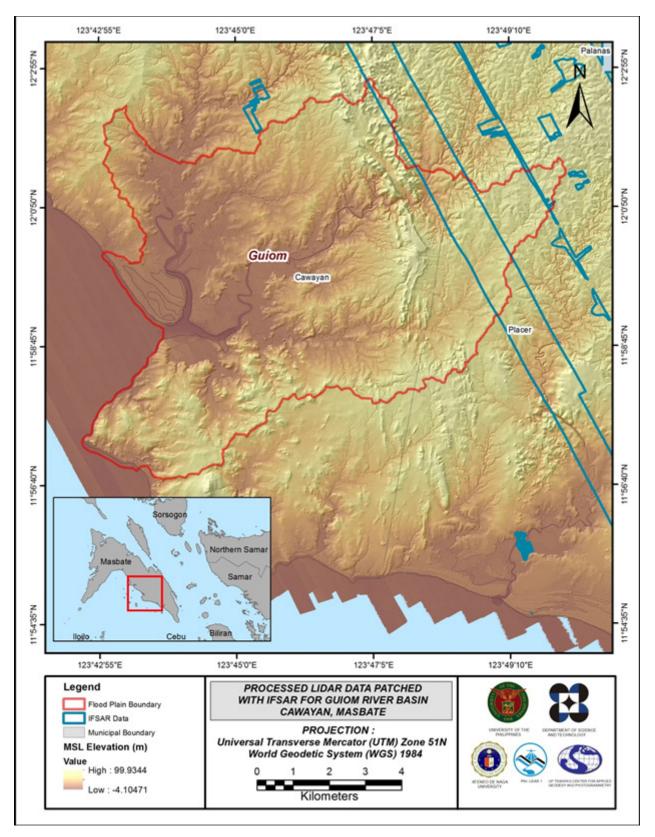


Figure 23. Map of Processed LiDAR Data for Guiom Flood Plain.

3.10 Calibration and Validation of Mosaicked LiDAR Digital Elevation Model (DEM)

The extent of the validation survey done by the Data Validation and Bathymetry Component (DVBC) in Guiom to collect points with which the LiDAR dataset is validated is shown in Figure 24. A total of 2,639 survey points from Asid floodplain were used for calibration and validation of Guiom LiDAR data. Random selection of 80% of the survey points, resulting to 2,591 points, were used for calibration.

A good correlation between the uncalibrated mosaicked LiDAR elevation values and the ground survey elevation values is shown in Figure 25. Statistical values were computed from extracted LiDAR values using the selected points to assess the quality of data and obtain the value for vertical adjustment. The computed height difference between the LiDAR DTM and calibration elevation values is 3.22 meters with a standard deviation of 0.16 meters. Calibration of Guiom LiDAR data was done by subtracting the height difference value, 3.22 meters, to Guiom mosaicked LiDAR data. Table 15 shows the statistical values of the compared elevation values between LiDAR data and calibration data.

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

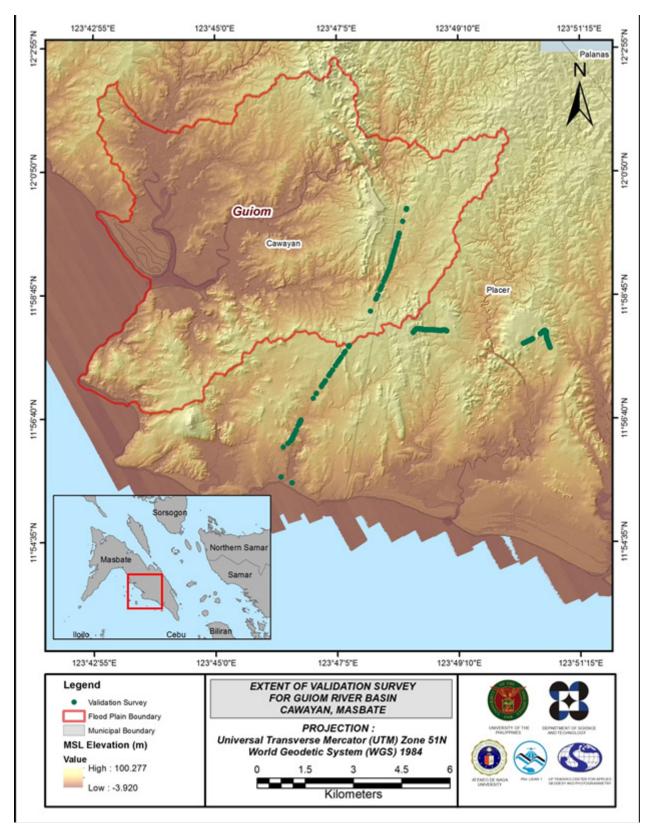


Figure 24. Map of Guiom Flood Plain with validation survey points in green.

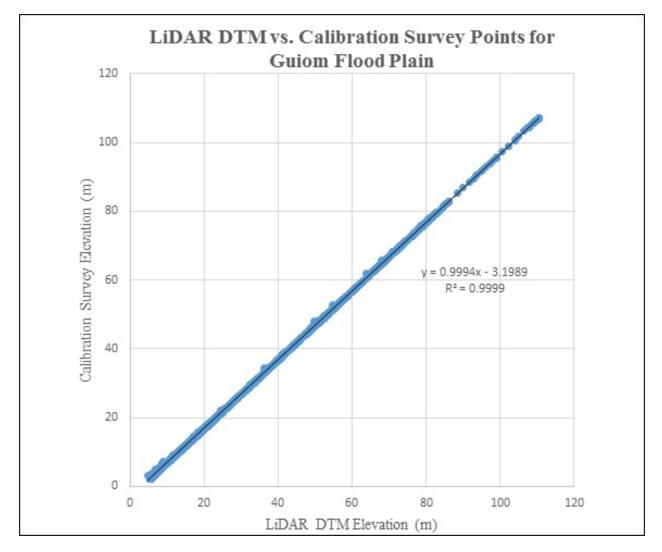


Figure 25. Correlation plot between calibration survey points and LiDAR data.

Calibration Statistical Measures	Value (meters)
Height Difference	3.22
Standard Deviation	0.16
Average	-3.22
Minimum	-3.53
Maximum	-1.66

Table 15. Calibration Statistical Measures.	
---	--

A total of 2105 survey points were collected by DVBC for Guiom floodplain. Random selection of points within and near the boundaries of the floodplain, resulting to 386 points, were used for the validation of the calibrated Guiom DTM. The good correlation between the calibrated mosaicked LiDAR elevation values and the ground survey elevation, which reflects the quality of the LiDAR DTM is shown in Figure 26. The computed RMSE between the calibrated LiDAR DTM and validation elevation values is 0.14 meters with a standard deviation of 0.14 meters, as shown in Table 16.

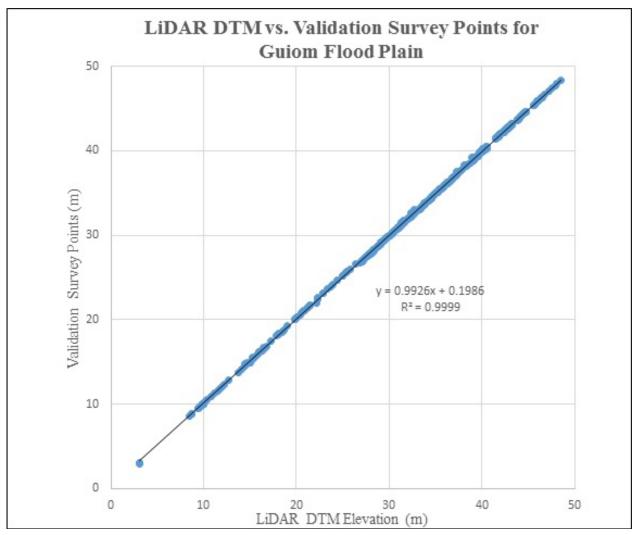


Figure 26. Correlation plot between validation survey points and LiDAR data.

Validation Statistical Measures	Value (meters)
RMSE	0.14
Standard Deviation	0.14
Average	0.04
Minimum	-0.24
Maximum	0.23

Table 16.	Validation	Statistical	Measures.
-----------	------------	-------------	-----------

3.11 Integration of Bathymetric Data into the LiDAR Digital Terrain Model

For bathy integration, centerline and zigzag data was available for Guiom with 11,914 bathymetric survey points. The resulting raster surface produced was done by Kernel interpolation method. After burning the bathymetric data to the calibrated DTM, assessment of the interpolated surface is represented by the computed RMSE value of 0.497 meters. The extent of the bathymetric survey done by the Data Validation and Bathymetry Component (DVBC) in Guiom integrated with the processed LiDAR DEM is shown in Figure 27.

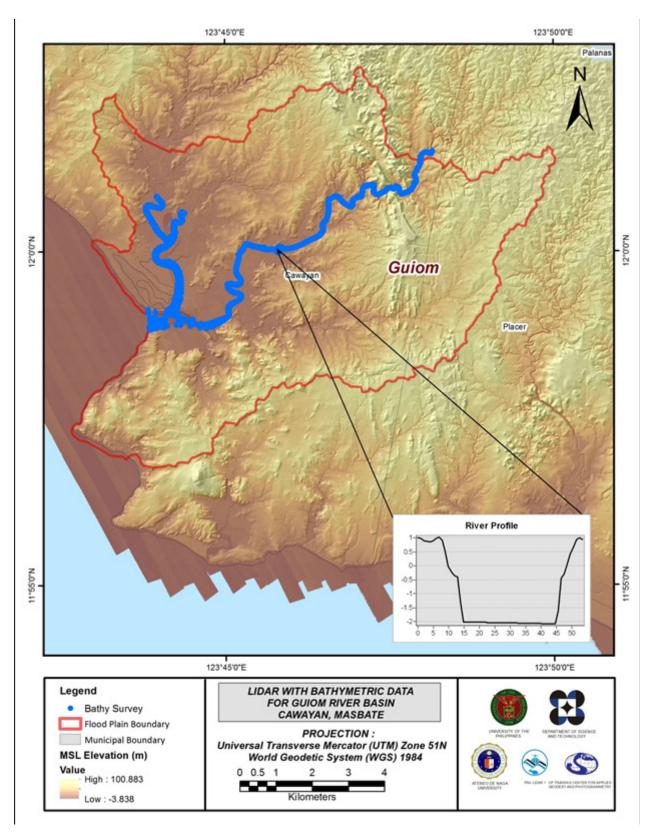


Figure 27. Map of Guiom Flood Plain with bathymetric survey points shown in blue.

3.12 Feature Extraction

The features salient in flood hazard exposure analysis include buildings, road networks, bridges and water bodies within the floodplain area with 200 m buffer zone. Mosaicked LiDAR DEM with 1 m resolution was used to delineate footprints of building features, which consist of residential buildings, government offices, medical facilities, religious institutions, and commercial establishments, among others. Road networks comprise of main thoroughfares such as highways and municipal and barangay roads essential for routing of disaster response efforts. These features are represented by a network of road centerlines.

3.12.1 Quality Checking of Digitized Features' Boundary

Guiom floodplain, including its 200 m buffer, has a total area of 92.23 sq km. For this area, a total of 5.0 sq km, corresponding to a total of 1,006 building features, are considered for QC. Figure 28 shows the QC blocks for Guiom floodplain.

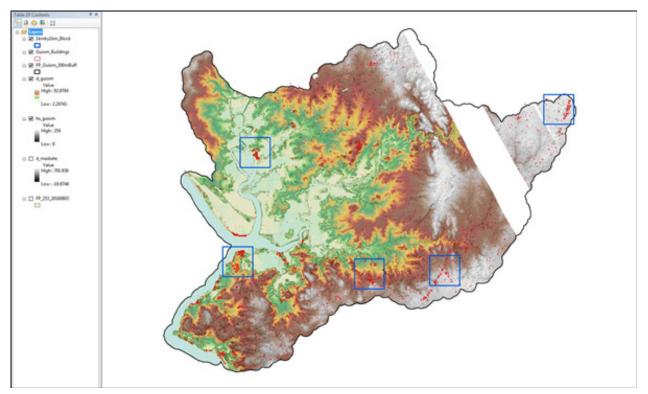


Figure 28. QC blocks for Guiom building features.

Quality checking of Guiom building features resulted in the ratings shown in Table 17.

Table 17. Quality Checking Ratings for Guiom Building Features.

FLOODPLAIN	COMPLETENESS	CORRECTNESS	QUALITY	REMARKS
Guiom	100	100	99.11	PASSED

3.12.2 Height Extraction

Height extraction was done for 6,198 building features in Guiom floodplain. Of these building features, none was filtered out after height extraction, resulting to 5,448 buildings with height attributes. The lowest building height is at 2.00 m, while the highest building is at 7.55 m.

3.12.3 Feature Attribution

Feature Attribution was done for 5,448 building features in Guiom Floodplain with the use of participatory mapping and innovations. The approach used in participatory mapping undergoes the creation of feature extracted maps in the area and presenting spatial knowledge to the community with the premise that the local community in the area are considered experts in determining the correct attributes of the building features in the area.

The innovation used in this process is the creation of an android application called reGIS. The Resource Extraction for Geographic Information System (reGIS)[1] app was developed to supplement and increase the field gathering procedures being done by the AdNU Phil-LiDAR 1. The Android application allows the user to automate some procedures in data gathering and feature attribution to further improve and accelerate the geotagging process. The app lets the user record the current GPS location together with its corresponding exposure features, code, timestamp, accuracy and additional remarks. This is all done by a few swipes with the help of the device's pre-defined list of exposure features. This effectively allows unified and standardized sets of data.

Table 18 summarizes the number of building features per type. On the other hand, Table 19 shows the total length of each road type, while Table 20 shows the number of water features extracted per type.

Facility Type	No. of Features
Residential	5,365
School	56
Market	2
Agricultural/Agro-Industrial Facilities	1
Medical Institutions	8
Barangay Hall	5
Military Institution	0
Sports Center/Gymnasium/Covered Court	0
Telecommunication Facilities	0
Transport Terminal	0
Warehouse	0
Power Plant/Substation	0
NGO/CSO Offices	0
Police Station	0
Water Supply/Sewerage	0
Religious Institutions	10
Bank	0
Factory	0
Gas Station	0
Fire Station	0
Other Government Offices	1
Other Commercial Establishments	0
Total	5,448

Table 18. Building Features Extracted for Guiom Floodplain.

Table 19. Total Length of Extracted Roads for Guiom Floodplain.

Floodplain	Road Network Length (km)							
	Barangay Road							
Guiom	85.44	0	0	0	0	85.44		

Floodplain	Water Body Type							
	Rivers/Streams	Rivers/Streams Lakes/Ponds Sea Dam Fish Pen						
Guiom	1	225	1	0	0	227		

Table 20. Number of Extracted Water Bodies for Guiom Floodplain.

A total of 7 bridges and culverts over small channels that are part of the river network were also extracted for the floodplain.

3.12.4 Final Quality Checking of Extracted Features

All extracted ground features were completely given the required attributes. All these output features comprise the flood hazard exposure database for the floodplain. This completes the feature extraction phase of the project.

Figure 29 shows the Digital Surface Model (DSM) of Guiom floodplain overlaid with its ground features.

Figure 29. Extracted features for Guiom floodplain.

CHAPTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE GUIOM RIVER BASIN

Engr. Louie P. Balicanta, Engr. Joemarie S. Caballero, Ms. Patrizcia Mae. P. dela Cruz, Engr. Kristine Ailene B. Borromeo, Ms. Jeline M. Amante, Marie Angelique R. Estipona, Charie Mae V. Manliguez, Engr. Janina Jupiter, and Vie Marie Paola M. Rivera

The methods applied in this Chapter were based on the DREAM methods manual (Balicanta, et al., 2014) and further enhanced and updated in Paringit, et al. (2017).

4.1 Summary of Activities

H.O. Noveloso Surveying (HONS) conducted a field survey in Guiom River on Jan. 14, 2017, Jan 18-19, 2017, Feb. 9-11, 2017, Feb. 13, 2017, Feb. 17, 2017, and March 3, 2017 with the following scope: reconnaissance; control survey for the establishment of a control point; and cross-section and as-built survey at Baldoza Bridge in Brgy. Villahermosa, Municipality of Cawayan, Masbate; and bathymetric survey of the main river from its uptream in Brgy. Villahermosa to the mouth of the river located in Brgy. Guiom, Municipality of Cawayan, Masbate, and tributary 1 from its upstream in Brgy. Iraya to Brgy. Dalipe, Municipality of Cawayan, Masbate, and tributary 2 from its upstream in Brgy. Dalipe to the mouth of the river in Brgy. Guiom, Municipality of Cawayan, Masbate with an approximate length of 19.277 km using a dual frequency Topcon[™] GR-5 and a Hydrolite[™] Single Beam Echo Sounder. The entire survey extent is illustrated in Figure 30.

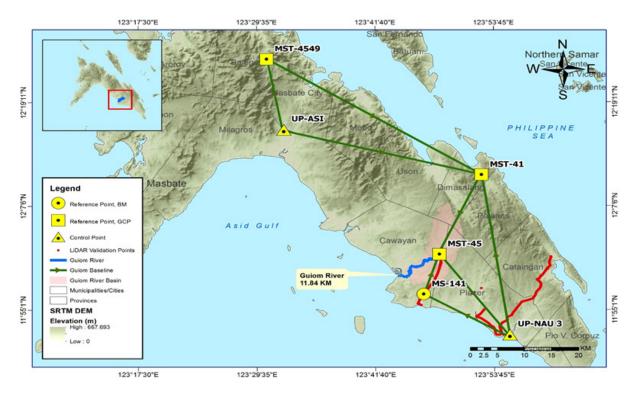


Figure 30. Guiom River Survey Extent

4.2 Control Survey

A GNSS network was established on December 4, 5 and 11, on 2015 for a previous Phil-LIDAR 1 survey in Lanang River occupying the following reference points: MST-27, a second order GCP in Brgy. Matiporon, Municipality of Milagros, Masbate; and MS-269, a first order BM in Brgy. Luy-A, Municipality of Aroroy, Masbate.

The GNSS network used for Guiom River Basin is composed of three (3) loops established on January 27 and February 14, 2017 occupying the following reference points: MST-4549, a fixed control from previous field survey in Lanang River located in Brgy. Canjunday, Municipality of Baleno, Masbate; UP-ASI, also a fixed control located in Brgy. Cayabon, Municipality of Milagros, Masbate; and MS-141, a first order BM located in Brgy. San Vicente, Municipality of Cawayan, Masbate.

A control point was established namely UP-NAU-3 located near the mouth of the Nauco Aguada River in Brgy, Taboc, Municipality of Placer, Masbate. NAMRIA established control point MST-41 in Brgy. San Vicente, Municipality of Cawayan; and MST-45, in Brgy. Villahermosa, Municipality of Cawayan, Masbate; were also occupied to use as marker during the survey.

The summary of reference and control points and its location is summarized in Table 21 while GNSS network established is illustrated in Figure 31.

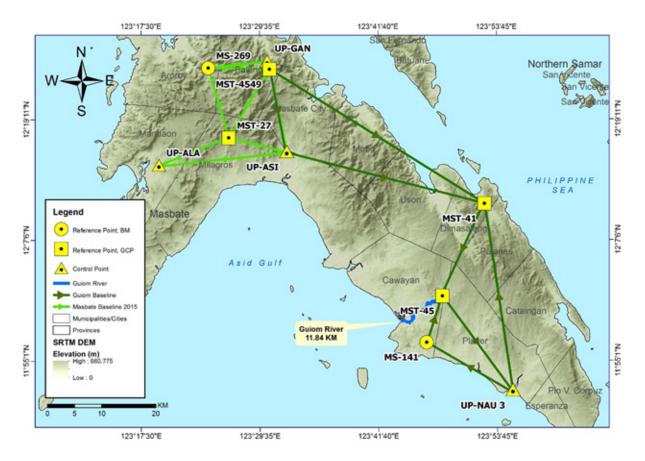


Figure 31. GNSS Network covering Guiom River

Table 21. List of Reference and Control Points occupied for Guiom River Survey

(Source: NAMRIA; UP-TCAGP)

Control Point	Order of Accuracy		Geographic Coordinates (WGS '84)						
		Latitude	Longitude	Ellipsoidal Height (Meter)	Elevation in MSL (Meter)	Date Established			
		Control Surv	vey on September 18,	2015					
MST-27	2nd Order GCP	12°17'22.32360"	123°26'26.50548"	109.123	53.606	2007			
MS-269	1st Order BM	12°24'21.62817"	123°24'21.39816"	82.132	27.408	2007			
	Contr	ol Survey for Guiom R	River on January 27 ar	nd February 1	4, 2017				
MST- 4549	Fixed Control	12°24'13.29041"	123°30'36.98735"	76.969	21.829	2013			
UP-ASI	Fixed Control	12°15'59.72358"	123°32'20.76940"	66.451	10.476	2007			
MS-141	1st Order BM	-	-	-	-	2007			
MST-41	Used as Marker	-	-	-	-	2-14-2017			
MST-45	Used as Marker	-	-	-	-	1-27-2017			
UP-NAU 3	Established	-	-	-	-	1-27-2017			

The GNSS set-ups on recovered reference points and established control points in Guiom River are shown in Figure 32 to Figure 37.

Figure 32. GNSS base set up, Trimble® SPS 985, at MST-4549, located in Brgy. Canjunday, Municipality of Baleno, Masbate

Figure 33. GNSS receiver setup, Trimble® SPS 985, at UP-ASI, located Brgy. Cayabon, Municipality of Milagros, Masbate

Figure 34. GNSS receiver setup, Trimble® SPS 985, at MS-141, located in Brgy. San Vicente, Municipality of Cawayan, Masbate

Figure 35. GNSS receiver setup, Trimble® SPS 985, at MST-41, located in Brgy. Gaid, Municipality of Dimasalang, Masbate

Figure 36. GNSS receiver setup, Trimble® SPS 985, at MST-45, located in Brgy. Villahermosa, Municipality of Cawayan, Masbate

Figure 37. GNSS receiver setup, Trimble® SPS 985, at UP-NAU3, located in Brgy. Taboc, Municipality of Placer, Masbate

4.3 Baseline Processing

GNSS Baselines were processed simultaneously in TBC by observing that all baselines have fixed solutions with horizontal and vertical precisions within +/- 20 cm and +/- 10 cm requirement, respectively. In case where one or more baselines did not meet all of these criteria, masking is performed. Masking is done by removing/masking portions of these baseline data using the same processing software. It is repeatedly processed until all baseline requirements are met. If the reiteration yields out of the required accuracy, resurvey is initiated. Baseline processing result of control points in Guiom River Basin is summarized in Table 22 generated by TBC software.

Observation	Date of Observation	Solution Type	H. Prec. (Meter)	V. Prec. (Meter)	Geodetic Az.	Ellipsoid Dist. (Meter)	∆Height (Meter)
UP-NAU 3 MS-141 (B6)	1-27-2017	Fixed	0.004	0.019	298°53'38"	18166.522	11.403
MS-141 MST-45 (B3)	1-27-2017	Fixed	0.004	0.016	18°57'41"	9036.475	2.254
MST-4549 UPASI (B8)	1-27-2017	Fixed	0.003	0.014	168°18'59"	15487.632	-10.554
UP-NAU 3 MST-41 (B10)	1-27-2017	Fixed	0.003	0.015	351°30'42"	34736.682	4.574
MST-45 UP-NAU 3 (B4)	2-14-207	Fixed	0.003	0.014	143°09'49"	21636.574	-13.668
MST-41 MST-45 (B11)	2-14-207	Fixed	0.004	0.020	204°41'47"	18750.039	9.089
UP-ASI MST-41 (B9)	1-27-2017	Fixed	0.003	0.016	104°48'50"	37813.501	-2.533
MST-4549 MST- 41 (B7)	1-27-2017	Fixed	0.004	0.019	122°01'41"	46820.813	-13.099

As shown Table 22 a total of eight (8) baselines were processed with reference points MST-4549 and UP-ASI held fixed for coordinate values; and, MST-4549, MS-ASI, and UP-ASI fixed for elevation values. All of them passed the required accuracy.

4.4 Network Adjustment

After the baseline processing procedure, network adjustment is performed using TBC. Looking at the Adjusted Grid Coordinates Table of the TBC generated Network Adjustment Report, it is observed that the square root of the sum of the squares of x and y must be less than 20 cm and z less than 10 cm or in equation form:

 $\sqrt{((x^e)^2+(y^e)^2)}$ <20cm and z^e <10 cm

where:

x^e is the Easting Error, y^e is the Northing Error, and z^e is the Elevation Error

for each control point. See the Network Adjustment Report shown in Table C-3 to Table C-6 for complete details.

The six (6) control points, MST-4549, MST-41, MST-45, MS-141, UP-ASI, and, UP-NAU3 were occupied and observed simultaneously to form a GNSS loop. Coordinates of MST-4549 and UP-ASI; and elevation values of MST-4549, MS-141, and UP-ASI were held fixed during the processing of the control points as presented in Table 23. Through these reference points, the coordinates and elevation of the unknown control points will be computed.

Point ID	Туре	East σ (Meter)	North σ (Meter)	Height σ (Meter)	Elevation σ (Meter)	
MS-141	Grid				Fixed	
MST-4549	Grid	Fixed	Fixed		Fixed	
UP-ASI	Grid	Fixed	Fixed		Fixed	
Fixed = 0.000001 (Meter)						

Table 23. Control Point Constraints

The list of adjusted grid coordinates, i.e. Northing, Easting, Elevation and computed standard errors of the control points in the network is indicated in Table 24. The fixed controls MST-4549 and UP-ASI have no values for grid errors while MST-4549, MS-141, and UP-ASI have no value for elevation error.

Point ID	Easting (Meter)	Easting Error (Meter)	Northing (Meter)	Northing Error (Meter)	Elevation (Meter)	Elevation Error (Meter)	Constraint
MST-4549	555464.635	?	1371246.784	?	21.829	?	ENe
MST-41	595192.614	0.004	1346499.397	0.004	7.564	0.045	
MST-45	587415.558	0.005	1329444.427	0.004	15.819	0.017	
MS-141	584504.292	0.005	1320892.702	0.005	13.221	?	е
UP-ASI	558628.712	?	1356091.508	?	10.476	?	ENe
UP-NAU 3	600433.760	0.007	1312170.323	0.006	1.747	0.024	

With the mentioned equation, $\sqrt{((x^e)^2+(y^e)^2)}$ <20cm for horizontal and z^e <10 cm for the vertical; the computation for the accuracy are as follows:

a.	a. MST-4549 horizontal accuracy vertical accuracy	= =	Fixed Fixed
b.	b. MST-41 horizontal accuracy vertical accuracy	= = =	√((0.4) ² + (0.4) ² √ (0.16 + 0.16) 0.57 < 20 cm 4.5 cm < 10 cm
С.	c. MST-45 horizontal accuracy vertical accuracy	= = =	√((0.5) ² + (0.4) ² √ (0.25 + 0.16) 0.64 < 20 cm 1.7 cm < 10 cm
d.	d. MS-141 horizontal accuracy vertical accuracy	= = =	V((0.5) ² + (0.5) ² V (0.25 + 0.25) 0.71 < 20 cm Fixed
e.	UP-ASI horizontal accuracy vertical accuracy	= =	Fixed Fixed
f.	UP-NAU 3 horizontal accuracy vertical accuracy	= = =	√((0.7) ² + (0.6) ² √ (0.49 + 0.36) 0.92 < 20 cm 2.4 cm < 10 cm

Following the given formula, the horizontal and vertical accuracy result of the three occupied control points are within the required precision.

Point ID	Latitude	Longitude	Ellipsoid	Height	Constraint
MST-4549	N12°24'13.29041"	E123°30'36.98735"	76.969	?	ENe
MST-41	N12°10'44.36122"	E123°52'30.02722"	64.943	0.045	
MST-45	N12°01'29.95768"	E123°48'11.03606"	73.746	0.017	
MS-141	N11°56'51.84368"	E123°46'33.96438"	71.378	?	е
UP-ASI	N12°15'59.72358"	E123°32'20.76940"	66.451	?	ENe
UP-NAU 3	N11°52'06.32015"	E123°55'19.63857"	60.400	0.024	

Table 25. Adjusted Geodetic Coordinates

The corresponding geodetic coordinates of the observed points are within the required accuracy as shown in Table 25. Based on the result of the computation, the equation is satisfied; hence, the required accuracy for the program was met.

The summary of reference and control points used is indicated in Table 26.

Table 26. Reference and control points used and its location (Source: NAMRIA, UP-TCAGP)

Control	Order of Accuracy	Geographic Coordinates (WGS 84)			UTM ZONE 51 N				
Point		Latitude	Longitude	Ellips- oidal Height (m)	Northing (m)	Easting (m)	BM Ortho (m)		
	Control Survey for Lanang River on December 4, 5 and 12, 2015								
MST-27	2nd Order, GCP	12°17'22.32360"	123°26'26.50548"	109.123	1358609.337	547922.386	53.606		
MS-269	1st Order, BM	12°24'21.62817"	123°24'21.39816"	82.132	1371483.424	544123.788	27.408		
	Cont	trol Survey for Guid	om River on Januar	y 27 and	February 14, 20	017			
MST- 4549	4th order, GCP	12°24'13.29041"	123°30'36.98735"	76.969	1371246.784	555464.635	21.829		
MST-41	Used as Marker	12°10'44.36122"	123°52'30.02722"	64.943	1346499.397	595192.614	7.564		
MST-45	Used as Marker	12°01'29.95768"	123°48'11.03606"	73.746	1329444.427	587415.558	15.819		
MS-141	1st order, BM	11°56'51.84368"	123°46'33.96438"	71.378	1320892.702	584504.292	13.221		
UP-ASI	UP established	12°15'59.72358"	123°32'20.76940"	66.451	1356091.508	558628.712	10.476		
UP- NAU3	UP established	11°52'06.32015"	123°55'19.63857"	60.4	1312170.323	600433.760	1.747		

4.5 Cross-section and Bridge As-Built survey and Water Level Marking

Cross-section and as-built surveys were conducted on February 9, 2017 at the downstream side of Baldoza Bridge in Brgy. Villahermosa, Cawayan, Masbate as shown in Figure 38. A Sokkia[™] Set 3030 Total Station was utilized for this survey as shown in Figure 39.

Figure 38. Downstream side of Baldoza Bridge

Figure 39. As-built survey of Baldoza Bridge

The cross-sectional line of Baldoza Bridge is about 74 m with four hundred thirty-six (436) cross-sectional points using the control point UP-GUI-1 as the GNSS base station. The cross-section diagrams and the bridge data form for Baldoza Bridge are shown in Figure 41 and 42.

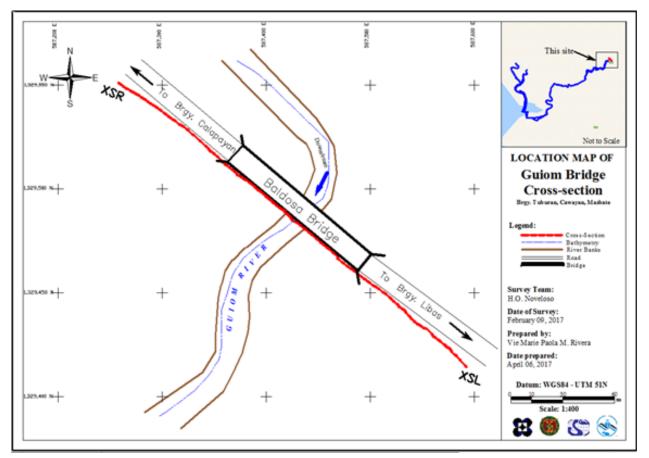
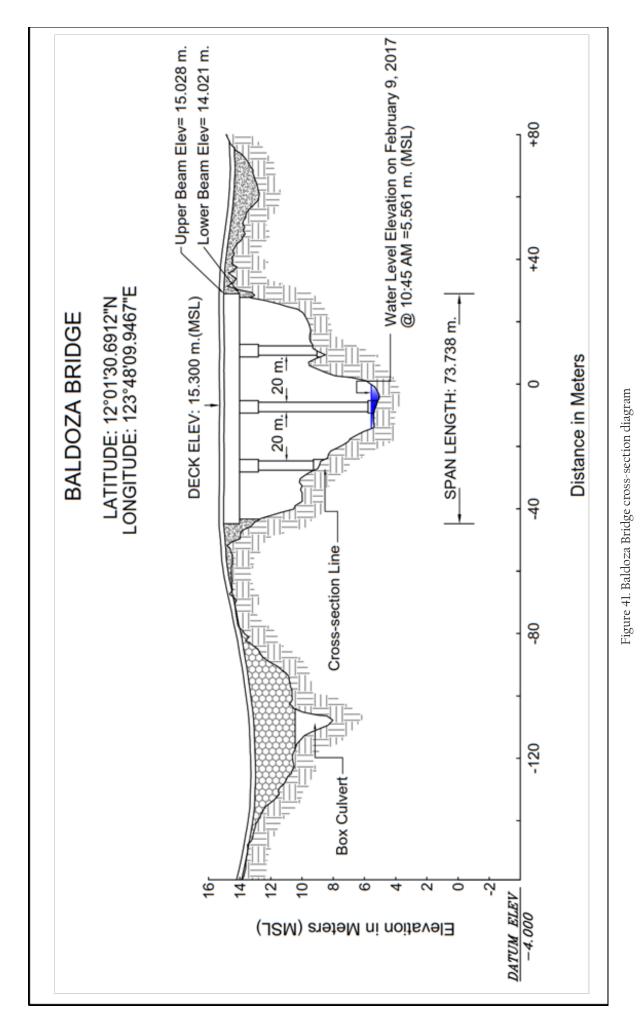
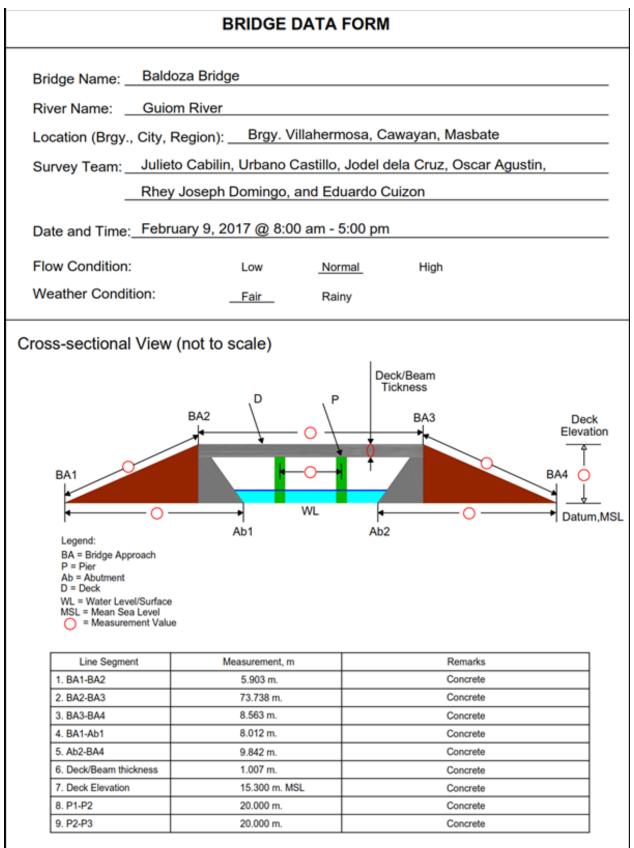




Figure 40. Location map of Guiom Bridge (also known as Baldoza Bridge) cross section survey

Note: Observer should be facing downstream

Figure 42. Bridge data form

Water surface elevation of Guiom River was determined by Sokkia[™] Set 3030 Total Station on February 9, 2017 at the sidewalk of Baldoza Bridge in Brgy. Villahermosa, Cawayan, Masbate with a value of 15.464 m in MSL. This was translated into marking on the bridge's sidewalk 2.5 meters away from the centerline as shown in Figure 43. The marking will serve as reference for flow data gathering and depth gauge deployment of the partner HEI responsible for Guiom River, the Ateneo de Naga University.

Figure 43. Water surface elevation marking on Baldoza Bridge sidewalk

Water surface elevation of Guiom River was also determined by a Sokkia[™] Set-3030 Total Station on February 9, 2017 at 10:45 AM at Baldoza Bridge area with a value of 5.561 m in MSL as shown in Figure 43. This was translated into marking on the bridge's pier as shown in Figure 44.

Figure 44. Water level markings on Baldoza Bridge

4.6 Validation Points Acquisition Survey

Validation points acquisition survey was conducted by DVBC on January 28, 2017 using a survey grade GNSS Rover receiver, Trimble[®] SPS 882, which was attached on top of the vehicle as shown in Figure 45. It was secured with cable ties and ropes to ensure that it was horizontally and vertically balanced. The antenna height was 1.902 m and measured from the ground up to the bottom of the notch of the GNSS Rover receiver. The PPK technique utilized for the conduct of the survey was set to continuous topo mode with UP-NAU-3 occupied as the GNSS base station in the conduct of the survey.

The first day of the validation points acquisition survey ran from Mabuaya Bridge in Brgy. Matiporon, Milagros to Brgy. Poblacion, Aroroy via Baleno in an almost semi-circumferential route. The reference point MST-4549 was utilized during this survey. The second day of this survey also started in Mabuaya Bridge going to Brgy. Poblacion in Aroroy via Mandaon, the opposite side of the circumferential road. This survey also covered Mandaon Road which started from Brgy. Mabatobato going southwest towards Brgy. Nailaban, both in the Municipality of Mandaon. The reference point MST-27 was used as base station for the last route.

The survey gathered a total of 4,673 points with approximate length of 46.08 km using MST-27 as GNSS base station for the entire extent of validation points acquisition survey as illustrated in the map in Figure 46.

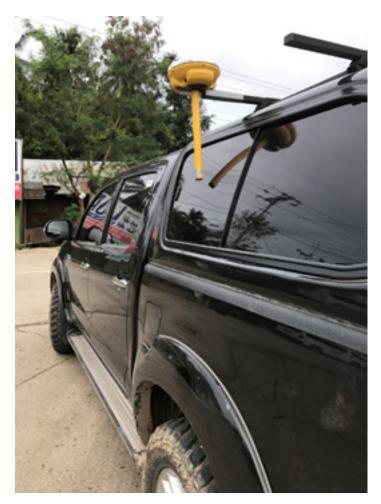


Figure 45. Validation points acquisition survey set-up for Guiom River

Figure 46. Validation points acquisition covering the Guiom River Basin Area

4.7 River Bathymetric Survey

Bathymetric survey was executed on January 14, February 10-11, February 13, and February 17, 2017 using dual frequency Topcon[™] GR-5 and a Hydrolite[™] Single Beam Echo Sounder mounted in a motor boat as illustrated in Figure 47.

For the main river, survey started in Brgy. Itombato, Cawayan, Masbate, with coordinates 12°00'15.9435"N, 123°46'27.3032"E and ended at the mouth of the river in Brgy. Guiom, also in the Municipality of Cawayan, with coordinates 11°58' 54.8113"N, 123°44' 47.4367"E.

For tributary 1, the bathymetric survey started in Brgy. Iraya, Cawayan, Masbate, with coordinates 12°00' 49.6891"N, 123°43' 57.0166"E and ended in Brgy. Dalipe, also in Cawayan, with coordinates 12°00'07.1113"N, 123°44'06.5826"E.

For tributary 2, the bathymetric survey started in Brgy. Dalipe, Cawayan, Masbate, with coordinates 12°00' 35.3944"N, 123°44' 21.2158"E and ended at the mouth of the river in Brgy. Guiom, also in Cawayan, with coordinates 11°59'08.5259"N, 123°44'08.9241"E.

Figure 47. Bathymetric survey using Topcon[™] GR-5 in Guiom River

Manual bathymetric survey, on the other hand, was executed on March 3, 2017 using a Topcon[™] GR-5 RTK in continuous topo mode as illustrated in Figure 48. The survey in the main river started from Brgy. Villahermosa, Cawayan, Masbate with coordinates 12°01′30.9514″N, 123°48′10.3481″E traversing the river and ended in Brgy. Itombato, also in the Municipality of Cawayan with coordinates 12°00′15.6112″N, 123°46′27.9834″E. The survey continued from Brgy. Guiom, Cawayan, Masbate with coordinates 11°58′56.1542″N, 123°44′46.0805″E, traversing the river and ended in Brgy. Guiom as well with coordinates 11°58′50.6272″N, 123°43′52.6295″E. The control points UP-GUI-1, UP-GUI-4, UP-GUI-5, UP-GUI-6, and UP-GUI-8 were used as GNSS base stations all throughout the entire survey.

Figure 48. Manual bathymetric survey using a using Topcon™ GR-5 in Guiom River

The bathymetric survey for Guiom River gathered a total of 9,624 points covering 19.277 km of the river traversing barangays Calapayan, Dalipe, Guiom, Itombato, Maihao, Pananawan, Villahermosa, Pin-As and Iraya in the Municipality of Cawayan. A CAD drawing was also produced to illustrate the riverbed profile of Guiom River. As shown in Figure C-22 to C-24, the highest and lowest elevation has a 9.770 m difference. The highest elevation observed was 5.266 m above MSL located in Brgy. Villahermosa, in the Municipality of Cawayan, Masbate; while the lowest was -4.504 m below MSL located in Brgy. Iraya, also in the Municipality of Cawayan.

Gathering of random points for the checking of HONS's bathymetric data was performed by DVBC on January 30, 2017 using a survey grade GNSS Rover receiver attached to a boat as seen in Figure 49. A map showing the DVBC bathymetric checking points is shown in Figure 50.

Figure 49. Gathering of random bathymetric points along Guiom River

Linear square correlation (R2) and RMSE analysis were also performed on the two (2) datasets and a computed R2 value of 0.973 for the bathymetric data is within the required range for R2, which is 0.85 to 1. Additionally, an RMSE value of 0.133 for the bathymetric data was obtained. Both the computed R2 and RMSE values are within the accuracy required by the program.

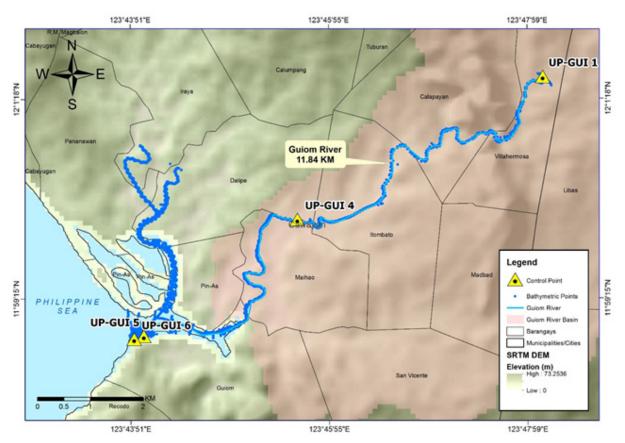
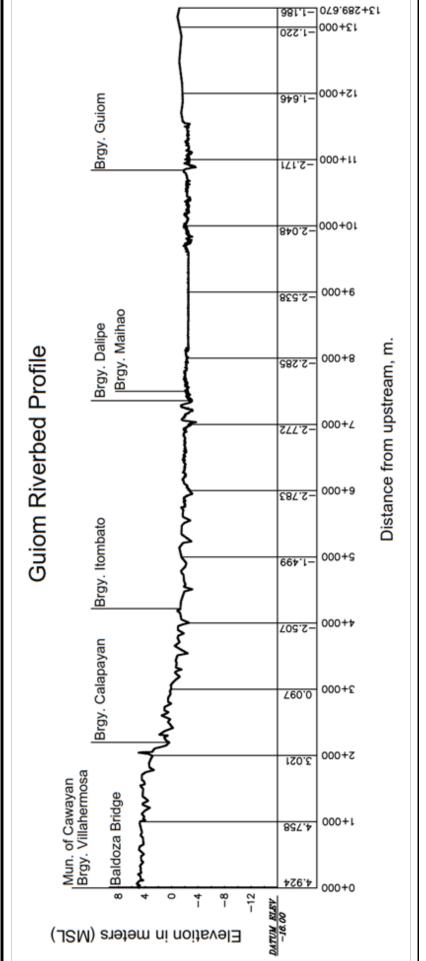
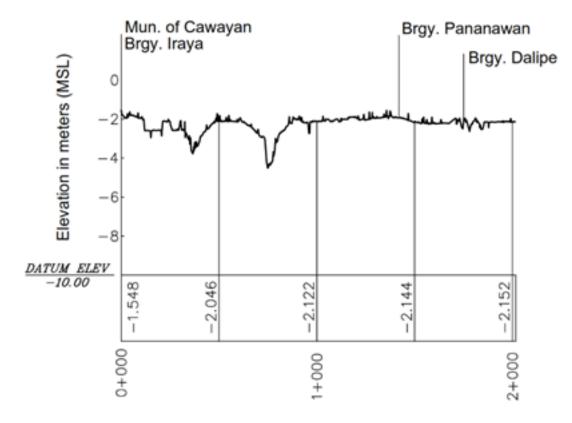
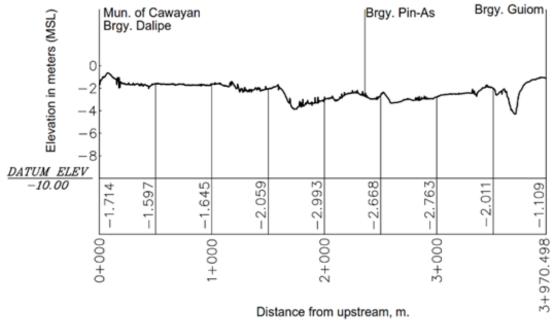


Figure 50. Bathymetric Survey Map of Guiom River

Figure 51. Quality checking points gathered along Guiom River by DVBC


Figure 52. Guiom Riverbed Profile

Guiom Riverbed Profile (Tributary 1)

Distance from upstream, m. Figure 53. Guiom Riverbed Profile Tributary 1)

Guiom Riverbed Profile (Tributary 2)

CHAPTER 5: FLOOD MODELING AND MAPPING

Dr. Alfredo Mahar Lagmay, Christopher Uichanco, Sylvia Sueno, Marc Moises, Hale Ines, Miguel del Rosario, Kenneth Punay, Neil Tingin, Gianni Sumajit, Engr. Ferdinand E. Bien, Daniel S. Baer Jr., Engr. Mary Ruth A. Bongon, Mark D. Delloro, Sarah Mae F. Fulleros, Engr. Julius Hector S. Manchete, Ernesto F. Razal Jr., Aaron P. San Andres, Engr. Lech Fidel C. Pante, John Paul B. Obina, Rox Harvey DP. Rosales, Engr. Mark A. Sta. Isabel, and Engr. Juan Paulo B. Besa

The methods applied in this Chapter were based on the DREAM methods manual (Lagmay, et al., 2014) and further enhanced and updated in Paringit, et al. (2017).

5.1 Data Used for Hydrologic Modeling

5.1.1 Hydrometry and Rating Curves

All components and data that affect the hydrologic cycle of the Guiom River Basin were monitored, collected, and analyzed. Rainfall, water level, and flow in a certain period of time, which may affect the hydrologic cycle of the Guiom River Basin were monitored, collected, and analyzed.

5.1.2 Precipitation

Precipitation data was taken from one rain gauge (RGs) installed by the ADNU-FMC team. The rain gauge was installed at Brgy. Aroroy (Figure 55). The precipitation data collection started from February 16, 2017 at 2:00 PM to February 17, 2017 at 2:20 PM with a 10-minute recording interval.

The total precipitation for this event in the deployed rain gauge is 132.4mm. It has a peak rainfall of 4.8mm on February 17, 2017 at 2:50 AM. The lag time between the peak rainfall and discharge is 6 hours and 30 minutes.

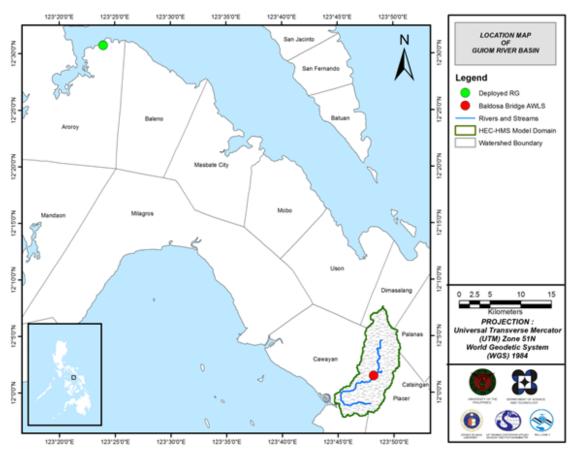


Figure 55. The location map of Guiom HEC-HMS model used for calibration

5.1.3 Rating Curves and River Outflow

A rating curve was developed at Baldosa Bridge, Guiom, Masbate (12°1'30.1"N, 123°48'11.1"E). It gives the relationship between the observed water levels at Ilog Bridge and outflow of the watershed at this location.

For Baldosa Bridge, the rating curve is expressed as Q = 2E-14e49.118h as shown in Figure 57.

(This image is not available for this river basin.)

Figure 56. The cross-section plot of Baldosa Bridge

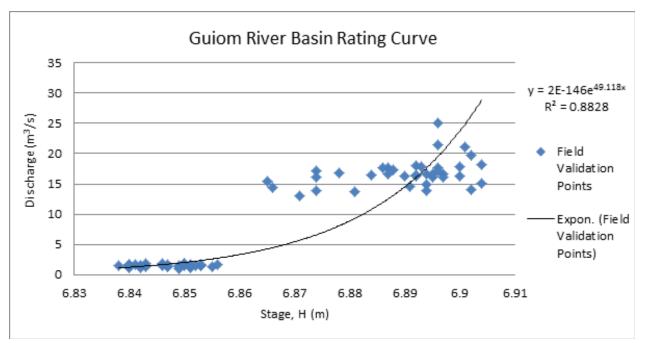


Figure 57. The rating curve of Baldosa Bridge in Guiom, Masbate

This rating curve equation was used to compute the river outflow at Baldosa Bridge for the calibration of the HEC-HMS model shown in Figure 58. The total rainfall for this event is 132.4mm and the peak discharge is 37.6m3/s at 9:20 AM, February 17, 2017.

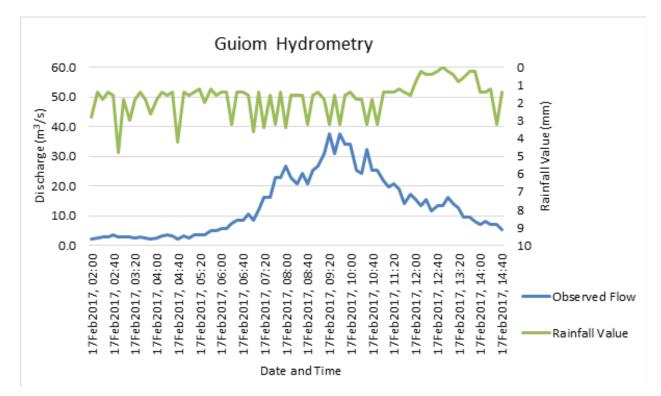


Figure 58. Rainfall and outflow data of the Guiom River Basin, which was used for modeling

5.2 RIDF Station

The Philippine Atmospheric Geophysical and Astronomical Services Administration (PAGASA) computed Rainfall Intensity Duration Frequency (RIDF) values for the Catarman RIDF. The RIDF rainfall amount for 24 hours was converted to a synthetic storm by interpolating and re-arranging the value in such a way certain peak value will be attained at a certain time. This station was chosen based on its proximity to the Guiom watershed. The extreme values for this watershed were computed based on a 26-year record.

		COMPUT	ED EXTRE	ME VALUE	S (in mm)	OF PRECI	PITATION		
T (yrs)	10 mins	20 mins	30 mins	1 hr	2 hrs	3 hrs	6 hrs	12 hrs	24 hrs
2	22.5	34.2	42.4	57.5	80.9	96.4	125.2	156.6	180
5	29.9	45.4	56.2	77	110.3	135.9	183.5	229.5	255.4
10	34.7	52.8	65.4	90	129.7	162	222.1	277.8	305.4
15	37.5	57	70.5	97.3	140.7	176.7	243.9	305.1	333.6
20	39.4	60	74.2	102.4	148.4	187.1	259.1	324.1	353.3
25	40.9	62.2	76.9	106.3	154.3	195	270.9	338.8	368.5
50	45.5	69.2	85.5	118.4	172.6	219.5	307.1	384.1	415.3
100	50	76.1	94	130.5	190.7	243.8	343	429	461.8

Table 27. RIDF values for Guiom Rain Gauge computed by PAG-ASA

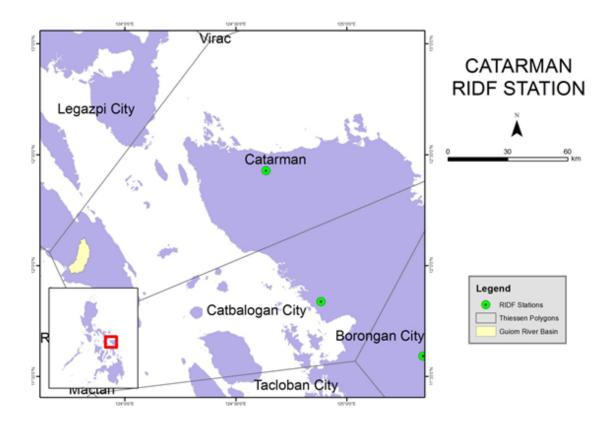


Figure 59. The location of the Catarman RIDF station relative to the Guiom River Basin

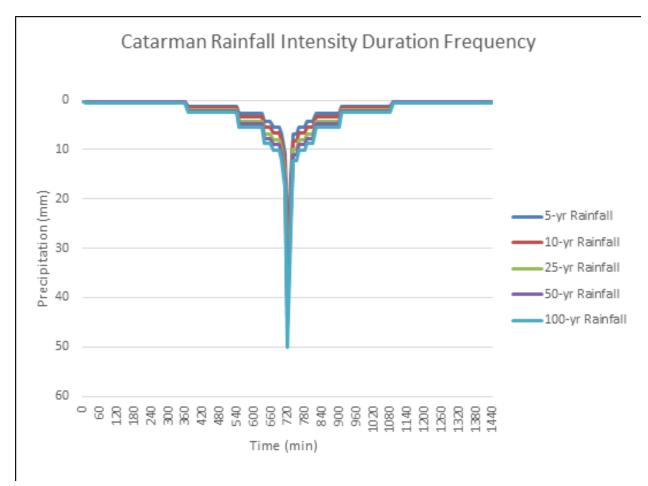


Figure 60. The synthetic storm generated for a 24-hour period rainfall for various return periods

5.3 HMS Model

The soil dataset was generated before 2004 by the Bureau of Soils and Water Management (BSWM); this is under the Department of Agriculture (DA). The land cover dataset is from the National Mapping and Resource information Authority (NAMRIA). The soil and land cover of the Guiom River Basin are shown in Figures 61 and 62, respectively.

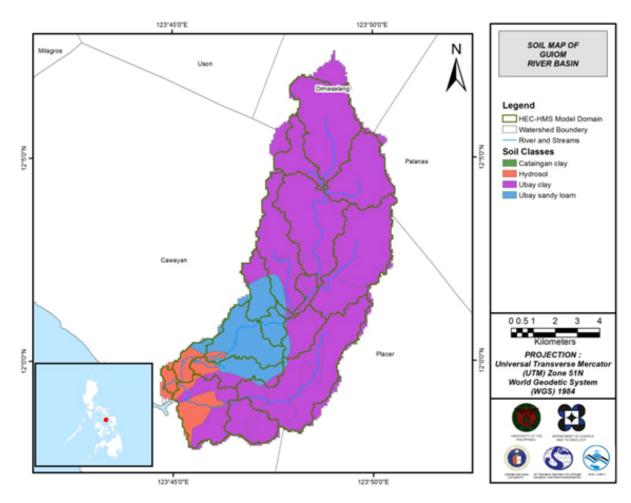


Figure 61. Soil map of Guiom River Basin

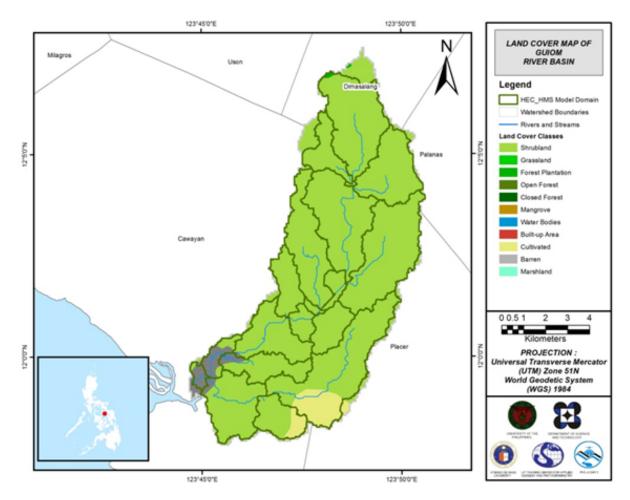


Figure 62. Land cover map of Guiom River Basin

For Guiom, four soil classes were identified. These are Cataingan clay, Ubay clay and sandy loam, and hydrosol. Moreover, four land cover classes were identified. These are shrubland, forest plantation, cultivates, and barren areas.

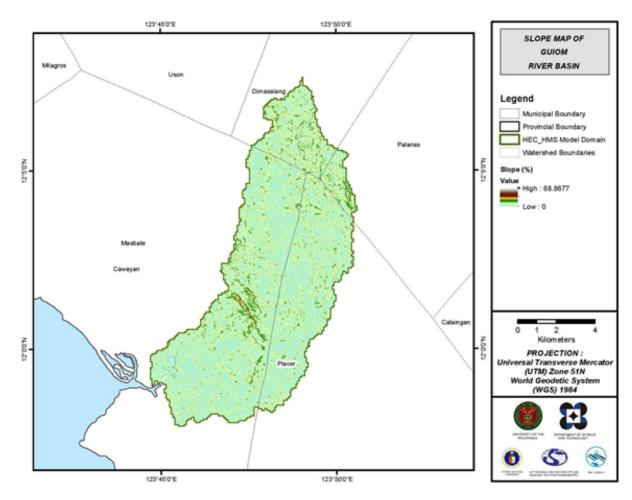


Figure 63. Slope map of Guiom River Basin

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

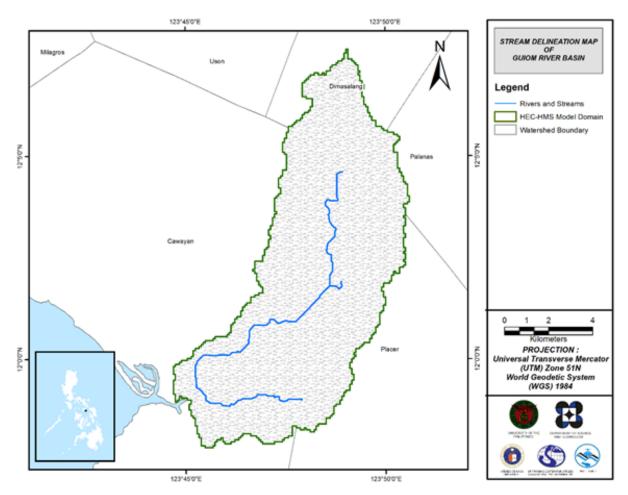


Figure 64. Stream delineation map of Guiom River Basin

Using the SAR-based DEM, the Guiom basin was delineated and further divided into subbasins. The model consists of 19 sub basins, 9 reaches, and 9 junctions, as shown in Figure 65. The main outlet is Baldosa Bridge.

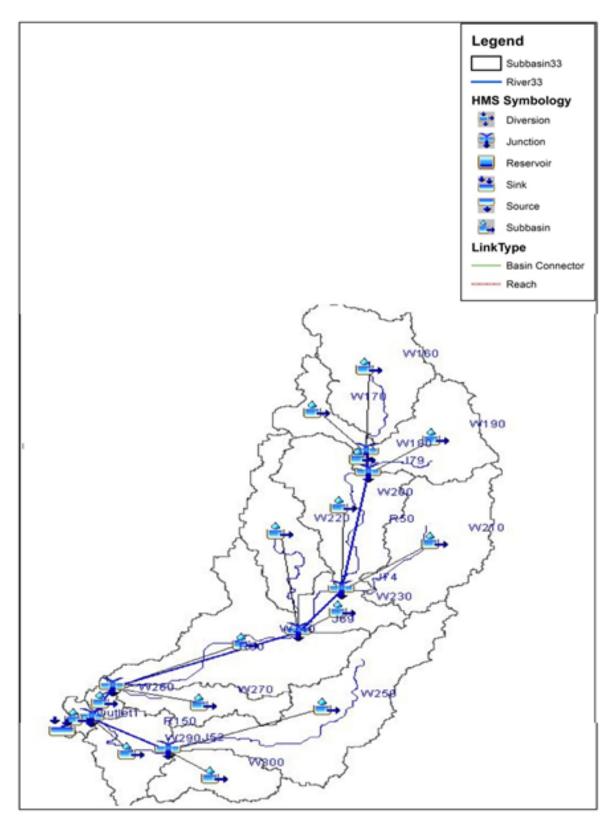


Figure 65. The Guiom River Basin model generated in HEC-HMS

5.4 Cross-section Data

Riverbed cross-sections of the watershed are crucial in the HEC-RAS model setup. The cross-section data for the HEC-RAS model was derived using the LiDAR DEM data. It was defined using the Arc GeoRAS tool and was post-processed in ArcGIS.

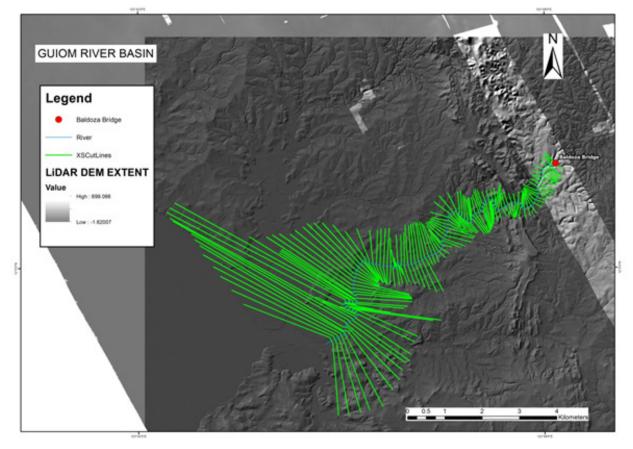


Figure 66. River cross-section of Guiom River generated through Arcmap HEC GeoRAS tool

5.5 Flo 2D Model

The automated modelling process allows for the creation of a model with boundaries that are almost exactly coincidental with that of the catchment area. As such, they have approximately the same land area and location. The entire area is divided into square grid elements, 10 meter by 10 meter in size. Each element is assigned a unique grid element number which serves as its identifier, then attributed with the parameters required for modelling such as x-and y-coordinate of centroid, names of adjacent grid elements, Manning coefficient of roughness, infiltration, and elevation value. The elements are arranged spatially to form the model, allowing the software to simulate the flow of water across the grid elements and in eight directions (north, south, east, west, northeast, northwest, southeast, southwest).

Based on the elevation and flow direction, it is seen that the water will generally flow from the northeast of the model to the southwest, following the main channel. As such, boundary elements in those particular regions of the model are assigned as inflow and outflow elements respectively.

Figure 67. Screenshot of subcatchment with the computational area to be modeled in FLO-2D Grid Developer System Pro (FLO-2D GDS Pro)

The simulation is then run through FLO-2D GDS Pro. This particular model had a computer run time of 113.99390 hours. After the simulation, FLO-2D Mapper Pro is used to transform the simulation results into spatial data that shows flood hazard levels, as well as the extent and inundation of the flood. Assigning the appropriate flood depth and velocity values for Low, Medium, and High creates the following food hazard map. Most of the default values given by FLO-2D Mapper Pro are used, except for those in the Low hazard level. For this particular level, the minimum h (Maximum depth) is set at 0.2 m while the minimum vh (Product of maximum velocity (v) times maximum depth (h)) is set at 0m2/s. The generated hazard maps for Guiom are in Figures 71, 73, and 75.

The creation of a flood hazard map from the model also automatically creates a flow depth map depicting the maximum amount of inundation for every grid element. The legend used by default in Flo-2D Mapper is not a good representation of the range of flood inundation values, so a different legend is used for the layout. In this particular model, the inundated parts cover a maximum land area of 100,743,168.00 m2. The generated flood depth maps for Guiom are in Figures 72, 74, and 76.

There is a total of 47,873,512.00 m3 of water entering the model. Of this amount, 31,410,340.18 m3 is due to rainfall while 16,463,171.82 m3 is inflow from other areas outside the model. 9,364,535.00 m3 of this water is lost to infiltration and interception, while 17,622,463.32 m3 is stored by the flood plain. The rest, amounting up to 20,886,404.84 m3, is outflow.

5.6 Results of HMS Calibration

After calibrating the Guiom HEC-HMS river basin model, its accuracy was measured against the observed values. Figure 68 shows the comparison between the two discharge data.

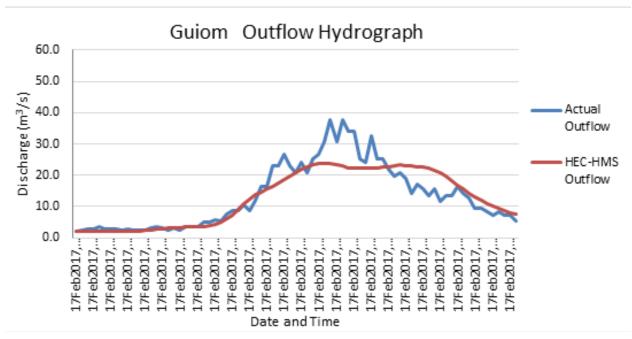


Figure 68. Outflow hydrograph of Guiom River Basin produced by the HEC-HMS model compared with observed outflow

Enumerated in Table 28 are the adjusted ranges of values of the parameters used in calibrating the model.

Hydrologic Element	Calculation Type	Method	Parameter	Range of Calibrated Values
Basin	Loss	SCS Curve number	Initial Abstraction (mm)	0.03 – 500
			Curve Number	36 – 99
	Transform	Clark Unit Hydrograph	Time of Concentration (hr)	0.02 – 0.2
			Storage Coefficient (hr)	0.02 – 0.3
	Baseflow	Recession	Recession Constant	0.00001
			Ratio to Peak	0.01 - 0.4
Reach	Routing	Muskingum-	Slope	0.0005 – 0.01
		Cunge	Manning's Coefficient	0.0001 – 0.5

Initial abstraction defines the amount of precipitation that must fall before surface runoff. The magnitude of the outflow hydrograph increases as initial abstraction decreases. The range of values from 0.03mm to 500mm means that there is minimal to high amount of infiltration or rainfall interception by vegetation.

The curve number is the estimate of the precipitation excess of soil cover, land use, and antecedent moisture. The magnitude of the outflow hydrograph increases as curve number increases. The range of 36 to 99 for curve number is wider than the advisable for Philippine watersheds (70-80), depending on the soil and land cover of the area (M. Horritt, personal communication, 2012). For Guiom, the basin mostly consists of shrubland and the soil consists of Ubay clay and sandy loam, and hydrosol.

The time of concentration and storage coefficient are the travel time and index of temporary storage of runoff in a watershed. The range of calibrated values from 0.02 hours to 0.2 hours determines the reaction time of the model with respect to the rainfall. The peak magnitude of the hydrograph also decreases when these parameters are increased.

Recession constant is the rate at which baseflow recedes between storm events and ratio to peak is the ratio of the baseflow discharge to the peak discharge. For Guiom, it will take at least 5 hours from the peak discharge to go back to the initial discharge.

Manning's roughness coefficient of 0.0001 corresponds to the common roughness in Guiom watershed, which is determined to be have a smooth surface (Brunner, 2010).

Accuracy measure	Value
RMSE	4.628
r2	0.796
NSE	0.791
PBIAS	3.575
RSR	0.457

Table 29. Summary of the Efficiency Test of the Guiom HMS Model

The Root Mean Square Error (RMSE) method aggregates the individual differences of these two measurements. It was computed as 4.628 (m3/s).

The Pearson correlation coefficient (r2) assesses the strength of the linear relationship between the observations and the model. This value being close to 1 corresponds to an almost perfect match of the observed discharge and the resulting discharge from the HEC HMS model. Here, it measured 0.796

The Nash-Sutcliffe (E) method was also used to assess the predictive power of the model. Here the optimal value is 1. The model attained an efficiency coefficient of 0.791.

A positive Percent Bias (PBIAS) indicates a model's propensity towards under-prediction. Negative values indicate bias towards over-prediction. Again, the optimal value is 0. In the model, the PBIAS is 3.575.

The Observation Standard Deviation Ratio, RSR, is an error index. A perfect model attains a value of 0 when the error in the units of the valuable a quantified. The model has an RSR value of 0.457.

5.7 Calculated outflow hydrographs and discharge values for different rainfall return periods

5.7.1 Hydrograph using the Rainfall Runoff Model

The summary graph (Figure 15) shows the Guiom outflow using the synthetic storm events using the Catarman Rainfall Intensity-Duration-Frequency curves (RIDF) in 5 different return periods (5-year, 10-year, 25-year, 50-year, and 100-year rainfall time series) based on the Philippine Atmospheric Geophysical and Astronomical Services Administration (PAG-ASA) data. The simulation results reveal significant increase in outflow magnitude as the rainfall intensity increases for a range of durations and return periods from 134.5m3/s in a 5-year return period to 294.6m3/s in a 100-year return period.

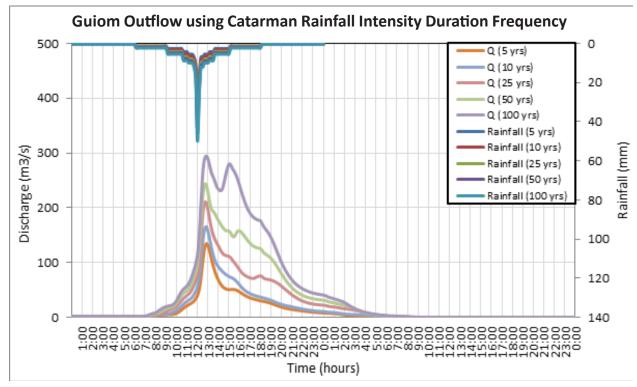


Figure 69. The outflow hydrograph at the Guiom Basin, generated using the simulated rain events for 24-hour period for Catarman station

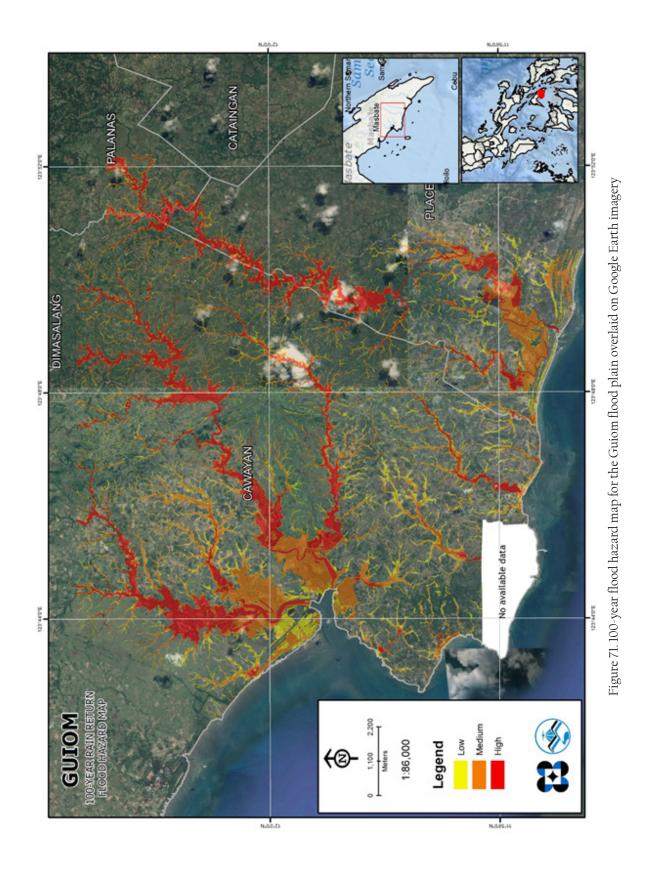
A summary of the total precipitation, peak rainfall, peak outflow, and time to peak of the Guiom discharge using the Catarman Rainfall Intensity-Duration-Frequency curves (RIDF) in five different return periods is shown in Table 30.

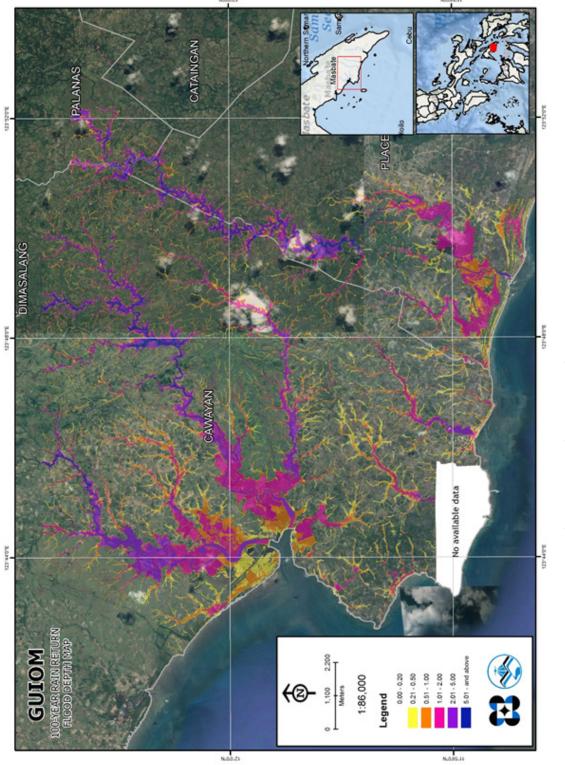
Table 30. Outlines the peak values of the Guiom HEC-HMS Model outflow using the Catarman RIDF 24-hour
values.

RIDF Period	Total Precipitation (mm)	Peak rainfall (mm)	Peak outflow (m 3/s)	Time to Peak
5-Year	255.4	29.9	134.5	50 minutes
10-Year	305.4	34.7	165.7	50 minutes
25-Year	368.5	40.9	210.1	50 minutes
50-Year	415.3	45.5	243	40 minutes
100-Year	461.8	50	294.6	50 minutes

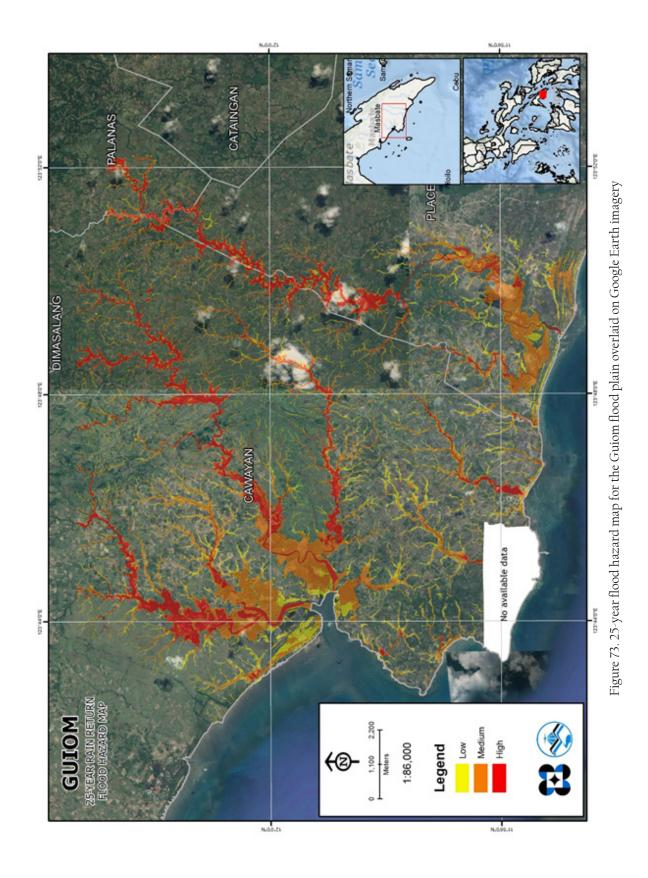
5.8 River Analysis (RAS) Model Simulation

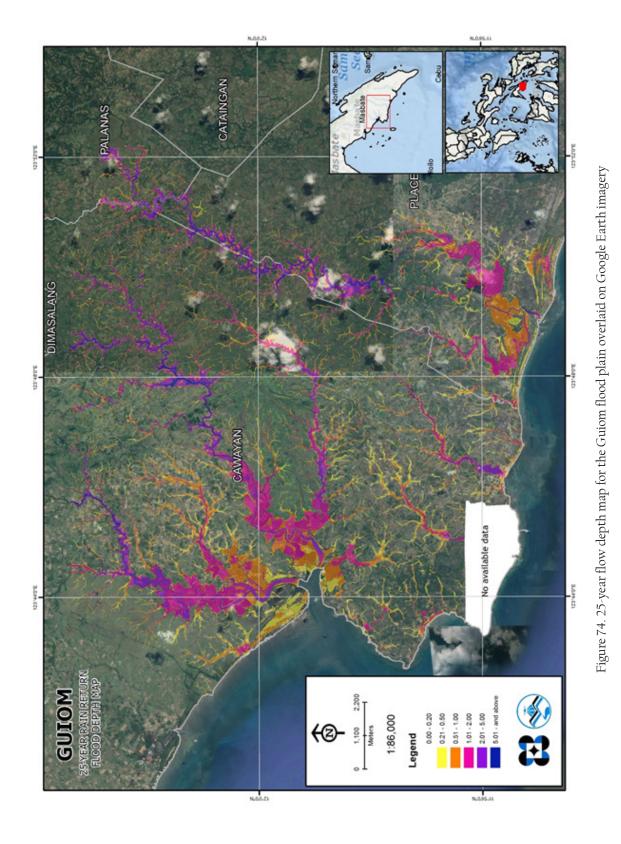
The HEC-RAS Flood Model produced a simulated water level at every cross-section for every time step for every flood simulation created. The resulting model will be used in determining the flooded areas within the model. The simulated model will be an integral part in determining real-time flood inundation extent of the river after it has been automated and uploaded on the DREAM website. For this publication, only a sample output map river was to be shown, since only the ADNU-DVC base flow was calibrated. Figure 70 shows a generated sample map of the Guiom River using the calibrated HMS base flow.

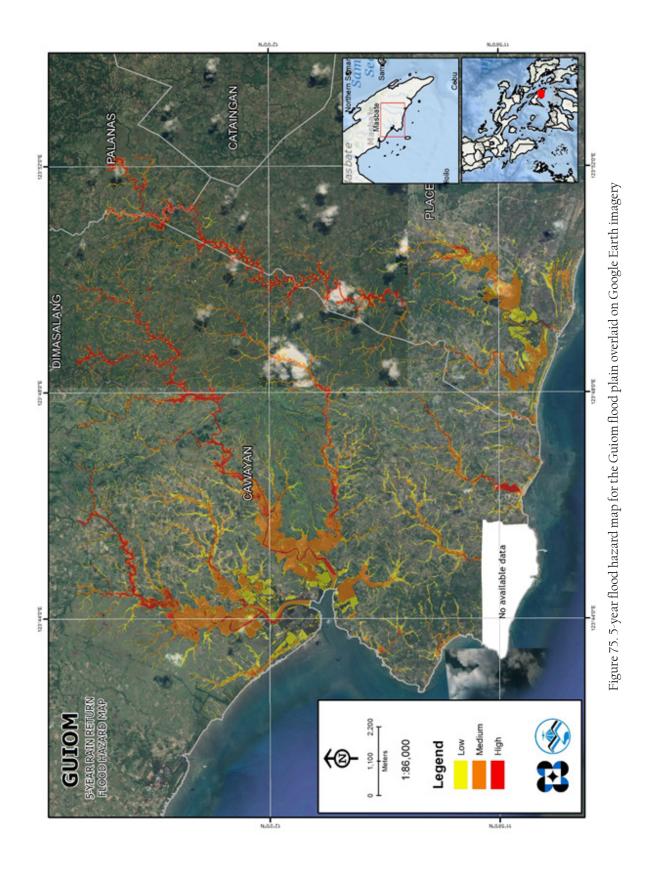

Figure 70. The sample output map of the Guiom RAS Model

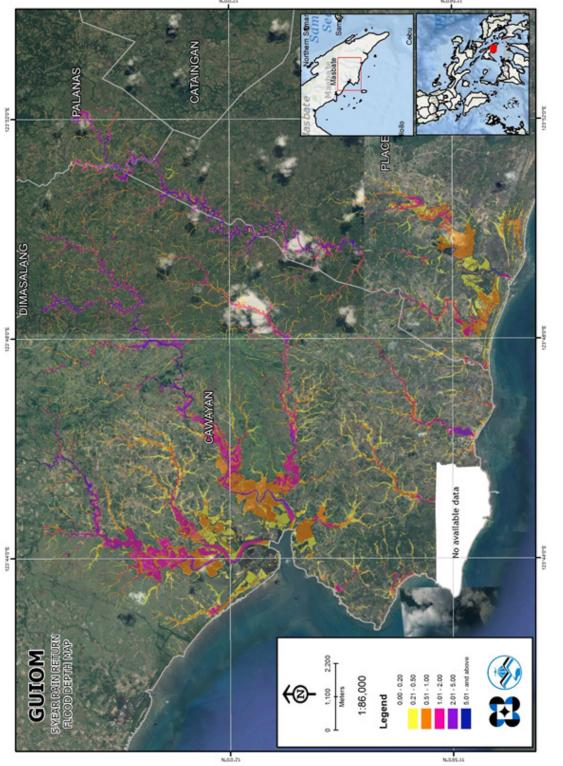

5.9 Flow Depth and Flood Hazard

The resulting hazard and flow depth maps have a 10m resolution. Figures 71 to 76 show the 5-, 25-, and 100-year rain return scenarios of the Guiom flood plain. The flood plain, with an area of 205.73km2, covers three (3) municipalities, namely Cawayan, Palanas, and Placer. Table 31 shows the percentage of area affected by flooding per municipality.


	1		1
Municipality	Total Area	Area Flooded	% Flooded
Cawayan	261.38	117.18	44.83
Palanas	138.17	2.31	1.67
Placer	253.55	85.03	33.53
Luna	320.66	89.26	27.84%


Table 31. Municipalities affected in Guiom flood plain





5.10 Inventory of Areas Exposed to Flooding

Listed below are the barangays affected by the Guiom River Basin, grouped accordingly by municipality. For the said basin, three (3) municipalities consisting of 33 barangays are expected to experience flooding when subjected to the three rainfall return period scenarios.

For the 5-year rainfall return period, 36.12% of the municipality of Cawayan with an area of 261.38 sq. km. will experience flood levels of less than 0.20 meters. 3.03% of the area will experience flood levels of 0.21 to 0.50 meters, while 3%, 2.02%, 0.58%, and 0.08% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and greater than 5 meters, respectively. Figures 77 and 78 depict the areas affected in Cawayan in square kilometers by flood depth per barangay.

Affected area			Area	a of barangay	of barangays affected in Cawayan	iwayan					
(sq. km.) by 1100d deptn (in m.)	Begia	Cabayugan	Cabungahan	Calapayan	Calumpang	Dalipe	Divisoria	Guiom	Iraya	Itombato	Madbad
0.03-0.20	4.45	1.36	4.21	6.49	7.51	3.54	2.84	5.63	3.36	4.99	4.05
0.21-0.50	0.21	0.044	0.19	0.33	0.54	1.09	0.22	0.64	0.35	0.44	0.19
0.51-1.00	0.068	0.019	0.17	0.29	0.49	0.77	0.11	0.72	0.81	0.55	0.14
1.01-2.00	0.0014	0.0014	0.15	0.23	0.24	0.55	0.11	0.22	1.25	0.58	0.14
2.01-5.00	0	0.0002	0.14	0.21	0.2	0.037	0.13	0.031	0.13	0.1	0.016
> 5.00	0	0	0.013	0.056	0.042	0	0	0	0	0.0079	0

Table 33. Affected areas in Cawayan, Masbate during the 5-Year Rainfall Return Period

Affected area			Area of b	Area of barangays affected in Cawayan	fected in Ca	awayan						
(sq. km.) by flood depth (in m.) Mah	Mahayahay	Maihao	Pananawan	Pin-As	Poblacion	Poblacion R.M. Magbalon	Recodo	San Jose	San Jose San Vicente	Tubog	Tuburan	Tuburan Villahermosa
0.03-0.20	0.098	2.41	4.88	1.69	5.64	6.57	5.52	0.2	9.33	2.31	3.82	3.49
0.21-0.50	0.0043	0.29	0.63	0.49	0.46	0.34	0.32	0.014	0.71	0.15	0.14	0.14
0.51-1.00 0.	0.0075	1.21	0.53	0.39	0.33	0.25	0.21	0.0074	0.4	0.16	0.091	0.14
1.01-2.00 0	0.011	0.42	0.4	0.017	60.0	0.16	0.14	0.005	0.22	0.15	0.029	0.18
2.01-5.00 0.	0.0002	0.12	0.019	0	800.0	0.081	6000.0	0	90.0	0.017	0.0053	0.22
> 5.00	0	0	0	0	0	0.009	0	0	0	0	0	0.071

Table 32. Affected areas in Cawayan, Masbate during the 5-Year Rainfall Return Period

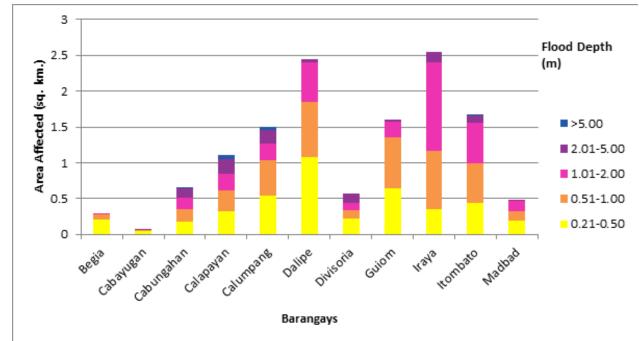


Figure 77. Affected areas in Cawayan, Masbate during the 5-Year Rainfall Return Period

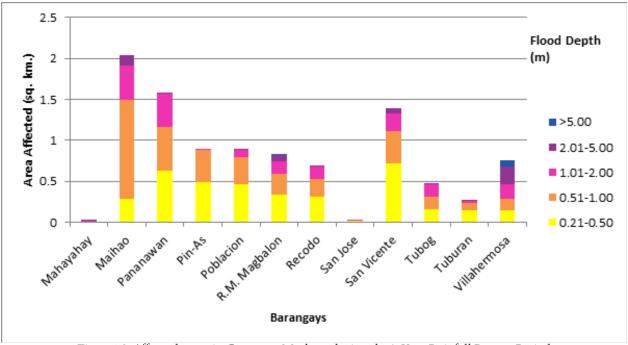


Figure 78. Affected areas in Cawayan, Masbate during the 5-Year Rainfall Return Period

For the municipality of Palanas with an area of 138.17 sq. km., 1.31% will experience flood levels of less than 0.20 meters. 0.07% of the area will experience flood levels of 0.21 to 0.50 meters, while 0.07%, 0.11%, 0.1%, and 0.001% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and greater than 5 meters, respectively. Figure 79 depicts the areas affected in Palanas in square kilometers by flood depth per barangay.

Table 34. Affected areas in Palanas, Masbate during the 5-Year Rainfall Return Period

Affected area (sq. km.) by flood depth		vs affected in Palanas sq. km)
(in m.)	Antipolo	Malatawan
0.03-0.20	1.17	0.65
0.21-0.50	0.068	0.031
0.51-1.00	0.085	0.018
1.01-2.00	0.14	0.016
2.01-5.00	0.12	0.011
> 5.00	0.0019	0

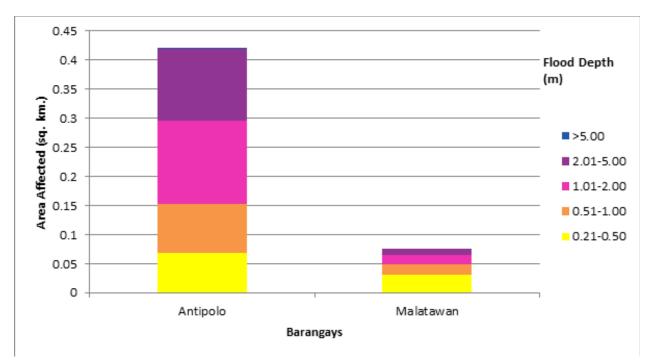


Figure 79. Affected areas in Palanas, Masbate during the 5-Year Rainfall Return Period

For the municipality of Placer with an area of 253.55 sq. km., 28.04% will experience flood levels of less than 0.20 meters. 1.95% of the area will experience flood levels of 0.21 to 0.50 meters, while 1.76%, 1.03%, 0.63%, and 0.13% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and greater than 5 meters, respectively. Figure 80 depicts the areas affected in Placer in square kilometers by flood depth per barangay.

Affected area (sq. km.) by		Area of	barang	ays affe	cted in Pla	icer		
flood depth (in m.)	Camayabsan	Dangpanan	Libas	Luna	Nainday	Puro	Santa Cruz	Tan- Awan
0.03-0.20	5.22	4.12	19.98	0.077	5.55	15.38	13.89	6.86
0.21-0.50	0.49	0.62	0.96	0.0004	1.02	0.73	0.64	0.47
0.51-1.00	0.43	0.67	0.8	0.0009	1.13	0.47	0.56	0.41
1.01-2.00	0.14	0.3	0.72	0.0002	0.13	0.37	0.65	0.31
2.01-5.00	0.0082	0.014	0.34	0	0.077	0.16	0.77	0.23
> 5.00	0	0	0.027	0	0.0019	0.014	0.21	0.065

Table 35. Affected areas in Placer, Masbate during the 5-Year Rainfall Return Period (insert table)

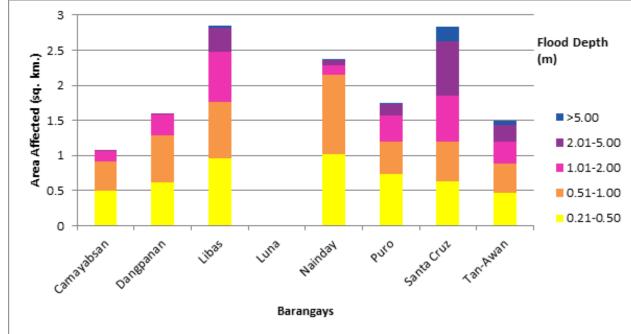


Figure 80. Affected areas in Placer, Masbate during the 5-Year Rainfall Return Period

For the 25-year rainfall return period, 34.22% of the municipality of Cawayan with an area of 261.38 sq. km. will experience flood levels of less than 0.20 meters. 2.9% of the area will experience flood levels of 0.21 to 0.50 meters, while 2.94%, 3.3%, 1.3%, and 0.17% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and greater than 5 meters, respectively. Figures 81 and 82 depict the areas affected in Cawayan in square kilometers by flood depth per barangay.

Affected area			Area of		barangays affected in Cawayan	Cawayan					
(sq. km.) by flood depth (in m.)	Begia	Cabayugan	Cabungahan	Calapayan	Calumpang	Dalipe	Divisoria	Guiom	Iraya	Itombato	Madbad
0.03-0.20	4.36	1.34	4.05	6.22	7.19	2.86	2.69	5.34	3.11	4.73	3.92
0.21-0.50	0.25	0.057	0.19	0.33	0.52	0.55	0.28	0.62	0.25	0.38	0.2
0.51-1.00	0.11	0.025	0.18	0.33	0.57	1.41	0.14	0.74	0.38	0.44	0.15
1.01-2.00	0.006	0.0026	0.2	0.27	0.3	0.97	0.11	0.5	1.59	0.82	0.16
2.01-5.00	0	0.0002	0.19	0.36	0.36	0.18	0.19	0.042	0.58	0.27	0.091
> 5.00	0	0	0.058	0.1	0.08	0	0.0002	0	0	0.017	0.0007

Table 37. Affected areas in Cawayan, Masbate during the 25-Year Rainfall Return Period

(sq. km.) by flood depth (in m.) Mahayahay		Area of baran	angays afi	fected in	ıgays affected in Cawayan						
	ay Maihao	Pananawan	Pin-As	Poblacion	Poblacion R.M. Magbalon	Recodo	San Jose	San Vicente	Tubog	Tuburan	Tuburan Villahermosa
0.03-0.20 0.096	2.27	4.57	1.28	5.41	6.38	5.37	0.19	8.95	2.18	3.76	3.18
0.21-0.50 0.0023	0.19	0.63	0.55	0.52	0.34	0.37	0.016	0.83	0.17	0.16	0.15
0.51-1.00 0.0058	0.45	0.45	0.5	0.37	0.3	0.25	0.0087	0.46	0.15	0.12	0.14
1.01-2.00 0.012	1.38	0.68	0.26	0.21	0.22	0.2	0.0068	0.27	0.22	0.041	0.21
2.01-5.00 0.005	0.16	0.14	0.0068	0.021	0.13	0.01	0	0.19	0.062	0.012	0.4
> 5.00 0	0	0	0	0	0.033	0	0	0.0028	0	0	0.16

Table 36. Affected areas in Cawayan, Masbate during the 25-Year Rainfall Return Period

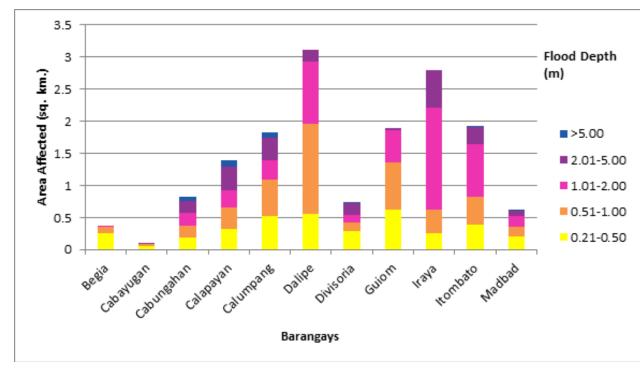


Figure 81. Affected areas in Cawayan, Masbate during the 25-Year Rainfall Return Period

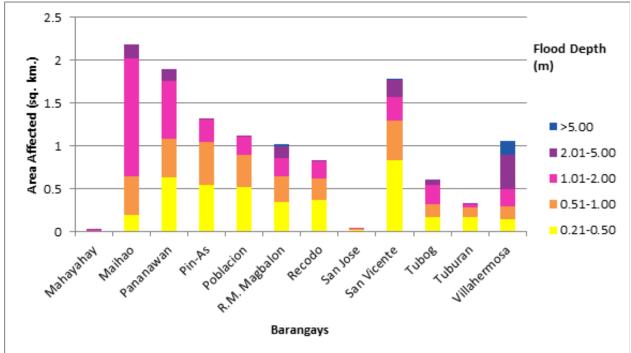


Figure 82. Affected areas in Cawayan, Masbate during the 25-Year Rainfall Return Period

For the municipality of Palanas with an area of 138.17 sq. km., 1.21% will experience flood levels of less than 0.20 meters. 0.08% of the area will experience flood levels of 0.21 to 0.50 meters, while 0.08%, 0.12%, 0.18%, and 0.003% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and greater than 5 meters, respectively. Figure 83 depicts the areas affected in Palanas in square kilometers by flood depth per barangay.

Table 38. Affected areas in Palanas, Masbate during the 25-Year Rainfall Return Period

Affected area (sq. km.) by flood depth		/s affected in Palanas sq. km)
(in m.)	Antipolo	Malatawan
0.03-0.20	1.04	0.63
0.21-0.50	0.076	0.036
0.51-1.00	0.085	0.021
1.01-2.00	0.15	0.02
2.01-5.00	0.23	0.02
> 5.00	0.0042	0

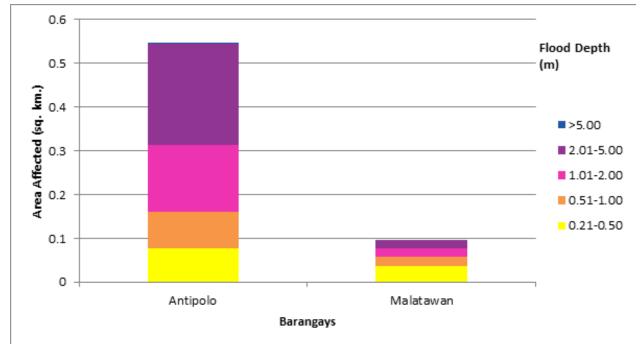


Figure 83. Affected areas in Palanas, Masbate during the 25-Year Rainfall Return Period

For the municipality of Placer with an area of 253.55 sq. km., 26.5% will experience flood levels of less than 0.20 meters. 1.87% of the area will experience flood levels of 0.21 to 0.50 meters, while 1.86%, 1.95%, 1.1%, and 0.26% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and greater than 5 meters, respectively. Figure 84 depicts the areas affected in Placer in square kilometers by flood depth per barangay.

Affected area (sq. km.) by		Area of	barang	ays affec	ted in Pla	icer		
flood depth	Camayabsan	Dangpanan	Libas	Luna	Nainday	Puro	Santa Cruz	Tan- Awan
0.03-0.20	4.98	3.74	19.22	0.077	4.95	14.78	13.01	6.41
0.21-0.50	0.55	0.51	1.06	0.00067	0.65	0.83	0.71	0.43
0.51-1.00	0.4	0.72	0.86	0.0007	1.05	0.55	0.66	0.48
1.01-2.00	0.35	0.7	0.93	0.0006	1.15	0.54	0.8	0.47
2.01-5.00	0.019	0.038	0.67	0.0001	0.085	0.39	1.17	0.42
> 5.00	0	0.0025	0.083	0	0.016	0.042	0.36	0.15

Table 39. Affected areas in Placer, Masbate during the 25-Year Rainfall Return Period

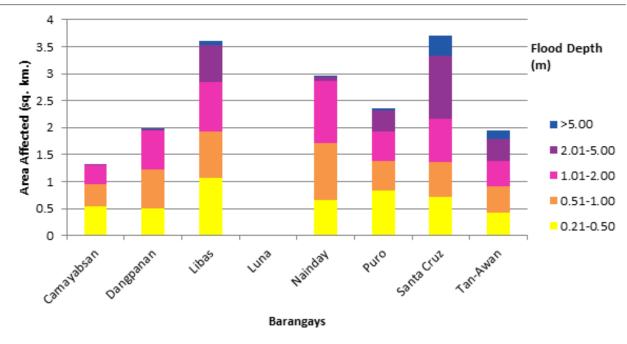


Figure 84. Affected areas in Placer, Masbate during the 25-Year Rainfall Return Period

For the 100-year rainfall return period, 33.2% of the municipality of Cawayan with an area of 261.38 sq. km. will experience flood levels of less than 0.20 meters. 2.89% of the area will experience flood levels of 0.21 to 0.50 meters, while 2.82%, 3.57%, 2.08%, and 0.27% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and greater than 5 meters, respectively. Figures 85 and 86 depict the areas affected in Cawayan in square kilometers by flood depth per barangay.

Affected area			Area	a of baranga	of barangays affected in Cawayan	wayan					
(sq. km.) by flood depth (in m.)	Begia	Cabayugan	Cabayugan Cabungahan	Calapayan	Calumpang	Dalipe	Divisoria	Guiom	Iraya	Itombato Madbad	Madbad
0.03-0.20	4.3	1.32	3.96	6.05	7	2.69	2.6	5.22	2.98	4.59	3.85
0.21-0.50	0.28	0.068	0.2	0.34	0.51	0.41	0.33	0.53	0.22	0.39	0.2
0.51-1.00	0.14	0.028	0.19	0.33	0.59	1.11	0.16	0.65	0.3	0.41	0.17
1.01-2.00	0.012	0.0042	0.22	0.28	0.39	1.49	0.12	0.76	1.05	0.67	0.16
2.01-5.00	0	0.0002	0.23	0.45	0.42	0.28	0.2	0.0	1.34	0.58	0.14
> 5.00	0	0	0.083	0.15	0.1	0	0.0003	0	0	0.027	0.0014

Table 41. Affected areas in Cawayan, Masbate during the 100-Year Rainfall Return Period

Affected area			Area of b	arangays (Area of barangays affected in Cawayan	awayan						
(sq. km.) by flood depth (in m.)	Mahayahay Maihao	Maihao	Pananawan	Pin-As	Poblacion [Poblacion R.M. Magbalon	Recodo	San Jose	San Jose San Vicente	Tubog	Tuburan	Tuburan Villahermosa
0.03-0.20	0.095	2.21	4.37	1.07	5.27	6.25	5.27	0.19	8.7	2.1	3.72	2.98
0.21-0.50	0.0022	0.16	0.65	0.52	0.56	0.34	0.4	0.016	0.93	0.19	0.18	0.14
0.51-1.00	0.0043	0.25	0.51	0.58	0.39	0.33	0.27	0.011	0.51	0.15	0.13	0.15
1.01-2.00	0.012	1.56	0.62	0.41	0.28	0.27	0.23	0.0085	0.29	0.25	0.054	0.21
2.01-5.00	0.0079	0.27	0.32	0.014	0.033	0.17	0.025	0.0002	0.29	0.1	0.018	0.46
> 5.00	0	0	0	0	0.0005	0.041	0	0	0.0048	0	0	0.3

Table 40. Affected areas in Cawayan, Masbate during the 100-Year Rainfall Return Period

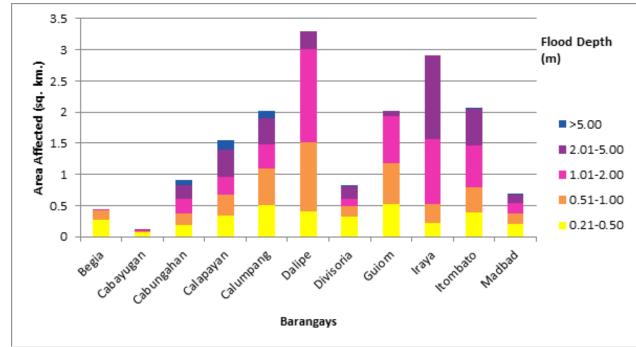


Figure 85. Affected areas in Cawayan, Masbate during the 100-Year Rainfall Return Period

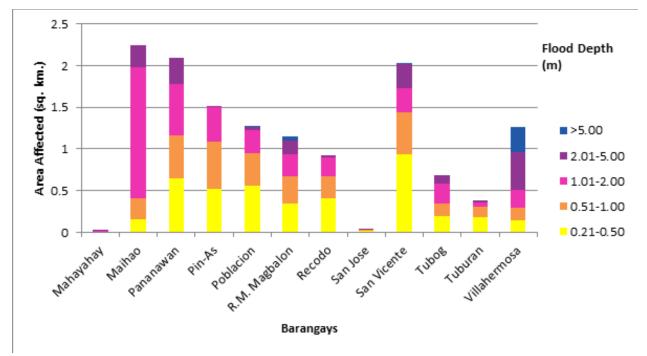


Figure 86. Affected areas in Cawayan, Masbate during the 100-Year Rainfall Return Period

For the municipality of Palanas with an area of 138.17 sq. km., 1.14% will experience flood levels of less than 0.20 meters. 0.08% of the area will experience flood levels of 0.21 to 0.50 meters, while 0.09%, 0.13%, 0.23%, and 0.01% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and greater than 5 meters, respectively. Figure 87 depicts the areas affected in Palanas in square kilometers by flood depth per barangay.

Table 42. Affected areas in Palanas, Masbate during the 100-Year Rainfall Return Period

Affected area (sq. km.) by flood depth		/s affected in Palanas sq. km)
(in m.)	Antipolo	Malatawan
0.03-0.20	0.95	0.62
0.21-0.50	0.081	0.036
0.51-1.00	0.095	0.027
1.01-2.00	0.16	0.02
2.01-5.00	0.29	0.025
> 5.00	0.016	0.00078

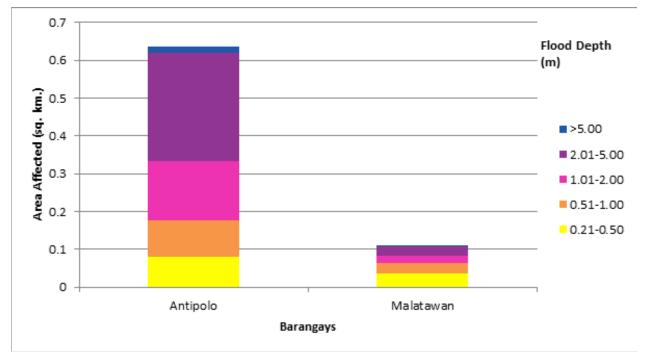


Figure 87. Affected areas in Palanas, Masbate during the 100-Year Rainfall Return Period

For the municipality of Placer with an area of 253.55 sq. km., 25.58% will experience flood levels of less than 0.20 meters. 1.95% of the area will experience flood levels of 0.21 to 0.50 meters, while 1.72%, 2.43%, 1.44%, and 0.42% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and greater than 5 meters, respectively. Figure 88 depicts the areas affected in Placer in square kilometers by flood depth per barangay.

Affected area (sq. km.) by		Area of	barang	ays affec	ted in Pla	icer		
flood depth (in m.)	Camayabsan	Dangpanan	Libas	Luna	Nainday	Puro	Santa Cruz	Tan- Awan
0.03-0.20	4.83	3.56	18.7	0.076	4.7	14.4	12.43	6.16
0.21-0.50	0.58	0.48	1.12	0.0011	0.73	0.9	0.7	0.43
0.51-1.00	0.37	0.55	0.92	0.00062	0.75	0.62	0.72	0.44
1.01-2.00	0.48	1.03	1.02	0.0009	1.6	0.56	0.91	0.57
2.01-5.00	0.029	0.098	0.9	0.0001	0.099	0.56	1.44	0.53
> 5.00	0	0.0029	0.17	0	0.037	0.089	0.52	0.23

Table 43. Affected areas in Placer, Masbate during the 100-Year Rainfall Return Period

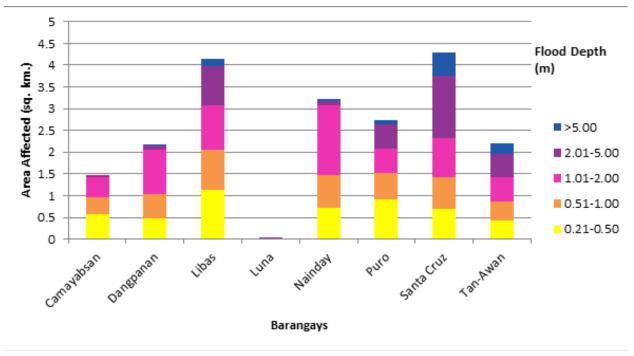


Figure 88. Affected areas in Placer, Masbate during the 100-Year Rainfall Return Period

Among the barangays in the municipality of Cawayan, San Vicente is projected to have the highest percentage of area that will experience flood levels at 4.1%. Meanwhile, Calumpang posted the second highest percentage of area that may be affected by flood depths at 3.45%.

Among the barangays in the municipality of Palanas, Antipolo is projected to have the highest percentage of area that will experience flood levels at 1.15%. Meanwhile, Malatawan posted the second highest percentage of area that may be affected by flood depths at 0.53%.

Among the barangays in the municipality of Placer, Libas is projected to have the highest percentage of area that will experience flood levels of at 9%. Meanwhile, Puro posted the second highest percentage of area that may be affected by flood depths at 6.76%.

5.11 Flood Validation

In order to check and validate the extent of flooding in different river systems, there is a need to perform validation survey work. Field personnel gathered secondary data regarding flood occurrence in the area within the major river system in the Philippines.

From the Flood Depth Maps produced by Phil-LiDAR 1 Program, multiple points representing the different flood depths for different scenarios were identified for validation.

The validation personnel went to the specified points identified in a river basin and gathered data regarding the actual flood level in each location. Data gathering was done through a local DRRM office to obtain maps or situation reports about the past flooding events and interview of some residents with knowledge of or have had experienced flooding in a particular area.

After which, the actual data from the field was compared to the simulated data to assess the accuracy of the Flood Depth Maps produced and to improve on what is needed.

The flood validation consisted of 204 points randomly selected all over the Guiom flood plain. It has an RMSE value of 0.304377.

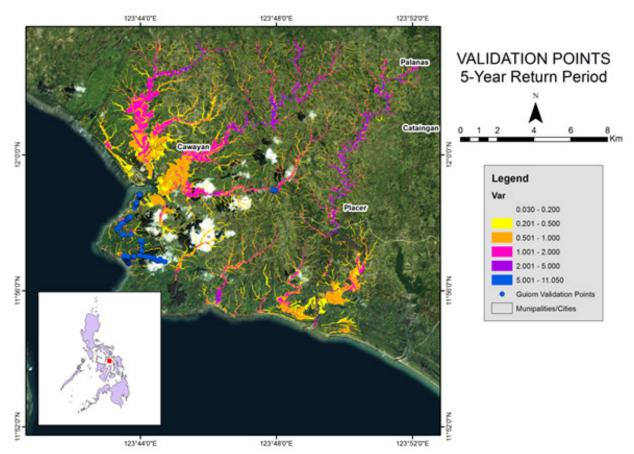


Figure 89. The validation points for the 5-Year flood depth map of the Guiom flood plain

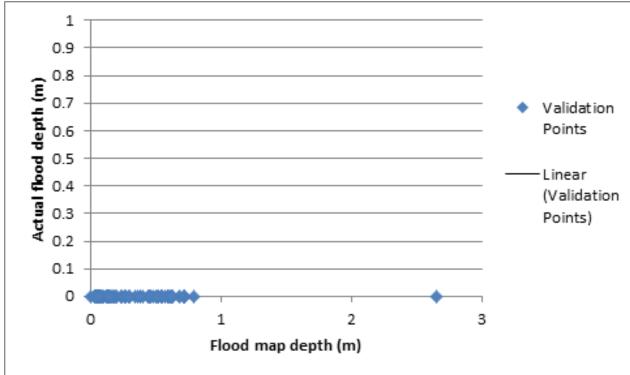


Figure 90. Flood map depth vs. Actual flood depth

Actual			Model	ed Flood Dept	th (m)		
Flood Depth (m)	0-0.20	0.21-0.50	0.51-1.00	1.01-2.00	2.01-5.00	> 5.00	Total
0-0.20	161	20	22	0	1	0	204
0.21-0.50	0	0	0	0	0	0	0
0.51-1.00	0	0	0	0	0	0	0
1.01-2.00	0	0	0	0	0	0	0
2.01-5.00	0	0	0	0	0	0	0
> 5.00	0	0	0	0	0	0	0
Total	161	20	22	0	1	0	204

Table 44. Actual flood vs. Simulated flood depth at different levels in the Guiom River Basin

On the whole, the overall accuracy generated by the flood model is estimated at 78.92%, with 161 points correctly matching the actual flood depths. In addition, there were 20 points estimated one level above and below the correct flood depths, 22 points estimated two levels above and below, and 1 point estimated three or more levels above and below the correct flood depths. A total of 43 points were overestimated while no points were underestimated in the modelled flood depths of Guiom. Table 33 depicts the summary of the accuracy assessment in the Guiom River Basin survey.

Table 45. The Summary of Accuracy Assessment in the Guiom River Basin Survey

	No. of Points	%
Correct	161	78.92
Overestimated	43	21.08
Underestimated	0	0.00
Total	204	100

REFERENCES

Ang M.O., Paringit E.C., et al. 2014. DREAM Data Processing Component Manual. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Balicanta L.P., Paringit E.C., et al. 2014. DREAM Data Validation Component Manual. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Brunner, G. H. 2010a. HEC-RAS River Analysis System Hydraulic Reference Manual. Davis, CA: U.S. Army Corps of Engineers, Institute for Water Resources, Hydrologic Engineering Center.

Lagmay A.F., Paringit E.C., et al. 2014. DREAM Flood Modeling Component Manual. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Paringit E.C, Balicanta L.P., Ang, M.O., Sarmiento, C. 2017. Flood Mapping of Rivers in the Philippines Using Airborne Lidar: Methods. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Sarmiento C., Paringit E.C., et al. 2014. DREAM Data Acquisition Component Manual. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

UP TCAGP 2016, Acceptance and Evaluation of Synthetic Aperture Radar Digital Surface Model (SAR DSM) and Ground Control Points (GCP). Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

ANNEXES

Annex 1. Optech Technical Specification of the Pegasus Sensor

Parameter	Specification
Operational envelope (1,2,3,4)	150-5000 m AGL, nominal
Laser wavelength	1064 nm
Horizontal accuracy (2)	1/5,500 x altitude, 1σ
Elevation accuracy (2)	< 5-20 cm, 1σ
Effective laser repetition rate	Programmable, 100-500 kHz
Position and orientation system	POS AV ™AP50 (OEM)
Scan width (FOV)	Programmable, 0-75 °
Scan frequency (5)	Programmable, 0-140 Hz (effective)
Sensor scan product	800 maximum
Beam divergence	0.25 mrad (1/e)
Roll compensation	Programmable, ±37° (FOV dependent)
Vertical target separation distance	<0.7 m
Range capture	Up to 4 range measurements, including 1st, 2nd, 3rd, and last returns
Intensity capture	Up to 4 intensity returns for each pulse, including last (12 bit)
Image capture	5 MP interline camera (standard); 60 MP full frame (optional)
Full waveform capture	12-bit Optech IWD-2 Intelligent Waveform Digitizer
Data storage	Removable solid state disk SSD (SATA II)
Power requirements	28 V, 800 W, 30 A
Dimensions and weight	Sensor: 630 x 540 x 450 mm; 65 kg;
	Control rack: 650 x 590 x 490 mm; 46 kg
Operating Temperature	-10°C to +35°C
Relative humidity	0-95% non-condensing

Table A-1.1. Parameters and Specification of Pegasus Sensor

1 TARGET REFLECTIVITY ≥20%

2 DEPENDENT ON SELECTED OPERATIONAL PARAMETERS USING NOMINAL FOV OF UP TO 40° IN STANDARD ATMOSPHERIC CONDITIONS WITH 24-KM VISIBILITY

3 ANGLE OF INCIDENCE ≤20°

4 TARGET SIZE ≥ LASER FOOTPRINT5 DEPENDENT ON SYSTEM CONFIGURATION

Annex 2. NAMRIA Certificates of Reference Points Used

1. MST-34

MST-34

Location Description

From Masbate City Proper, travel for about 9.5 km. along the Nat'l. Highway going to Uson Town Proper until reaching Brgy. Umabay Ext., Mobo Town. Station is located at the left wing of Sagawsawan Bridge, 12 m. NE of a signboard and 20 m. SE of a store. Mark is the head of a 4 in. copper nail centered on a triangle on a 0.3 m. x 0.3 m. concrete block protruding 0.05 m. above the ground surface, with inscriptions "MST-34 2007 NAMRIA".

Requesting Party: UP-DREAM Pupose: Reference OR Number: 8795949 A T.N.: 2014-823

RUEL DM. BELEN, MNSA Director Mapping And Geodesy Branch G

NAMRIA OFFICES:

Main : Lawton Avenue, Fort Bonifacio, 1634 Taguig City, Philippines Tel. No.: (632) 810-4831 to 41 Branch : 421 Barraca St. San Nicolas, 1010 Manila, Philippines, Tel. No. (632) 241-3494 to 56 www.namria.gov.ph

2. MST-40

Republic of the Philippines Department of Environment and Natural Resources NATIONAL MAPPING AND RESOURCE INFORMATION AUTHORITY

April 10, 2014

CERTIFICATION

To whom it may concern:

This is to certify that according to the records on file in this office, the requested survey information is as follows -

	Province	: MASBATE		
	Station N	lame: MST-40		
Island: LUZON	Order	: 2nd	Barangay:	BUENAVISTA
Municipality: USON	PRS	92 Coordinates		
Latitude: 12º 10' 39.45274"	Longitude:	123° 47' 33.62147"	Ellipsoidal	Hgt: 4.72600 m.
	WGS	84 Coordinates		
Latitude: 12º 10' 34.84826"	Longitude:	123° 47' 38.70589"	Ellipsoidal	Hgt: 61.65900 m.
	PTM	I Coordinates		
Northing: 1346708.7 m.	Easting:	586266.511 m.	Zone:	4
	UTI	M Coordinates		
Northing: 1,346,237.33	Easting:	586,236.32	Zone:	51

Location Description

MST-40 From Masbate City Proper, travel for about 32.6 km. along the Nat'l. Highway going to Uson Town Proper until reaching Brgy. Buenavista. Station is located at the right wing of Buenavista Bridge, 11 m. from the "15 T" signboard. Mark is the head of a 4 in. copper nail centered on a triangle on a 0.3 m. x 0.3 m. concrete block, with inscriptions "MST-40 2007 NAMRIA".

Requesting Party: UP-DREAM Pupose: Reference OR Number: 8795949 A T.N.: 2014-825

RUEL DM. BELEN, MNSA Director/Mapping And Geodesy Branch (7

NAMRIA OFFICES:

Main : Lawton Avenue, Fort Bonitacio, 1634 Taguig City, Philippines Tol. No.: (632) 810-4831 to 41 Branch : 421 Barraca SL San Nicolas, 1010 Manila, Philippines, Tel. No. (632) 241-3494 to 95

www.namria.gov.ph

3. MST-49

Republic of the Philippines Department of Environment and Natural Resources NATIONAL MAPPING AND RESOURCE INFORMATION AUTHORITY

April 10, 2014

CERTIFICATION

To whom it may concern:

This is to certify that according to the records on file in this office, the requested survey information is as follows -

	Province	e: MASBATE			
	Station N	ame: MST-49			
Island: LUZON Municipality: CATAINGAN	Order	2nd	Baranga	y: QUE2	ZON
interior of the second second	PRS	92 Coordinates			
Latitude: 12º 0' 1.41677"	Longitude:	123° 59' 46.24265"	Ellipsoid	al Hgt	21.25500 m.
	WGS	84 Coordinates			
Latitude: 11º 59' 56.87354"	Longitude:	123° 59' 51.34085"	Ellipsoid	al Hgt:	79.14000 m.
	PTI	I Coordinates			
Northing: 1327175.1 m.	Easting:	608487.281 m.	Zone:	4	
	UTI	M Coordinates			
Northing: 1,326,710.57	Easting:	608,449.31	Zone:	51	

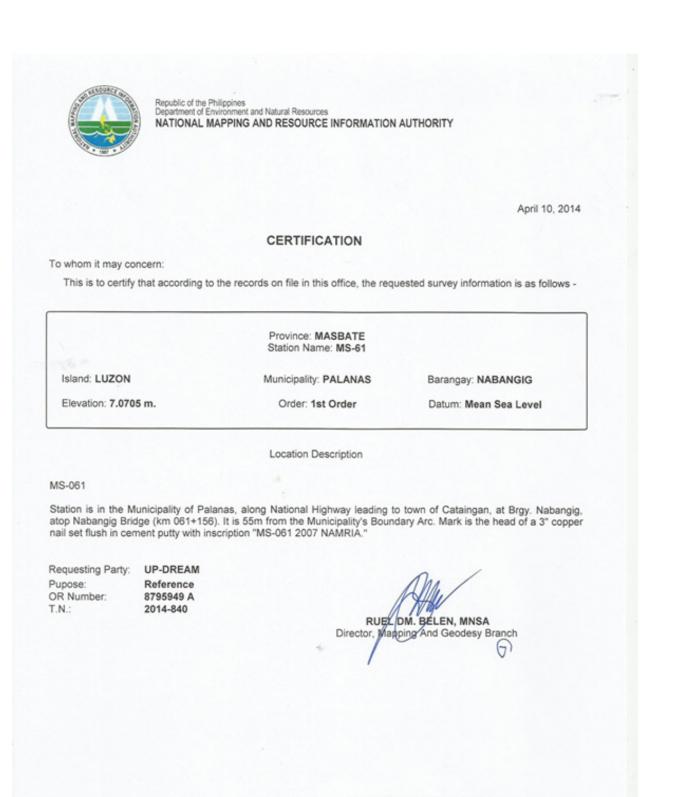
MST-49

Location Description

From Masbate City Proper, travel for about 74.8 km. along the Nat'l. Highway going to Placer Town Proper to reach Brgy, Quezon, Cataingan Town. Station is located in front (17 m. SE) of Cataingan Mun. Hall, 10 N of the Mun. Trial Court and 15 m. E of the COMELEC Bldg. Mark is the head of a 4 in. copper nail centered on a triangle on a 0.3 m. x 0.3 m. concrete block, with inscriptions "MST-49 2007 NAMRIA".

Requesting Party: UP-DREAM Pupose: Reference OR Number: 8795949 A T.N.: 2014-826

RUEL DM. BELEN, MNSA Director Mapping And Geodesy Branch G



NAMRIA OFFICES:

NAMRA OFFICES: Main : Lawten Ammer, Fort Bonflacio, 1634 Taguig City, Philippines Tel: No. (632) 810-4831 to 41 Branch : 421 Barraca St. San Nicolan, 1010 Manila, Philippines, Tel. No. (632) 241-3494 to 98 www.namria.gov.ph

4. MS-61

NAMRIA OFFICES:

Main : Lawton Avenue, Fort Bonilacio, 1834 Taguig City, Philippines Tel. No.: (832) 810-4831 to 41 Branch : 421 Barraca St. San Nicolas, 1010 Manila, Philippines, Tel. No. (832) 241-3494 to 98 www.namria.gov.ph

Annex 3. Baseline Processing Reports of Control Points used in the LIDAR Survey

1. MS-61

MS-61 - MST-49 (6:30:34 AM-11:24:24 AM) (S1)

Baseline observation:	MS-61 MST-49 (B1)
Processed:	5/13/2014 11:54:33 AM
Solution type:	Fixed
Frequency used:	Dual Frequency (L1, L2)
Horizontal precision:	0.006 m
Vertical precision:	0.025 m
RMS:	0.009 m
Maximum PDOP:	3.505
Ephemeris used:	Broadcast
Antenna model:	NGS Absolute
Processing start time:	3/26/2014 6:30:54 AM (Local: UTC+8hr)
Processing stop time:	3/26/2014 11:24:24 AM (Local: UTC+8hr)
Processing duration:	04:53:30
Processing interval:	5 seconds

4

Vector Components (Mark to Mark)

From:	MST-49					
	Grid		Local		G	lobal
Easting	608602.644 m	Latitude	N11*59'56.87354*	Latitude		N11*59'56.87354*
Northing	1326654.175 m	Longitude	E123*59'51.34085*	Longitude		E123*59'51.34085*
Elevation	21.031 m	Height	79.140 m	Height		79.140 m
To:	MS-61					
	Grid		Local		G	lobal
Easting	604178.664 m	Latitude	N12*05'56.94091*	Latitude		N12*05*56.94091*
Northing	1337699.951 m	Longitude	E123*57'26.33451*	Longitude		E123*57*26.33451*
Elevation	7.554 m	Height	65.257 m	Height		65.257 m
Vector						
ΔEasting	-4423.97	9 m NS Fwd Azin	nuth	338*22*53*	ΔX	4935.367 m
∆Northing	11045.77	6 m Ellipsoid Dist	L	11901.865 m	ΔY	524.472 m
∆Elevation	-13.47	7 m ∆Height		-13.883 m	ΔZ	10817.803 m

Annex 4. The LIDAR Survey Team Composition

Data Acquisition Component Sub-Team	Designation	Name	Agency/ Affiliation
Data Acquisition Component Leader	Data Component Project Leader – I	ENGR. CZAR JAKIRI SARMIENTO	UP-TCAGP
Survey Supervisor	Chief Science Research Specialist (CSRS)	ENGR. CHRISTOPHER CRUZ	UP-TCAGP
	Supervising Science	LOVELY GRACIA ACUÑA	UP-TCAGP
	Research Specialist (Supervising SRS)	LOVELYN ASUNCION	UP-TCAGP

Table A-4.1. The LiDAR Survey Team Composition

	Senior Science Research Specialist (SSRS)	GEROME B. HIPOLITO	UP-TCAGP
LiDAR Operation	Research Associate (RA)	MARY CATHERINE ELIZABETH BALIGUAS	UP-TCAGP
	RA	ENGR. IRO NIEL ROXAS	UP-TCAGP
Ground Survey, Data Download and Transfer	RA	GRACE SINADJAN	UP-TCAGP
	Airborne Security	SSG MARLON TORRE	PHILIPPINE AIR FORCE (PAF)
LiDAR Operation	Pilot	CAPT. JEFFREY JEREMY ALAJAR	ASIAN AEROSPACE CORPORATION (AAC)
		CAPT. BRYAN DONGUINES	AAC

FIELD TEAM

								DATA	DATA TRANSFER SHEET Apr 3, 2014	tand							
and a	FUGHT	MICCON NTEEL	devene	5	RAWLAS	too t	ŝ	Non	NISSION	and a	per contrare	BASE STATONES	trowing	OFERITOR LOOS	FUORT FUAN	HAN .	SERVER
	ŝ			Cutput	XXML (SWUTH)	-	2	NAOES	LOOS FLUE	_		BASE STATIONES	Base Info (100)	toonwol	Actual	KOIL	LOCATION
Mar 19, 2014	12455	TRUXCEBURN	PEGASUS	700MB	2.0048	0.9940	291140	11.3GB	29793	8:008	NN	5.79MB	1218	9529	80.048	MA	2'Wittome_Rawit2 41P
Mar 20, 2014	200	ARCOLODIAL	5154534	1.1408	2.3740	Gives &	GMMS1	4108	22548	21,308	NIN	5.4548	2256	8999	80.348	XXX	Z'Vistome_Ravit2 43P
Mar 20, 2014	12459	101110048	PEGNSUS	2,3008	2.22MB	8 NEWB	SMMS:	69.208	8406	22.708	NIN	5.4348	2250	8778	11503	NN.	Z'Vatome_Raw12 45P
Mar 21, 2014	13479	Abicit 2006A	PEONSUS	4,0008	3.9648	9 60MB	24408	66.208	000	10,150	NN	S. TOMB	850	8278	13763	VIN	Z Webome_Raw12 47P
Mar 25, 2014	12630	ANG2020141	PEGASUS	22100	2 96MB	0.71140	21740	48.908	8663	20.608	NN	4.6448	808	8908	13643	NIN	Z'Webome_Rewit2 63P
Mar 26, 2014	12679	Abirotoweeka	PEGASUS	3,6708	4.2548	10.8MB	283048	897.68	45148	30,408	VN	5 9448	805	7580	25403	Val	Z Wittome_Raw/12 67P
Mar 27, 2014	12719	AND-COULD	PEGNSUS	3,4508	3.9948	51.5MB	2504/0	74.8GB	86943	33,608	NM	\$2448	808	6788	15643	Val	Z'Vattorne_Raw(12 71P
Mar 28, 2014	12750	ATBORCEUM	PEONSUS	2.1608	2.1110	6.13MB	0versi	39.400	31540	21,108	VIN	0.67MB	905	3008	EH2H3	Nov	Z'Mittome_Raw112 759
Mar 29, 2014	1285P	16(12)20688	PEONSUS	1,4508	1.58483	3.74MB	BINCOL	WW	NUN	10.008	VIN	7.37MB	808	4559	20.500	Na	Z'Vetome_Pawli2 81P
Mar 31, 2014	12890	ANGREAMA	PEOASUS	1.4508	BINCO 1	4.32MB	116MB	22.600	800MB	14,108	NAN	A.COMB	905	2538	31.943	NIN	Z'Mittome_Raw(12) 80P
		Barained from						Received by	,								

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

IÍ							9	LTABONNAPOLICA	GIN						
j,	MARKAN MARKEN	REMICK	RAUVLAS		roas	23	-	and the state of t	ANNO DOWN	_	Aver s'Excloses	SOOT INCOMEND	FUGHT PLAN	3	RENTRICOCATION
			Cosper Ro	town (see all	1		-	-		Specific Strategy	Base 100-(10)		M	NNI	
-	4/1/2014 1291P 18UX32KL091A	PEONSUS	2.91	38	88	2	43.6	2	19 R 12	7.81	g	602	376	\$	Contours, Stant 251P
6	4/1/2014 1293P 18UK32H0918	PROAGUE	1.75	1.46	3.65	115	24.7	213	15.6 MA	7,61	2	221	68.5 M		ZWINING, Rest/2009
45	4/2/2014 1295P 18UK32E092A	PEONEUS	2.93	3.42	8.8	228	64.2	104	29.2 M	007YS	81	\$12	137	137 MM	TWINSIN, Rawin200P
-	18UX32FG091A	PEONBUS	2.68	3.23	8.65	232	33.4	267	20.8 MA	7.50	2	956	113	MN 611	2 Websine Jawi (2000
4	4/3/2014 1301P 18LK32F0938	PEONOUS	1.95	242	979	67	44.6	385	19.6 MA	7.65	7.69 143	538	102		2 Milliona, Rawlind
4	4/4/2014 1303P 18UK32A094A	PEONEUS	277	3.48	2.99	218	52.5	ō,	29.4 M	0.67	8	684	186	1	ZWINNING REALINGS
26	4/4/2014 1305P 18LK32AD948	PEONOUS	2.41	2.85	6.66	101	44.3	NOR	23.3 M	8.67	10	400	2.41 MA	ź	Zivenne, Rawroop
400	4/5/2014 1307P 18LK320G095A	PEONDUS	3.84	4.40	4.12	271	67.2	514	37.7 HA	0.49	8	629	270	W	Z.Versome_Rawt1507P
136	4/8/2014 13159 18UC328098A	FLOADIA	3.66	4.32	8.83	7	17.7	829	26.2 M	4.95	8	162	262	1	2 Victoria Rawit 1190
2	4/10/2014 13279 18U030100A	NOAUS	2.16	2.47	6.9	175	2	211	21.7 M	5.27	80	747	243	1	2 Metomic Jamit 3219
316	4/11/2014 1331P 18UC328101A	PEGABUS	1.76	97	809	NC1	20.8	202	\$7.8 NA	409	8	574	316	ž	214400mg/Jamoball/2

LiDAR Surveys and Flood Mapping of Guiom River

4 23

tine in

1Acto

JOIDA F. PRIETO

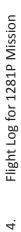
į

- Citres Johnan

facebook from

Resident by

SRS


1. Flight Log for 1247P Mission

DREAM Data Acquisition Flight Log	30		and factors			Flight Log No.: 1247p	12476
1 LiDAR Operator: 1 ROYAS		2 ALTM Model: PT+	3 Mission Name: Isukaarooba 4 Type: VFR	A 4 Type: VFR	5 Aircraft Type: CesnnaT206H	6 Aircraft Identification: 3043-	
7 Pilot: N. TANLONAN	8 Co-Pilot:	8 Co-Pilot: 8. Dove United	9 Route:				
10 Date: Mer. 21 , 2-014	12	Airport of Departure (12 Airport of Departure (Airport, Gty/Province): RP4J	12 Airport of Arrival 2.9 v J	12 Airport of Arrival (Airport, City/Province): RPvJ		
13 Engine On: jo13	14 Engine Off:	-	15 Total Engine Time: 4+0	16 Take off:	17 Landing:	18 Total Flight Time:	
19 Weather	cloudy	1					
20 Remarks:	Complete	ul Bilkszy and	Completed BLK22.) and everyed 5 lives of BLK322	12			
21 Problems and Solutions:	:su						
							_
Acquisition Flight Approved by Constrained by Construct Construct Name (End User Representative)	Approved by	Acquist Fr4AD (PAF Re	Acquisition Fight Certified by rearised to the content of the cont	Pilos jar Comp	Plot ju Compand M. T. T. M. C. M. A. Signaturi over Printed Name	Lidar Operator 1. P. 2010 Signature oger Printed Name	

2.

Plane	1 LIDAR Destator we GAUGUAN	2 AITM Model: Terro	2 Milecton Namerio La La La La	ATuna VED	C Alsonde Tunas Casanae T9060	Flight Log No.: 1241F
July 12 Airport of Departure (Airport, Gty/Province): 12 Airport of Arrival (Airport, Gty/Province): Id Engine Off: 13 500 15 Total Engine Time: 15 Take off: 17 Landing: Id Africont of Departure (Airport, Gty/Province): 15 Take off: 17 Landing: 17 Landing:		-Pilot: B. Dooledtabet	9 Route:		2 MINUTED TAKE COMMENT	A STICLER TO CHIMICATOR - DAME
Id Engine Off: IS Total Engine Time: Is Tatal Engine Time: Is Tatal Engine Time: Closh Closh Is Not 35 % Is Total Engine Time: Is Fake off: Is Landing: Closh This of but 32 Hj, willout digit; 2cr. Is not off: Is Landing: Ution: Is not 30 % but 32 Hj, willout digit; 2cr. Is not not 30 % Is not 10 % Ution: Is not 30 % Arran off: Is not 10 % Is not 10 % Interestion Signature core Printed Name Signature core Printed Name Signature core Printed Name	Mrs	12 Airport of Departure	(Airport, City/Province):	12 Airport of Arrival	Airport, City/Province):	
Abrief Inter of But Bet Hout digitizer. First Inter of But Bet Hout digitizer. Sand Solutions: Inter of But Bet Hout digitizer. Constrained Inter of But Bet Hout digitizer.			15 Total Engine Time: ∳∤33	16 Take off:	17 Landing:	18 Total Flight Time:
First, list of but 3+ti, without digitizer. s and Solutions: s and Solutions: Accutation fight Approved by Statute over Printed Name (Distribution fight Approved by (Distribut		claudy				
roved by Acquisition (Fight Certified by Acquisition (Fight Ce	ks:	Firish hars of	buk 32th, without digif 201.			
Acquisition Fight Certified by Acquisition Fight Certified by Plot-in-Copmhand M.L. Flacture over Printed Name Signature over Printed Name	lems and Solutions:					
Acquisition Pight Certified by Pilot-in-Command Investor for and Signature over Printed Name (MAF Representative)						
Acquisition Fight Certified by Pilot-in-Copyrhand Martin Copyrhand M.L. Marcellin Signature over Printed Name (Mr. Representative)						
	Acquisition Flight Approv LL ADT -		quisition Fight Certified by	Pilotin Con	And Acout	Lidar Operator Careford And Baut VAS Segnatule over Printed Name

12 Algoort of Operature (Argoort, City/Province): 12 Algoort, Of Marcel (Argoort, City/Province): 13 Poort 15 2 2 1 5 3 14 Pool 15 2 1 4 5 17 Pool 15 2 1 4 5 17 Pool 11 4 10 17 Pool 11 4 10 17 Pool 15 2 1 4 2 1 17 Pool 11 4 10 17 Pool 11 4 10 17 Pool 11 4 10 18 Pool 11 4 10 19 Pool 11 4 10 10 Pool 11 4 10 11 10 10 11 4 10
2 lines at 61K321 and littletby Pilotin.command Anne Signature our Printe
2 lives at GLK321 and lifed by Pllotin-Command Mane Senature of Print
Pliot-in-Command Bignature over Printed Name

12.1 11.1 19 19 19 19 19 19 19 19 19 19 19 19 19	1.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1	beend to draw			Acres 10 10 100
2014 IS Corritor: B.J. Dossienulo: 9 fourte: I. Airport of Arrival (Mirport, Gty/Province): 2014 I. X. Airport of Revolution: I. Z. Mirport of Arrival (Mirport, Gty/Province): 1 Arrival (Mirport, Gty/Province): I. Z. Mirport of Arrival (Mirport, Gty/Province): 2 Arrival (Mirport, Gty/Province): I. Z. Mirport of Arrival (Mirport, Gty/Province): 2 Arrival (Mirport, Gty/Province): I. Z. Mirport of Arrival (Mirport, Gty/Province): 2 Arrival (Mirport, Gty/Province): I. Z. Mirport of Arrival (Mirport, Gty/Province): 2 Arrival (Live): I. Statistic provided (Mirport, Gty/Province): 2 Arrival (Live): I. J. L. Valading: 2 Arrival (Mirport, Gty/Province): I. Arrival (Mirport, Gty/Province): 2 Arrival (Live): I. J. L. Valading: 2 Arrival (Live): I. Arrival (Mirport, Gty/Province): 2 Arrival (Live): I. Arrival (Live): 2 Arrival (Live): I. Arrival (Live): 2 Arrival (Live): I. Arrival (Live): 3 Arrival (Live): I. Arrival (Live): 4 <th>I UDAR Operator: MCC BPOGUM</th> <th></th> <th>Nar</th> <th>4 Type: VFR</th> <th></th> <th>6 Aircraft Identification: Yeek</th>	I UDAR Operator: MCC BPOGUM		Nar	4 Type: VFR		6 Aircraft Identification: Yeek
$\frac{12 \text{ Airport of Airport. GlyProvinces}}{12 \text{ Airport of Airina I (Airport. GlyProvinces}} \\ \hline 12 \text{ Airport of Control Freends} \\ \hline 14 \text{ Engine Times} \\ \hline 16 \text{ Face off} \\ \hline 12 \text{ Airport of Airon Of Airina I (Airon GlyProvinces}) \\ \hline 12 Airport of Airon Of Airon Of Airon I (Airon I$		-Pilot: 8.3 Doyleunus	5			
It regine Off: 13 Total Engine Time: 16 Take off: 12 Landing: Jarthy Cloudy Jarthy Cloudy 10 July 10 July Jord BIK 321 July Luith Naids due Po Clouds Jord Dives At BIK 321 July Luith Naids due Po Clouds Jord Dives At BIK 321 July Luith Naids due Po Clouds Utons: Internation Internation Pointer common Pointer common Man Annolutions: Internation Pointer common Man Manue Pointer common Pointer common Man Manue Pointer common Pointer common Man Manue Pointer common Pointer common	2010	12 Airport of Departure (2 Airport of Arrival	(Airport, City/Province): Perv J	
Surveyed to lives of BIK321 but with voids due to Clouds s and Solutions: Accuration flight Acounting Accuration flight Accuration flight Accuration Accuration flight Accuration Accuration flight Accuration Accuration flight Accuration Accu		ngine Off:		6 Take off:	17 Landing:	18 Total Flight Time:
Surveyed a lives of BIK321 but with voids due to clouds said solutions: said solutions: And solutions: And but hope of BIK321 but with voids due to clouds and solutions: And hope of lives of BIK321 but with voids due to clouds and solutions: And hope of lives of BIK321 but with voids due to clouds And solutions: And but hope of lives of BIK321 but with voids due to clouds And solutions: And but hope of lives of BIK321 but with voids due to clouds And solutions: And but hope of lives of BIK321 but with voids due to clouds And but hope of lives of BIK321 but with voids due to clouds And but hope of lives of BIK321 but with voids due to clouds And but hope of lives of BIK321 but with voids due to clouds And but hope of lives of the lives of live			Y cloudy			
by Acquisition High Certified by Pilot in Command Acquisition Pilot Accommand Acquisition Pilot Accommand Accomm	e s	lives of	k321 but with vai	due to c	Spict	
Dr Acquistion Plight Certified by Pliot-in-Command Acquistion Plight Certified by Pliot-in-Command Acquistion Plight Certified by Acquistion Plinted by Bignature over Printed Name Signature over Printed Name (PAF Representative) Signature over Printed Name						
	Acquisition Flight Acgree H C H R C HC H R L H R L R	5 4	idisticop Flight Certified by	Pilot-in-Co	wmand	Lidar Operator Martin Marting GATHELINE RAJEVIAL Signature over Printed Name

1 UDAR Operator: 1. P. 0X H-5	2 ALTM Model: REG	3 Mission Name: (6LK 32 Horly	A Type: VFR	5 Aircraft Type: Cesnna T206H	5 Aircraft Type: CesnnaT206H 6 Aircraft Identification: 9022
7 Pilot: J3 MUPOWR	Co-Pilot: B) Doviduales	9 Route: Rovi	<1 ··· ··		
20	12 Airport of Departure (Airport, City/Province):	Airport, Gty/Province):	12 Airport of Arrival	12 Airport of Arrival (Airport, Gty/Province):	
13 Engine On: 1214	14 Engine Off: 14 19,	15 Total Engine Time:	16 Take off:	17 Landing:	18 Total Flight Time:
19 Weather	cloudy	hp.			
20 Remarks: ろいてく	surveyed 8 lines at	eriporuscib tolig other Hissing	rigornacib to	Ð	
21 Problems and Solutions:					
Acquisition Flight Approved b		Acquisition flight Certified by M. M. J. M. M. C. C. E. Spontane M. M. Representative)	Pilot-in-Command Signature over Prin	Pilot in Command	Lidar Operator Internet and and Signature doer Printed Name

Annex 7. Flight Status Reports

GUIOM FLOODPLAIN (March 21 - April 1, 2014)

FLIGHT NO.	AREA	MISSION	OPERATOR	DATE FLOWN	REMARKS
1247P	BLK32J	1BLK32IJ080A	I. Roxas	21-Mar-14	Completed BLK32J and surveyed 5 lines of BLK32I
1271P	BLK32H	1BLK32H086A	MCE. Baliguas	27-Mar-14	Surveyed 18 lines at BLK32H; without digitizer
1275P	BLK32H	1BLK32HI087A	I. Roxas	28-Mar-14	Surveyed 8 lines at BLK32H and 2 lines at BLK32I and covered voids at BLK32E en route to base
1281P	BLK32I	1BLK32I088B	MCE. Baliguas	29-Mar-14	Surveyed 6 lines at BLK32I but with voids due to clouds
1293P	BLK32H	1BLK32H091B	I. Roxas	01-Apr-14	Surveyed 8 lines at BLK32H; auto pilot disengaging
2854P	BLK2DS, BLK2G	1BLK2DSG319A	G SINADJAN	November 15, 2015	SURVEYED 18 LINES FOR BLK2D AND BLK2G

SWATH PER FLIGHT MISSION

FLIGHT NO. :	1247P	SCAN FREQ:	30 HZ
AREA:	BLK32J	SCAN ANGLE:	25 DEG
MISSION NAME	E: 1BLK32IJ080A PRF:	200 KHZ	
ALTITUDE:	1000 M/1200 M	SIDELAP:	30%

Figure A-7.1. Swath for Flight No. 1247P

FLIGHT NO. :	1271P	SCAN FREQ:	30 HZ
AREA:	BLK32H	SCAN ANGLE:	25 DEG
MISSION NAME	:1BLK32H086A PRF:	200 KHZ	
ALTITUDE:	800 M/600 M	SIDELAP:	25% / 30%

Figure A-7.2. Swath for Flight No. 1271P

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

FLIGHT NO. :	1275P	SCAN FREQ:	36 HZ
AREA:	BLK32H	SCAN ANGLE:	20 DEG
MISSION NAME	: 1BLK32HI087A PRF:	250 KHZ	
ALTITUDE:	800 M	SIDELAP:	25%

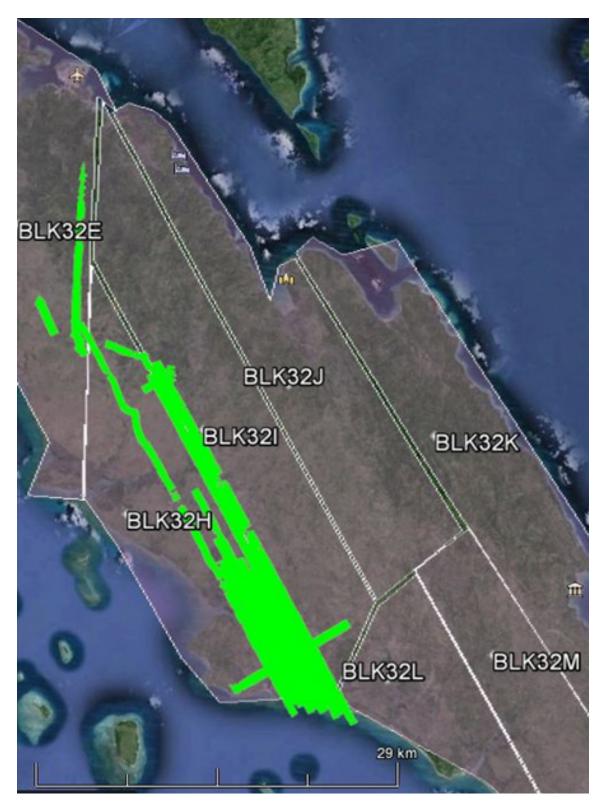


Figure A-7.3. Swath for Flight No. 1275P

FLIGHT NO.:1281PAREA:BLK32IMISSION NAME:1BLK32I088BALTITUDE:1000 M

SCAN FREQ: 30 HZ SCAN ANGLE: 25 DEG 200 KHZ SIDELAP: 40%

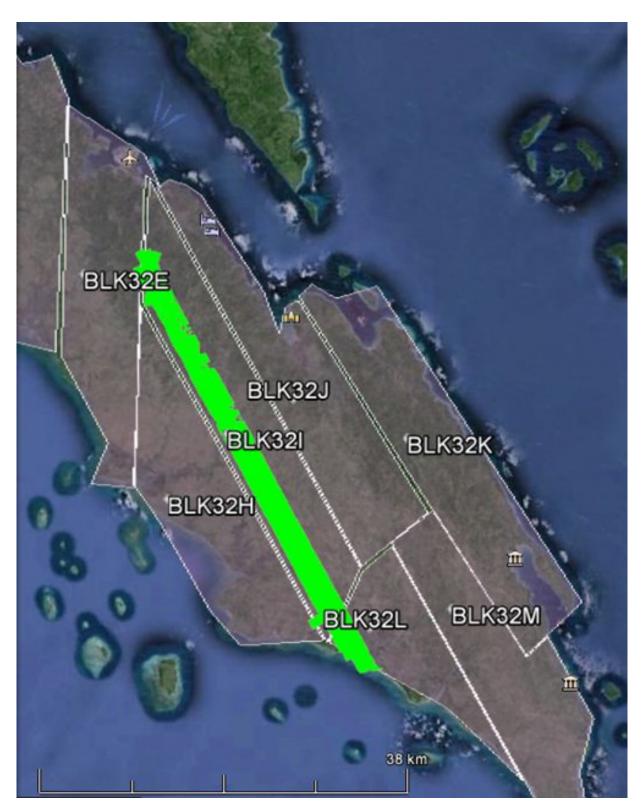
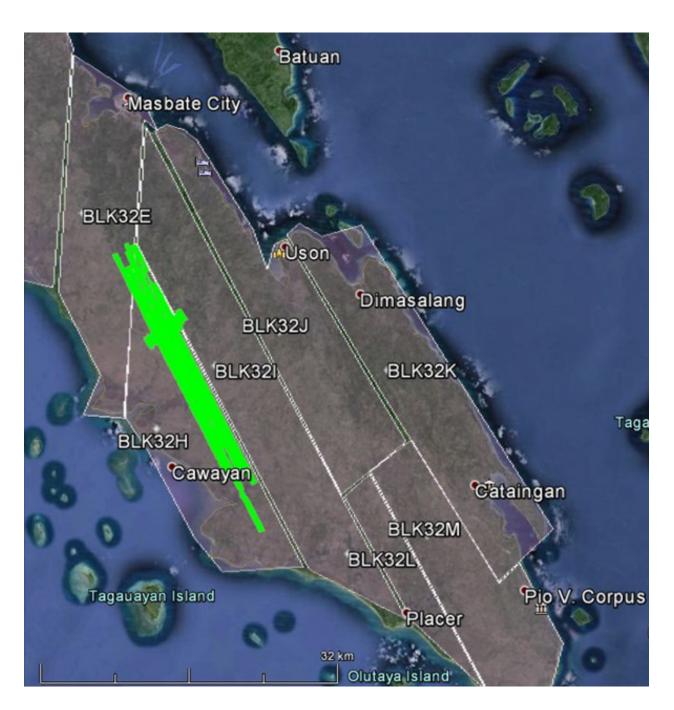
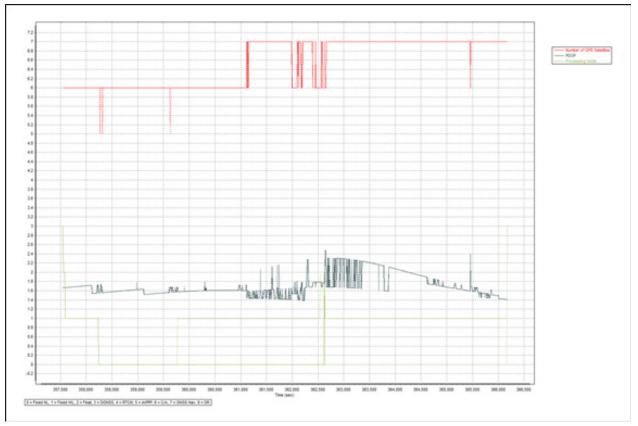


Figure A-7.4. Swath for Flight No. 1281P

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

FLIGHT NO. :	1293P	SCAN FREQ:	36 HZ
AREA:	BLK32H	SCAN ANGLE:	20 DEG
MISSION NAME	: 1BLK32H091B PRF:	250 KHZ	
ALTITUDE:	800 M	SIDELAP:	25%

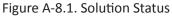

Figure A-7.5. Swath for Flight No. 1293P

Table A-8.1. Mission Summary Rep	port for Mission Blk2D_supplement
Flight Area	Masbate
Mission Name	Blk32IJ
Inclusive Flights	1245P, 1247P, 1281P
Mission Name	1BLK32J079B, 1BLK32IJ080A, 1BLK32I088B
Range data size	77.3 GB
POS	535 MB
Base data size	18.58 MB
Image	104.4 GB
Transfer date	April 23 2014
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	Yes
Processing Mode (<=1)	Yes
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	1.63
RMSE for East Position (<4.0 cm)	1.70
RMSE for Down Position (<8.0 cm)	3.20
Boresight correction stdev (<0.001deg)	0.000398
IMU attitude correction stdev (<0.001deg)	0.001191
GPS position stdev (<0.01m)	0.00270
Minimum % overlap (>25)	17.09%
Ave point cloud density per sq.m. (>2.0)	2.30
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	683
Maximum Height	603.95 m
Minimum Height	42.31 m
~	
Classification (# of points)	
Ground	476,127,438
Low vegetation	250,199,416
Medium vegetation	363,150,463
High vegetation	265,574,430
Building	4,664,222
	.,
Orthophoto	Yes
Processed by	Engr. Kenneth Solidum, Engr. Harmond Santos, Engr. Roa Shalemar Redo, Engr. John Dill Macapagal

Annex 8. Mission Summary Reports

Table A-8.1. Mission Summary Report for Mission Blk2D_supplement

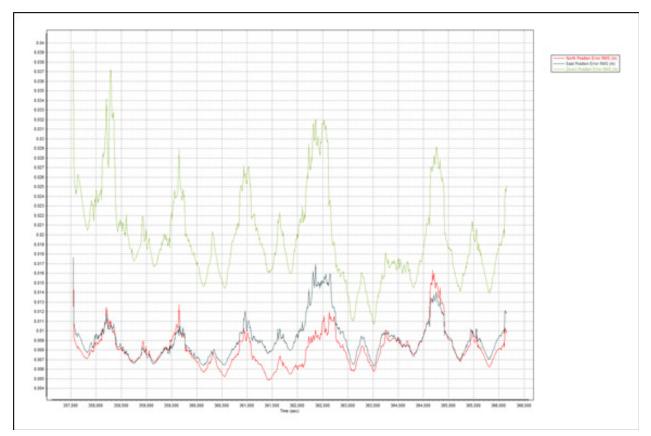


Figure A-8.2. Smoothed Performance Metrics Parameters

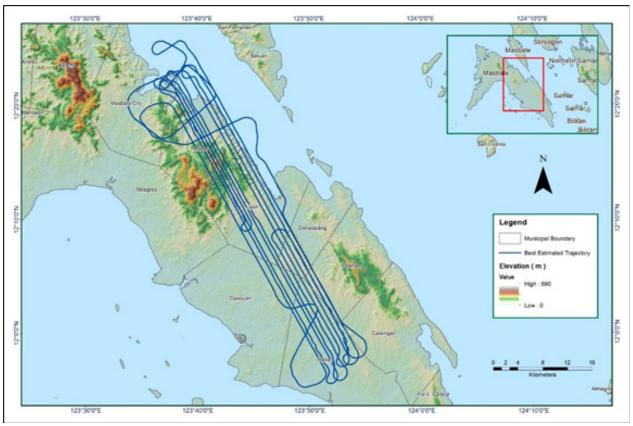


Figure A-8.3. Best Estimated Trajectory

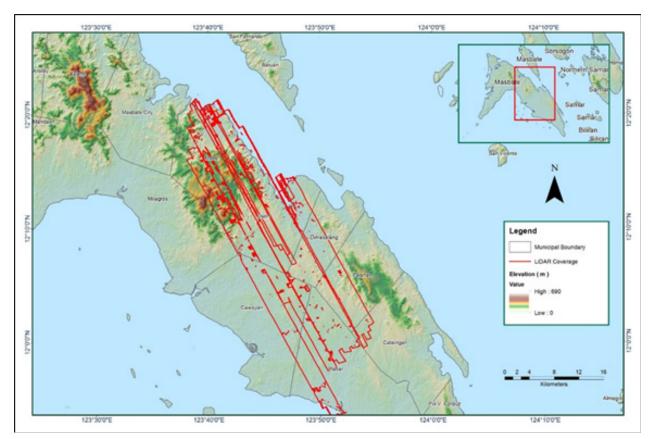


Figure A-8.4. Coverage of LiDAR data

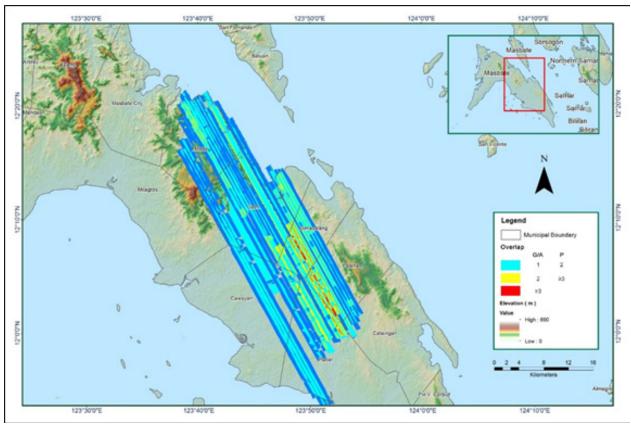


Figure A-8.5. Image of Data Overlap

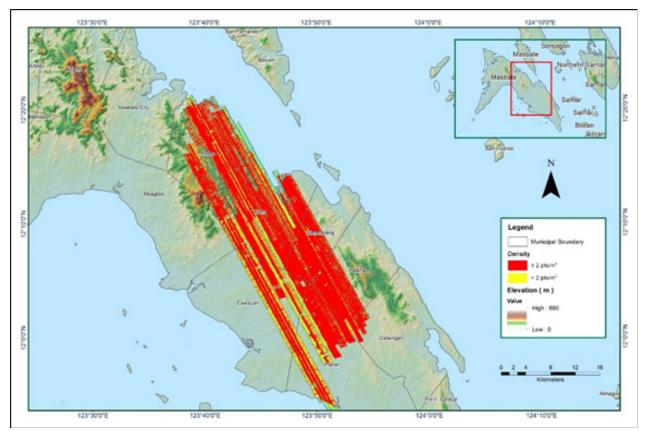


Figure A-8.6. Density map of merged LiDAR data

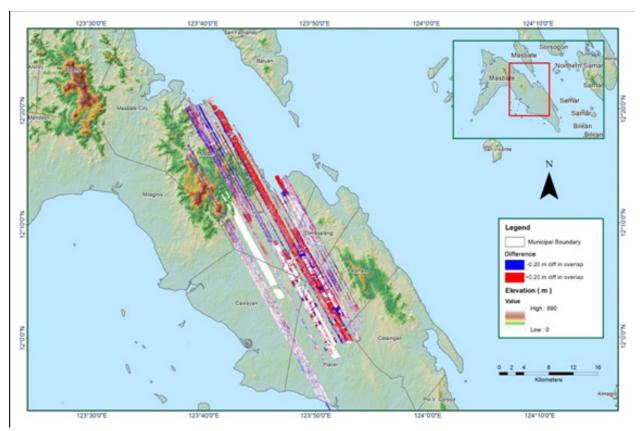


Figure A-8.7. Elevation difference between flight lines

Flight Area	Cagayan Reflights(Tuguegarao)
Mission Name	BIk32H
Inclusive Flights	1271P, 1275P, 1293P
 Mission Name	1BLK32H086A, 1BLK32DG095A, 1BLK32H091B
Range data size	70.5 GB
POS	538 MB
Base data size	19.72 MB
Image	138.0 GB
Transfer date	April 23 2014
Solution Status	
Number of Satellites (>6)	No
PDOP (<3)	No
Baseline Length (<30km)	No
Processing Mode (<=1)	Yes
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	5.04
RMSE for East Position (<4.0 cm)	3.40
RMSE for Down Position (<8.0 cm)	7.90
Boresight correction stdev (<0.001deg)	0.00058
IMU attitude correction stdev (<0.001deg)	0.00828
GPS position stdev (<0.01m)	0.00270
N1 in a 26 a sile (* 25)	2.25
Minimum % overlap (>25)	2.25
Ave point cloud density per sq.m. (>2.0) Elevation difference between strips (<0.20 m)	2.74 Yes
Elevation difference between strips (<0.20 m)	res
Number of 1km x 1km blocks	387
Maximum Height	555.56m
Minimum Height	47.88m
	47.0011
Classification (# of points)	
Ground	501,440,501
Low vegetation	335,653,641
Medium vegetation	315,870,006
High vegetation	78,423,465
Building	2,270,257
Orthophoto	Yes
Processed by	Engr. Irish Cortez, Engr. Harmond Santos,
Engr. Gladys Mae Apat	

Table A-8.2. Mission Summary Report for Mission Blk2B

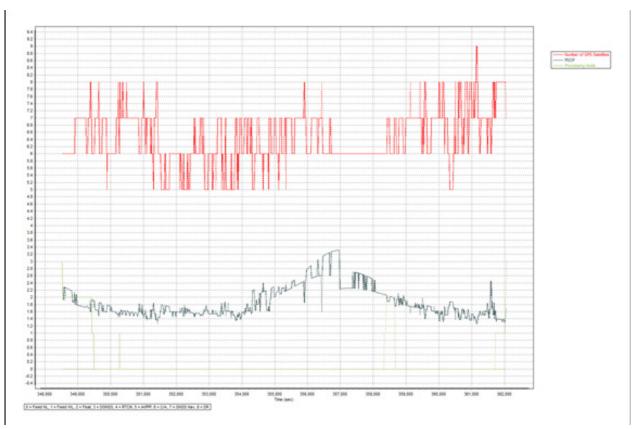


Figure A-8.8. Solution Status Parameters

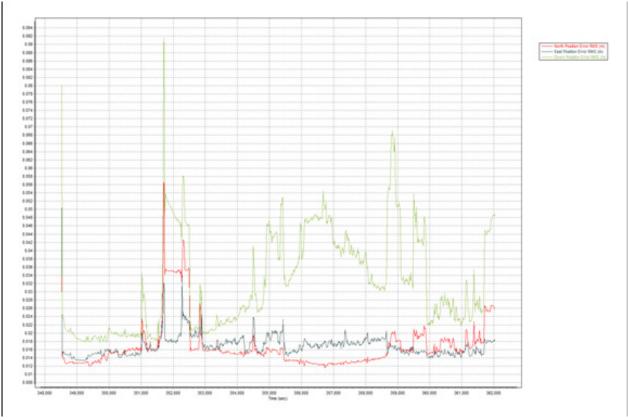


Figure A-8.9. Smoothed Performance Metrics Parameters

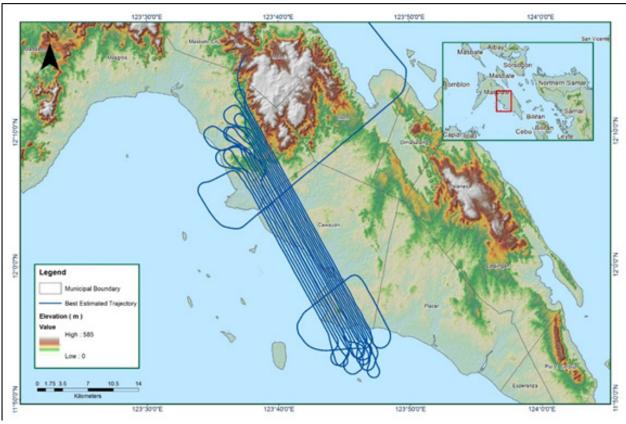


Figure A-8.10. Best Estimated Trajectory

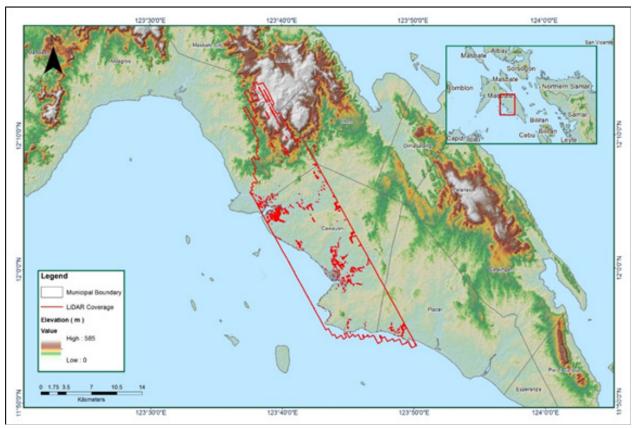


Figure A-8.11. Coverage of LiDAR data

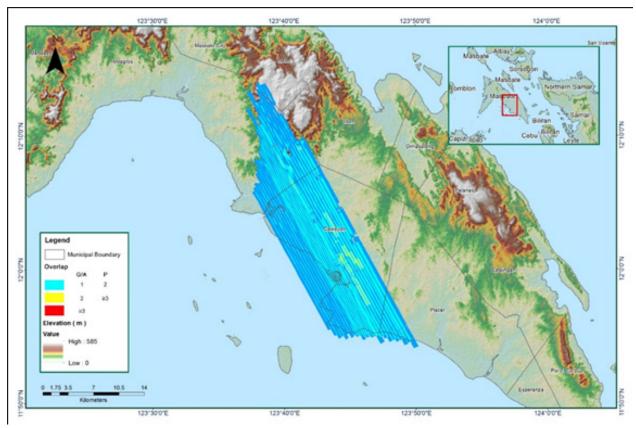


Figure A-8.12. Image of Data Overlap

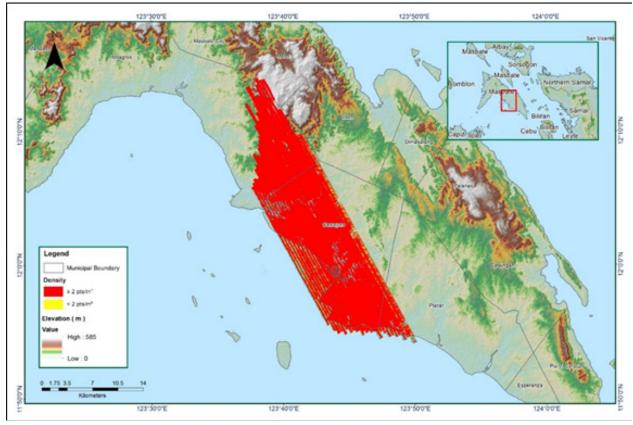


Figure A-8.13. Density map of merged LiDAR data

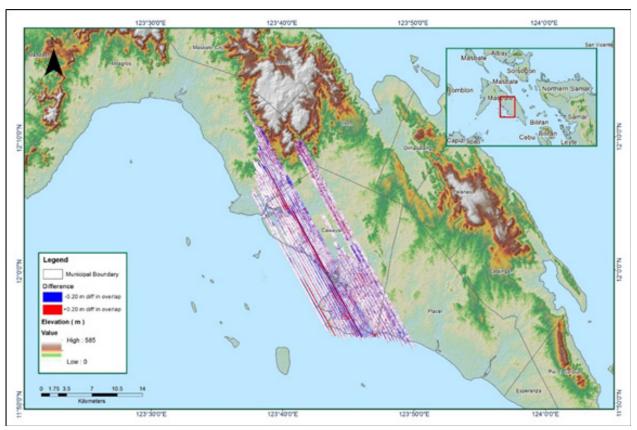


Figure A-8.14. Elevation difference between flight lines

Annex 9. Guiom Model Basin Parameters

Ratio to 0.01495 0.01996 0.01565 0.10634 0.06106 0.33903 0.10925 0.01807 0.40504 0.37829 0.01843 0.01714 0.09082 0.01852 0.38082 0.02294 0.01691 0.01987 0.02671 Peak Ratio to Peak Threshold Type **Recession Baseflow** Recession Constant 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 Discharge 0.0274 0.0078 0.1328 0.3218 0.0808 0.1598 0.0020 0.2750 0.0160 0.1553 (M3/S) 0.2297 0.0712 0.2330 0.0724 0.0348 0.0706 0.0379 0.0941 0.1775 Initial Table A-9.1. Pamplona Model Basin Parameters Discharge nitial Type **Clark Unit Hydrograph Transforn** Coefficient 76.93000 0.28818 0.05956 0.06925 0.05956 0.07983 0.08055 0.07488 0.06925 0.08214 0.01667 0.01667 0.08102 0.08323 Storage 0.01667 0.01667 0.08321 0.01667 0.01667 (HR) Concentration 0.01667 0.01667 0.16523 0.14686 0.14605 0.16529 Time of 0.01667 0.01667 0.14903 0.15475 0.14582 0.12604 0.14269 0.16662 0.01667 0.01667 0.01667 0.01667 0.01667 (HR) Impervious (%) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 SCS Curve Number Loss 51.55700 64.68000 37.99000 36.54900 52.69500 38.40000 93.85600 70.00000 52.80600 37.27100 52.92000 36.52800 41.41200 36.23400 52.97000 63.38600 00000.66 00000.66 00000.66 Number Curve Abstraction 310.22000 300.00000 360.39000 500.00000 300.00000 296.56000 500.00000 500.00000 318.24000 273.46000 287.28000 379.47000 264.14000 313.71000 310.98000 99.03900 32.03600 16.37100 0.03371 Initial (mm) Number W320 W200 W290 W300 W310 W330 W210 W220 W230 W240 W250 W260 W270 W280 W340 W350 W360 W370 W380 Basin

Annex 10. Guiom Model Reach Parameters

Reach			Muskingum Cunge Channel Routing	nel Routing			
Number	Time Step Method	Length (m)	Slope	Manning's n	Shape	Width	Side Slope
R30	Automatic Fixed Interval	199	0.00148	0.00010	Trapezoid	45.501	1
R50	Automatic Fixed Interval	5890.5	0.00148	0.00010	Trapezoid	45.501	1
R80	Automatic Fixed Interval	1742.6	0.01013	0.00010	Trapezoid	45.501	1
R90	Automatic Fixed Interval	340.01	0.01013	0.00010	Trapezoid	45.501	1
R120	Automatic Fixed Interval	1784.3	0.00256	0.45246	Trapezoid	45.501	1
R130	Automatic Fixed Interval	4402.2	0.00052	0.01466	Trapezoid	45.501	1
R150	Automatic Fixed Interval	2438.5	0.00132	0.04713	Trapezoid	45.501	1
R160	Automatic Fixed Interval	853.58	0.00069	0.01319	Trapezoid	45.501	1
R190	Automatic Fixed Interval	4043.8	0.002201	0.10318	Trapezoid	45.501	1

Table A-10.1. Pamplona Model Reach Parameters

Point Number	Validation ((in Wo		Model Var (m)	Valid- ation Points	Error	Event/Date	Rain Return / Scenario
	Lat	Long		(m)			
131	11.94659	123.7275967	0.03	0	0.03		5-Year
128	11.94660167	123.72741	0	0	0		5-Year
130	11.94673833	123.727835	0.72	0	0.72		5-Year
129	11.94678167	123.7278633	0.72	0	0.72		5-Year
134	11.94695167	123.7275617	0.24	0	0.24		5-Year
136	11.94708833	123.727475	0.27	0	0.27		5-Year
132	11.94709	123.7273083	0.03	0	0.03		5-Year
135	11.9472	123.7272717	0.03	0	0.03		5-Year
138	11.94737333	123.7270883	0.03	0	0.03		5-Year
137	11.947475	123.727245	0.19	0	0.19		5-Year
140	11.94754333	123.7269117	0.03	0	0.03		5-Year
133	11.94755333	123.7272233	0.2	0	0.2		5-Year
166	11.94757	123.745495	0.07	0	0.07		5-Year
139	11.94767833	123.7270583	0.38	0	0.38		5-Year
141	11.94768167	123.726715	0.03	0	0.03		5-Year
142	11.94774833	123.7267567	0.03	0	0.03		5-Year
165	11.94774167	123.7449983	0.04	0	0.04		5-Year
197	11.94790833	123.7416967	0.04	0	0.04		5-Year
143	11.94796833	123.7267817	0.1	0	0.1		5-Year
162	11.947975	123.7416683	0.08	0	0.08		5-Year
198	11.948045	123.7418417	0.03	0	0.03		5-Year
103	11.94809582	123.7428857	0.03	0	0.03		5-Year
104	11.94809712	123.7429557	0.03	0	0.03		5-Year
105	11.94810768	123.7429893	0.03	0	0.03		5-Year
196	11.94811333	123.7414567	0.06	0	0.06		5-Year
102	11.94812305	123.7428693	0.03	0	0.03		5-Year
148	11.94819167	123.7263417	0.03	0	0.03		5-Year
147	11.94824667	123.7267583	0.57	0	0.57		5-Year
144	11.94825167	123.726775	0.59	0	0.59		5-Year
106	11.94821355	123.7430844	0.03	0	0.03		5-Year
180	11.948295	123.72672	0.59	0	0.59		5-Year
163	11.94827333	123.74192	0.06	0	0.06		5-Year
145	11.94832333	123.72662	0.52	0	0.52		5-Year
146	11.94833833	123.726745	0.59	0	0.59		5-Year
181	11.94839833	123.7263283	0.3	0	0.3		5-Year
149	11.94842	123.72624	0.09	0	0.09		5-Year
182	11.948485	123.7262767	0.54	0	0.54		5-Year
195	11.94845333	123.7408867	0.34	0	0.34		5-Year
150	11.94856667	123.726055	0.12	0	0.12		5-Year
183	11.94857667	123.7260367	0.12	0	0.12		5-Year

Annex 11. Guiom Floodplain Field Validation Points

Point Number	Validation ((in Wo		Model Var (m)	Valid- ation Points	Error	Event/Date	Rain Return / Scenario
	Lat	Long		(m)			
199	11.94877333	123.74311	0.06	0	0.06		5-Year
151	11.94887333	123.7259117	0.6	0	0.6		5-Year
185	11.94906167	123.726855	0.68	0	0.68		5-Year
44	11.94907129	123.7255903	0.18	0	0.18		5-Year
46	11.94907127	123.7257902	0.79	0	0.79		5-Year
98	11.94904092	123.7396801	0.03	0	0.03		5-Year
186	11.94908667	123.72684	0.23	0	0.23		5-Year
152	11.94909333	123.7269333	0.14	0	0.14		5-Year
101	11.94906243	123.7400246	0.17	0	0.17		5-Year
164	11.94906833	123.7430433	0.06	0	0.06		5-Year
43	11.94920145	123.7254555	0.07	0	0.07		5-Year
100	11.94918079	123.7399821	0.12	0	0.12		5-Year
45	11.94923488	123.7256526	0.71	0	0.71		5-Year
97	11.94921025	123.7397257	0.06	0	0.06		5-Year
154	11.94924833	123.727315	0.03	0	0.03		5-Year
99	11.94925227	123.7399175	0.13	0	0.13		5-Year
74	11.94929091	123.7262875	0.54	0	0.54		5-Year
155	11.94929	123.72749	0.06	0	0.06		5-Year
42	11.9492996	123.7255175	0.61	0	0.61		5-Year
73	11.94929851	123.7261742	0.5	0	0.5		5-Year
72	11.94932371	123.7263071	0.54	0	0.54		5-Year
62	11.949334	123.7260712	0.44	0	0.44		5-Year
61	11.94934785	123.7260768	0.45	0	0.45		5-Year
153	11.949375	123.7271917	0.12	0	0.12		5-Year
184	11.94938833	123.7266317	0.03	0	0.03		5-Year
187	11.94938833	123.7271067	0.03	0	0.03		5-Year
190	11.94940167	123.7267517	0.03	0	0.03		5-Year
156	11.94943667	123.7270533	0.05	0	0.05		5-Year
71	11.94944434	123.7263764	0.12	0	0.12		5-Year
60	11.94946291	123.7259083	0.48	0	0.48		5-Year
191	11.94946167	123.7267233	0.03	0	0.03		5-Year
82	11.94948974	123.727538	0.03	0	0.03		5-Year
63	11.94950393	123.7263987	0.12	0	0.12		5-Year
192	11.94950833	123.7268683	0.03	0	0.03		5-Year
157	11.94951167	123.7274633	0.03	0	0.03		5-Year
189	11.94955	123.7270817	0.13	0	0.13		5-Year
188	11.94955333	123.7270067	0.03	0	0.03		5-Year
64	11.94956828	123.7264518	0.03	0	0.03		5-Year
55	11.94957521	123.725811	0.46	0	0.46		5-Year
87	11.94957211	123.7280751	0.03	0	0.03		5-Year
88	11.94957439	123.7282128	0.03	0	0.03		5-Year

Point Number	Validation ((in Wo		Model Var (m)	Valid- ation Points	Error	Event/Date	Rain Return / Scenario
	Lat	Long		(m)			
54	11.9495807	123.7258028	0.46	0	0.46		5-Year
57	11.94958636	123.7259029	0.44	0	0.44		5-Year
96	11.94955834	123.7396645	0.06	0	0.06		5-Year
58	11.94961181	123.7260053	0.36	0	0.36		5-Year
70	11.94961604	123.7265722	0.03	0	0.03		5-Year
86	11.94962549	123.7279623	0.03	0	0.03		5-Year
65	11.94966272	123.7265465	0.03	0	0.03		5-Year
69	11.94966986	123.7267593	0.03	0	0.03		5-Year
56	11.94967494	123.7259689	0.54	0	0.54		5-Year
59	11.94969122	123.726208	0.07	0	0.07		5-Year
53	11.94970729	123.7259024	0.4	0	0.4		5-Year
161	11.949685	123.7382783	0.03	0	0.03		5-Year
85	11.94976232	123.7277392	0.03	0	0.03		5-Year
194	11.94977	123.7384967	0.03	0	0.03		5-Year
81	11.94982005	123.7271115	0.03	0	0.03		5-Year
68	11.94986777	123.7268782	0.04	0	0.04		5-Year
80	11.94988066	123.7270338	0.15	0	0.15		5-Year
66	11.9498856	123.7266609	0.03	0	0.03		5-Year
84	11.94989237	123.7274993	0.03	0	0.03		5-Year
67	11.94992522	123.7266712	0.03	0	0.03		5-Year
160	11.94991667	123.73701	0.26	0	0.26		5-Year
75	11.94995814	123.7269061	0.26	0	0.26		5-Year
83	11.9499793	123.7273717	0.03	0	0.03		5-Year
90	11.95004557	123.7299977	0.03	0	0.03		5-Year
95	11.95006255	123.7300983	0.03	0	0.03		5-Year
52	11.95007591	123.725427	0.68	0	0.68		5-Year
76	11.95008458	123.7269259	0.63	0	0.63		5-Year
94	11.95010999	123.7301395	0.03	0	0.03		5-Year
51	11.95013541	123.7255693	0.29	0	0.29		5-Year
77	11.95014558	123.726993	0.14	0	0.14		5-Year
89	11.95015126	123.7301322	0.06	0	0.06		5-Year
92	11.95017036	123.730438	0.03	0	0.03		5-Year
93	11.95018665	123.7303544	0.07	0	0.07		5-Year
91	11.95022981	123.730345	0.05	0	0.05		5-Year
50	11.95030273	123.7256784	0.07	0	0.07		5-Year
159	11.95028333	123.7357183	0.46	0	0.46		5-Year
49	11.950347	123.7255115	0.03	0	0.03		5-Year
48	11.95035275	123.7254189	0.03	0	0.03		5-Year
79	11.9503902	123.7272772	0.12	0	0.12		5-Year
78	11.95039931	123.7271541	0.03	0	0.03		5-Year
158	11.95054333	123.73372	0.04	0	0.04		5-Year

Point Number	Validation ((in Wo		Model Var (m)	Valid- ation Points	Error	Event/Date	Rain Return / Scenario
	Lat	Long		(m)			
47	11.95059623	123.7252812	0.08	0	0.08		5-Year
193	11.950825	123.732965	0.03	0	0.03		5-Year
41	11.95315157	123.7340232	0.03	0	0.03		5-Year
127	11.95582333	123.7340383	0.03	0	0.03		5-Year
126	11.955945	123.7340867	0.03	0	0.03		5-Year
38	11.95706923	123.7345313	0.03	0	0.03		5-Year
125	11.95711667	123.73435	0.03	0	0.03		5-Year
39	11.95717908	123.7345277	0.03	0	0.03		5-Year
40	11.9572431	123.73457	0.03	0	0.03		5-Year
123	11.95728667	123.7342967	0.03	0	0.03		5-Year
124	11.95733	123.7343267	0.03	0	0.03		5-Year
37	11.9577914	123.7337057	0.03	0	0.03		5-Year
36	11.95793147	123.7336687	0.03	0	0.03		5-Year
34	11.96076354	123.7249755	0.03	0	0.03		5-Year
33	11.96077973	123.724876	0.03	0	0.03		5-Year
121	11.96090167	123.7245633	0.03	0	0.03		5-Year
122	11.96091333	123.7257917	0.03	0	0.03		5-Year
120	11.961035	123.724425	0.04	0	0.04		5-Year
35	11.96106952	123.7286461	0.03	0	0.03		5-Year
119	11.96320667	123.722305	0.03	0	0.03		5-Year
32	11.96394545	123.7220957	0.06	0	0.06		5-Year
118	11.964395	123.7228167	0.03	0	0.03		5-Year
117	11.964485	123.72293	0.03	0	0.03		5-Year
31	11.96583126	123.7235157	0.55	0	0.55		5-Year
30	11.96657248	123.7242719	0.03	0	0.03		5-Year
179	11.96706167	123.7255833	0.03	0	0.03		5-Year
29	11.9678659	123.7266109	0.03	0	0.03		5-Year
28	11.96802019	123.7264588	0.03	0	0.03		5-Year
25	11.96806381	123.7267817	0.03	0	0.03		5-Year
27	11.96809823	123.7265731	0.03	0	0.03		5-Year
24	11.96812011	123.726866	0.05	0	0.05		5-Year
26	11.96813941	123.72669	0.03	0	0.03		5-Year
116	11.96833667	123.7268967	0.03	0	0.03		5-Year
115	11.96846667	123.7269183	0.03	0	0.03		5-Year
23	11.96853779	123.7273572	0.03	0	0.03		5-Year
114	11.96865	123.7271967	0.04	0	0.04		5-Year
22	11.96877027	123.7278149	0.03	0	0.03		5-Year
113	11.96880667	123.7274133	0.03	0	0.03		5-Year
112	11.96881333	123.72757	0.03	0	0.03		5-Year
21	11.96906113	123.7278248	0.03	0	0.03		5-Year
111	11.96944	123.7278933	0.38	0	0.38		5-Year

Point Number	Validation C (in Wo		Model Var (m)	Valid- ation Points	Error	Event/Date	Rain Return / Scenario
	Lat	Long		(m)			
110	11.96973667	123.7284067	0.03	0	0.03		5-Year
20	11.97396139	123.7305122	0.03	0	0.03		5-Year
178	11.97488	123.7309967	0.03	0	0.03		5-Year
177	11.97524833	123.7310883	0.05	0	0.05		5-Year
18	11.97526895	123.7307558	0.03	0	0.03		5-Year
19	11.97527174	123.7307843	0.03	0	0.03		5-Year
17	11.9754221	123.730928	0.05	0	0.05		5-Year
16	11.97577062	123.731267	0.03	0	0.03		5-Year
15	11.97590087	123.7313355	0.03	0	0.03		5-Year
14	11.97598582	123.731271	0.03	0	0.03		5-Year
176	11.97632167	123.7315033	0.03	0	0.03		5-Year
109	11.97638333	123.731275	0.03	0	0.03		5-Year
175	11.976415	123.73157	0.03	0	0.03		5-Year
174	11.976475	123.731505	0.03	0	0.03		5-Year
13	11.97663401	123.7315606	0.03	0	0.03		5-Year
8	11.97895746	123.732736	0.03	0	0.03		5-Year
9	11.97897174	123.7326991	0.03	0	0.03		5-Year
7	11.97908751	123.7328422	0.03	0	0.03		5-Year
10	11.97921656	123.7325526	0.03	0	0.03		5-Year
6	11.97922238	123.7329259	0.03	0	0.03		5-Year
11	11.97936812	123.732895	0.03	0	0.03		5-Year
5	11.97937378	123.7330003	0.03	0	0.03		5-Year
4	11.97948576	123.7330169	0.03	0	0.03		5-Year
12	11.97958354	123.7330144	0.04	0	0.04		5-Year
3	11.97979594	123.7331433	0.03	0	0.03		5-Year
108	11.97989	123.7331017	0.04	0	0.04		5-Year
2	11.97995606	123.7331874	0.03	0	0.03		5-Year
107	11.98001833	123.73299	0.16	0	0.16		5-Year
1	11.98008857	123.7331602	0.14	0	0.14		5-Year
167	11.98022833	123.73314	0.03	0	0.03		5-Year
170	11.98026167	123.7327733	0.13	0	0.13		5-Year
171	11.98027833	123.732655	0.03	0	0.03		5-Year
168	11.980305	123.73323	0.03	0	0.03		5-Year
173	11.98033	123.7334267	0.03	0	0.03		5-Year
169	11.98043667	123.7332467	0.03	0	0.03		5-Year
172	11.98049	123.733105	0.06	0	0.06		5-Year
204	11.98248667	123.799715	2.65	0	2.65		5-Year
202	11.98250667	123.7991767	0.62	0	0.62		5-Year
203	11.982565	123.7991067	0.62	0	0.62		5-Year
200	11.98263167	123.7979783	0.51	0	0.51		5-Year
201	11.98298667	123.798185	0.14	0	0.14		5-Year