HAZARD MAPPING OF THE PHILIPPINES USING LIDAR (PHIL-LIDAR I)

LiD/AR Surveys and Flood Mapping of Balili River

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

© University of the Philippines Diliman, Mindanao State University – Iligan Institute of Technology, and the Department of Science and Technology 2017

Published by the UP Training Center for Applied Geodesy and Photogrammetry (TCAGP) College of Engineering
University of the Philippines – Diliman
Quezon City
1101 PHILIPPINES

This research project is supported by the Department of Science and Technology (DOST) as part of its Grant-in-Aid Program and is to be cited as:

E.C. Paringit, and A.E. Milano, (Eds.). (2017), LiDAR Surveys and Flood Mapping of Balili River, Flood Hazard Mapping of the Philippines using LIDAR, Quezon City: University of the Philippines Training Center for Applied Geodesy and Photogrammetry-278pp.

The text of this information may be copied and distributed for research and educational purposes with proper acknowledgement. While every care is taken to ensure the accuracy of this publication, the UP TCAGP disclaims all responsibility and all liability (including without limitation, liability in negligence) and costs which might incur as a result of the materials in this publication being inaccurate or incomplete in any way and for any reason.

For questions/queries regarding this report, contact:

Prof. Alan E. Milano

Project Leader, PHIL LIDAR 1 Program
Mindanao State University – Iligan Institute of Technology
Iligan City, Philippines 9200
E-mail: aemilano1960@yahoo.com

Enrico C. Paringit, Dr. Eng.

Program Leader, DREAM Program University of the Philippines Diliman Quezon City, Philippines 1101 E-mail: ecparingit@up.edu.ph

National Library of the Philippines

ISBN: 987-621-430-069-3

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

TABLE OF CONTENTS

TABLE OF CONTENTS	
LISTOFTABLES	
LIST OF FIGURES	
LIST OF ACRONYMS AND ABBREVIATIONS	
CHAPTER 1: OVERVIEW OF THE PROGRAM AND BALILI RIVER	
1.1 Background of the Phil-LIDAR 1 Program	1
1.2 Overview of the Balili River Basin	1
CHAPTER 2: LIDAR DATA ACQUISITION OF THE BALILI FLOODPLAIN	
2.1 Flight Plans	
2.2 Ground Base Stations	
2.3 Flight Missions	
2.4 Survey Coverage	19
CHAPTER 3: LIDAR DATA PROCESSING FOR BALILI FLOODPLAIN	
3.1 LiDAR Data Processing for Balili Floodplain	
3.1 Overview of the LiDAR Data Pre-Processing	
3.2 Transmittal of Acquired LiDAR Data	
3.3 Trajectory Computation	
3.4 LiDAR Point Cloud Computation	24
3.5 LiDAR Data Quality Checking	
3.6 LiDAR Point Cloud Classification and Rasterization	
3.7LiDARImageProcessingandOrthophotographRectification	31
3.8 DEM Editing and Hydro-Correction	
3.9 Mosaicking of Blocks	
3.10 Calibration and Validation of Mosaicked LiDAR Digital Elevation Model	
3.11 Integration of Bathymetric Data into the LiDAR Digital Terrain Model	
3.12FeatureExtraction	
3.12.1 Quality Checking of Digitized Features' Boundary	
3.12.2 Height Extraction	
3.12.3 Feature Attribution	
3.17.4 Final Quality Checking of Extracted Features	44
3.12.4 Final Quality Checking of Extracted Features CHAPTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE BALILI RIVER BAS	44 5 1N4 5
CHAPTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE BALILI RIVER BAS	IN45
4.1 Summary of Activities	IN45
4.1 Summary of Activities	45 45
4.1 Summary of Activities	45 45 46
4.1 Summary of Activities	45 45 51
4.1 Summary of Activities	45 46 51 52
4.1 Summary of Activities	45 46 51 52 52
4.1 Summary of Activities	
4.1 Summary of Activities	
CHAPTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE BALILI RIVER BAS 4.1 Summary of Activities	
CHAPTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE BALILI RIVER BAS 4.1 Summary of Activities	45 46 52 52 60 65
CHAPTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE BALILI RIVER BAS 4.1 Summary of Activities	45 46 52 52 60 65 65
CHAPTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE BALILI RIVER BAS 4.1 Summary of Activities	
CHAPTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE BALILI RIVER BAS 4.1 Summary of Activities	
CHAPTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE BALILI RIVER BAS 4.1 Summary of Activities	
CHAPTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE BALILI RIVER BAS 4.1 Summary of Activities	
CHAPTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE BALILI RIVER BAS 4.1 Summary of Activities	
CHAPTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE BALILI RIVER BAS 4.1 Summary of Activities	
CHAPTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE BALILI RIVER BAS 4.1 Summary of Activities	
CHAPTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE BALILI RIVER BAS 4.1 Summary of Activities	
4.1 Summary of Activities	
CHAPTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE BALILI RIVER BAS 4.1 Summary of Activities	
CHAPTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE BALILI RIVER BAS 4.1 Summary of Activities	
CHAPTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE BALILI RIVER BAS 4.1 Summary of Activities	
CHAPTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE BALILI RIVER BAS 4.1 Summary of Activities 4.2 Control Survey 4.3Baseline Processing 4.4 Network Adjustment 4.5 Cross-section and Bridge As-Built survey and Water Level Marking 4.6 Validation Points Acquisition Survey 4.7 River Bathymetric Survey CHAPTER 5: FLOOD MODELING AND MAPPING 5.1 Data Used for Hydrologic Modeling 5.1.1 Hydrometry and Rating Curves 5.1.2 Precipitation 5.1.3 Rating Curves and River Outflow 5.1.3 Rating Curves and River Outflow 5.3 HMS Model 5.4 Cross-section Data 5.5 Flo 2D Model 5.6 Results of HMS Calibration 5.7 Calculated outflow hydrographs and discharge values for different rainfall return perion 5.7.1 Hydrograph using the Rainfall Runoff Model. 5.8 River Analysis (RAS) Model Simulation 5.9 Flow Depth and Flood Hazard 5.11 Flood Validation REFERENCES.	
CHAPTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE BALILI RIVER BAS 4.1 Summary of Activities 4.2 Control Survey 4.3 Baseline Processing 4.4 Network Adjustment 4.5 Cross-section and Bridge As-Built survey and Water Level Marking 4.6 Validation Points Acquisition Survey 4.7 River Bathymetric Survey CHAPTER 5: FLOOD MODELING AND MAPPING 5.1 Data Used for Hydrologic Modeling 5.1.1 Hydrometry and Rating Curves 5.1.2 Precipitation 5.1.3 Rating Curves and River Outflow 5.2 RIDF Station 5.3 HMS Model 5.4 Cross-section Data 5.5 Flo 2D Model 5.6 Results of HMS Calibration 5.7 Calculated outflow hydrographs and discharge values for different rainfall return perions 5.7.1 Hydrograph using the Rainfall Runoff Model 5.8 River Analysis (RAS) Model Simulation 5.9 Flow Depth and Flood Hazard 5.10 Inventory of Areas Exposed to Flooding 5.11 Flood Validation REFERENCES ANNEXES	
CHAPTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE BALILI RIVER BAS 4.1 Summary of Activities 4.2 Control Survey	
CHAPTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE BALILI RIVER BAS 4.1 Summary of Activities 4.2 Control Survey 4.3 Baseline Processing 4.4 Network Adjustment 4.5 Cross-section and Bridge As-Built survey and Water Level Marking 4.6 Validation Points Acquisition Survey 4.7 River Bathymetric Survey CHAPTER 5: FLOOD MODELING AND MAPPING 5.1 Data Used for Hydrologic Modeling 5.1.1 Hydrometry and Rating Curves 5.1.2 Precipitation 5.1.3 Rating Curves and River Outflow 5.2 RIDF Station 5.3 HMS Model 5.4 Cross-section Data 5.5 Flo 2D Model 5.6 Results of HMS Calibration 5.7 Calculated outflow hydrographs and discharge values for different rainfall return perions 5.7.1 Hydrograph using the Rainfall Runoff Model 5.8 River Analysis (RAS) Model Simulation 5.9 Flow Depth and Flood Hazard 5.10 Inventory of Areas Exposed to Flooding 5.11 Flood Validation REFERENCES ANNEXES	

ANNEX 4.The LIDAR Survey Team Composition	160
ANNEX 5.Data Transfer Sheet for Balili Floodplain	
ANNEX 6.Flight logs for the flight missions	
ANNEX 7.Flight status reports	
ANNEX 8. Mission Summary Reports	
ANNEX 9. Balili Model Basin Parameters	
ANNEX 10. Balili Model Reach Parameters	254
ANNEX 11. Balili Field Validation Points	255
ANNEX 12. Educational Institutions Affected by flooding in Balili Flood Plain	260
ANNEX 13. Health Institutions affected by flooding in Balili Floodplain	

LIST OF TABLES

Table 1. Flight Planning Parameters for Pegasus LiDAR System	4
Table 2. Details of the recovered NAMRIA horizontal control point LAN-02 used as base station for the acquisition	
Table 3. Details of the recovered NAMRIA horizontal control point ZGS-88 used as base station for the acquisition	LiDAR
Table 4. Details of the recovered NAMRIA horizontal control point ZGS-16 used as base station for the acquisition	
Table 5. Details of the recovered NAMRIA horizontal control point ZGS-17 used as base station for the acquisition	
Table 6. Details of the recovered NAMRIA horizontal control point ZGN-138 used as base station for the acquisition	
Table 7. Details of the benchmark ZN- 53 used as base station for the LiDAR acquisition	12
Table 8. Details of the recovered benchmark point LE-50 used as base station for the LiDAR acquisition	13
Table 9. Details of the recovered NAMRIA benchmark ZS-188 used as base station for the LiDAR Acquisition	14
Table 10. Details of the recovered NAMRIA benchmarkLE-76 used as base station for the LiDAR Acquisition	15
Table 8. Ground control points used during the LiDAR data acquisition	16
Table 12. Flight missions for LiDAR data acquisition in Balili Floodplain	17
Table 10. Actual parameters used during the LiDAR data acquisition of the Balili Floodplain	18
Table 14. List of municipalities and cities surveyed in Balili Floodplain LiDAR survey	19
Table 15. Self-Calibration Results values for Balili flights	24
Table 16. List of LiDAR blocks for Balili Floodplain	25
Table 17. Balili classification results in TerraScan	29
Table 18. LiDAR blocks with its corresponding area	33
Table 19. Shift Values of each LiDAR block of Balili Floodplain	35
Table 20. Calibration Statistical Measures	39
Table 21. Validation Statistical Measures	40
Table 22. Quality Checking Ratings for Balili Building Features	42
Table 20. Building features that were extracted for the Balili Floodplain	43
Table 24. Total Length of Extracted Roads for Balili Floodplain	44
Table 25. Number of Extracted Water Bodies for Balili Floodplain	44
Table 26. List of reference and control points used during the survey in Balili River	
(Source: NAMRIA, UP TCAGP)	47
Table 27. Baseline Processing Report for Balili River Static Survey	51
Table 28. Control Point Constraints	52
Table 29. Adjusted Grid Coordinated.	52
Table 27. Adjusted geodetic coordinates for control points used in the Balili River Flood Plain validation	53
Table 31. Reference and control points used and its location (Source: NAMRIA, UP TCAGP)	53
Table 32. RIDF values for Dipolog Rain Gauge computed by PAGASA	68

Table 33. Range of calibrated values for the Balili River Basin	77
Table 34. Summary of the Efficiency Test of Balili HMS Model	78
Table 35 The peak values of the Balili HEC-HMS Model outflow using the Dipolog RIDF	79
Table 36. Municipalities affected in Balili Floodplain	81
Table 37. Affected areas in Aurora, Zamboanga del Sur during 5-year rainfall return period	88
Table 38. Affected areas in Baroy, Lanao del Norte during 5-year rainfall return period	90
Table 39. Affected areas in Kapatagan, Lanao del Norte during 5-year rainfall return period	93
Table 40. Affected areas in Lala, Lanao del Norte during 5-year rainfall return period	96
Table 41. Affected areas in Salvador, Lanao del Norte during 5-year rainfall return period	100
Table 42. Affected areas in Sapad, Lanao del Norte during 5-year rainfall return	101
Table 43. Affected areas in Tubod, Lanao del Norte during 5-year rainfall return period	104
Table 44. Affected areas in Aurora, Zamboanga del Sur during 25-year rainfall return period	106
Table 45. Affected areas in Baroy, Lanao del Norte during 25-year rainfall return period	108
Table 46. Affected areas in Kapatagan, Lanao del Norte during 25-year rainfall return period	111
Table 40. Affected areas in Lala, Lanao del Norte during 5-year rainfall return period	114
Table 48. Affected areas in Salvador, Lanao del Norte during 25-year rainfall return	118
Table 49. Affected areas in Sapad, Lanao del Norte during 25-year rainfall return period	119
Table 50. Affected areas in Tubod, Lanao del Norte during 25-year rainfall return period	122
Table 51. Affected areas in Aurora, Zamboanga del Sur during 100-year rainfall return period	124
Table 52. Affected areas in Baroy, Lanao del Norte during 100-year rainfall return period	126
Table 53. Affected areas in Kapatagan, Lanao del Norte during 100-year rainfall return period	129
Table 40. Affected areas in Lala, Lanao del Norte during 5-year rainfall return period	132
Table 55. Affected areas in Salvador, Lanao del Norte during 100-year rainfall return period	136
Table 56. Affected areas in Sapad, Lanao del Norte during 100-year rainfall return period	137
Table 50. Affected areas in Tubod, Lanao del Norte during 25-year rainfall return period	140
Table 58. Area covered by each warning level with respect to the rainfall scenario	142
Table 53. Actual flood vs simulated flood depth at different levels in the Balili River Basin	144
Table 60. Summary of Accuracy Assessment in Balili	144

LIST OF FIGURES

Figure 1. Map of the Balili River Basin (in brown)	2
Figure 2. Flight plans and base stations for Balili Floodplain	5
Figure 3. a) GPS set-up overLAN-02 ontop of a concrete irrigation canal water gate in Brgy. Pinc	yak, Lala,
Lanao del Norte. b) NAMRIA reference point LAN-02 as recovered by the field team	7
Figure 4. a) GPS set-up overZGS-88 ona center island in Puroy Saray, Aurora, Zamboanga del Sur. b) NAMRIA
reference point ZGS-88 as recovered by the field team	8
Figure 5. GPS set-up over ZGS-16(a) in Purok Nangka, Brgy. Baclay, Tukuran, Zamboanga de	I Sur and
NAMRIA reference point ZGS-16 (b) as recovered by the field team.	9
Figure 6. GPS set-up over ZGS-17(a) in Purok Kasoy, Brgy. Baclay, Tukuran, Zamboanga del Sur and	NAMRIA
reference point ZGS-17 (b) as recovered by the field team	10
Figure 7. GPS set-up over ZGN-138(a) in Katipinan Zamboanga del Norte and NAMRIA reference p	oint ZGN-
138 (b) as recovered by the field team	11
Figure 8. GPS set-up over ZN-53 at Brgy. Daanglungsod, Katipunan, Zamboanga del Norte (a)	reference
point ZN-53 (b) as recovered by the field team	12
Figure 9. a) GPS set-up overLE-50 on the Barogohan Bridge in Maigo, Lanao del Norte; b) NAMI	RIA bench
mark LE-50 as recovered by the field team	13
Figure 10. a) GPS set-up overZS-188 at Dipolo Bridge in Brgy. Licomo, Molave, Zamboanga d	el Sur; b)
NAMRIA bench mark ZS-188 as recovered by the field team	14
Figure 11. a) GPS set-up overLE-76 at Bulod Bridge in Brgy. Bulod, Tubud, Lanao del Norte. b)	NAMRIA
bench mark Le-76 as recovered by the field team.	15
Figure 12. Actual LiDAR data acquisition for Balili Floodplain	
Figure 13. Schematic diagram for Data Pre-processing Component.	21
Figure 14. Smoothed Performance Metric Parameters of a Balili Flight 1549P	
Figure 15. Solution Status Parameters of Balili Flight 1549P	23
Figure 16. The Best Estimated Trajectory of the LiDAR missions conducted over the Balili floodple	ain. 24
Figure 17. Boundary of the processed LiDAR data over Balili Floodplain	25
The total area covered by the Balili missions is 1,737.29 sq.km that is comprised of thirteen	(13) flight
acquisitions grouped and merged into twelve (12) blocks as shown in Table 16	
Figure 18. Image of data overlap for Balili Floodplain	
Figure 19. Pulse density map of merged LiDAR data for Balili Floodplain	27
Figure 20. Elevation difference map between flight lines for Balili Floodplain	
Figure 21. Quality checking for a Balili flight 1549P using the Profile Tool of QT Modeler	29
Figure 22. Tiles for Balili Floodplain (a) and classification results (b) in TerraScan	
Figure 23. Point cloud before (a) and after (b) classification	
Figure 24. The production of last return DSM (a) and DTM (b), first return DSM (c) and secondar	
in some portion of Balili Floodplain	
Figure 25. Balili Floodplain with available orthophotographs	
Figure 23. Sample orthophotograph tiles for the Balili Floodplain	
Figure 27. Portions in the DTM of Balili Floodplain—a bridge before (a) and after (b) manual	_
paddy field before (c) and after (d) data retrieval	
Figure 30. Correlation plot between calibration survey points and LiDAR data	
Figure 31. Correlation plot between validation survey points and LiDAR data	
Figure 32. Map of Balili Floodplain with bathymetric survey points shown in blue	
Figure 30. Blocks (in blue) of Balili building features that were subjected to QC	
Figure 34. Extracted features for Balili Floodplain	
Figure 35. Extent of the bathymetric survey (in blue) in Balili River and the LiDAR data validation	survev (in

red)	45
Figure 36. GNSS Network established in the Balili River Survey	46
Figure 37. GNSS receiver set-up, Trimble®SPS 882 at ZGS-20, located on the side of the Nation	al Highway
from Zamboanga del Sur going to Lanao del Norte in Brgy. Anonang, Municipality of Aurora, Z	amboanga
del Sur	48
Figure 38. GNSS receiver set-up, Trimble®SPS 985, at LE-96, located at the approach of Butado	n Bridge in
Brgy. Poblacion, Municipality of Kapatagan, Lanao del Norte	48
Figure 39. GNSS receiver set-up, Trimble®SPS 882, at LE-96, located at the approach of Butado	n Bridge in
Brgy. Poblacion, Municipality of Kapatagan, Lanao del Norte	49
Figure 40. GNSS receiver set-up, Hi-Target®V30, at UP_KAP 1-5, located in a basketball cou	ırt in Brgy.
Lapinig, Municipality of Kapatagan, Lanao del Norte	49
Figure 41. GNSS receiver set-up, Trimble®SPS 985, at UP_KAP 1-2, located near the approach	ch of Balili
Bridge in Brgy. Sta. Cruz, Municipality of Kapatagan, Lanao del Norte	50
Figure 42. GNSS receiver set-up, Trimble®SPS 882, at UP-KAP 2-2,located near the approach of	of Butadon
Bridge in Brgy. Sta. Cruz, Municipality of Kapatagan, Lanao del Norte	50
Figure 43. Upstream/downstream side of Balili Bridge	54
Figure 44. As-built survey of Balili Bridge	54
Figure 45. Balili Bridge cross-section location map	
Figure 46. Balili Bridge cross-section diagram	
Figure 47. Balili Bridge Data Sheet	
Figure 48. Water-level markings on Balili Bridge	
Figure 49. Validation points acquisition survey set-up for Balili River	
Figure 50. Validation points acquisition covering the Balili River Basin Area	
Figure 51. Bathymetric survey of ABSD at Balili River using Hi-Target® echo sounder	
Figure 52. Manual bathymetric survey of ABSD at Balili River using NIkon®Total Station	
Figure 53. Gathering of random bathymetric points along Balili River	
Figure 54. Bathymetric survey of Balili River	
Figure 55. Quality checking points gathered along Balili River by DVBC	
Balili Riverbed Profile	
Figure 57. The location map of Balili HEC-HMS model used for calibration	
Figure 58. Cross-section plot of Balili Bridge	
Figure 59. Rating curve at Balili Bridge	
Figure 60. Rainfall and outflow data at Balili Bridge used for modeling	
Figure 61. Location of Dipolog RIDF station relative to Balili (Balili 2) River Basin	
Figure 62. Synthetic storm generated for a 24-hr period rainfall for various return periods	
Figure 63. Soil map of Balili River Basin	
Figure 64. Land cover map of Balili River Basin (Source: NAMRIA)	
Figure 65. Slope map of Balili River Basin	
Figure 66. Stream delineation map of the Balili River Basin	
Figure 67. The Balili Hydrologic Model generated in HEC-GeoHMS	
Figure 68. River cross-section of Balili River generated through Arcmap HEC GeoRAS tool	
Figure 68. A screenshot of the river sub-catchment with the computational area to be modeled	
Grid Developer System Pro (FLO-2D GDS Pro)	
Figure 69. Outflow Hydrograph of Balili Bridge generated in HEC-HMS model compared with	
outflow	
Figure 70. Outflow hydrograph at Balili Station generated using Dipolog RIDF simulated in HEC-	
Figure 71. Sample output of Balili RAS Model	
EIRTIE 77 TOU-VEAR FAID FEITIED TOORD DAZARD MAD FOR BAILL FLOODDIAID OVERLAID IN GOOGLE FARTD II	HAPPIVX

Figure 73. 100-year rain return flood depth map for Balili Floodplain overlaid in Google Earth imagery83
Figure 74. 25-year rain return flood hazard map for Balili Floodplain overlaid in Google Earth imagery84
Figure 75. 25-year rain return flood depth map for Balili Floodplain overlaid in Google Earth imagery85
Figure 76. 5-year rain return flood hazard map for Balili Floodplain overlaid in Google Earth imagery86
Figure 77. 5-year rain return flood depth map for Balili Floodplain overlaid in Google Earth imagery 87
Figure 78. Affected areas in Aurora, Zamboanga del Sur during 5-year rainfall return period88
Figure 79. Affected areas in Baroy, Lanao del Norte during 5-year rainfall return period91
Figure 80. Affected areas in Kapatagan, Lanao del Norte during 5-year rainfall return period94
Figure 81. Affected areas in Lala, Lanao del Norte during 5-year rainfall return period98
Figure 82. Affected areas in Salvador, Lanao del Norte during 5-year rainfall return period101
Table 42. Affected areas in Sapad, Lanao del Norte during 5-year rainfall return102
Figure 84. Affected areas in Tubod, Lanao del Norte during 5-year rainfall return period105
Figure 85. Affected areas in Aurora, Zamboanga del Sur during 25-year rainfall return period106
Figure 86. Affected areas in Baroy, Lanao del Norte during 25-year rainfall return period109
Figure 87. Affected areas in Kapatagan, Lanao del Norte during 25-year rainfall return period112
Figure 88. Affected areas in Lala, Lanao del Norte during 25-year rainfall return period116
Figure 89. Affected areas in Salvador, Lanao del Norte during 25-year rainfall return period119
Figure 90. Affected areas in Sapad, Lanao del Norte during 25-year rainfall return period120
Figure 91. Affected areas in Tubod, Lanao del Norte during 25-year rainfall return period123
Figure 92. Affected areas in Aurora, Zamboanga del Sur during 100-year rainfall return period 124
Figure 93. Affected areas in Baroy, Lanao del Norte during 100-year rainfall return period127
Figure 94. Affected areas in Kapatagan, Lanao del Norte during 100-year rainfall return period 130
Figure 95. Affected areas in Lala, Lanao del Norte during 100-year rainfall return period134
Figure 96. Affected areas in Salvador, Lanao del Norte during 100-year rainfall return period 137
Figure 97. Affected areas in Sapad, Lanao del Norte during 100-year rainfall return period138
Figure 98. Affected areas in Tubod, Lanao del Norte during 100-year rainfall return period141
Figure 99. Validation points for 5-year Flood Depth Map of Balili Floodplain143
Figure 100. Flood man denth vs actual flood denth

LIST OF ACRONYMS AND ABBREVIATIONS

AAC Asian Aerospace Corporation Ab abutment ALTM Airborne LiDAR Terrain Mapper ARG automatic rain gauge ATQ Antique AWLS Automated Water Level Sensor BA Bridge Approach BM benchmark CAD Computer-Aided Design CN Curve Number CSRS Chief Science Research Specialist DAC Data Acquisition Component DEM Digital Elevation Model DENR Department of Environment and Natural Resources DOST Department of Science and Technology DPPC Data Pre-Processing Component	
ALTM Airborne LiDAR Terrain Mapper ARG automatic rain gauge ATQ Antique AWLS Automated Water Level Sensor BA Bridge Approach BM benchmark CAD Computer-Aided Design CN Curve Number CSRS Chief Science Research Specialist DAC Data Acquisition Component DEM Digital Elevation Model DENR Department of Environment and Natural Resources DOST Department of Science and Technology DPPC Data Pre-Processing Component DREAM Disaster Risk and Exposure Assessment for the same and the	
ARG automatic rain gauge ATQ Antique AWLS Automated Water Level Sensor BA Bridge Approach BM benchmark CAD Computer-Aided Design CN Curve Number CSRS Chief Science Research Specialist DAC Data Acquisition Component DEM Digital Elevation Model DENR Department of Environment and Natural Resources DOST Department of Science and Technology DPPC Data Pre-Processing Component DREAM Disaster Risk and Exposure Assessment for the same and	
ATQ Antique AWLS Automated Water Level Sensor BA Bridge Approach BM benchmark CAD Computer-Aided Design CN Curve Number CSRS Chief Science Research Specialist DAC Data Acquisition Component DEM Digital Elevation Model DENR Department of Environment and Natural Resources DOST Department of Science and Technology DPPC Data Pre-Processing Component DREAM Disaster Risk and Exposure Assessment for the sensor of	
AWLS Automated Water Level Sensor BA Bridge Approach BM benchmark CAD Computer-Aided Design CN Curve Number CSRS Chief Science Research Specialist DAC Data Acquisition Component DEM Digital Elevation Model DENR Department of Environment and Natural Resources DOST Department of Science and Technology DPPC Data Pre-Processing Component DREAM Disaster Risk and Exposure Assessment for the sensor of	_
BM benchmark CAD Computer-Aided Design CN Curve Number CSRS Chief Science Research Specialist DAC Data Acquisition Component DEM Digital Elevation Model DENR Department of Environment and Natural Resources DOST Department of Science and Technology DPPC Data Pre-Processing Component DREAM Disaster Risk and Exposure Assessment for	
BM benchmark CAD Computer-Aided Design CN Curve Number CSRS Chief Science Research Specialist DAC Data Acquisition Component DEM Digital Elevation Model DENR Department of Environment and Natural Resources DOST Department of Science and Technology DPPC Data Pre-Processing Component DREAM Disaster Risk and Exposure Assessment for	
CAD Computer-Aided Design CN Curve Number CSRS Chief Science Research Specialist DAC Data Acquisition Component DEM Digital Elevation Model DENR Department of Environment and Natural Resources DOST Department of Science and Technology DPPC Data Pre-Processing Component DREAM Disaster Risk and Exposure Assessment for	
CN Curve Number CSRS Chief Science Research Specialist DAC Data Acquisition Component DEM Digital Elevation Model DENR Department of Environment and Natural Resources DOST Department of Science and Technology DPPC Data Pre-Processing Component DREAM Disaster Risk and Exposure Assessment for	
CSRS Chief Science Research Specialist DAC Data Acquisition Component DEM Digital Elevation Model DENR Department of Environment and Natural Resources DOST Department of Science and Technology DPPC Data Pre-Processing Component DREAM Disaster Risk and Exposure Assessment for	
DAC Data Acquisition Component DEM Digital Elevation Model DENR Department of Environment and Natural Resources DOST Department of Science and Technology DPPC Data Pre-Processing Component DREAM Disaster Risk and Exposure Assessment for	
DEM Digital Elevation Model DENR Department of Environment and Natural Resources DOST Department of Science and Technology DPPC Data Pre-Processing Component DREAM Disaster Risk and Exposure Assessment for	
DENR Department of Environment and Natural Resources DOST Department of Science and Technology DPPC Data Pre-Processing Component DREAM Disaster Risk and Exposure Assessment for	
Resources DOST Department of Science and Technology DPPC Data Pre-Processing Component DREAM Disaster Risk and Exposure Assessment for	
DPPC Data Pre-Processing Component DREAM Disaster Risk and Exposure Assessment for	
DREAM Disaster Risk and Exposure Assessment for	
Mitigation [Program]	or
DRRM Disaster Risk Reduction and Managemen	t
DSM Digital Surface Model	
DTM Digital Terrain Model	
DVBC Data Validation and Bathymetry Component	
FMC Flood Modeling Component	
FOV Field of View	
GiA Grants-in-Aid	\neg
GCP Ground Control Point	\dashv
GNSS Global Navigation Satellite System	
GPS Global Positioning System	
HEC-HMS Hydrologic Engineering Center - Hydrolog Modeling System	gic
HEC-RAS Hydrologic Engineering Center - River Analysis System	
HC High Chord	
IDW Inverse Distance Weighted [interpolation method]	

IMU	Inertial Measurement Unit		
kts	knots		
LAS	LiDAR Data Exchange File format		
LC	Low Chord		
LGU	local government unit		
LiDAR	Light Detection and Ranging		
LMS	LiDAR Mapping Suite		
m AGL	meters Above Ground Level		
MMS	Mobile Mapping Suite		
MSL	mean sea level		
NSTC	Northern Subtropical Convergence		
PAF	Philippine Air Force		
PAGASA	Philippine Atmospheric Geophysical and Astronomical Services Administration		
PDOP	Positional Dilution of Precision		
PPK	Post-Processed Kinematic [technique]		
PRF	Pulse Repetition Frequency		
PTM	Philippine Transverse Mercator		
QC	Quality Check		
QT	Quick Terrain [Modeler]		
RA	Research Associate		
RIDF	Rainfall-Intensity-Duration-Frequency		
RMSE	Root Mean Square Error		
SAR	Synthetic Aperture Radar		
SCS	Soil Conservation Service		
SRTM	Shuttle Radar Topography Mission		
SRS	Science Research Specialist		
SSG	Special Service Group		
ТВС	Thermal Barrier Coatings		
UPC	University of the Philippines Cebu		
UP-TCAGP	University of the Philippines – Training Center for Applied Geodesy and Photogrammetry		

CHAPTER 1: OVERVIEW OF THE PROGRAM AND BALILI RIVER

Prof. Alan E. Milano and Enrico C. Paringit, Dr. Eng.

1.1 Background of the Phil-LIDAR 1 Program

The University of the Philippines Training Center for Applied Geodesy and Photogrammetry (UP TCAGP) launched a research program entitled "Nationwide Hazard Mapping using LiDAR" or Phil-LiDAR 1 in 2014, supported by the Department of Science and Technology (DOST) Grant-in-Aid (GiA) Program. The program was primarily aimed at acquiring a national elevation and resource dataset at sufficient resolution to produce information necessary to support the different phases of disaster management. Particularly, it targeted to operationalize the development of flood hazard models that would produce updated and detailed flood hazard maps for the major river systems in the country.

The program was also aimed at producing an up-to-date and detailed national elevation dataset suitable for 1:5,000 scale mapping, with 50 cm and 20 cm horizontal and vertical accuracies, respectively. These accuracies were achieved through the use of the state-of-the-art Light Detection and Ranging (LiDAR) airborne technology procured by the project through DOST. The methods applied in this report are thoroughly described in a separate publication titled Flood Mapping of Rivers in the Philippines Using Airborne LiDAR: Methods (Paringit et al., 2017) available separately.

The implementing partner university for the Phil-LiDAR 1 Program is the Mindanao State University – Iligan Institute of Technology (MSU-IIT). MSU-IIT is in charge of processing LiDAR data and conducting data validation reconnaissance, cross section, bathymetric survey, validation, river flow measurements, flood height and extent data gathering, flood modeling, and flood map generation for the 16 river basins in Northern Mindanao. The university is located in Iligan City in the province of Lanao del Norte.

1.2 Overview of the Balili River Basin

Balili River Basin is situated in Northern Mindanao at the territory of Lanao del Norte under Region 10. It traverses the barangays of Lapinig, Concepcion, Balili, Sta. Cruz, and Suso in the Municipality of Kapatagan, Lanao del Norte. The Balili I River Basin has a drainage area of 272.564 km². Its main stem, Balili River, is among the sixteen (16) river systems in Northern Mindanao. The fundamental waterway, Sta. Cruz River, which is utilized as a part of outlining the basin navigates inside the region of Kapatagan. Sta. Cruz River hails from Aurora and flows down Tipolo, passes the upland barangays of Kahayagan, Durano, Tulatulahan, San Isidro and jumps over Sta. Cruz Falls, and joins finally in Panguil Bay.

As one of the 22 locales in the area of Lanao del Norte, Region 10, Kapatagan has a total land region of approximately 25,048.41 hectares which join those that are as of now being tested by the Municipality of Lala with a vague zone of 759 hectares. Kapatagan is arranged inside the grid headings of 123° 42' and 123° 49' north longitude and 7° 49' and 7° 56' east degree and is constrained by the locale of Lala and Panguil Bay on the North; Municipality of Baroy and Salvador on the East; Municipality of Sapad in the Southeast; Municipality of Sultan Naga Dimaporo in the South and the range of Zamboanga del Sur on the Western and Northwestern part.

As far as rise, the region is viewed as warm marsh with its most noteworthy height just up to 300 meters above ocean level. On the southern and eastern sides of region are mountains which fill in as regular boundaries shielding the region from tropical storms. Counterbalancing the mountain is the nearness of level beach front grounds and valley. Kapatagan has come moving fields.

The whole area of the delineated river basin traverses through the municipalities of Kapatagan and Sultan Naga Dimaporo of Lanao del Norte and the municipality of Aurora of Zamboanga del Sur province where the outlet of the river basin is situated, specifically at Brgy. Balili. Balili River Basin has an estimated area of 271.266 square kilometers with an estimated drainage area of 57.16 square kilometers and travels 17.92 from its source to its outlet and 27.12 kilometers from its source to its mouth in the Panguil Bay. A total of 53,418 features were extracted within the floodplain which belongs to the municipalities and cities within the flood prone area.

According to the 2015 national census of PSA, a total of 9,950 persons are residing in the barangays that are within the immediate vicinity of the river. The economy of the province of Lanao del Norte largely rests on fishery and agriculture which include production of copra, rice, corn, fruits, and aquaculture products (Province of Lanao del Norte, 2017). On January 12, 2017, the Philippine Atmospheric, Geophysical and Astronomical Services Administration (PAGASA) issued a yellow warning flood level in the province of Lanao del Norte due to continuous heavy rains that caused floods in the province (Catoto, 2017).

The whole Province of Lanao del Norte has been put under "readiness status" last August 6, 2015 when 579 people or 130 families were influenced by blaze surges generated by the "habagat." Lanao del Norte Governor Mohammad Khalid Dimaporo issued Provincial Disaster Risk Reduction and Management Council (PDRRMC) Advisory No. 2 to the whole territory with its part regions and barangays, guiding them to be under "readiness status." No less than 130 families were influenced by glimmer surges brought on by the flooding of, no less than, three streams. Generally influenced are three puroks in Lapinig, Kapatagan, and the neighboring town of Maranding.

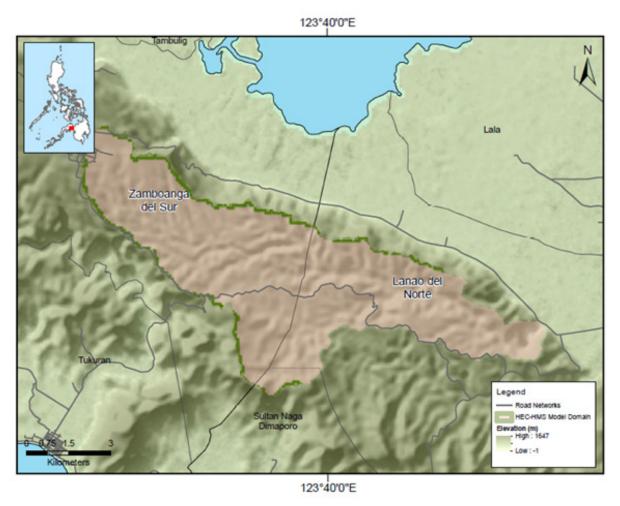


Figure 1. Map of the Balili River Basin (in brown)

Under the condition of readiness status, common, metropolitan and barangay DRRMC maintained the 24-hour operation focuses in their individual zones. All levels of government units and teams was requested to expand every single conceivable mean of data and attention to alarm puroks and groups considered high-hazard to surge, particularly those situated along the waterways, coastlines, and those arranged in low-lying ranges.

Dimaporo brought up that all territories with late history of flooding must exercise twofold readiness and to be set up for conceivable clearing. Furthermore, he coordinated fisherfolk to cease from going to ocean until pronounced safe to do as such.

Under readiness status, concerned organizations are commanded to distinguish safe zones and courses and accessible vehicles for conceivable clearing. They additionally educated families and people to plan crisis sacks, and sustenance, water, and solution arrangements useful for the following 72 hours (http://cnnphilippines.com).

CHAPTER 2: LIDAR DATA ACQUISITION OF THE BALILI FLOODPLAIN

Engr. Louie P. Balicanta, Engr. Christopher Cruz, Lovely Gracia Acuña, Engr. Gerome Hipolito, Ms. Julie Pearl S. Mars, Ms. Kristine Joy P. Andaya

The methods applied in this chapter were based on the DREAM methods manual (Sarmiento, et al., 2014) and further enhanced and updated in Paringit, et al. (2017).

2.1 Flight Plans

Plans were made to acquire LiDAR data within the delineated priority area for Balili Floodplain in Zamboanga del Norte. Each flight mission has an average of 14 lines and run for at most four and a half (4.5) hours including take-off, landing, and turning time. The parameter used in the LiDAR system for acquisition is found in Table 1. Figure 2 shows the flight plans for Balili Floodplain.

Table 1. Flight Planning Parameters for Pegasus LiDAR System

Block Name	Flying Height (m AGL)	Overlap (%)	Field of view (ø)	Pulse Repetition Frequency (PRF) (kHz)	Scan Frequency (Hz)	Average Speed (kts)	Average Turn Time (Minutes)
BLK70B	1000	30	50	200	30	130	5
BLK71ABC	1200	30	50	200	30	130	5
BLK71C	1000	30	50	200	30	130	5
BLK71E	800/1100/ 1200	30	50	200	30	130	5
BLK71Es	1100	30	50	200	30	130	5
BLK71ext	1000	30	50	200	30	130	5
BLK71F	1000	30	50	200	30	130	5
BLK71G	900	30	50	200	30	130	5
BLK76A	1200	30	50	200	30	130	5
BLK 76C	1100	30	50	200	30	130	5
BLK 76D	1100/ 1200	30	50	200	30	130	5
BLK 76I	1200	30	50	200	30	130	5
BLK 76M	1000/1200	30	50	200	30	130	5

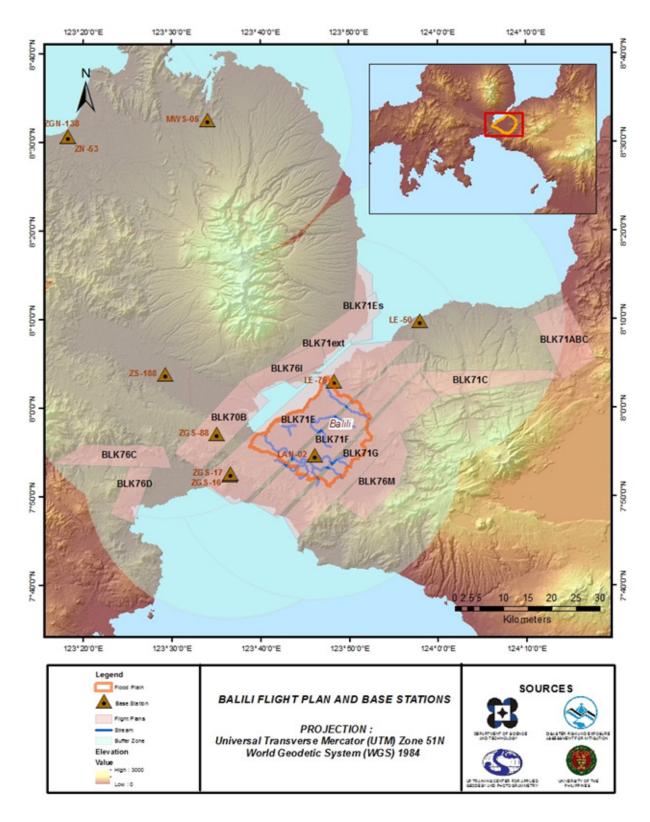


Figure 2. Flight plans and base stations for Balili Floodplain

2.2 Ground Base Stations

The project team was able to recover five (5) NAMRIA ground control points: LAN-02, ZGS-88, ZGS-16, ZGS-17, and ZGN-138 which are of second (2nd) order accuracy and four (4) bench mark points: ZN_53, LE-50, ZS-188, and LE-76. The certifications for the NAMRIA reference points and processing report for the established points are found in ANNEX 2. These were used as base stations during flight operations for the entire duration of the survey (May 29-July 10, 2014; February 4-March 4, 2016; November 18-December 2, 2016). Base stations were observed using dual frequency GPS receivers, TRIMBLE SPS 882, SPS 852, SPS 985 and Topcon GR-5. Flight plans and location of base stations used during the aerial LiDAR acquisition in Balili Floodplain are shown in Figure 2. The list of team members is shown in ANNEX 4.

Figure 3 to Figure 11 show the recovered NAMRIA control stations within the area. Table 2 to Table 10 present the details about the following NAMRIA control stations and established points. Meanwhile, Table 11 listsall ground control points occupied during the acquisition together with the dates they are utilized during the survey.

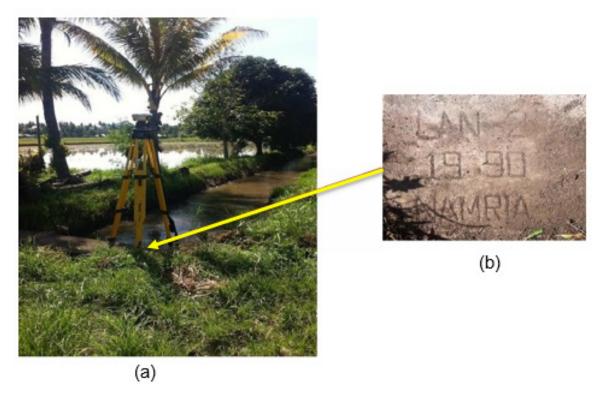


Figure 3. a) GPS set-up overLAN-02 ontop of a concrete irrigation canal water gate in Brgy. Pinoyak, Lala, Lanao del Norte. b) NAMRIA reference point LAN-02 as recovered by the field team

Table 2. Details of the recovered NAMRIA horizontal control point LAN-02 used as base station for the LiDAR acquisition

Station Name	LAN-02		
Order of Accuracy	1st		
Relative Error (Horizontal positioning)	1:100,000		
Geographic Coordinates, Philippine Reference Of 1992 Datum (PRS 92)	Latitude Longitude Ellipsoidal Height	7°54'46.07859"North 123°46'0.85333"East 17.35400meters	
Grid Coordinates, Philippine Transverse Mercator Zone 5 (PTM Zone 5 PRS 92)	Easting Northing	364025.74meters 875110.149meters	
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Latitude Longitude Ellipsoidal Height	7°54'42.56546"North 123°46'6.31720"East 83.92120meters	
Grid Coordinates, Philippine Transverse Mercator Zone 51 North (UTM 51N PRS 1992)	Easting Northing	584533.45meters 874680.35meters	

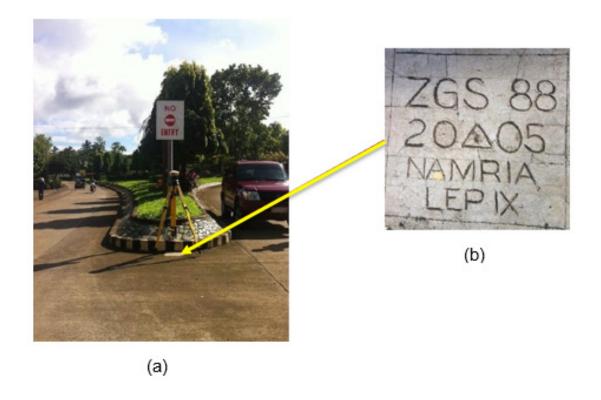


Figure 4. a) GPS set-up over ZGS-88 on a center island in Puroy Saray, Aurora, Zamboanga del Sur. b) NAMRIA reference point ZGS-88 as recovered by the field team

Table 3. Details of the recovered NAMRIA horizontal control point ZGS-88 used as base station for the LiDAR acquisition $\frac{1}{2}$

Station Name	ZGS-88			
Order of Accuracy	2nd			
Relative Error (Horizontal positioning)	1:50,000			
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Latitude Longitude Ellipsoidal Height	7°57'13.25316"North 123°34'56.50093"East 258.34500meters		
Grid Coordinates, Philippine Transverse Mercator Zone 5 (PTM Zone 5 PRS 92)	Easting Northing	564207.26meters 879474.685meters		
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Latitude Longitude Ellipsoidal Height	7°57'9.71271"North 123°35'1.96243"East 324.37300meters		
Grid Coordinates, Philippine Transverse Mercator Zone 51 North (UTM 51N PRS 1992)	Easting Northing	564184.79meters 879166.85meters		

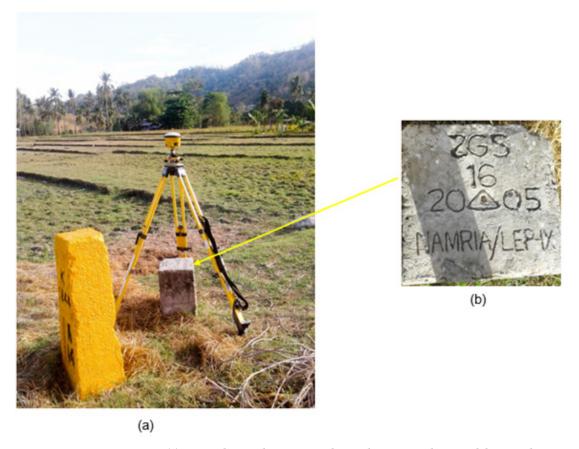


Figure 5. GPS set-up over ZGS-16(a) in Purok Nangka, Brgy. Baclay, Tukuran, Zamboanga del Sur and NAMRIA reference point ZGS-16 (b) as recovered by the field team.

Table 4. Details of the recovered NAMRIA horizontal control point ZGS-16 used as base station for the LiDAR acquisition

Station Name	ZGS-16	
Order of Accuracy	2Nd	
Relative Error (horizontal positioning)	1:50,000	
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Latitude Longitude Ellipsoidal Height	7° 52′ 35.53106″North 123° 36′ 23.39905″ East 18.17800 meters
Grid Coordinates, Philippine Transverse Mercator Zone 5 (PTM Zone 5 PRS 92)	Latitude Longitude Ellipsoidal Height	566881.259 meters 8708554.959 meters
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Latitude Longitude Ellipsoidal Height	7° 52′ 29.01321″ North 123° 36′ 28.86762″ East 84.42000 meters
Grid Coordinates, Universal Transverse Mercator Zone 51 North (UTM 51N PRS 1992	Easting Northing	566857.85 meters 870550.15 meters

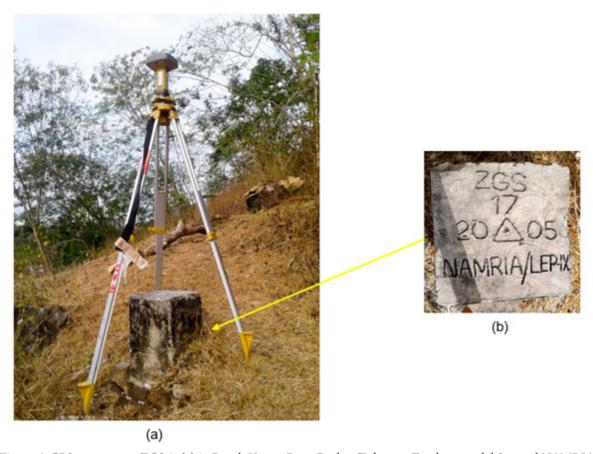


Figure 6. GPS set-up over ZGS-17(a) in Purok Kasoy, Brgy. Baclay, Tukuran, Zamboanga del Sur and NAMRIA reference point ZGS-17 (b) as recovered by the field team

Table 5. Details of the recovered NAMRIA horizontal control point ZGS-17 used as base station for the LiDAR acquisition

Station Name	ZGS-17	
Order of Accuracy	2rd	
Relative Error (horizontal positioning)	1:50,000	
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Latitude Longitude Ellipsoidal Height	7° 52′ 42.71658″North 123° 36′ 29.22049″East 29.68400 meters
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Easting Northing	567059.131 meters 871168.108 meters
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Latitude Longitude Ellipsoidal Height	7° 2′ 39.19813″ North 123° 36′ 34.68878″ East 95.92400 meters
Grid Coordinates, Universal Transverse Mercator Zone 51 North (UTM 51N PRS 1992)	Easting Northing	567035.66 meters 870863.18 meters



Figure 7. GPS set-up over ZGN-138(a) in Katupinan Zamboanga del Norte and NAMRIA reference point ZGN-138 (b) as recovered by the field team

Table 6. Details of the recovered NAMRIA horizontal control point ZGN-138 used as base station for the LiDAR acquisition

Station Name	ZGN-138		
Order of Accuracy	2rd	2rd	
Relative Error (horizontal positioning)	1:50,000		
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Latitude Longitude Ellipsoidal Height	8° 30′ 40.65974″North 122° 18′ 14.44217″East 6.715 meters	
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Easting Northing	533471.036 meters 941106.14 meters	
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Latitude Longitude Ellipsoidal Height	8° 30′ 36.94779″ North 123° 18′ 19.85548″East 70.925 meters	
Grid Coordinates, Universal Transverse Mercator Zone 51 North (UTM 51N PRS 1992)	Easting Northing	533459.32 meters 940776.74 meters	

Figure 8. GPS set-up over ZN-53 at Brgy. Daanglungsod, Katipunan, Zamboanga del Norte (a) reference point ZN-53 (b) as recovered by the field team

Table 7. Details of the benchmark ZN-53 used as base station for the LiDAR acquisition

Station Name	VZN-53	
Order of Accuracy	2nd	
Relative Error (horizontal positioning)	1:50,000	
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Latitude Longitude Ellipsoidal Height	8°30'41.04428"North 123°18'14.33457"East 7.072 meters
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Latitude Longitude Ellipsoidal Height	8°30'37.33230" North 123°18'19.74787"East 71.282 meters
Grid Coordinates, Universal Transverse Mercator Zone 51 North (UTM 51N PRS 1992)	Easting Northing	533456.022 meters 940788.542 meters

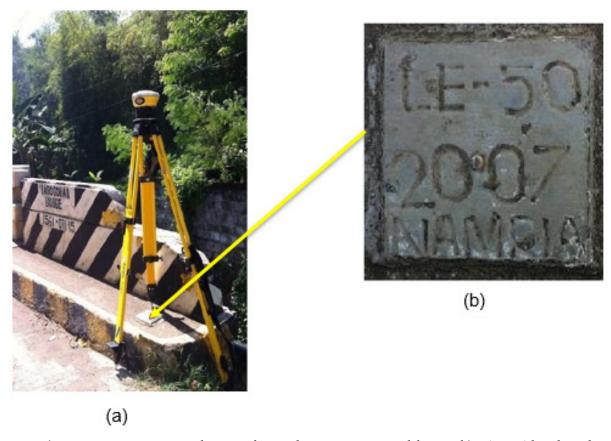


Figure 9. a) GPS set-up overLE-50 on the Barogohan Bridge in Maigo, Lanao del Norte; b) NAMRIA bench mark LE-50 as recovered by the field team

Table 8. Details of the recovered benchmark point LE-50 used as base station for the LiDAR acquisition

Station Name	LE-50	
Order of Accuracy	1st	
Relative Error (horizontal positioning)	1:100,000	
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Latitude Longitude Ellipsoidal Height	8°9'54.972"North 123°57'50.357"East 6.91meters
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Easting Northing	385831.49meters 902974.41meters
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Latitude Longitude Ellipsoidal Height	8°09'51.11024"North 123°57'55.36634"East 73.452 meters
Grid Coordinates, Universal Transverse Mercator Zone 51 North (UTM 51N PRS 1992)	Easting Northing	606345.902meters 902577.426meters

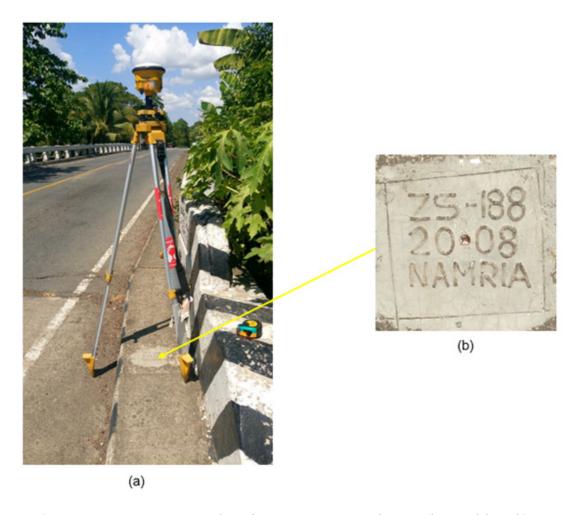


Figure 10. a) GPS set-up overZS-188 at Dipolo Bridge in Brgy. Licomo, Molave, Zamboanga del Sur; b) NAMRIA bench mark ZS-188 as recovered by the field team

Table 9. Details of the recovered NAMRIA benchmarkZS-188 used as base station for the LiDAR Acquisition.

Station Name	ZS-188	
Order of Accuracy	1st	
Relative Error (horizontal positioning)	1:100,000	
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Latitude Longitude Ellipsoidal Height	8°03'56.69408"North 123°29'12.15500"East 19.832 meters
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Latitude Longitude Ellipsoidal Height	8°03'53.11537" North 123°29'17.60722"East 85.400 meters
Grid Coordinates, Universal Transverse Mercator Zone 51 North (UTM 51N PRS 1992)	Easting Northing	553627.634 meters 891542.089 meters

Figure 11. a) GPS set-up overLE-76 at Bulod Bridge in Brgy. Bulod, Tubud, Lanao del Norte. b) NAMRIA bench mark Le-76 as recovered by the field team.

Table 10. Details of the recovered NAMRIA benchmarkLE-76 used as base station for the LiDAR Acquisition.

Station Name	LE-76	
Order of Accuracy	1st	
Relative Error (horizontal positioning)	1:100,000	
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Latitude Longitude Ellipsoidal Height	8° 03′ 05.36825″ North 123° 48′ 12.37307″ East 9.355 meters
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Latitude Longitude Ellipsoidal Height	8° 03' 01.82183" North 123° 48' 17.82405" East 75.717 meters
Grid Coordinates, Universal Transverse Mercator Zone 51 North (UTM 51N PRS 1992)	Easting Northing	588,530.790 meters 890,021.013 meters

Table 11. Ground control points used during the LiDAR data acquisition.

Date Surveyed	Flight Number	Mission Name	Ground Control Points
June 4, 2014	1549P	1BLK 71D155A	LAN-02 and LE-50
June 8, 2014	1565P	1BLK71B159A	LAN-02 and LE-50
June 20, 2014	1613P	1BLK71G171A	LAN-02 and LE-50
July 3, 2014	1665P	1BLK71ES184A	LAN-02 and LE-50
July 5, 2014	1673P	1BLK71ES186A	LAN-02 and ZGS-88
July 6, 2014	1677P	1BLK71S187A	LAN-02 and ZGS-88
July 8, 2014	1685P	1BLK71S189A	LAN-02 and LE-50
July 9, 2014	1689P	1BLK71S190A	LE-50 and LE-76
February 12, 2016	23084P	1BLK76JKLCs043A	ZGS-16 and ZS-188
February 13, 2016	23088P	1BLK76ILM044A	ZGS-16 and ZS-188
February 17, 2016	23104P	1BLK76DLM048A	ZGS-16 and ZS-188
February 23, 2016	23128P	1BLK70B054A	ZGS-16 and ZGS-17
December 1, 2016	23602P	1BLK76AB336A	ZGN-138 and ZN-53

2.3 Flight Missions

Twelve (12) missions were conducted to complete LiDAR data acquisition in Balili Floodplain, for a total of 50 hours and 20 minutes (50+20) of flying time for RP-C9022. All missions were acquired using the Pegasus system. Table 12 shows the total area of actual coverage per mission and the flying hours per mission and Table 13 presents the actual parameters used during the LiDAR data acquisition.

Table 12. Flight missions for LiDAR data acquisition in Balili Floodplain

Date Surveyed	Flight Number	Flight Plan Area (km2)	Surveyed Area (km2)		Area Surveyed Outside the	No. of Images (Frames)	Flying Hours	
				within the Floodplain (km2)	Floodplain (km2)		主	Min
June 4, 2014	1549P	404.99	202.34	65.36	136.98	ı	4	24
June 8, 2014	1565P	238.51	117.70	52.35	65.35	324	2	53
June 20, 2014	1613P	240.61	246.62	79.13	167.49	936	4	90
July 3, 2014	1665P	59.24	42.73	42.73	0	I	2	59
July 5, 2014	1673P	142.27	125.28	21.51	103.77	330	2	55
July 6, 2014	1677P	73.20	45.22	45.22	0	170	2	35
July 8, 2014	1685P	335.86	184.57	64.79	119.78	269	4	05
July 9, 2014	1689P	109.30	202.18	54.27	147.91	I	4	17
February 12, 2016	23084P	167.89	299.63	83.16	216.47	652	4	17
February 13, 2016	23088P	112.09	231.36	25.29	206.07	536	4	23
February 17, 2016	23104P	185.72	170.14	31.46	138.68	396	4	34
February 23, 2016	23128P	139.43	198.99	17.66	181.33	5	4	17
December 1, 2016	23602P	68.58	130.56	7.23	123.33	I	4	35
TOTAL		2277.69	2197.32	590.16	1607.16	3918	20	20

Table 10. Actual parameters used during the LiDAR data acquisition of the Balili Floodplain.

Flight Number	Flying Height (m AGL)	Overlap (%)	FOV (θ)	PRF (khz)	Scan Frequency (Hz)	Average Speed (kts)	Average Turn Time (Minutes)
1549P	800	30	50	200	30	130	5
1565P	1000	30	50	200	30	130	5
1613P	006	30	50	200	30	130	5
1665P	1100	30	50	200	30	130	5
1673P	1000	30	20	200	30	130	5
1677P	1000	30	20	200	30	130	5
1685P	1000	30	20	200	30	130	5
1689P	1200	30	20	200	30	130	5
23084P	1100	30	20	200	30	130	5
23088P	1200	30	50	200	30	130	5
23104P	1000/ 1200	30	50	200	30	130	5
23128P	1000	30	50	200	30	130	5
23602P	1200	30	50	200	30	130	5

2.4 Survey Coverage

Balili Floodplain is located in the provinces of Lanao del Norte and Zamboanga del Sur with the floodplain situated within the municipalities of Aurora, Baroy, Kapatagan, Lala, Salvador, Sapad and Tubod. The list of municipalities and cities surveyed with at least one (1) square kilometer coverage, is shown in Table 14. The actual coverage of the LiDAR acquisition for Balili Floodplain is presented in Figure 12.

Table 14. List of municipalities and cities surveyed in Balili Floodplain LiDAR survey

Province	Municipality/ City	Area of Municipality/ City (km2)	Total Area Surveyed (km2)	Percentage of Area Surveyed
Lanao del Norte	Baloi	65.18	18.65	29%
	Baroy	62.08	59.89	96%
	Iligan City	650.87	16.26	2%
	Balili	184.77	168.01	91%
	Kolambugan	70.70	55.74	79%
	Lala	125.18	120.21	96%
	Linamon	22.21	2.29	10%
	Magsaysay	83.06	64.44	78%
	Maigo	126.36	26.13	21%
	Matungao	52.50	2.50	5%
	Nunungan	418.22	61.20	15%
	Pantao Ragat	71.36	2.55	4%
	Pantar	50.19	4.71	9%
	Poona Piagapo	88.11	3.86	4%
	Salvador	46.46	46.18	99%
	Sapad	65.13	42.90	66%
	Sultan Naga Dimaporo	143.65	54.42	38%
	Tagoloan	25.06	1.77	7%
	Tangcal	118.94	7.23	6%
	Tubod	121.94	108.14	89%
Misamis	Bonifacio	103.87	9.76	9%
Occidental	Clarin	113.99	12.37	11%
	Ozamis City	149.44	39.45	26%
	Tangub City	141.82	54.81	39%
	Tudela	108.93	3.45	3%
Zamboanga del	Tambulig	142.93	27.88	20%
Sur	Tukuran	119.01	64.90	55%
	Aurora	162.22	100.06	62%
	Dumalinao	108.64	2.51	2%
	Kumalarang	143.51	51.18	36%
	Labangan	176.44	59.97	34%
	Pagadian City	279.33	70.86	25%
	Sominot	97.75	2.19	2%
Zamboanga Sibugay	Buug	134.89	2.99	2%
Total		4574.74	1369.46	29.94

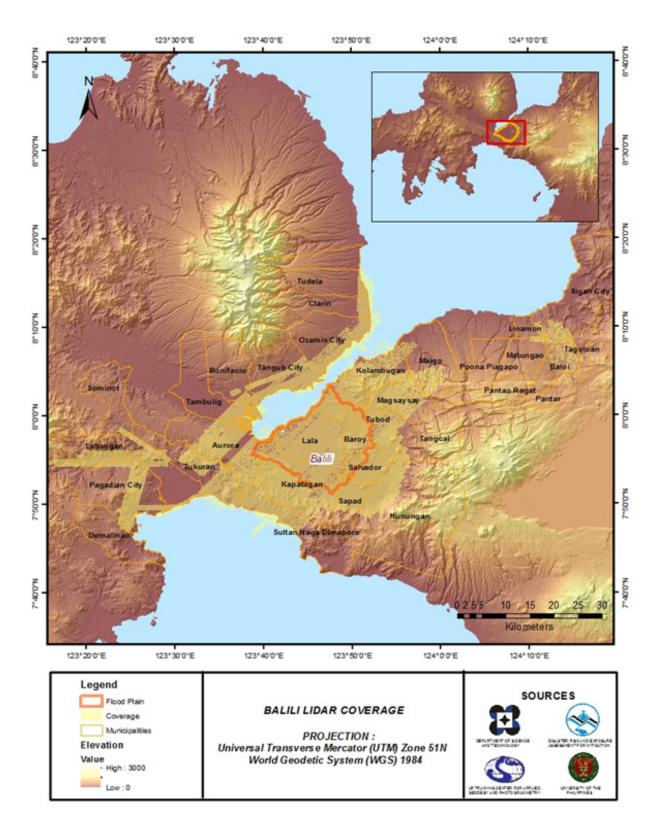


Figure 12. Actual LiDAR data acquisition for Balili Floodplain

CHAPTER 3: LIDAR DATA PROCESSING FOR BALILI FLOODPLAIN

Engr. Ma. Rosario Concepcion O. Ang, Engr. John Louie D. Fabila, Engr. Sarah Jane D. Samalburo , Engr. Joida F. Prieto , Engr. Harmond F. Santos , Engr. Ma. Ailyn L. Olanda, Engr. Mark Joshua A. Salvacion, Engr. James Kevin M. Dimaculangan , Engr. Jommer M. Medina, John Arnold C. Jaramilla

The methods applied in this Chapter were based on the DREAM methods manual (Ang, et al., 2014) and further enhanced and updated in Paringit, et al. (2017)

3.1 Overview of the LiDAR Data Pre-Processing

The data transmitted by the Data Acquisition Component were checked for completeness based on the list of raw files required to proceed with the pre-processing of the LiDAR data. Upon acceptance of the LiDAR field data, georeferencing of the flight trajectory was done in order to obtain the exact location of the LiDAR sensor when the laser was shot. Point cloud georectification was performed to incorporate correct position and orientation for each point acquired. The georectified LiDAR point clouds were subject for quality checking to ensure that the required accuracies of the program, which included the minimum point density, vertical and horizontal accuracies, were met. The point clouds were then classified into various classes before generating Digital Elevation Models such as Digital Terrain Model and Digital Surface Model.

Using the elevation of points gathered in the field, the LiDAR-derived digital models were calibrated. Portions of the river that were barely penetrated by the LiDAR system were replaced by the actual river geometry measured from the field by the Data Validation and Bathymetry Component. LiDAR acquired temporally were then mosaicked to completely cover the target river systems in the Philippines. Orthorectification of images acquired simultaneously with the LiDAR data was done through the help of the georectified point clouds and the metadata containing the time the image was captured.

These processes are summarized in the flowchart shown in Figure 13.

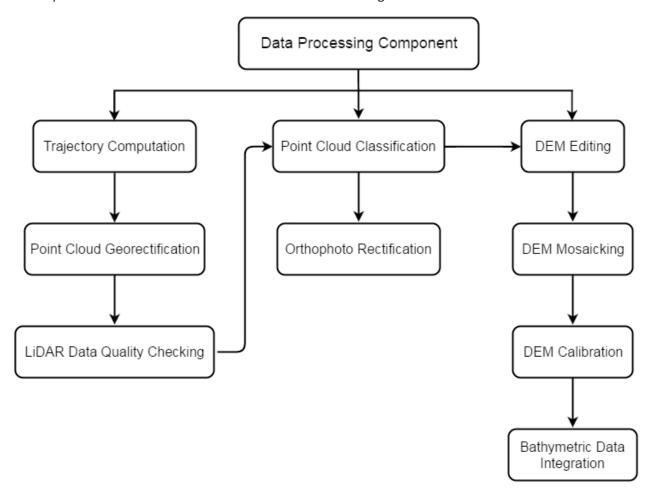


Figure 13. Schematic diagram for Data Pre-processing Component.

3.2 Transmittal of Acquired LiDAR Data

Data transfer sheets for all the LiDAR missions for Balili Floodplain can be found in ANNEX 5. Missions flown during the first survey conducted on June 2014 and the second survey on February 2016 used the Airborne LiDAR Terrain Mapper (ALTM™ Optech Inc.) Pegasus system over Pagadian, Dipolog and Northern Mindanao. The Data Acquisition Component (DAC) transferred a total of 277.97 Gigabytes of Range data, 3.11 Gigabytes of POS data, 445.13 Megabytes of GPS base station data, and 651.81 Gigabytes of raw image data to the data server on June 4, 2014 for the first survey and February 12, 2016 for the second survey. The Data Pre-Processing Component (DPPC) verified the completeness of the transferred data. The whole dataset for Balili was fully transferred on March 1, 2016 as indicated on the Data Transfer Sheets for Balili Floodplain.

3.3 Trajectory Computation

The Smoothed Performance Metricparameters of the computed trajectory for flight 1549P, one of the Balili flights, which is the North, East, and Down position RMSE values, are shown in Figure 14. The x-axis corresponds to the time of flight, which is measured by the number of seconds from the midnight of the start of the GPS week, which on that week fell onJune 23, 2014 00:00AM. The y-axis is the RMSE value for that particular position.

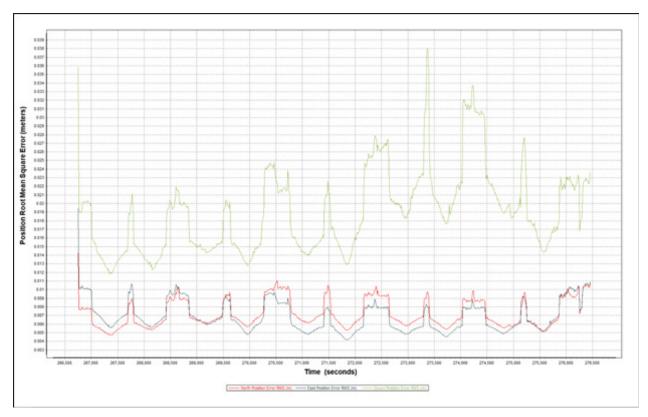


Figure 14. Smoothed Performance Metric Parameters of a Balili Flight 1549P

The time of flight was from 266500 seconds to 276500 seconds, which corresponds to morning of June 23, 2014. The initial spike that is seen on the data corresponds to the time that the aircraft was getting into position to start the acquisition, and the POS system starts computing for the position and orientation of the aircraft. Redundant measurements from the POS system quickly minimized the RMSE value of the positions. The periodic increase in RMSE values from an otherwise smoothly curving RMSE values correspond to the turn-around period of the aircraft, when the aircraft makes a turn to start a new flight line. Figure 14 shows that the North position RMSE peaks at 1.10 centimeters, the East position RMSE peaks at 1.10 centimeters, and the Down position RMSE peaks at 3.80 centimeters, which are within the prescribed accuracies described in the methodology.

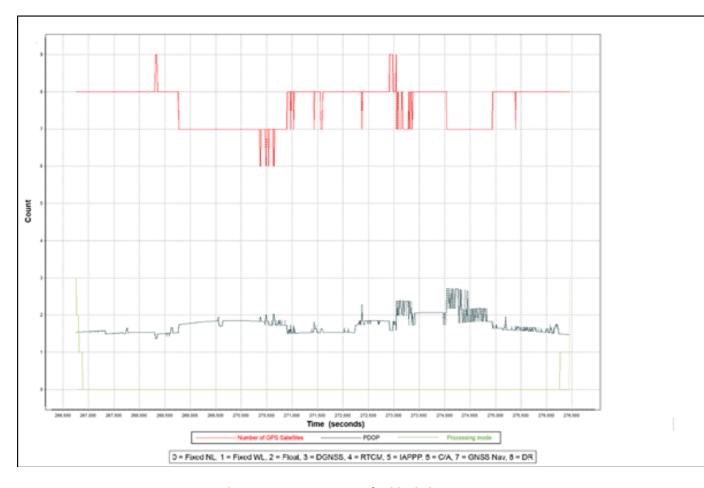


Figure 15. Solution Status Parameters of Balili Flight 1549P

The Solution Statusparameters of flight 1549P, one of the Balili flights, which are the number of GPS satellites, Positional Dilution of Precision (PDOP), and the GPS processing mode used, are shown in Figure 15. The graphs indicate that the number of satellites during the acquisition did not go down to 6. Majority of the time, the number of satellites tracked was between 6 and 9. The PDOP value also did not go above the value of 3, which indicates optimal GPS geometry. The processing mode stayed at the value of 0 for majority of the survey with some peaks up to 1 attributed to the turns performed by the aircraft. The value of 0 corresponds to a Fixed, Narrow-Lane mode, which is the optimum carrier-cycle integer ambiguity resolution technique available for POSPAC MMS. All of the parameters adhered to the accuracy requirements for optimal trajectory solutions, as indicated in the methodology. The computed best estimated trajectory for all Balili flights is shown in Figure 16.

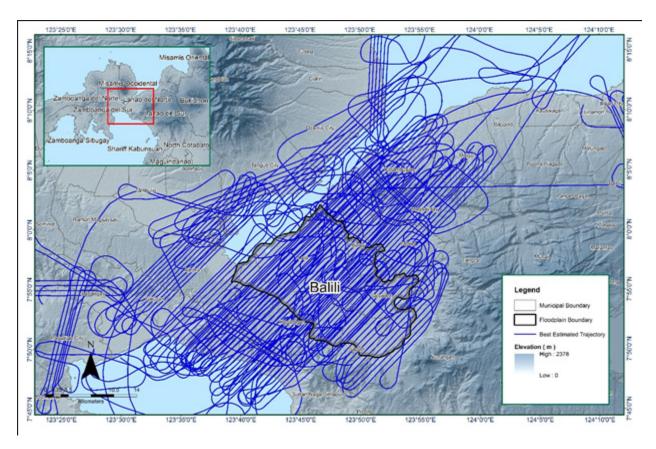


Figure 13. The Best Estimated Trajectory of the LiDAR missions conducted over the Balili floodplain.

3.4 LiDAR Point Cloud Computation

The produced LAS data contains 140 flight lines, with each flight line containing two channels, since the Pegasus system contain two channels. The summary of the self-calibration results obtained from LiDAR processing in LiDAR Mapping Suite (LMS) software for all flights over Balili Floodplain are given in Table 15.

Table 15. Self-Calibration Results values for Balili flights

Parameter	Acceptable Value	Value
Boresight Correction stdev (<0.001degrees)	0.000335	0.000218
IMU Attitude Correction Roll and Pitch Corrections stdev (<0.001degrees)	0.001464	0.000903
GPS Position Z-correction stdev (<0.01meters)	0.0198	0.0027

The optimum accuracy was obtained for all Balili flights based on the computed standard deviations of the corrections of the orientation parameters. Standard deviation values for individual blocks are available in ANNEX 8.

3.5 LiDAR Data Quality Checking

The boundary of the processed LiDAR data on top of a SAR Elevation Data over Balili Floodplain is shown in Figure 17. The map shows gaps in the LiDAR coverage that are attributed to cloud coverage.

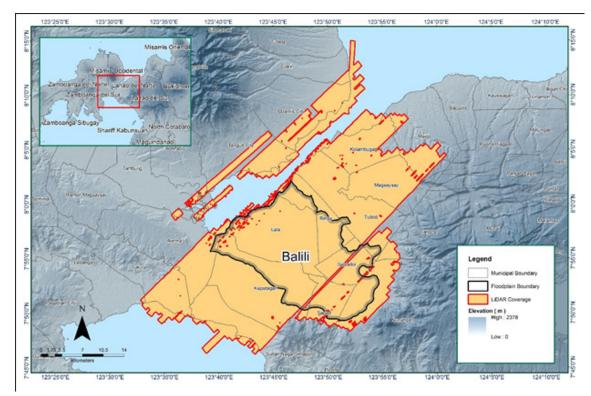


Figure 17. Boundary of the processed LiDAR data over Balili Floodplain

The total area covered by the Balili missions is 1,737.29 sq.km that is comprised of thirteen (13) flight acquisitions grouped and merged into twelve (12) blocks as shown in Table 16.

Table 16. List of LiDAR blocks for Balili Floodplain

LiDAR Blocks	Flight Numbers	Area (sq. km)	
Pagadian_Blk76J	23088P	37.95	
Pagadian_Blk76K	23084P	182.99	
Pagadian_Blk76K_additional	23104P	53.29 71.78	
Pagadian_Blk76M	23128P		
Pagadian_Blk76N	23088P	136.47	
Pagadian_Blk76N_additional	23104P	60.44	
Pagadian_Blk76N_supplement	23104P	5.3	
NorthernMindanao_Blk71_	1665P	138.3	
extension	1673P		
	1677P		
NorthernMindanao_Blk71E	1689P	194.58	
NorthernMindanao_Blk71F	1565P	500.1	
	1549P		
	1685P		
NorthernMindanao_Blk71G	1613P	282.38	
Dipolog_reflight_Blk76M	23602P	73.71	
Total		1,737.29 sq.km	

The overlap data for the merged LiDAR blocks, showing the number of channels that pass through a particular location is shown in Figure 18. Since the Pegasus system employ two channels, an average value of 2 (blue) for areas is expected where there is limited overlap, and a value of 3 (yellow) or more (red) for areas with three or more overlapping flight lines.

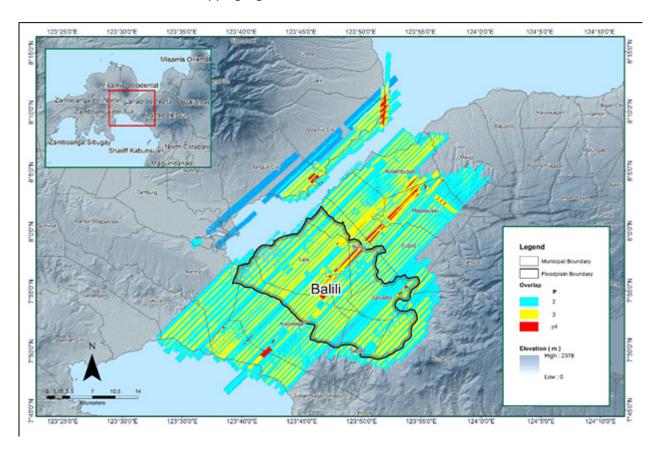


Figure 18. Image of data overlap for Balili Floodplain

The overlap statistics per block for the Balili Floodplain can be found in ANNEX 8. One pixel corresponds to 25.0 square meters on the ground. For this area, the minimum and maximum percent overlaps are 51.56% and 27.83%, respectively, which passed the 25% requirement.

The pulse density map for the merged LiDAR data, with the red parts showing the portions of the data that satisfy the 2 points per square meter criterion, is shown in Figure 19. It was determined that all LiDAR data for Balili Floodplain satisfy the point density requirement, and the average density for the entire survey area is 3.43 points per square meter.

The pulse density map for the merged LiDAR data, with the red parts showing the portions of the data that satisfy the two (2) points per square meter criterion is shown in Figure 16. As seen in the figure below, it was determined that all LiDAR data for the Balili Floodplain Survey satisfy the point density requirement, as the average density for the entire survey area is 3.62 points per square meter.

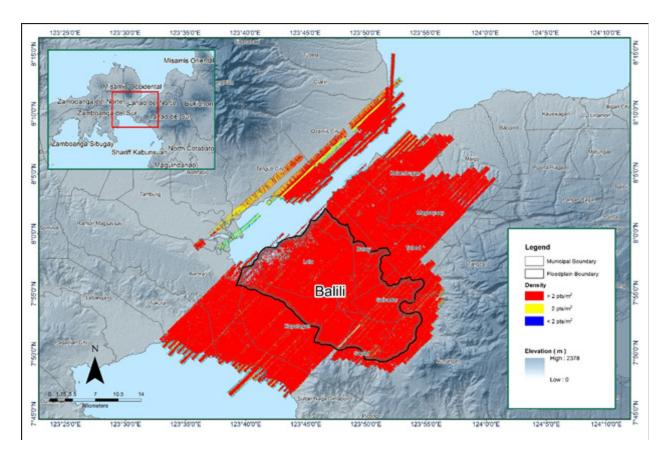


Figure 19. Pulse density map of merged LiDAR data for Balili Floodplain

The elevation difference between overlaps of adjacent flight lines is shown in Figure 20. The default color range is from blue to red. The bright blue areas correspond to portions where elevations of a previous flight line, identified by its acquisition time, are higher by more than 0.20m relative to elevations of its adjacent flight line. Bright red areas indicate portions where elevations of a previous flight line are lower by more than 0.20m relative to elevations of its adjacent flight line. Areas with bright red or bright blue need to be investigated further using Quick Terrain Modeler software.

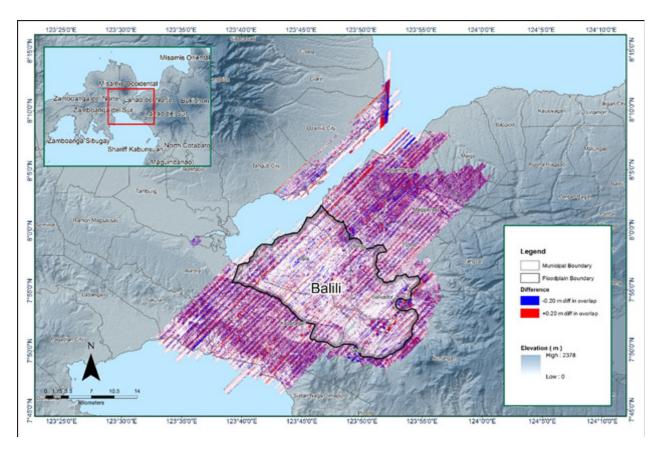


Figure 20. Elevation difference map between flight lines for Balili Floodplain

A screen capture of the processed LAS data from a Balili flight 1549P loaded in QT Modeler is shown in Figure 21. The upper left image shows the elevations of the points from two overlapping flight strips traversed by the profile, illustrated by a dashed yellow line. The x-axis corresponds to the length of the profile. It is evident that there are differences in elevation, but the differences do not exceed the 20-centimeter mark. This profiling was repeated until the quality of the LiDAR data becomes satisfactory. No reprocessing was done for this LiDAR dataset.

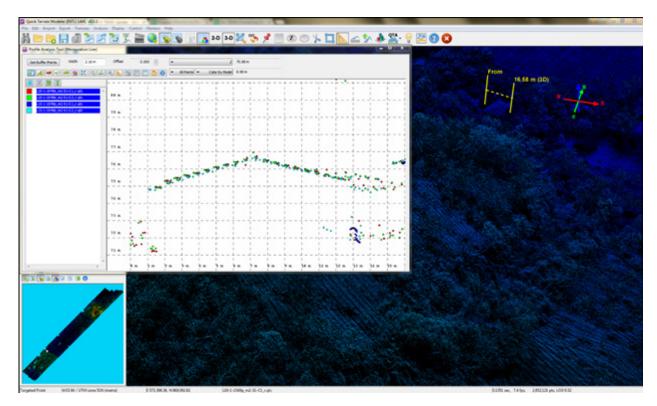


Figure 21. Quality checking for a Balili flight 1549P using the Profile Tool of QT Modeler

3.6 LiDAR Point Cloud Classification and Rasterization

Table 17. Balili classification results in TerraScan

Pertinent Class	Total Number of Points
Ground	1,808,617,897
Low Vegetation	1,572,153,754
Medium Vegetation	1,928,469,461
High Vegetation	2,983,548,273
Building	68,699,481

The tile system that TerraScan employed for the LiDAR data and the final classification image for a block in Balili Floodplain is shown in Figure 22. A total of 2,428 1km by 1km tiles were produced. The number of points classified to the pertinent categories is illustrated in Table 17. The point cloud has a maximum and minimum height of 868.76 meters and 62.15 meters, respectively.

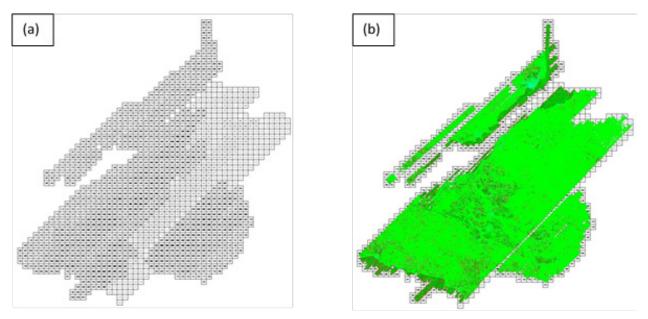


Figure 22. Tiles for Balili Floodplain (a) and classification results (b) in TerraScan

An isometric view of an area before and after running the classification routines is shown in Figure 23. The ground points are in orange, the vegetation is in different shades of green, and the buildings are in cyan. It can be seen that residential structures adjacent or even below canopy are classified correctly due to the density of the LiDAR data.

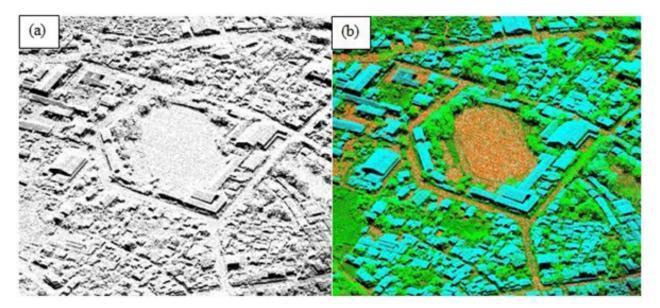


Figure 23. Point cloud before (a) and after (b) classification

The production of last return (V_ASCII) and the secondary (T_ ASCII) DTM, first (S_ ASCII) and last (D_ ASCII) return DSM of the area in top view display are shown in Figure 24. DTMs are the representation of the bare earth, while on the DSMs, all features such as buildings and vegetation are present.

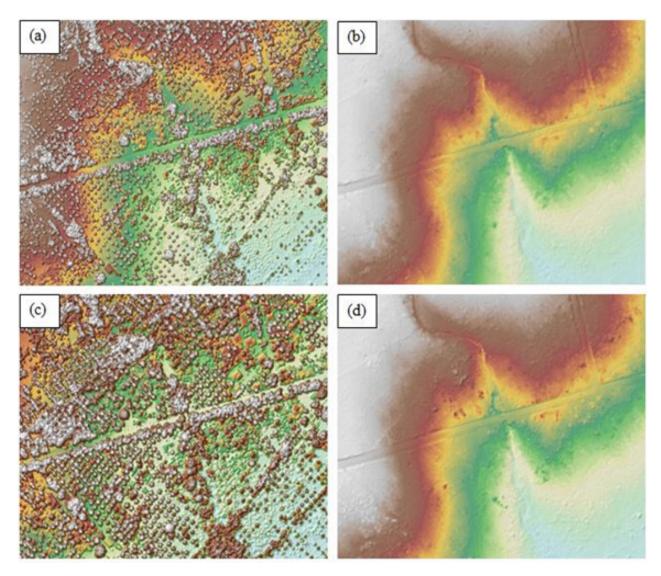


Figure 24. The production of last return DSM (a) and DTM (b), first return DSM (c) and secondary DTM (d) in some portion of Balili Floodplain.

3.7 LiDAR Image Processing and Orthophotograph Rectification

The 1,759 1km by 1km tiles area covered by Balili Floodplain is shown in Figure 25. After tie point selection to fix photo misalignments, color points were added to smoothen out visual inconsistencies along the seamlines where photos overlap. The Balili Floodplain attained a total of 910.28 sq.km in orthophotogaph coverage, comprised of 3,374 images. A zoomed in version of sample orthophotographs named in reference to its tile number is shown in Figure 26.

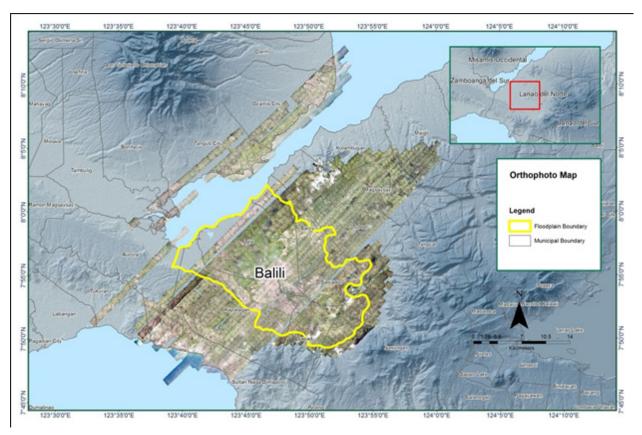


Figure 25. Balili Floodplain with available orthophotographs

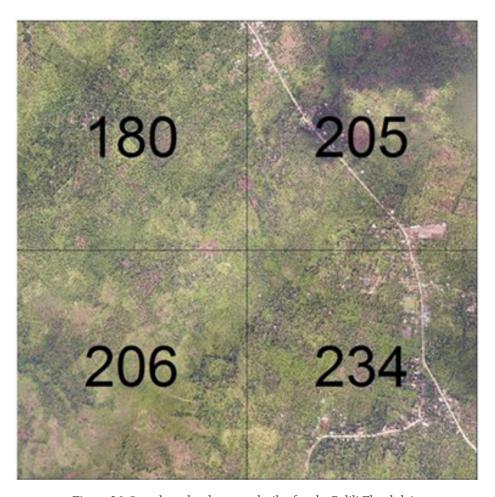


Figure 26. Sample orthophotograph tiles for the Balili Floodplain.

3.8 DEM Editing and Hydro-Correction

Twelve (12) mission blocks were processed for Balili Floodplain. These blocks are composed of Dipolog_reflight, Pagadian, and NorthernMindanao blocks with a total area of 1,737.29 sq. km. Table 18 shows the name and corresponding area of each block in square kilometers.

Table 18. LiDAR blocks with its corresponding area

LiDAR Blocks	Area (sq.km)
Pagadian_Blk76J	37.95
Pagadian_Blk76K	182.99
Pagadian_Blk76K_additional	53.29
Pagadian_Blk76M	71.78
Pagadian_Blk76N	136.47
Pagadian_Blk76N_additional	60.44
Pagadian_Blk76N_supplement	5.3
NorthernMindanao_Blk71_extension	138.3
NorthernMindanao_Blk71E	194.58
NorthernMindanao_Blk71F	500.1
NorthernMindanao_Blk71G	282.38
Dipolog_reflight_Blk76M	73.714
TOTAL	1,737.29 sq.km

Portions of DTM before and after manual editing are shown in Figure 27. The bridge (Figure 27a) is also considered to be an impedance to the flow of water along the river and has to be removed (Figure 27b) in order to hydrologically correct the river. The paddy field (Figure 27c) has been misclassified and removed during classification process and has to be retrieved to complete the surface (Figure 27d) to allow the correct flow of water.

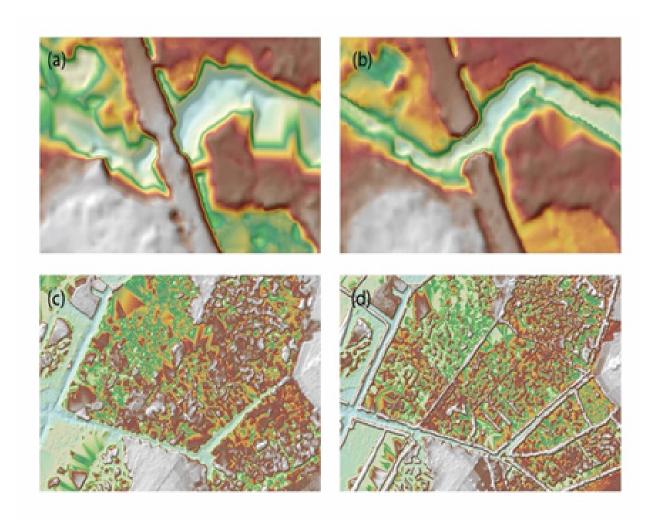


Figure 27. Portions in the DTM of Balili Floodplain—a bridge before (a) and after (b) manual editing; a paddy field before (c) and after (d) data retrieval

3.9 Mosaicking of Blocks

NorthernMindanao_Blk71F was used as the reference block at the start of mosaicking because it comprises the largest area among the missions blocks. Table 19 shows the shift values applied to each LiDAR block during mosaicking.

Table 19. Shift Values of each LiDAR block of Balili Floodplain

Mission Blocks	Shift Values (meters)			
	х	У	z	
Pagadian_Blk76J	-0.20	0.40	0.00	
Pagadian_Blk76K	0.00	0.00	0.00	
Pagadian_Blk76K_additional	0.00	0.00	0.00	
Pagadian_Blk76M	0.00	0.00	0.00	
Pagadian_Blk76N	0.00	0.00	0.00	
Pagadian_Blk76N_additional	0.75	0.50	-0.45	
Pagadian_Blk76N_supplement	0.05	0.05	-0.45	
NorthernMindanao_Blk71_extension	0.00	0.00	0.00	
NorthernMindanao_Blk71E	0.00	0.00	-0.30	
NorthernMindanao_Blk71F	0.00	0.00	0.00	
NorthernMindanao_Blk71G	0.00	0.00	0.00	
Dipolog_reflight_Blk76M	0.70	-0.60	-0.42	

Mosaicked LiDAR DTM for Balili Floodplain is shown in Figure 28. It can be seen that the entire Balili Floodplain is 99.76% covered by LiDAR data.

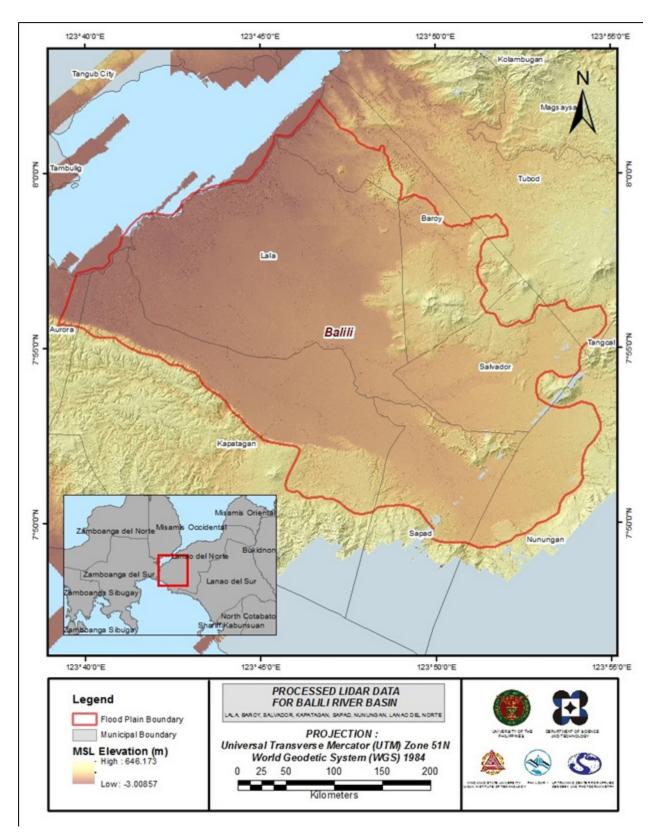


Figure 28. Map of Processed LiDAR Data for Balili Floodplain

3.10 Calibration and Validation of Mosaicked LiDAR Digital Elevation Model

The extent of the validation survey done by the Data Validation and Bathymetry Component (DVBC) in Balili to collect points with which the LiDAR dataset is validated is shown in Figure 29. A total of 2,003 survey points were used for calibration and validation of Balili LiDAR data. Random selection of 80% of the survey points, resulting in 1,602 points, was used for calibration. A good correlation between the uncalibrated mosaicked LiDAR elevation values and the ground survey elevation values is shown in Figure 30. Statistical values were computed from extracted LiDAR values using the selected points to assess the quality of data and obtain the value for vertical adjustment. The computed height difference between the LiDAR DTM and calibration elevation values is 2.27 meters with a standard deviation of 0.08 meters. Calibration of Balili LiDAR data was done by adding the height difference value, 2.27 meters, to Balili mosaicked LiDAR data. Table 20 shows the statistical values of the compared elevation values between LiDAR data and calibration data.

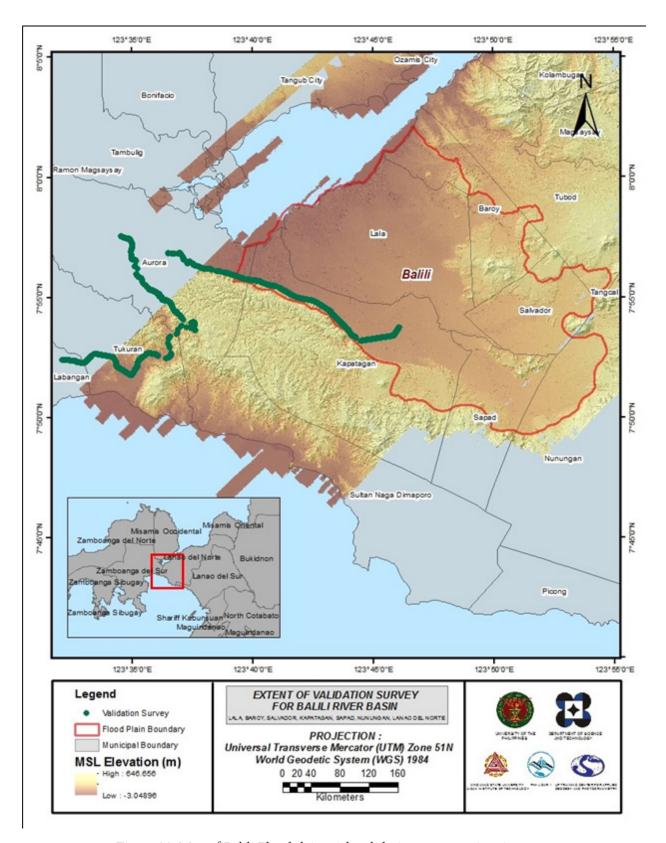


Figure 29. Map of Balili Floodplain with validation survey points in green

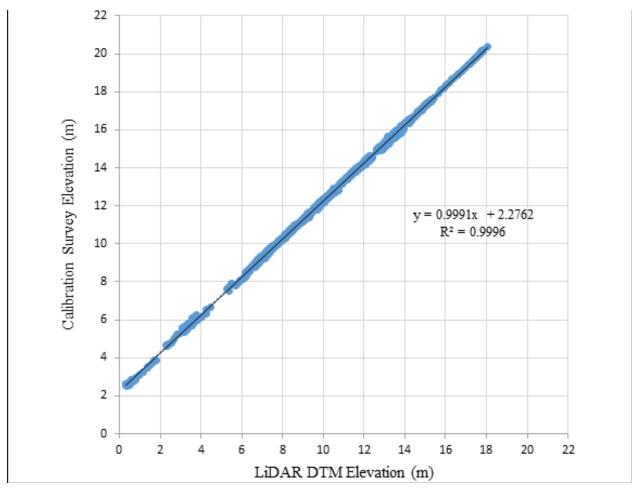


Figure 30. Correlation plot between calibration survey points and LiDAR data

Table 20. Calibration Statistical Measures

Calibration Statistical Measures	Value (meters)
Height Difference	2.27
Standard Deviation	0.08
Average	2.27
Minimum	2.06
Maximum	2.52

The remaining 20% of the total survey points, resulting in 1,110 points, were used for the validation of calibrated Balili DTM. A good correlation between the calibrated mosaicked LiDAR elevation values and the ground survey elevation, which reflects the quality of the LiDAR DTM, is shown in Figure 31. The computed RMSE between the calibrated LiDAR DTM and validation elevation values is 0.22 meters with a standard deviation of 0.21 meters, as shown in Table 21.

Figure 31. Correlation plot between validation survey points and LiDAR data

Table 21. Validation Statistical Measures

Validation Statistical Measures	Value (meters)
RMSE	0.22
Standard Deviation	0.21
Average	0.09
Minimum	-0.33
Maximum	0.50

3.11 Integration of Bathymetric Data into the LiDAR Digital Terrain Model

For bathy integration, only cross-section data was available for Balili with 1,113 bathymetric survey points. The resulting raster surface produced was done by Kernel interpolation method. After burning the bathymetric data to the calibrated DTM, assessment of the interpolated surface is represented by the computed RMSE value of 0.53meters. The extent of the bathymetric survey done by the Data Validation and Bathymetry Component (DVBC) in Balili integrated with the processed LiDAR DEM is shown in Figure 32.

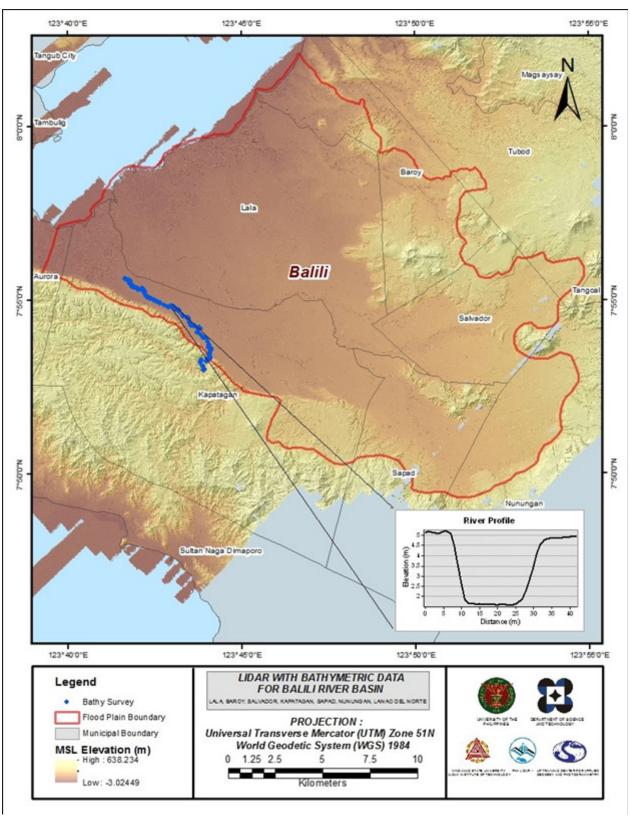


Figure 32. Map of Balili Floodplain with bathymetric survey points shown in blue

3.12 Feature Extraction

The features salient in flood hazard exposure analysis include buildings, road networks, bridges, and water bodies within the floodplain area with 200m buffer zone. Mosaicked LiDAR DEM with 1m resolution was used to delineate footprints of building features, which consist of residential buildings, government offices, medical facilities, religious institutions, and commercial establishments, among others. Road networks comprise of main thoroughfares such as highways and municipal and barangay roads essential for routing of disaster response efforts. These features are represented by a network of road centerlines.

3.12.1 Quality Checking of Digitized Features' Boundary

Balili Floodplain, including its 200m buffer, has a total area of 367.13sq.km. For this area, a total of 12.00 sq.km, corresponding to a total of 2,495 building features, is considered for QC. Figure 33 shows the QC blocks for Balili Floodplain

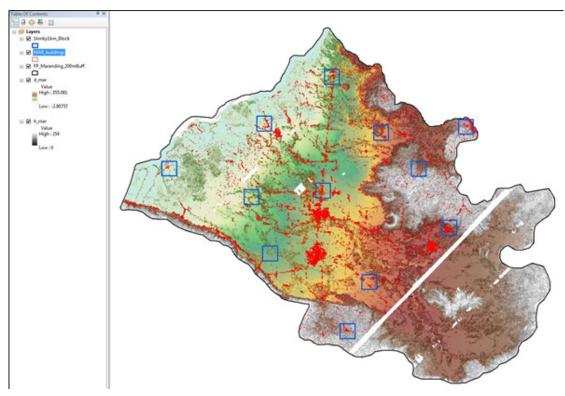


Figure 33. Blocks (in blue) of Balili building features that were subjected to QC.

Quality checking of Balili building features resulted in the ratings shown in Table 22.

Table 22. Quality Checking Ratings for Balili Building Features

FLOODPLAIN	COMPLETENESS	CORRECTNESS	QUALITY	REMARKS
Balili	89.11	99.65	83.06	PASSED

3.12.2 Height Extraction

Height extraction was done for 53,418 building features in Balili Floodplain. Of these building features, 1,621 were filtered out after height extraction, resulting in 51,797 buildings with height attributes. The lowest building height is at 2.00m, while the highest building is at 20.37m.

3.12.3 Feature Attribution

Balili Floodplain is shared by six (6) municipalities namely municipality of Lala, municipality of Baroy, municipality of Salvador, municipality of Kapatagan, municipality of Sapad, and municipality of Nunungan. The building attribution on the municipalities of Lala, Baroy, Salvador, Kapatagan, Sapad, and Nunungan was done with the Google Earth approach. In Google Earth approach, aid from Purok representatives were sought for participatory mapping over the Google Earth software. The attributions of road, bridge, and water body features were done using NAMRIA maps, municipal and city records, and participatory mapping of municipals and cities.

Table 23 summarizes the number of building features per type. On the other hand, Table 24 shows the total length of each road type, while Table 25 shows the number of water features extracted per type.

Table 23. Building features that were extracted for the Balili Floodplain.

Facility Type	No. of Features
Residential	49,219
School	700
Market	23
Agricultural/Agro-Industrial Facilities	365
Medical Institutions	84
Barangay Hall	87
Military Institution	38
Sports Center/Gymnasium/Covered Court	34
Telecommunication Facilities	3
Transport Terminal	4
Warehouse	167
Power Plant/Substation	1
NGO/CSO Offices	3
Police Station	5
Water Supply/Sewerage	7
Religious Institutions	298
Bank	6
Factory	2
Gas Station	13
Fire Station	3
Other Government Offices	308
Other Commercial Establishments	427
Total	51,797

Table 24. Total Length of Extracted Roads for Balili Floodplain

Floodplain	Road Networl	k Length (km)				Total
	Barangay Road	City/Municipal Road	Provincial Road	National Road	Others	
Balili	303.26	89.29	44.19	71.69	0.00	508.43

Table 25. Number of Extracted Water Bodies for Balili Floodplain

Floodplain	Water Body Type					Total
	Rivers/Streams	Lakes/Ponds	Sea	Dam	Fish Pen	
Balili	39	0	0	3	231	273

A total of 105 bridges and culverts over small channels that are part of the river network were also extracted for the floodplain.

3.12.4 Final Quality Checking of Extracted Features

All extracted ground features were completely given the required attributes. All these output features comprise the flood hazard exposure database for the floodplain. This completes the feature extraction phase of the project.

Figure 34 shows the Digital Surface Model (DSM) of Balili Floodplain overlaid with its ground features.

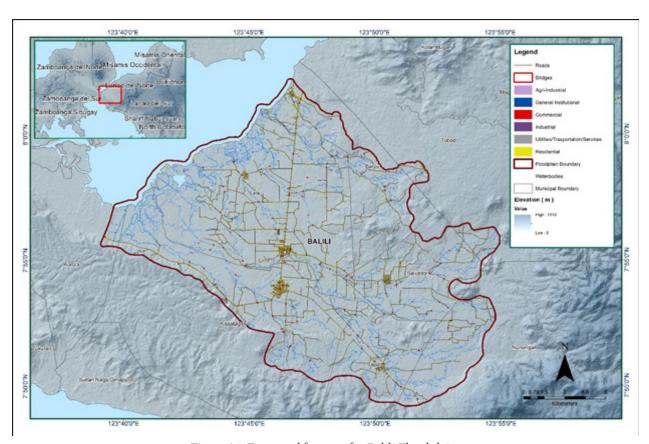


Figure 34. Extracted features for Balili Floodplain.

CHAPTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE BALILI RIVER BASIN

Engr. Louie P. Balicanta, Engr. Joemarie S. Caballero, Ms. Patrizcia Mae. P. dela Cruz, Engr. Kristine Ailene B. Borromeo

The methods applied in this Chapter were based on the DREAM methods manual (Balicanta, et al., 2014) and further enhanced and updated in Paringit, et al. (2017).

4.1 Summary of Activities

AB Surveying and Development (ABSD) conducted a field survey in Balili River on March 21, 2016 and May 11–13, 2016 with the following scope: reconnaissance; control survey; and cross-section and as-built survey at Balili Bridge in Brgy. Sta. Cruz, Municipality of Kapatagan, Lanao del Norte. Random checking points for the contractor's cross-section and bathymetry data were gathered by DVBC on August 19, 2016 using a Trimble® SPS 882 GNSS PPK survey technique. In addition to this, validation points acquisition survey was conducted covering the Balili River Basin area. The entire survey extent is illustrated in Figure 35.

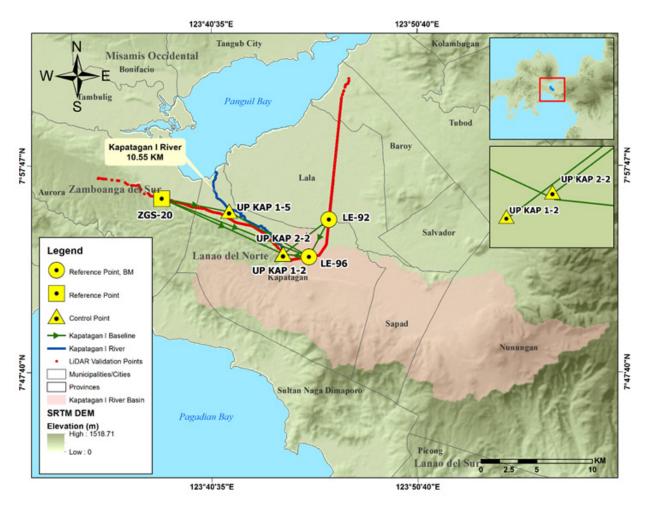


Figure 35. Extent of the bathymetric survey (in blue) in Balili River and the LiDAR data validation survey (in red)

4.2 Control Survey

The GNSS network used for Balili River is composed of four (4) loops established on August 8 and November 2, 2016 occupying the following reference points: ZGS-20, a second-order GCP, in Brgy. Anonang, Municipality of Aurora, Zamboanga del Sur; LE-92, a first-order BM, in Brgy. Maranding, Municipality of Lala, Lanao del Norte; and LE-96, a first-order BM, in Brgy. Poblacion, Municipality of Kapatagan, Lanao del Norte.

Three (3) control points established in the area were also occupied: UP_KAP 1-2, located near the approach of Balili Bridge in Brgy. Sta. Cruz, Municipality of Kapatagan, Province of Lanao del Norte; UP_KAP 1-5, located within a basketball court in Brgy. Lapinig, Municipality of Kapatagan, Province of Lanao del Norte; and UP_KAP 2-2, located near the approach of Butadon Bridge in Brgy. Sta. Cruz, Municipality of Kapatagan, Province of Lanao del Norte.

The summary of reference and control points and its location is summarized in Table 26 while GNSS network established is illustrated in Figure 36.

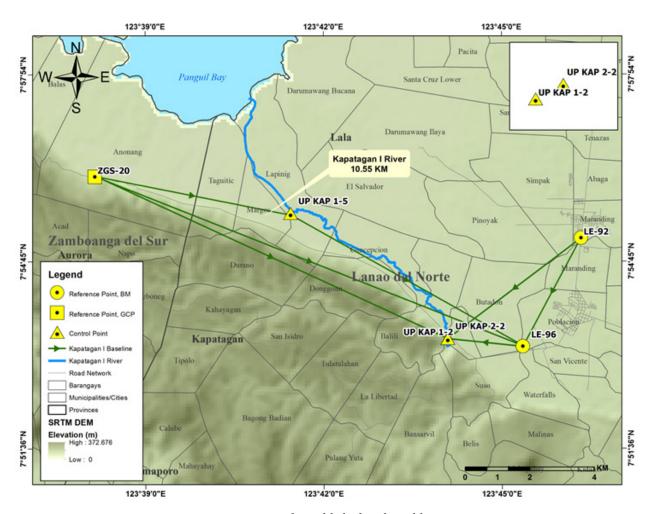


Figure 36. GNSS Network established in the Balili River Survey

Table 26. List of reference and control points used during the survey in Balili River (Source: NAMRIA, UP TCAGP)

Control Point	Order of Accuracy	Geographic Coordinates (WGS 84)	(WGS 84)			
		Latitude	Longitude	Ellipsoidal Height (Meter)	Elevation in MSL (Meter)	Date Established
2GS-20	2nd order, GCP	7°56'10.67208"N	123°38'09.10220"E	95.136	26.596	2005
LE-92	1st order, BM	7°55'08.47442"N	123°46'19.89121"E	89.406	20.730	2007
TE-96	1st order, BM	7°53'19.07415"N	123°45'21.01225" E	85.854	17.153	2007
UP_KAP 1-2	Established	7°53'27.09042"N	123°44'05.15906"E	87.865	19.212	05-11-16
UP_KAP 1-5	Established	7°55'33.70206"N	123°41'26.70374"E	70.334	1.798	05-11-16
UP_KAP 2-2	Established	7°53'27.09071"N	123°44'05.15960"E	87.673	19.021	05-11-16

The GNSS set-ups on recovered reference points and established control points in Balili River are shown from Figure 37 to Figure 42.

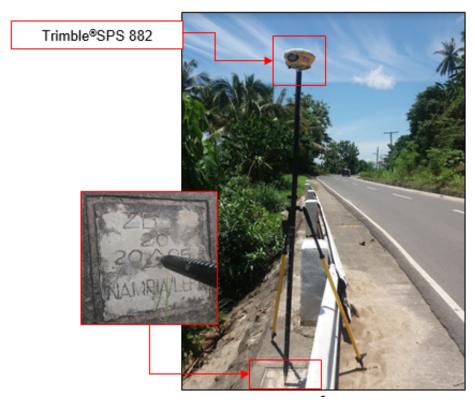


Figure 37. GNSS receiver set-up, Trimble®SPS 882 at ZGS-20, located on the side of the National Highway from Zamboanga del Sur going to Lanao del Norte in Brgy. Anonang, Municipality of Aurora, Zamboanga del Sur

Figure 38. GNSS receiver set-up, Trimble®SPS 985, at LE-96, located at the approach of Butadon Bridge in Brgy. Poblacion, Municipality of Kapatagan, Lanao del Norte

Figure 39. GNSS receiver set-up, Trimble®SPS 882, at LE-96, located at the approach of Butadon Bridge in Brgy. Poblacion, Municipality of Kapatagan, Lanao del Norte

Figure 40. GNSS receiver set-up, Hi-Target®V30, at UP_KAP 1-5, located in a basketball court in Brgy. Lapinig, Municipality of Kapatagan, Lanao del Norte

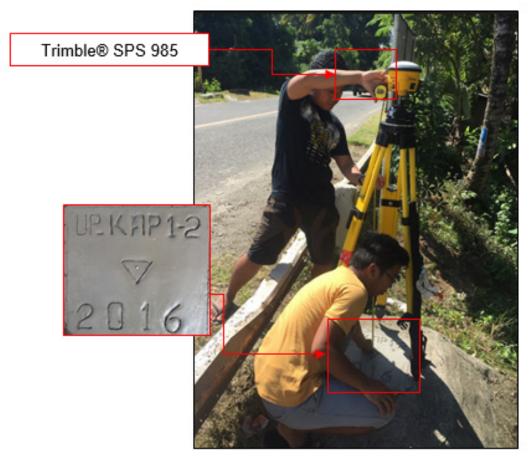


Figure 41. GNSS receiver set-up, Trimble®SPS 985, at UP_KAP 1-2, located near the approach of Balili Bridge in Brgy. Sta. Cruz, Municipality of Kapatagan, Lanao del Norte

Figure 42. GNSS receiver set-up, Trimble®SPS 882, at UP-KAP 2-2,located near the approach of Butadon Bridge in Brgy. Sta. Cruz, Municipality of Kapatagan, Lanao del Norte

4.3 Baseline Processing

GNSS Baselines were processed simultaneously in TBC by observing that all baselines have fixed solutions with horizontal and vertical precisions within +/- 20 cm and +/- 10 cm requirement, respectively. In case where one or more baselines did not meet all of these criteria, masking was performed. Masking is done by removing/masking portions of these baseline data using the same processing software. It is repeatedly processed until all baseline requirements are met. If the reiteration yields out of the required accuracy, resurvey is initiated. Baseline processing result of control points in Balili River Basin is summarized in Table 27 generated by TBC software.

Table 27. Baseline Processing Report for Balili River Static Survey

Observation	Date of Observation	Solution Type	H. Prec. (Meter)	V. Prec. (Meter)	Geodetic Az.	Ellipsoid Dist. (Meter)	ΔHeight (Meter)
LE-92 UP KAP 1-2	8-18-2016	Fixed	0.005	0.024	232°57'38"	5170.225	-1.528
UP KAP 1-5 LE-96	8-18-2016	Fixed	0.006	0.029	119°57'00"	8283.207	15.481
LE-96 UP KAP 2-2	8-18-2016	Fixed	0.007	0.048	276°03'08"	2336.448	1.831
LE-96 UP KAP 1-2	8-18-2016	Fixed	0.014	0.072	276°03'09"	2336.467	1.877
LE-92 LE-96	8-18-2016	Fixed	0.012	0.055	208°13'12"	3814.139	-3.443
UP KAP 1-5 ZGS-20	8-18-2016	Fixed	0.003	0.019	100°37'31"	6157.763	-24.818
UP KAP 2-2 ZGS-20	8-18-2016	Fixed	0.005	0.029	114°44'01"	12007.875	-7.467
ZGS-20 LE-96	8-18-2016	Fixed	0.007	0.045	111°43'07"	14240.741	-9.312
LE-96 ZGS-20	8-18-2016	Fixed	0.007	0.051	111°43'07"	14240.722	-9.327

As shown in Table 27, a total of nine (9) baselines were processed with coordinate and ellipsoidal height values of ZGS-20 and LE-92 held fixed. All of them passed the required accuracy.

4.4 Network Adjustment

After the baseline processing procedure, the network adjustment is performed using the TBC software. Looking at the Adjusted Grid Coordinates table of the TBC-generated Network Adjustment Report, it is observed that the square root of the sum of the squares of x and y must be less than 20 cm and z less than 10 cm for each control point; or in equation form:

$$\sqrt{((x_e)^2 + (y_e)^2)}$$
 <20cm and z_e < 10 cm

where:

ZGS-20

xe is the Easting Error, ye is the Northing Error, and ze is the Elevation Error

Global

Fixed = 0.000001(Meter)

See the Network Adjustment Report shown from Table 28 to Table 30 for the complete details. Refer to ANNEX 1 for the computation for the accuracy of ABSD.

The six (6) control points, ZGS-20, LE-92, LE-96, UP_KAP-1-2, UP_KAP-1-5, UP_KAP-2-2 were occupied and observed simultaneously to form a GNSS loop. The coordinates and ellipsoidal heights of ZGS-20 and LE-92 were held fixed during the processing of the control points as presented in Table 28. Through this reference point, the coordinates and ellipsoidal height of the unknown control points were computed.

Point IDTypeEast σ (Meter)North σ (Meter)Height σ (Meter)Elevation σ (Meter)LE-92GlobalFixedFixedFixed

Fixed

Fixed

Fixed

Table 28. Control Point Constraints

Table 29. Adjusted Grid Coordinated

Point ID	Easting (Meter)	Easting Error (Meter)	Northing (Meter)	Northing Error (Meter)	Elevation (Meter)	Elevation Error (Meter)	Constraint
ZGS-20	570083.672	?	877309.182	?	26.596	?	LLh
LE-92	585114.134	?	875424.503	?	20.730	?	LLh
LE-96	583317.383	0.019	872061.376	0.019	17.153	0.059	
UP KAP 1-2	580994.200	0.012	872303.417	0.011	19.212	0.068	
UP KAP 1-5	576135.647	0.011	876183.473	0.010	1.798	0.051	
UP KAP 2-2	580994.217	0.019	872303.426	0.019	19.021	0.077	

The results of the computation for accuracy are as follows:

ZGS-20

horizontal accuracy = Fixed vertical accuracy = Fixed

LE-92

horizontal accuracy = Fixed vertical accuracy = Fixed

LE-96

horizontal accuracy = $\sqrt{((1.9)^2 + (1.9)^2}$

= $\sqrt{(3.61+3.61)}$ = 7.22 < 20 cm

vertical accuracy = 5.9< 10 cm

UP KAP 1-2

horizontal accuracy = $V((1.2)^2 + (1.1)^2$

= $\sqrt{(1.44 + 1.21)}$ = 2.65< 20 cm

vertical accuracy = 6.8< 10 cm

Following the given formula, the horizontal and vertical accuracy result of the six (6) occupied control points are within the required precision.

Table 30. Adjusted geodetic coordinates for control points used in the Balili River Flood Plain validation.

Point ID	Latitude	Longitude	Ellipsoid	Height	Constraint
LE-92	7°55'08.47442"N	123°46'19.89121"E	89.406	?	LLh
LE-96	7°53'19.07415"N	123°45'21.01225"E	85.854	0.059	
UP KAP 1-2	7°56'10.67208"N	123°38'09.10220"E	87.865	0.068	
UP KAP 1-5	7°53'27.09042"N	123°44'05.15906"E	70.334	0.051	
UP KAP 2-2	7°55'33.70206"N	123°41'26.70374"E	87.673	0.077	
ZGS-20	7°53'27.09071"N	123°44'05.15960"E	95.136	?	LLh

Table 31. Reference and control points used and its location (Source: NAMRIA, UP TCAGP)

Control Point	Order of Accuracy	Geographic Coordinates (WGS 84)			UTM ZONE 51 N		
		Latitude	Longitude	Ellipsoidal Height (m)	Northing (m)	Easting (m)	BM Ortho (m)
LE-92	2nd Order, GCP	7°55'08.47442"N	123°46'19.89121"E	95.136	877309.182	570083.672	26.596
LE-96	1st Order, BM	7°53'19.07415"N	123°45'21.01225"E	89.406	875424.503	585114.134	20.730
ZGS-20	2nd Order, GCP	7°56'10.67208"N	123°38'09.10220"E	87.673	872303.426	580994.217	19.021
UP KAP 1-2	Established	7°53'27.09042"N	123°44'05.15906"E	85.854	872061.376	583317.383	17.153
UP KAP 1-5	Established	7°55'33.70206"N	123°41'26.70374"E	87.865	872303.417	580994.200	19.212
UP_KAP 2-2	Established	7°53'27.09071"N	123°44'05.15960"E	70.334	876183.473	576135.647	1.798

4.5 Cross-section and Bridge As-Built survey and Water Level Marking

Cross-section and as-built surveys were conducted on May 11, 2016 by ABSD at the upstream side of Balili Bridge in Brgy. Sta. Cruz, Municipality of Kapatagan, Lanao del Sur as shown in Figure 43. Nikon®Total Station was utilized for this survey as shown in Figure 44.

Figure 43. Upstream/downstream side of Balili Bridge

Figure 44. As-built survey of Balili Bridge

The cross-sectional line of Balili Bridge is about 124.283 m with thirty-one(31) cross-sectional points using the control points UP_KAP 1-1 and UP_KAP 1-2 as the GNSS base stations. The cross-section location map, diagram, and the bridge data form are shown in Figure 45 and Figure 46.

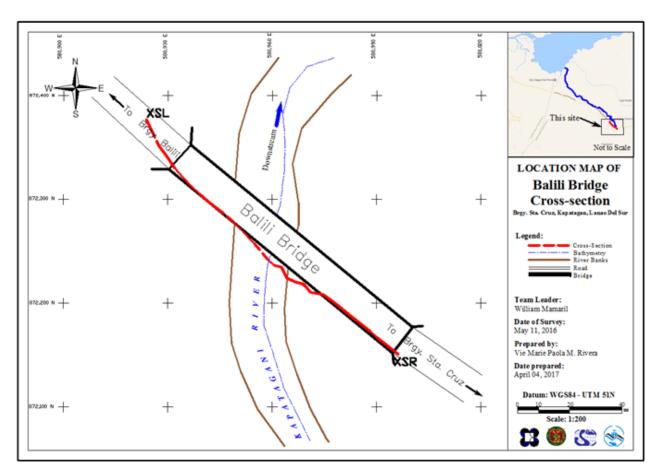


Figure 45. Balili Bridge cross-section location map

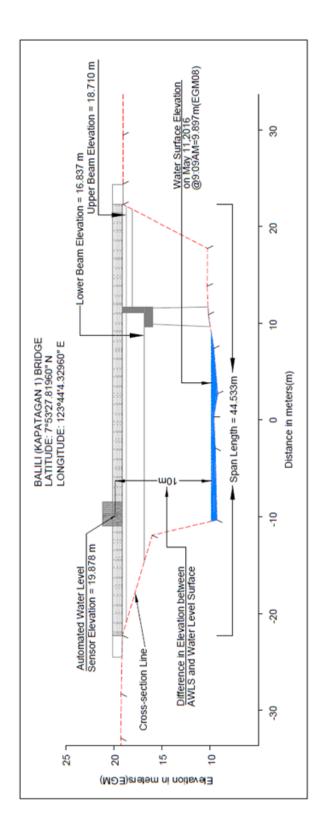
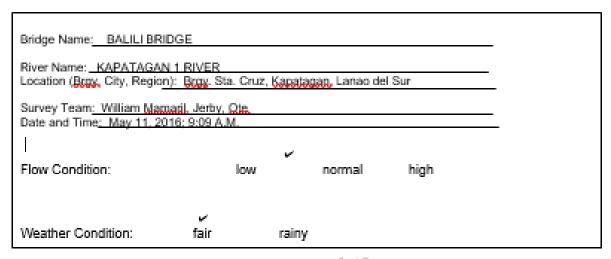
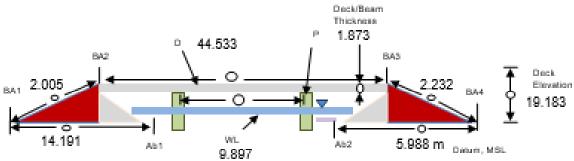




Figure 46. Balili Bridge cross-section diagram

Bridge Data Form

Legend:

BA = Bridge Approach

P = Pier

Ab = Abutment

D = Deck

WL = Water Level/Surface

MSL = Mean Sea Level

= Measurement Value

Line Segment	Measurement (m)	Remarks
1. BA1-BA2	2.005 m	
2. BA2-BA3	44.533 m	
3. BA3-BA4	2.232 m	
4. BA1-Ab1	14.191 m	
Ab2-BA4	5.988 m	
Deck/beam thickness	1.873 m	
Deck elevation	19.183 m	

Note: Observer should be facing downstream

Figure 47. Balili Bridge Data Sheet

Water surface elevation of Balili River was determined by a Horizon® Total Station on May 11, 2016 at 9:09 A.M. at Balili Bridge area with a value of 9.897 m in EGM08 as shown in Figure 45. This was translated into marking on the bridge's pier as shown in Figure 48. The marking will serve as reference for flow data gathering and depth gauge deployment of the partner HEI responsible for Balili River, Mindanao State University – Iligan Institute of Technology.

Figure 48. Water-level markings on Balili Bridge

4.6 Validation Points Acquisition Survey

Validation points acquisition survey was conducted by DVBC from August 19-20, 2016 using a survey grade GNSS Rover receiver, Trimble® SPS 882, mounted on a range pole which was attached on the side of the vehicle as shown in Figure 49. It was secured with cable ties and ropes to ensure that it was horizontally and vertically balanced. The antenna height was 2.400 m and measured from the ground up to the bottom of the quick release of the GNSS Rover receiver. The PPK technique utilized for the conduct of the survey was set to continuous topo mode with UP_KAP 2-2 and LE-96 occupied as the GNSS base station in the conduct of the survey.

Figure 49. Validation points acquisition survey set-up for Balili River

The survey started from Brgy. Balili, Municipality of Kapatagan, Lanao del Norte going southwest along the national highway and ended in Brgy. Poblacion, Municipality of Aurora, Zamboanga del Sur on August 19, 2016 and from Brgy, Sta. Cruz, Municipality of Kapatagan, Lanao del Norte going northeast along the national highway and ended in Brgy. Sagadan, Municipality of Tubod, Lanao del Norte. A total of 5,192 points were gathered with an approximate length of 38.360 km using UP_KAP 2-2 and LE-96 as GNSS base stations for the entire extent of validation points acquisition survey as illustrated in the map in Figure 50.

Figure 50. Validation points acquisition covering the Balili River Basin Area

4.7 River Bathymetric Survey

Bathymetric survey was executed on May 21, 2016 using a Hi-Target® echo sounder as illustrated in Figure 51. The survey started downstream in Brgy. Lapinig, Municipality of Kapatagan with coordinates 7° 57′ 31.34209″N, 123° 40′ 42.90492″E and ended upstream in Brgy. Lapinig, Municipality of Kapatagan, Lanao del Norte with coordinates 7° 55′ 36.75568″N, 123° 41′ 27.01860″E.

Figure 51. Bathymetric survey of ABSD at Balili River using Hi-Target® echo sounder

Manual bathymetric survey was executed on May 21, 2016 using a Nikon® Total Station as illustrated in Figure 52. The survey started downstream in Brgy. Lapinig, Municipality of Kapatagan with coordinates 7° 55′ 37.17333″N, 123° 41′ 38.46804″E and ended upstream in Brgy. Suso, Municipality of Kapatagan, Lanao del Norte with coordinates 7° 52′ 59.74343″N, 123° 43′ 55.76124″E. The control points UP_KAP 1-5 and UP KAP 1-6 were used as GNSS base station all throughout the entire survey.

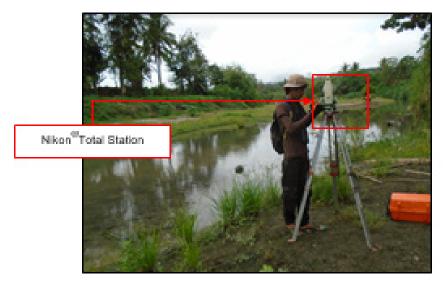


Figure 52. Manual bathymetric survey of ABSD at Balili River using NIkon®Total Station

Gathering of random points for the checking of ABSD's bathymetric data was performed by DVBC on August 19, 2016 using a Trimble® SPS 882 GNSS PPK survey technique. A map showing the DVBC bathymetric checking points is shown in Figure 54.

Linear square correlation (R2) and RMSE analysis were performed on the two (2) datasets. The linear square coefficient range is determined to ensure that the submitted data of the contractor is within the accuracy standard of the project which is ± 20 cm and ± 10 cm for horizontal and vertical, respectively. The R2 value must be within 0.85 to 1. An R2 approaching 1 signifies a strong correlation between the vertical (elevation values) of the two datasets. A computed R2 value of 0.999 was obtained by comparing the data of the contractor and DVBC; signifying a strong correlation between the two (2) datasets.

In addition to the Linear Square correlation, Root Mean Square (RMSE) analysis was also performed in order to assess the difference in elevation between the DVBC checking points and the contractor's. The RMSE value should only have a maximum radial distance of 5 m and the difference in elevation within the radius of 5 meters should not be beyond 0.50 m. For the bathymetric data, a computed value of 0.220 was acquired. The computed R2 and RMSE values are within the accuracy requirement of the program.

Figure 53. Gathering of random bathymetric points along Balili River

The bathymetric survey for Balili River gathered a total of 3,836 points covering an approximate of 13.410 km of the river traversing Brgy. of Lapinig, Concepcion, Balili, Sta. Cruz, and Suso in the Municipality of Kapatagan, Lanao del Norte. A CAD drawing was also produced to illustrate the riverbed profile of Ulot River. As shown in Figure 55, the highest and lowest elevation has a 25-m difference. The highest elevation observed was 31m above MSL located in Brgy. Sta. Cruz, Balili, Lanao del Norte while the lowest was -6m below MSL located in Brgy. Taguitic, Kapatagan, Lanao del Norte.

Figure 54. Bathymetric survey of Balili River

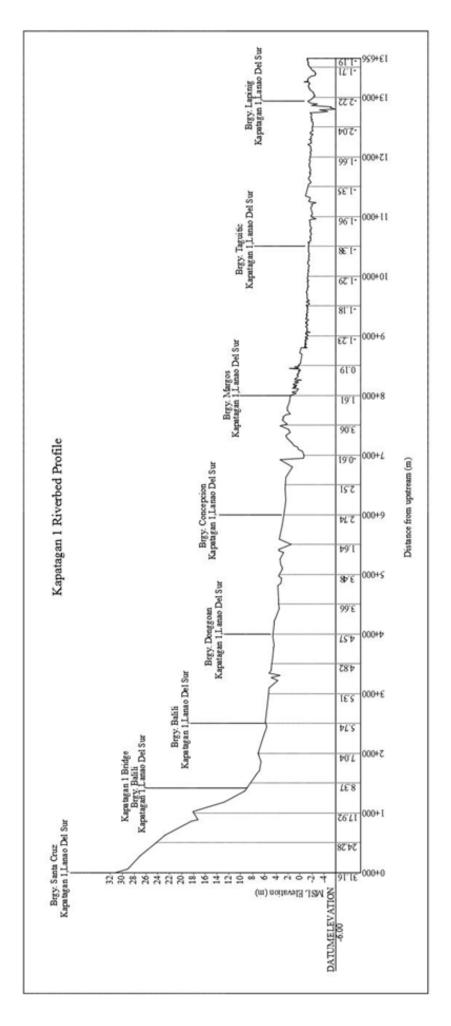



Figure 55. Quality checking points gathered along Balili River by DVBC

Balili Riverbed Profile

CHAPTER 5: FLOOD MODELING AND MAPPING

Dr. Alfredo Mahar Lagmay, Christopher Uichanco, Sylvia Sueno, Marc Moises, Hale Ines, Miguel del Rosario, Kenneth Punay, Neil Tingin

The methods applied in this Chapter were based on the DREAM methods manual (Lagmay, et al., 2014) and further enhanced and updated in Paringit, et al. (2017)

5.1 Data Used for Hydrologic Modeling

5.1.1 Hydrometry and Rating Curves

Rainfall, water level, and flow in a certain period of time, which may affect the hydrologic cycle of the Balili River Basin were monitored, collected, and analyzed.

5.1.2 Precipitation

Precipitation data was taken from the Portable Rain Gauge (PRG) installed upstream by the Data Validation Component (DVC) of MSU-IIT. The PRG was specifically installed in the Municipality of Kapatagan at Brgy. Kahayagan with the coordinates of 7°55'4.37"N latitude and 123°40'45.23"E longitude. The location of the rain gauge is shown in Figure 57.

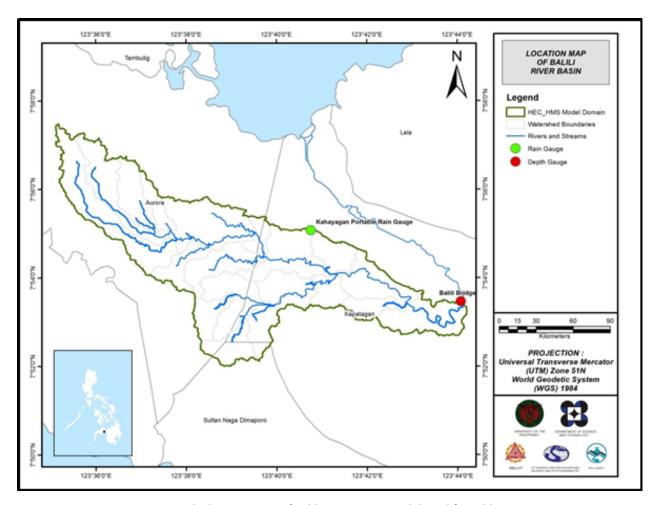


Figure 57. The location map of Balili HEC-HMS model used for calibration

5.1.3 Rating Curves and River Outflow

HQ curve analysis is important in determining the equation to be used in establishing Q values with R-Squared values closer to 1. A trendline is more accurate if the R-Squared value is closer or at 1. For Balili, base flow hydrometry was used.

Figure 59 shows the highest R-Squared value of 0.9973 compared to the graphs using the original Q. In this case, Q boxed values with Q at bank-full were plotted versus the stage.

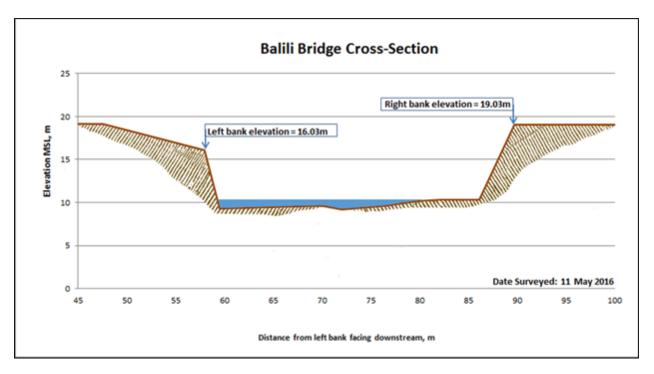


Figure 58. Cross-section plot of Balili Bridge

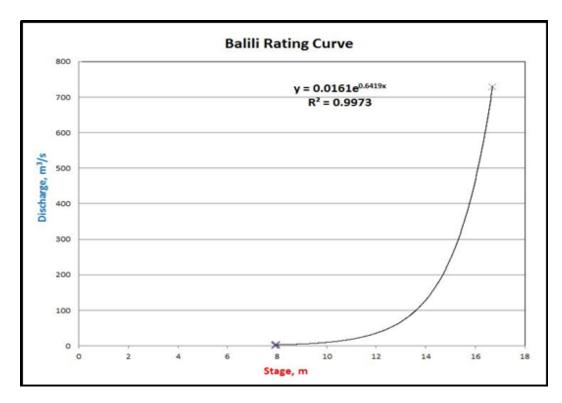


Figure 59. Rating curve at Balili Bridge

This rating curve equation was used to compute the river outflow at Balili Bridge for the calibration of the HEC-HMS model.

The total rainfall taken from the PRG at Brgy. Kahayagan was 46.20 mm. It peaked to 12 mm on 12 October 2016 14:20. The lag time between the peak rainfall and discharge is 3 hours.

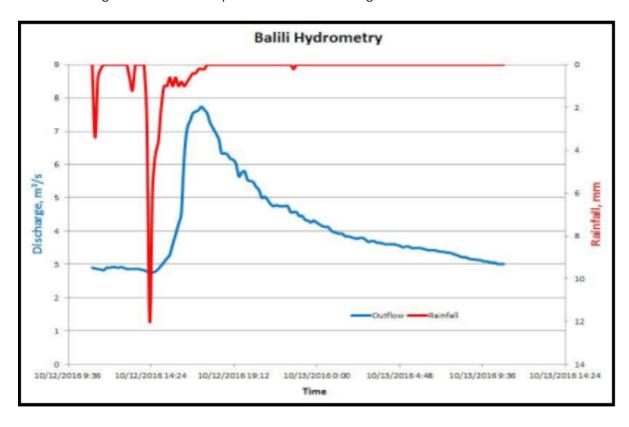


Figure 60. Rainfall and outflow data at Balili Bridge used for modeling

5.2 RIDF Station

The Philippines Atmospheric Geophysical and Astronomical Services Administration (PAGASA) computed Rainfall Intensity Duration Frequency (RIDF) values for the Dipolog Rain Gauge. The RIDF rainfall amount for 24 hours was converted to a synthetic storm by interpolating and re-arranging the value in such a way certain peak value will be attained at a certain time. This station chosen based on its proximity to the Balili watershed. The extreme values for this watershed were computed based on a 51-year record.

Table 32. RIDF values for Dipolog Rain Gauge computed by PAGASA

СОМРИТ	ED EXTRE	ME VALUE	S (in mm)	OF PRECIP	PITATION				
T (yrs)	10 mins	20 mins	30 mins	1 hr	2 hrs	3 hrs	6 hrs	12 hrs	24 hrs
2	19.7	30.9	38.7	53.8	73.6	85.5	105.7	120.3	136.2
5	25.9	39.6	50.1	72.6	99.7	117.3	140.9	158.3	178.5
10	30	45.4	57.6	85.1	117	138.3	164.3	183.4	206.5
15	32.3	48.6	61.8	92.1	126.8	150.2	177.4	197.6	222.4
20	34	50.9	64.8	97.1	133.6	158.5	186.6	207.6	233.4
25	35.2	52.7	67.1	100.9	138.9	164.9	193.7	215.2	242
50	39	58.1	74.1	112.5	155.1	184.6	215.6	238.8	268.3
100	42.9	63.4	81.1	124.1	171.2	204.2	237.3	262.1	294.4

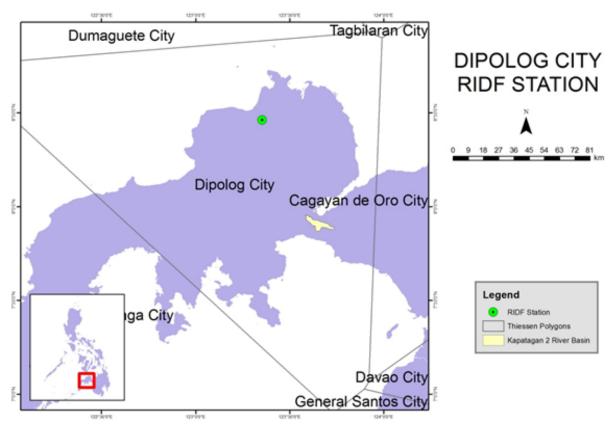


Figure 61. Location of Dipolog RIDF station relative to Balili (Balili 2) River Basin

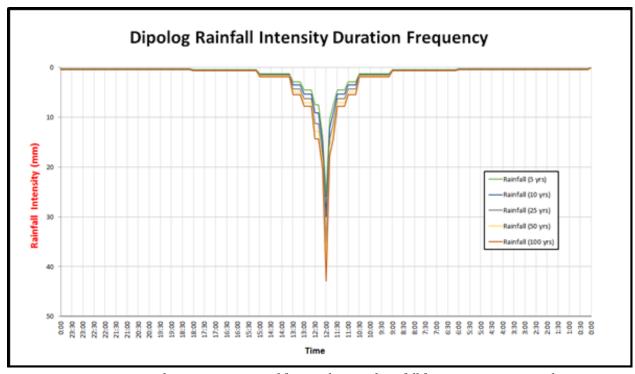


Figure 62. Synthetic storm generated for a 24-hr period rainfall for various return periods

5.3 HMS Model

The soil dataset was taken from the Bureau of Soils and Water Management (BSWM) under the Department of Agriculture. The soil dataset (Figure 63) of the Balili River basin was used as one of the factors for the estimation of the CN parameter.

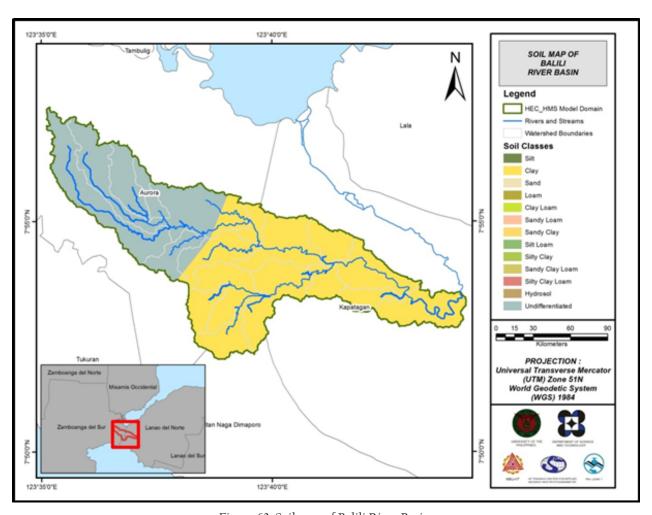


Figure 63. Soil map of Balili River Basin

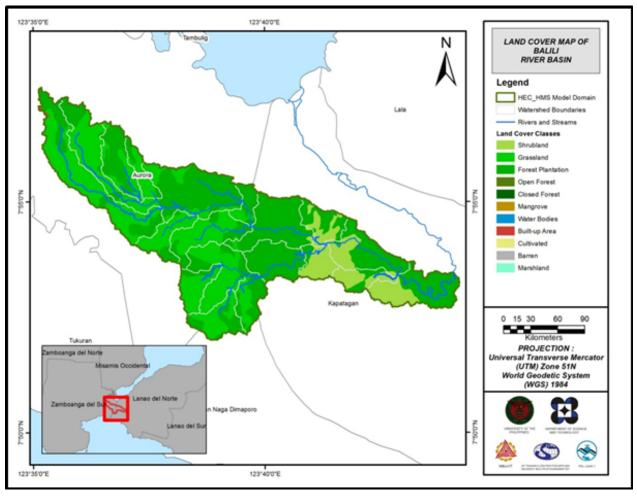


Figure 64. Land cover map of Balili River Basin (Source: NAMRIA)

Using the SAR-based DEM, the Balili Basin was delineated and further subdivided into subbasins. The model consists of 18 subbasins, 17 reaches, and 17 junctions. The main outlet is located at Balili Bridge, Brgy. Balili, Balili, Lanao del Norte. This basin model is illustrated in Figure 65. Finally, it was calibrated using hydrological data derived from the depth gauge and flow meter deployed at Balili Bridge.

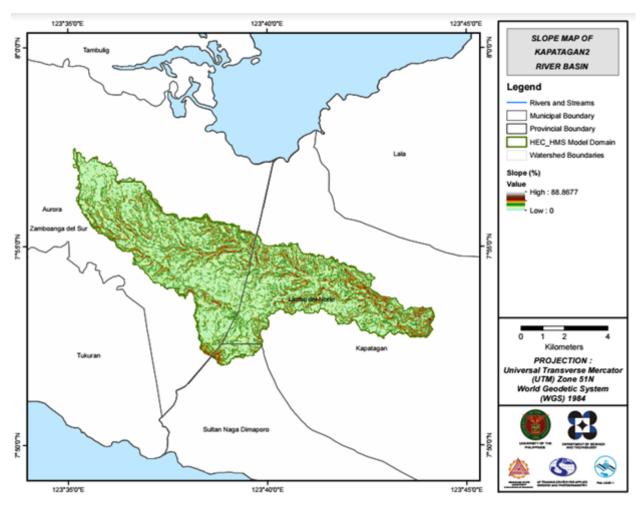


Figure 65. Slope map of Balili River Basin

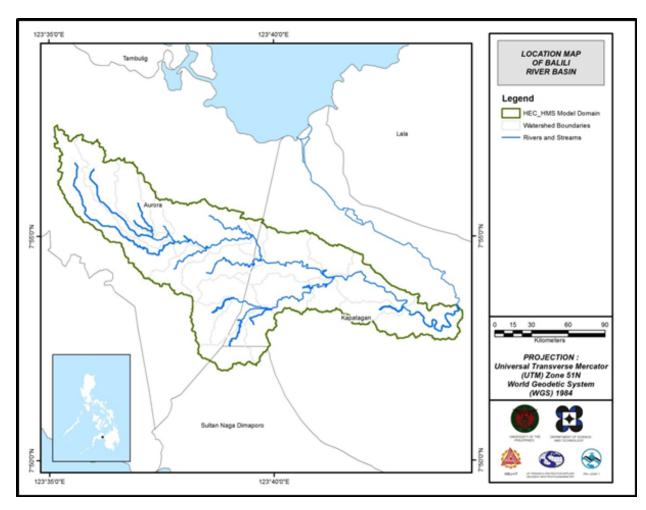


Figure 66. Stream delineation map of the Balili River Basin

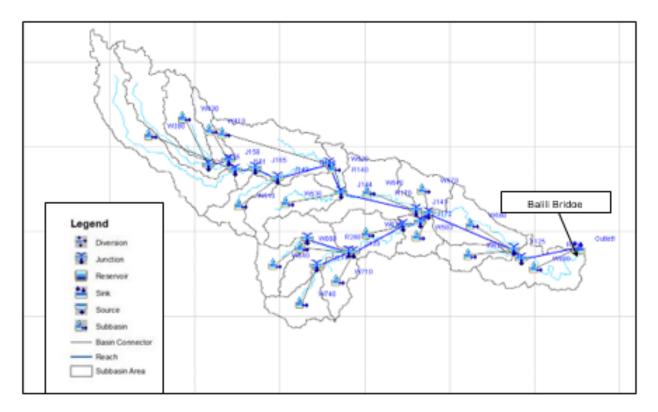


Figure 67. The Balili Hydrologic Model generated in HEC-GeoHMS

5.4 Cross-section Data

Riverbed cross-sections of the watershed are crucial in the HEC-RAS model set-up. The cross-section data for the HEC-RAS model was derived using the LiDAR DEM data. It was defined using the Arc GeoRAS tool and was post-processed in ArcGIS.

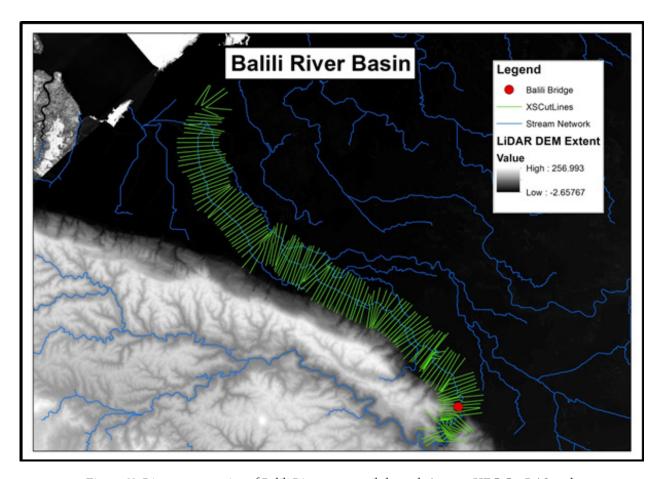


Figure 68. River cross-section of Balili River generated through Arcmap HEC GeoRAS tool

5.5 Flo 2D Model

The automated modelling process allows for the creation of a model with boundaries that are almost exactly coincidental with that of the catchment area. As such, they have approximately the same land area and location. The entire area is divided into square grid elements, 10 meter by 10 meter in size. Each element is assigned a unique grid element number which serves as its identifier, then attributed with the parameters required for modelling such as x-and y-coordinate of centroid, names of adjacent grid elements, Manning coefficient of roughness, infiltration, and elevation value. The elements are arranged spatially to form the model, allowing the software to simulate the flow of water across the grid elements and in eight directions (north, south, east, west, northeast, northwest, southeast, southwest).

Based on the elevation and flow direction, it is seen that the water will generally flow from the northeast of the model to the west, following the main channel. As such, boundary elements in those particular regions of the model are assigned as inflow and outflow elements respectively.

Figure 68. A screenshot of the river sub-catchment with the computational area to be modeled in FLO-2D Grid Developer System Pro (FLO-2D GDS Pro)

5.6 Results of HMS Calibration

After calibrating the Balili HEC-HMS river basin model, its accuracy was measured against the observed values. Figure 69 shows the comparison between the two discharge data.

Enumerated in Table 33 are the adjusted ranges of values of the parameters used in calibrating the model.

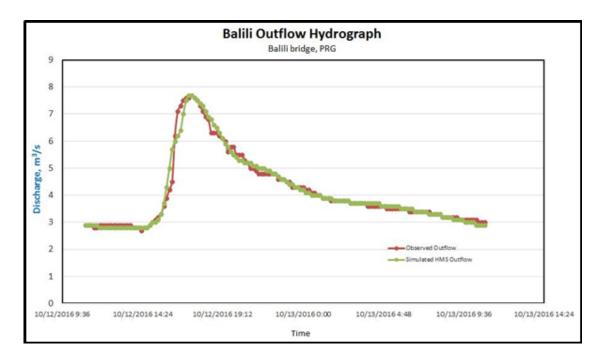


Figure 69. Outflow Hydrograph of Balili Bridge generated in HEC-HMS model compared with observed outflow

Table 33. Range of calibrated values for the Balili River Basin

Hydrologic Element	Calculation Type	Method	Parameter	Range of Calibrated Values
Basin	Loss	SCS Curve number	Initial Abstraction (mm)	13 - 31
			Curve Number	39 - 81
	Transform	Clark Unit Hydrograph	Time of Concentration (hr)	6 - 19
			Storage Coefficient (hr)	0.7 - 17
	Baseflow	Recession	Recession Constant	0.2 - 0.4
			Ratio to Peak	0.08 - 1
Reach	Routing	Muskingum- Cunge	Manning's Coefficient	0.04

Initial abstraction defines the amount of precipitation that must fall before surface runoff. The magnitude of the outflow hydrograph increases as initial abstraction decreases. The range of values from 13mm to 31mm means that there is average amount of infiltration or rainfall interception by vegetation per subbasin.

Curve number is the estimate of the precipitation excess of soil cover, land use, and antecedent moisture. The magnitude of the outflow hydrograph increases as curve number increases. The minimum value of 39 for this specific watershed goes to the lower side of the advisable curve number for Philippine watersheds depending on the soil and land cover of the area.

Time of concentration and storage coefficient are the travel time and index of temporary storage of runoff in a watershed. The range of calibrated values from 0.7 to 19 hours determines the reaction time of the model with respect to the rainfall. The peak magnitude of the hydrograph also decreases when these parameters are increased.

Recession constant is the rate at which baseflow recedes between storm events and ratio to peak is the ratio of the baseflow discharge to the peak discharge. Recession constant of 0.2 to 0.4 indicates that the basin is likely to quickly go back to its original discharge. Ratio to peak of 0.08 to 1 indicates a diverse reaction of receding limb in accordance with the subbasins.

Manning's roughness coefficient of 0.04 corresponds to the common roughness in Balili watershed, which is determined to be cultivated with mature field crops (Brunner, 2010).

Accuracy measure	Value
RMSE	0.20
r2	0.9973
NSE	0.98
PBIAS	-0.08
RSR	0.15

Table 34. Summary of the Efficiency Test of Balili HMS Model

The Root Mean Square Error (RMSE) method aggregates the individual differences of these two measurements. It was computed as 0.20 (m3/s).

The Pearson correlation coefficient (r2) assesses the strength of the linear relationship between the observations and the model. This value being close to 1 corresponds to an almost perfect match of the observed discharge and the resulting discharge from the HEC HMS model. Here, it measured 0.9973.

The Nash-Sutcliffe (E) method was also used to assess the predictive power of the model. Here, the optimal value is 1. The model attained an efficiency coefficient of 0.98.

A positive Percent Bias (PBIAS) indicates a model's propensity towards under-prediction. Negative values indicate bias towards over-prediction. Again, the optimal value is 0. In the model, the PBIAS is -0.08.

The Observation Standard Deviation Ratio (RSR) is an error index. A perfect model attains a value of 0 when the error in the units of the valuable a quantified. The model has an RSR value of 0.15.

5.7 Calculated outflow hydrographs and discharge values for different rainfall return periods

5.7.1 Hydrograph using the Rainfall Runoff Model

The summary graph (Figure 70) shows the Balili outflow using the Dipolog Rainfall Intensity-Duration-Frequency curves (RIDF) in 5 different return periods (5-year, 10-year, 25-year, 50-year, and 100-year rainfall time series) based on the PAGASA data. The simulation results reveal significant increase in outflow magnitude as the rainfall intensity increases for a range of durations and return periods.

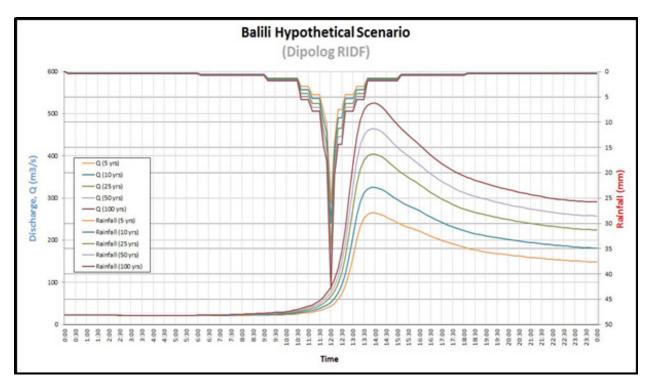


Figure 70. Outflow hydrograph at Balili Station generated using Dipolog RIDF simulated in HEC-HMS

A summary of the total precipitation, peak rainfall, peak outflow, and time to peak of the Balili discharge using the Dipolog RIDF in five different return periods is shown in Table 35.

Table 32. The peak values of the Balili HEC-HMS Model outflow using the Dipolog RIDF.

RIDF Period	Total Precipitation (mm)	Peak rainfall (mm)	Peak outflow (m 3/s)	Time to Peak
5-Year	178.32	25.9	264.6	13 hours, 50 minutes
10-Year	206.37	30	325	13 hours, 50 minutes
25-Year	241.91	35.2	404.1	14 hours
50-Year	268.14	39	464.3	14 hours
100-Year	294.55	42.9	525.4	14 hours

5.8 River Analysis (RAS) Model Simulation

The HEC-RAS Flood Model produced a simulated water level at every cross-section for every time step for every flood simulation created. The resulting model was used in determining the flooded areas within the model. The simulated model was an integral part in determining real-time flood inundation extent of the river after it has been automated and uploaded on the DREAM website. The sample generated map of Balili River using the calibrated HMS base flow is shown in Figure 71.

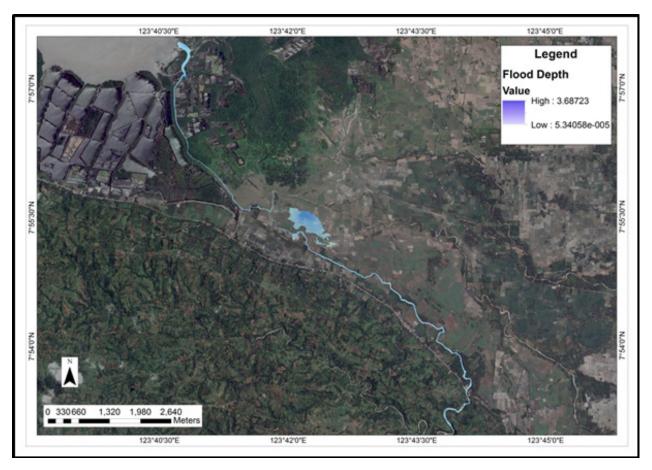


Figure 71. Sample output of Balili RAS Model

5.9 Flow Depth and Flood Hazard

The resulting hazard and flow depth maps have a 10m resolution. Figure 72 to Figure 77 show the 100-, 25-, and 5-year rain return scenarios of the Balili Floodplain. The floodplain, with an area of 218.63 sq.km., covers seven municipalities namely Baroy, Kapatagan, Lala, Salvador, Sapad, Tubod, and Aurora. Table 36 shows the percentage of area affected by flooding per municipality.

Table 36. Municipalities affected in Balili Floodplain

Municipality	Total Area	Area Flooded	% Flooded
Baroy	62.08	61.56	99%
Kapatagan	184.77	65.46	35%
Lala	125.18	124.31	99%
Salvador	46.46	12.02	26%
Sapad	65.13	3.39	5%
Tubod	121.95	17.64	14%
Aurora	162.23	4.92	3%

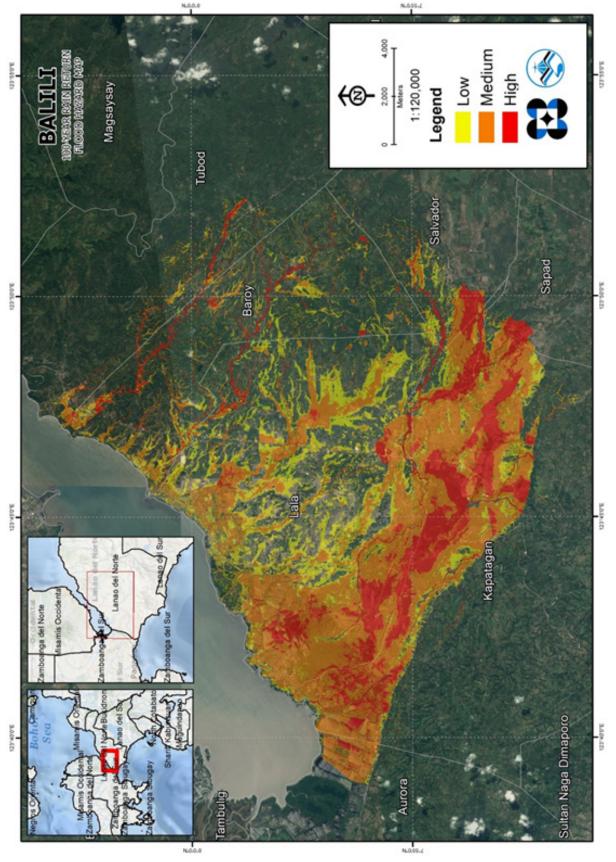


Figure 72. 100-year rain return flood hazard map for Balili Floodplain overlaid in Google Earth imagery

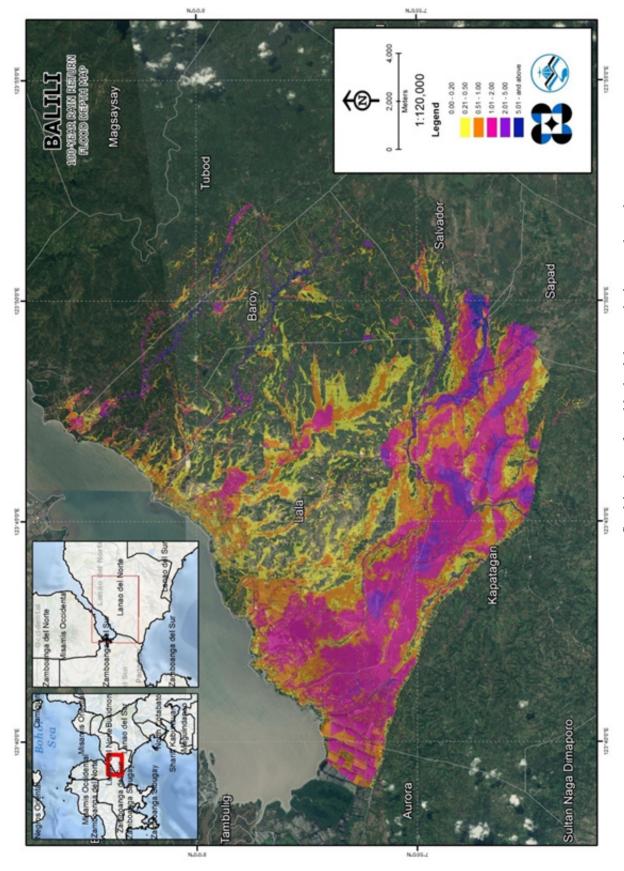
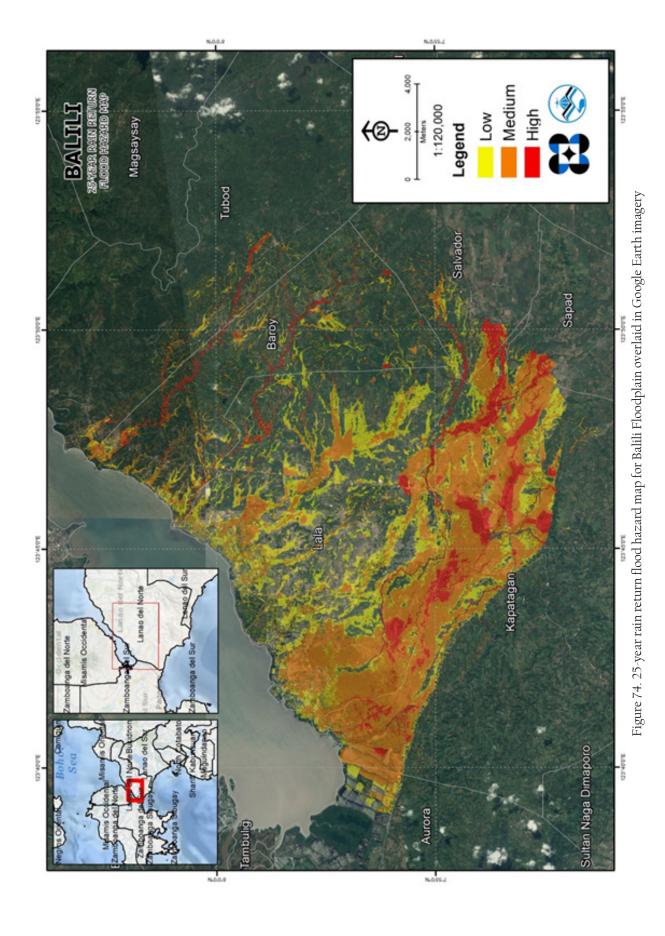
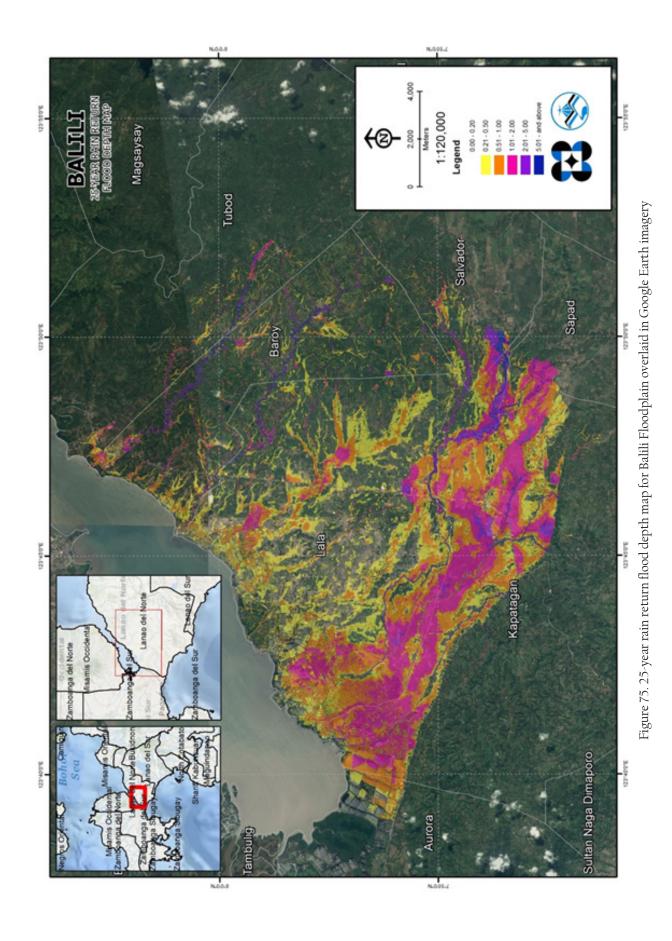




Figure 73. 100-year rain return flood depth map for Balili Floodplain overlaid in Google Earth imagery

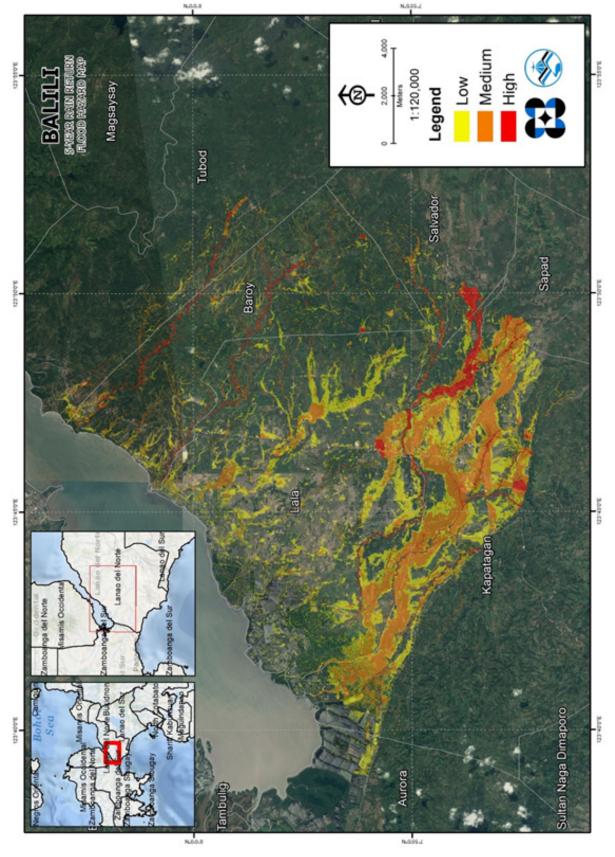


Figure 76. 5-year rain return flood hazard map for Balili Floodplain overlaid in Google Earth imagery

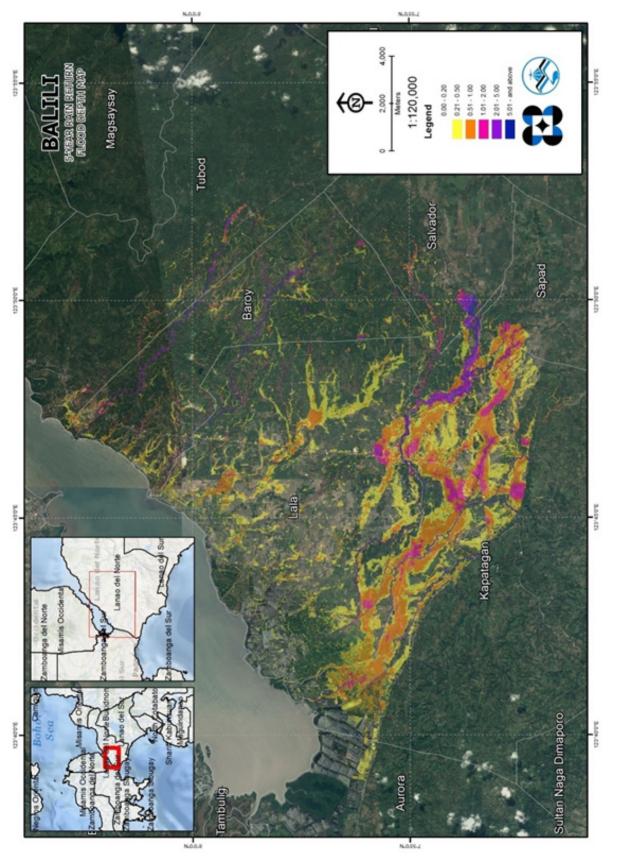


Figure 77. 5-year rain return flood depth map for Balili Floodplain overlaid in Google Earth imagery

5.10 Inventory of Areas Exposed to Flooding

Affected barangays in Balili River Basin, grouped by municipality, are listed below. For the said basin, seven municipalities consisting of 93 barangays are expected to experience flooding when subjected to 5-, 25-, and 100-year rainfall return period.

For the 5-year return period, 2.61% of the municipality of Aurora with an area of 162.225 sq.km. will experience flood levels of less 0.20 meters; 0.37% of the area will experience flood levels of 0.21 to 0.50 meters; while 0.04%, 0.005%, and 0.002% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, and more than 2 meters, respectively. Listed in Table 37 are the affected areas in square kilometres by flood depth per barangay.

BUTADON-BAI	ILI BASIN	Affected Barangays in Aurora Anonang
	0.03-0.20	4.23225
	0.21-0.50	0.607248
Affected Area (sq. km.)	0.51-1.00	0.0698
(Jan Killi)	1.01-2.00	0.0088
	2.01-5.00	0.0035
	> 5.00	0

Table 37. Affected areas in Aurora, Zamboanga del Sur during 5-year rainfall return period

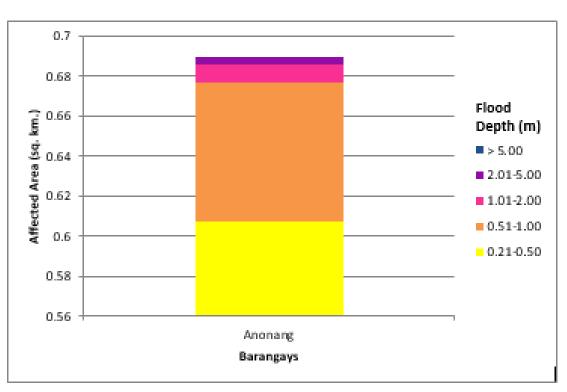


Figure 78. Affected areas in Aurora, Zamboanga del Sur during 5-year rainfall return period

For the municipality of Baroy, with an area of 32.08 sq. km., 87.96% will experience flood levels of less 0.20 meters; 5.63% of the area will experience flood levels of 0.21 to 0.50 meters; while 2.48%, 1.53%, 1.24%, and 0.42% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 38 are the affected areas in square kilometres by flood depth per barangay.

Table 38. Affected areas in Baroy, Lanao del Norte during 5-year rainfall return period

	3	Affected Baı	Affected Barangays in Baroy	ıroy								
BO IADON-BALILI BASIN	BASIIN	Andil	Bagong Dawis	Baroy Daku Bato	Bato	Cabasagan Dalama	Dalama	Libertad	Limwag	Lindongan	Lindongan Maliwanag Manan-Ao	Manan-Ao
	0.03-0.20 4.40468	4.40468	1.94386	0.950785	1.92576	1.92576 2.69146 1.97162 1.45446 1.33433 2.5115	1.97162	1.45446	1.33433	2.5115	3.25986	1.91386
	0.21-0.50	0.21-0.50 0.154252 0.145173	0.145173	0.197693	0.061336	0.088566	0.172662	0.248171	0.055754	0.169224	0.061336 0.088566 0.172662 0.248171 0.055754 0.169224 0.200007 0.133319	0.133319
Affected Area	0.51-1.00	0.51-1.00 0.124492	0.052227	0.075216	0.02992	0.027664	0.029435	0.054178	0.016812	0.082561	0.027664 0.029435 0.054178 0.016812 0.082561 0.077854	0.048418
	1.01-2.00	1.01-2.00 0.102096	0.03623	0.01099	0.021333	0.021333 0.013003 0.011984 0.0177	0.011984		0.022	0.030489	0.030489 0.063523	0.016632
	2.01-5.00	2.01-5.00 0.094202	0.032305	0.002	0.01061	0.005211 0.009427 0.011501 0.043624 0.0075	0.009427	0.011501	0.043624	0.0075	0.095362	0.006679
	> 5.00	0.037019 0.012545	0.012545	0	0.0008	0.0002	0.001	0.000437	0.000437 0.017503 0	0	0.058796	0

		Affected Bar	Affected Barangays in Baroy	roy									
BU IADON-BALILI BASIN		Pange	Pindolonan Poblacion	Poblacion	Princesa	Rawan Point	Riverside Sagadan		Sagadan Upper	Salong	San Juan	Tinubdan	Village
	0.03-0.20 1.93279		2.43917	1.20102	3.96815	3.96815 2.40521 5.30325		1.68662	1.25265	1.68662 1.25265 3.77664	0.394761 4.46677		1.4217
	0.21-0.50	0.21-0.50 0.134309 0.13491		0.038619	0.129314	0.410837	0.129314 0.410837 0.196525 0.090365 0.181929 0.164645 0.047308 0.280242	0.090365	0.181929	0.164645	0.047308		0.059178
Affected Area	0.51-1.00	0.056199	0.51-1.00 0.056199 0.048979 0.033058	0.033058	0.088016	0.095156	0.108863	0.069916	0.092541	0.073617	0.027344	0.088016 0.095156 0.108863 0.069916 0.092541 0.073617 0.027344 0.160266 0.064989	0.064989
	1.01-2.00	0.036621	1.01-2.00 0.036621 0.032805	0.014573	0.105909 0.0371		0.099474	0.060861	0.027224	0.053561	0.005941	0.099474 0.060861 0.027224 0.053561 0.005941 0.090185	0.04159
	2.01-5.00 0.0152	0.0152	0.023764 0.002525	0.002525	0.109157	0.050339	898960.0	0.053807	0.01805	0.003547	0.000356	0.109157 0.050339 0.096868 0.053807 0.01805 0.003547 0.000356 0.067026 0.013	0.013
	> 5.00	0	0	0.022378	0.037951 0.01269		0.01943	0.0074	0	0	0	0.031794	0

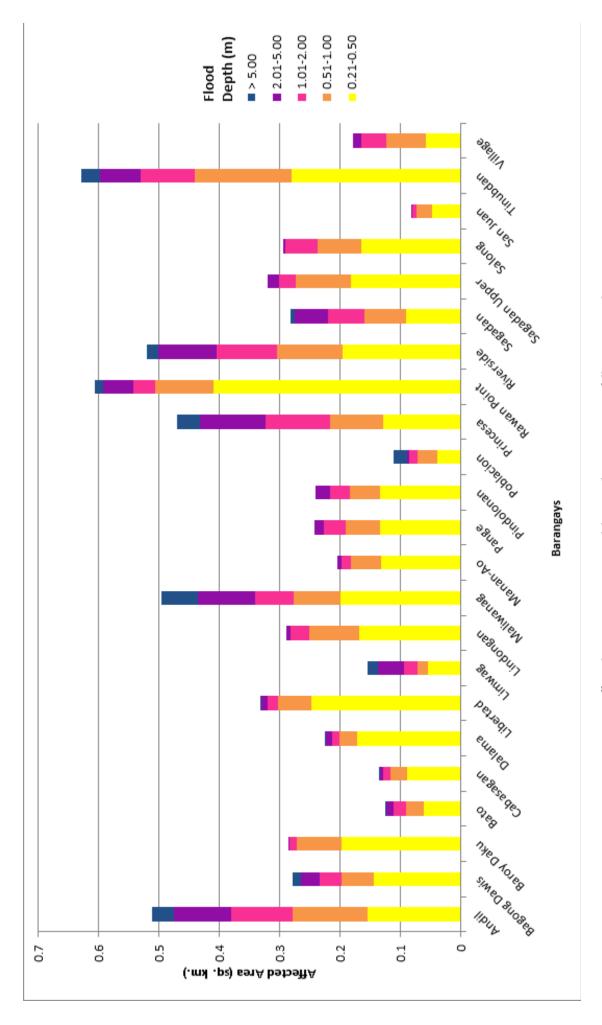


Figure 79. Affected areas in Baroy, Lanao del Norte during 5-year rainfall return period

For the Municipality of Kapatagan, with an area of 184.77 sq. km., 18.13% will experience flood levels of less 0.20 meters; 7.13% of the area will experience flood levels of 0.21 to 0.50 meters; while 6.20%, 1.37%, 0.31%, and 0.19% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 39 are the affected areas in square kilometres by flood depth per barangay.

Table 39. Affected areas in Kapatagan, Lanao del Norte during 5-year rainfall return period

		Affected Bar	Affected Barangays in Balili	≡									
BUTADON-BALILI BASIN	I BASIN												
		Bagong Silang	Balili	Bansarvil	Buenavista	Butadon	Cathedral Falls	Concepcion Curvada	Curvada	De Asis	Donggoan	Durano	Lapinig
	0.03-0.20	2.60197	2.30471	0.118836	1.33323	2.11904	1.03709	1.17152	0.689962	909968.0	3.53207	0.848083	3.6352
	0.21-0.50	1.57844	0.776544	0.0022	0.081905	1.49508	0.493558	1.16122	0.222296	0.955294	0.177508	0.010343	1.63532
Affected Area	0.51-1.00	1.35935	0.828453	0.000193	0.024211	1.62124	0.256007	1.2326	0.275394	0.344252	0.142344	0.003087	1.88021
	1.01-2.00	0.568179	0.210979	0.0003	0.011576	0.16262	0.109467	0.059343	0.143599	0.02297	0.031429	0.00205	0.276532
	2.01-5.00	0.088038	0.068907	0	0.002393	0.07269	0.028248	0.071894	0.029391	0.024308	0.017228	0.000407	0.063171
	> 5.00	0.007475	0.043339	0	0.0001	0.067442	0.047745	0.038302	0.004784	0	0.0004	0	0.0002
		Affected Bar	Affected Barangays in Balili	iii									
BO IADON-BALILI BASIN	I BASIIN	Malinas	Maranding	Margos	Poblacion	San Vicente	Santa Cruz	Santo Tomas	osns	Taguitic	Tiacongan	Tulatulahan Waterfalls	Waterfalls
	0.03-0.20	0.336109	0.520039	1.40354	1.20102	0.540308	0.588903	0.229926	1.77454	3.74068	1.84231	0.053399	0.977286
	0.21-0.50	0.011628	0.650482	0.538427	0.038619	0.610971	0.369175	0.508256	0.588259	0.597039	0.187115	0	0.482734
Affected Area (sq. km.)	0.51-1.00	0.0041	1.01617	0.423782	0.033058	0.317403	0.034517	0.773081	0.207899	0.09892	0.05543	0	0.52229
	1.01-2.00	0.0002	0.336504	0.020483	0.014573	0.114874	0.003572	0.014817	0.018772	0.019797	0.020596	0	0.367235
	2.01-5.00	0	0.007241	0.003067	0.002525	0.003803	0.005429	0.013185	0.018343	0.003009	0.001307	0	0.040052
	> 5.00	0	0.020464	0.0001	0.022378	0	0.016578	0.000738	0.039113	0	0	0	0.03907

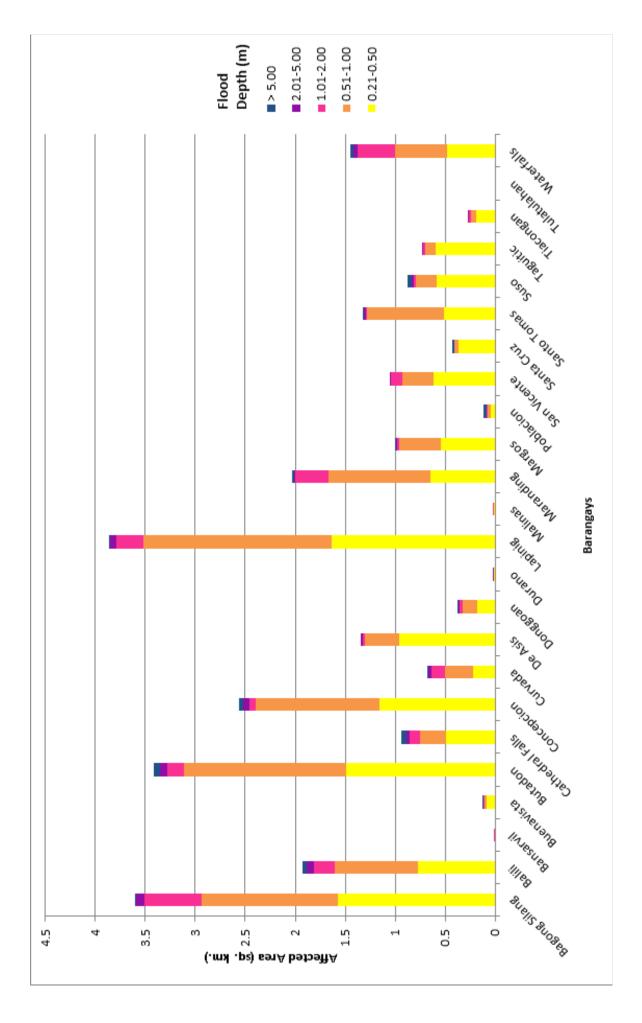


Figure 80. Affected areas in Kapatagan, Lanao del Norte during 5-year rainfall return period

For the municipality of Lala, with an area of 125.18 sq. km., 75.73% will experience flood levels of less 0.20 meters; 15.03% of the area will experience flood levels of 0.21 to 0.50 meters; while 5.57%, 1.43%, 1.31%, and 0.31% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 40 are the affected areas in square kilometres by flood depth per barangay.

Table 40. Affected areas in Lala, Lanao del Norte during 5-year rainfall return period

		Affected Bar	Affected Barangays in Lala	e								
BUTADON-BALILI BASIN	I BASIN	Abaga	Andil	Cabasagan	Camalan	Darumawang Bucana	Darumawang Darumawang El Salvador Gumagamot Lala Proper Lanipao Ilaya	El Salvador	Gumagamot	Lala Proper	Lanipao	Magpatao
	0.03-0.20 2.0051		4.40468 2.69146		2.90129	6.93797	8.40903	3.17868 2.66599		1.19515	1.19515 1.54169 2.87387	2.87387
	0.21-0.50	0.21-0.50 0.186849 0.154252 0.088566	0.154252		0.703452	1.00461	1.45679	2.33241	0.468779 0.210934 0.311796 0.436569	0.210934	0.311796	0.436569
Affected Area	0.51-1.00	0.51-1.00 0.015355 0.124492 0.027664	0.124492		0.241062	0.123578	0.217805	2.32056	0.129615 0.035978 0.082912 0.293539	0.035978	0.082912	0.293539
	1.01-2.00	1.01-2.00 0.051482 0.102096 0.013003	0.102096		0.008301	0.013001	0.025511	0.325324 0.0002		0.013891 0.0012	0.0012	0.044382
	2.01-5.00	2.01-5.00 0.010081 0.094202 0.005211	0.094202	0.005211	0	8000°0	0.031236	0.165029	0	0	0	0.0022
	> 5.00	0	0.037019 0.0002	0.0002	0	0	0.007404	0	0	0	0	0

		Affected Bar	Affected Barangays in Lala	е								
BUTADON-BALILI BASIN		Maranding Bucana	a	>	Pacita	Pendolonan Pinoyak	Pinoyak	Raw-An	Rebe	San Isidro San Isidro Lower Upper	San Isidro Upper	San Manuel
	0.03-0.20	0.03-0.20 0.520039 2.71572		1.36805	1.79739	4.80623	4.0972	1.37038	6.13423	3.89005 3.67033	3.67033	3.55357
	0.21-0.50	0.21-0.50 0.650482 0.332162 0.225889	0.332162	0.225889	0.24538	1.03546	1.82841	0.104887 1.37439		0.421712 0.275114 0.641432	0.275114	0.641432
Affected Area (sg. km.)	0.51-1.00 1.01617		0.0265	0.039035	0.012931	0.081635	0.274938	0.003494	0.003494 0.473929 0.048709 0.059496 0.188141	0.048709	0.059496	0.188141
	1.01-2.00 0.336504	0.336504	0	0.004135	0.0001	0.024116 0.03779	0.03779	0.001578	0.001578 0.321071 0.036361 0.05442 0.130907	0.036361	0.05442	0.130907
	2.01-5.00 0.007241	0.007241	0	0	0	0.0109	0.063902	0.000004	0.000004 0.752258 0.000302 0.046517 0.373071	0.000302	0.046517	0.373071
	> 5.00	0.020464	0	0	0	0.0001	0.100346	0	0.046175	0	0.031908 0.088457	0.088457

		Affected Bar	Affected Barangays in Lala	<u> </u>		
BUIADON-BALILI BASIN		Santa Cruz Santa Cruz Simpak Lower Upper	Santa Cruz Upper	Simpak	Tenazas	Tuna-An
	0.03-0.20	0.03-0.20 5.08506	7.26576	5.33245	2.21415	2.16931
	0.21-0.50 0.69255		1.31312	1.3278	0.223156 0.771991	0.771991
Affected Area	0.51-1.00	0.51-1.00 0.08145	0.480047	0.376883	0.480047 0.376883 0.037169 0.15593	0.15593
È	1.01-2.00	0.003875	0.138883	0.071756	1.01-2.00 0.003875 0.138883 0.071756 0.008628 0.02317	0.02317
	2.01-5.00 0	0	0.060266 0.02115	0.02115	0	0.001
	> 5.00	0	0.0411	0.018035	0	0

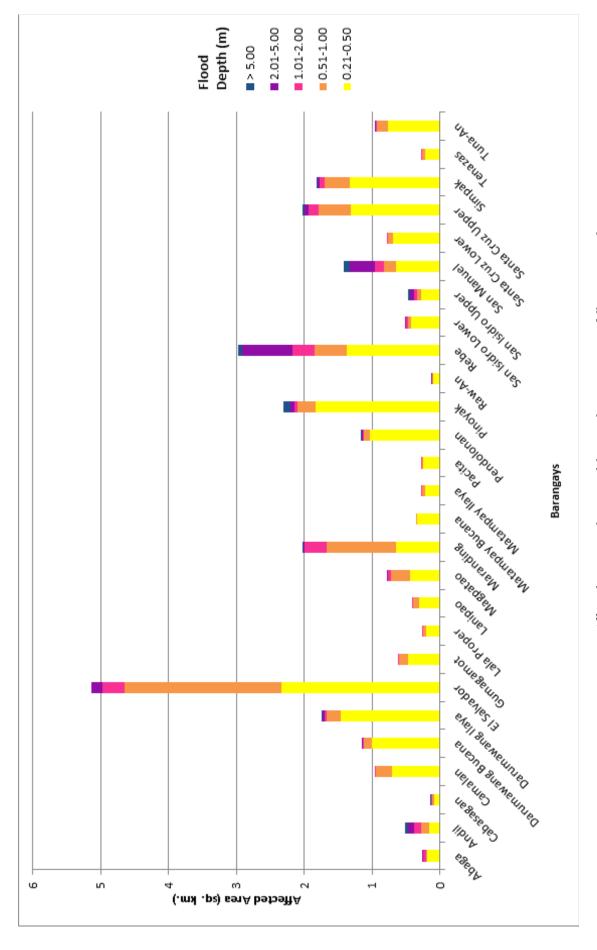


Figure 81. Affected areas in Lala, Lanao del Norte during 5-year rainfall return period

For the municipality of Salvador, with an area of 46.46 sq. km., 23.52% will experience flood levels of less 0.20 meters; 1.73% of the area will experience flood levels of 0.21 to 0.50 meters; while 0.78%, 0.88%, 1.03%, and 0.39% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 41 are the affected areas in square kilometres by flood depth per barangay.

Table 41. Affected areas in Salvador, Lanao del Norte during 5-year rainfall return period

		Affected Bar	Affected Barangays in Salvador	lvador								
BOTADON-BALILI BASIN	BASIN	Camp III	Camp III	Curva- Miagao	Inasagan	Mabatao	Padianan	Mabatao Padianan Pagayawan On	aliwad-	Panganta- pan	Poblacion Sudlon	Sudlon
	0.03-0.20	0.03-0.20 3.10936	3.10936	1.25679 1.20012		1.49208	0.155442	1.49208 0.155442 0.037194 1.20721		0.007839 1.20102 1.26288	1.20102	1.26288
	0.21-0.50	0.218019	0.218019	0.21-0.50 0.218019 0.218019 0.165668 0.09619		0.048934	0.011049	0.048934 0.011049 0.002311 0.13714		0.0013	0.038619 0.084626	0.084626
Affected Area	0.51-1.00	0.110866	0.110866	0.065867	0.51-1.00 0.110866 0.110866 0.065867 0.010089 0.027589 0.000158 0.0002	0.027589	0.000158		0.062408	0	0.033058 0.051633	0.051633
	1.01-2.00	0.084129	0.084129	1.01-2.00 0.084129 0.084129 0.111241 0.0041		0.012341	0.012341 0.000748 0.0001		0.117307	0	0.014573 0.062226	0.062226
	2.01-5.00	0.026609	0.026609	2.01-5.00 0.026609 0.026609 0.014868 0.0003		0.0008	0.0008 0.000549 0		0.39703	0	0.002525 0.035005	0.035005
	> 5.00	0.0004	0.0004	0	0	0	0	0	0.160243	0	0.022378 0	0

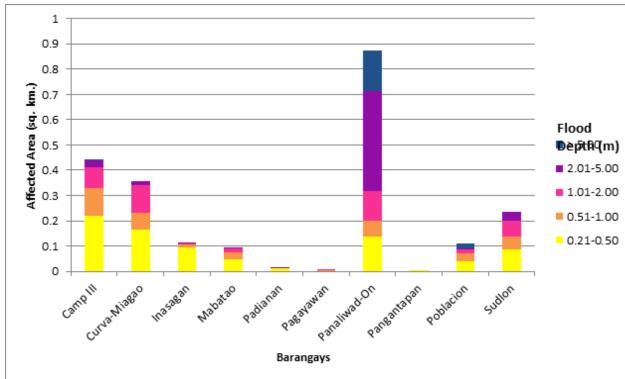


Figure 82. Affected areas in Salvador, Lanao del Norte during 5-year rainfall return period

For the municipality of Sapad, with an area of 65.13 sq. km., 2.15% will experience flood levels of less 0.20 meters; 0.89% of the area will experience flood levels of 0.21 to 0.50 meters; while 1.41%, 0.46%, 0.20%, and 0.10% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 42 are the affected areas in square kilometres by flood depth per barangay.

Table 42. Affected areas in Sapad, Lanao del Norte during 5-year rainfall return

DUTADON DALI	I DACIN	Affected Bai	rangays in Sa	pad	
BUTADON-BALIL	II BASIN	Mabugnao	Mapurog	Pancilan	Panoloon
	0.03-0.20	0.586253	0.754582	0.008044	0.053034
	0.21-0.50	0.075851	0.385404	0.03873	0.079508
Affected Area (sq. km.)	0.51-1.00	0.097786	0.444446	0.272681	0.10131
(oq: mm)	1.01-2.00	0.12516	0.094381	0.049688	0.031
	2.01-5.00	0.010804	0.090596	0.023474	0.005251
	> 5.00	0.014868	0.050502	0	0

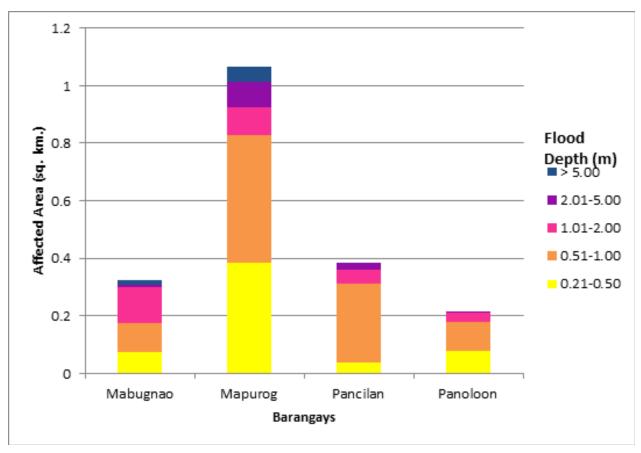


Table 42. Affected areas in Sapad, Lanao del Norte during 5-year rainfall return

For the municipality of Tubod, with an area of 121.95 sq. km., 12.74% will experience flood levels of less 0.20 meters; 067% of the area will experience flood levels of 0.21 to 0.50 meters; while 0.46%, 0.29%, 0.15%, and 0.04% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 43 are the affected areas in square kilometres by flood depth per barangay.

Table 43. Affected areas in Tubod, Lanao del Norte during 5-year rainfall return period

		Affected Bar	Affected Barangays in Tubod	poq							
BO IADON-BALILI BASIN	BASIN	Bulod	Candis	Licapao	Malingao	Patudan Pinpin		Poblacion Pualas	Pualas	San Antonio	Santo Niño
	0.03-0.20	0.03-0.20 0.271384 0.356899 2.89185 2.85429	0.356899	2.89185	2.85429	1.06672	2.16465	1.20102	1.06672 2.16465 1.20102 0.807976 1.50183 2.41784	1.50183	2.41784
	0.21-0.50	0.21-0.50 0.009286 0.010703 0.152622 0.174308	0.010703	0.152622		0.062407	0.087068	0.038619	0.062407 0.087068 0.038619 0.039422 0.039382 0.203027	0.039382	0.203027
Affected Area (sq. km.)	0.51-1.00	0.51-1.00 0.007394 0.000988 0.095427 0.120329	0.000988	0.095427		0.030826	0.060027	0.033058	0.030826 0.060027 0.033058 0.041976 0.065638 0.10149	0.065638	0.10149
	1.01-2.00	1.01-2.00 0.001638	0.000547	0.000547 0.080673 0.075749		0.026712	0.036004	0.014573	0.026712 0.036004 0.014573 0.025979 0.047821 0.048812	0.047821	0.048812
	2.01-5.00	0	0	0.0502	0.070755	0.011752	0.022404	0.002525	0.011752 0.022404 0.002525 0.001363 0.023092 0.003495	0.023092	0.003495
	> 5.00	0	0	0	0.007285	0	0.016734	0.016734 0.022378 0	0	0	0

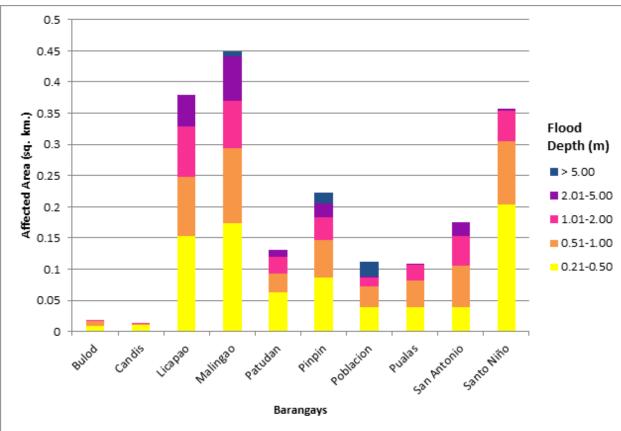


Figure 84. Affected areas in Tubod, Lanao del Norte during 5-year rainfall return period

For the 25-year return period, 2.61% of the municipality of Aurora with an area of 162.225 sq. km. will experience flood levels of less 0.20 meters; 1.72% of the area will experience flood levels of 0.21 to 0.50 meters; while 0.59%, 067%, 0.04%, and 0.00006% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 44 are the affected areas in square kilometres by flood depth per barangay.

Table 44. Affected areas in Aurora, Zamboanga del Sur during 25-year rainfall return period

BUTADON-BALI	LI BASIN	Affected Barangays in Aurora Anonang
	0.03-0.20	
	0.21-0.50	2.78664
Affected Area (sq. km.)	0.51-1.00	-0.965115 1.09455
(54)	1.01-2.00	0.070194 0.005
	2.01-5.00	0.0001
	> 5.00	

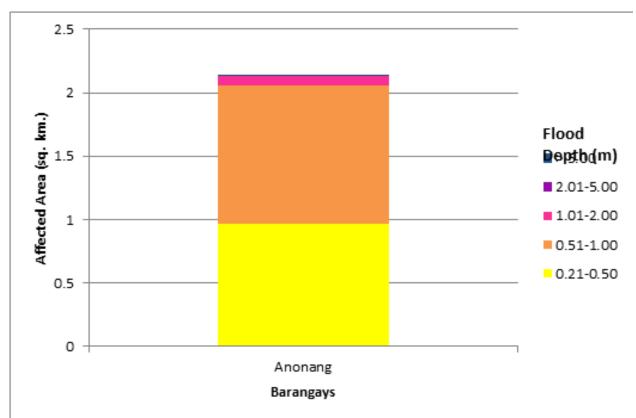


Figure 85. Affected areas in Aurora, Zamboanga del Sur during 25-year rainfall return period

For the municipality of Baroy, with an area of 32.08 sq. km., 82.85% will experience flood levels of less 0.20 meters; 7.63% of the area will experience flood levels of 0.21 to 0.50 meters; while 3.90%, 2.20%, 1.88%, and 0.86% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 45 are the affected areas in square kilometres by flood depth per barangay.

Table 45. Affected areas in Baroy, Lanao del Norte during 25-year rainfall return period

, , , , , , , , , , , , , , , , , , ,		Affected Bar	Affected Barangays in Baroy	roy									
BO IADON-BALILI BASIN	N BASIIN	Andil	Bagong Dawis	Baroy Daku	Bato	Cabasagan Dalama		Libertad	Limwag	Lindongan	Lindongan Maliwanag Manan-Ao	Manan-Ao	
	0.03-0.20	4.26304	1.74382	0.831675	1.88203	2.62849	1.84807	1.22822	1.27297	2.40505	3.12666	1.80999	
	0.21-0.50	0.182034	0.228371	0.224754	0.083227	0.127871	0.256325	9698:0	0.096025	0.197411	0.231464	0.199088	
Affected Area	0.51-1.00	0.131119	0.119307	0.148235	0.039758	0.036853	0.063819	0.13796	0.016355	0.132536	0.11072	0.064725	
	1.01-2.00	0.124713	0.066959	0.028861	0.022638	0.023911	0.016984	0.032997	0.021021	0.046998	0.060243	0.035432	
	2.01-5.00	0.14161	0.046133	0.003159	0.020911	0.009515	0.010627	0.014923	0.041812	0.020379	0.120213	0.010179	
	> 5.00	0.074219	0.018344	0	0.0012	9000.0	0.0032	0.00269	0.041839	0	0.106096	0	
		Affected Bar	Affected Barangays in Baroy	roy									
BO IADON-BALILI BASIN	N BASIIN	Pange	Pindolonan Poblacion	Poblacion	Princesa	Rawan Point	Riverside	Sagadan	Sagadan Upper	Salong	San Juan	Tinubdan	Village
	0.03-0.20	1.81	2.31629	1.18229	3.78414	1.89596	5.15615	1.53219	1.06921	3.68098	0.358449	4.23231	1.38177
	0.21-0.50	0.193487	0.218661	0.041469	0.150333	0.719264	0.249782	0.123475	0.207234	0.196755	0.062116	0.320094	0.061013
Affected Area (sq. km.)	0.51-1.00	0.092827	0.05664	0.036404	0.114746	0.274015	0.135016	0.098983	0.181649	0.099709	0.037702	0.226332	0.065006
	1.01-2.00	0.050907	0.043515	0.025036	0.120811	0.058567	0.091108	0.102442	0.093021	0.052795	0.016985	0.164768	0.067629
	2.01-5.00	0.027894	0.045385	0.004596	0.191985	0.050541	0.138301	0.081409	0.02128	0.042368	0.000456	0.096285	0.025041
	> 5.00	0	0	0.043139	0.076481	0.024887	0.054049	0.030471	0	0	0	0.056497	0

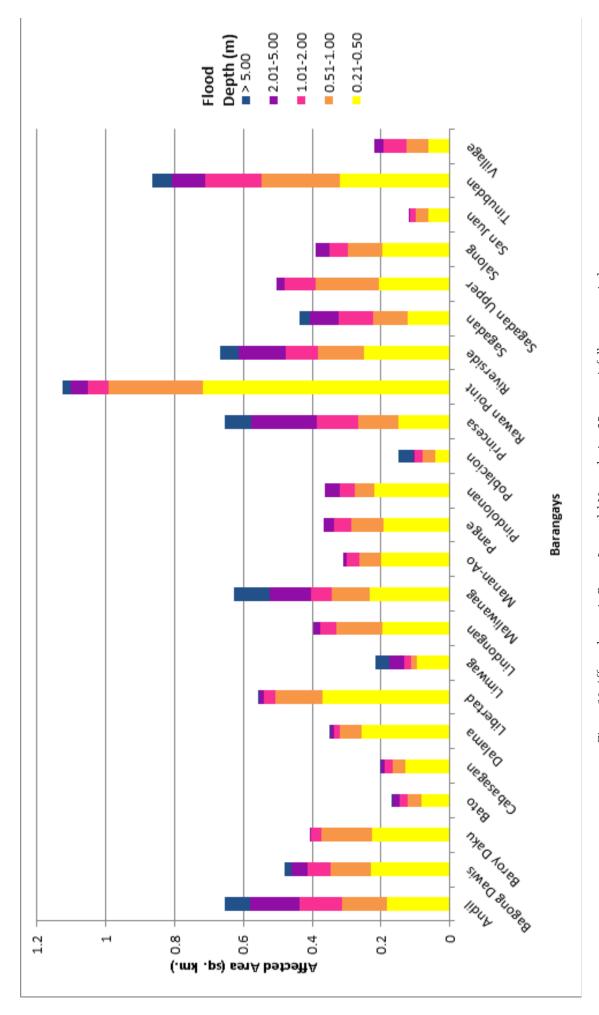


Figure 86. Affected areas in Baroy, Lanao del Norte during 25-year rainfall return period

For the Municipality of Kapatagan, with an area of 184.77 sq. km., 10.59% will experience flood levels of less 0.20 meters; 4.61% of the area will experience flood levels of 0.21 to 0.50 meters; while 8.58%, 8.59%, 0.73%, and 0.25% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 46 are the affected areas in square kilometres by flood depth per barangay.

Table 46. Affected areas in Kapatagan, Lanao del Norte during 25-year rainfall return period

	2	Affected Baı	Affected Barangays in Balili	≡									
BUIADON-BALILI BASIN	I BASIIN	Bagong Silang	Balili	Bansarvil	Buenavista	Butadon	Cathedral Falls	Concepcion Curvada	Curvada	De Asis	Donggoan	Durano	Lapinig
	0.03-0.20	0.681206	1.38073	0.116857	1.28105	0.355727	0.776085	0.593858	0.111076	0.293725	3.40794	0.84211	1.37571
	0.21-0.50	1.47474	0.661879	0.003679	0.114161	0.679924	0.527673	0.686736	0.301007	0.525989	0.223136	0.013222	0.669498
Affected Area	0.51-1.00	1.83158	0.777461	0.000648	0.035619	1.8505	0.380526	0.938203	0.437303	1.1486	0.190196	0.004581	2.30493
(i)	1.01-2.00	1.86187	1.21334	0.000145	0.018588	2.48049	0.173599	1.39888	0.4612	0.255916	0.050335	0.00295	2.99481
	2.01-5.00	0.330236	0.131874	0.0002	0.003793	0.0905	0.065814	0.075886	0.041989	0.024024	0.028275	0.001	0.145178
	> 5.00	0.023814	0.067653	0	0.0002	0.088688	0.048417	0.041308	0.012852	0.003181	0.001094	0.000107	0.000493
		Affected Baı	Affected Barangays in Balili	i									
BO IADON-BALILI BASIN	I BASIIN	Malinas	Maranding	Margos	Poblacion	San Vicente	Santa Cruz	Santo Tomas	Suso	Taguitic	Tiacongan	Tulatulahan Waterfalls	Waterfalls
	0.03-0.20	0.330121	0.157747	0.856354	1.18229	0.138445	0.349874	0.095462	1.42163	1.4019	1.68229	0.053299	0.674534
	0.21-0.50	0.015292	0.2945	0.168328	0.041469	0.425059	0.20504	0.255489	0.444515	0.270848	0.27739	0.0001	0.2334
Affected Area (sg. km.)	0.51-1.00	0.005623	0.923331	0.383526	0.036404	0.420876	0.41574	0.991873	0.514602	1.63655	0.106461	0	0.523665
	1.01-2.00	0.001	1.14239	0.967025	0.025036	0.579768	0.024119	0.182983	0.208504	1.14404	0.038314	0	0.651371
	2.01-5.00	0	0.011412	0.014067	0.004596	0.023212	0.005785	0.015658	0.02142	0.006109	0.002307	0	0.30369
	> 5.00	0	0.021522	0.0001	0.043139	0	0.017616	0.000837	0.040442	0	0	0	0.042632

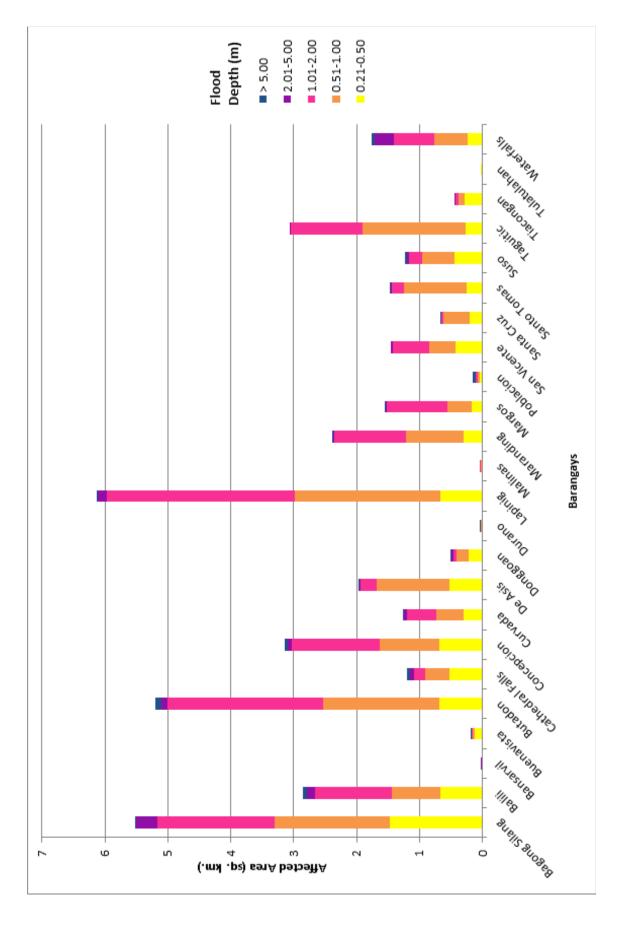


Figure 87. Affected areas in Kapatagan, Lanao del Norte during 25-year rainfall return period

For the municipality of Lala, with an area of 125.18 sq. km., 52.28% will experience flood levels of less 0.20 meters; 21.17% of the area will experience flood levels of 0.21 to 0.50 meters; while 14.95%, 8.74%, 1.79%, and 0.50% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 47 are the affected areas in square kilometres by flood depth per barangay.

Table 47. Affected areas in Lala, Lanao del Norte during 5-year rainfall return period

		Affected Bar	Affected Barangays in Lala	<u>e</u>								
BUTADON-BALILI BASIN	I BASIN	Abaga	Andil	Cabasagan Camalan		Darumawang Bucana	Darumawang Darumawang El Salvador Gumagamot Lala Proper Lanipao Ilaya	El Salvador	Gumagamot	Lala Proper		Magpatao
	0.03-0.20 Abaga		Andil	Cabasagan Camalan	Camalan		Darumawang El Salvador	El Salvador		Lala	Lanipao	Magpatao
	0.21-0.50 1.79083		4.26304	2.62849	1.5455	1.56072	4.26274	0.357566 2.19321		0.925401 1.16686		2.29348
Affected Area (sg. km.)	0.51-1.00	0.51-1.00 0 .379307 0 .182034 0 .127871	0.182034		1.16126	1.45496	3.05202	0.764308	0.764308 0.730402 0.404857 0.536653 0.664225	0.404857	0.536653	0.664225
	1.01-2.00	1.01-2.00 0.033972 0.131119 0.036853	0.131119		0.947524	3.34876	2.09976	2.51342	0.326966 0.100367 0.178755 0.415824	0.100367	0.178755	0.415824
	2.01-5.00	0.028599	0.124713	0.023911	2.01-5.00 0.028599 0.124713 0.023911 0.199816 1.71353		0.691198	4.34052	0.019361 0.024133 0.055322 0.271817	0.024133	0.055322	0.271817
	> 5.00	0.036262	0.036262 0.14161 0.00951	0.009515	0	0.002	0.031857	0.345345	0	0.0012	0	0.005217

		Affected Barangays in Lala	angays in Lal	<u>.</u> @								
BUTADON-BALILI BASIN		Maranding Bucana	Matampay Matampay Bucana Ilaya		Pacita	Pendolonan Pinoyak	Pinoyak	Raw-An	Rebe	San Isidro San Isidro Lower Upper		San Manuel
	0.03-0.20	Maranding	Matampay	3.03-0.20 Maranding Matampay Matampay 1.39871	1.39871	3.98747	2.14318	1.23857	4.68903	3.24877	3.31729	2.30358
	0.21-0.50	0.21-0.50 0.157747 2.31232		0.954579	0.597407	1.57621	1.89517	0.220345 2.12674	2.12674	0.895633	0.895633 0.535997 0.876542	0.876542
Affected Area (sq. km.)	0.51-1.00 0.2945	0.2945	0.633382 0.555049		0.060082	0.340032	1.93157	0.021766	0.021766 0.860422 0.206709 0.104144 0.697306	0.206709	0.104144	0.697306
	1.01-2.00	1.01-2.00 0.923331 0.129876 0.121904	0.129876		0.0011	0.041726	0.245252	0.003094	0.003094 0.441274 0.035082 0.058576 0.511527	0.035082	0.058576	0.511527
	2.01-5.00	2.01-5.00 1.14239	0.0001	0.00808	0	0.0128	0.077634	0.000083	0.000083 0.867052 0.016402 0.079487 0.425045	0.016402	0.079487	0.425045
	> 5.00	0.011412	0	0	0	0.0002	0.109788	0.000004	0.000004 0.122116	0	0.044984 0.162469	0.162469

	3	Affected Barangays in Lala	angays in La	<u>e</u>		
BU IADON-BALILI BASIN	BASIN	Santa Cruz Santa Cruz Lower Upper	Santa Cruz Upper	Simpak	Tenazas	Tuna-An
	0.03-0.20	0.03-0.20 3.07068 5.95593 4.32616	5.95593		1.87531	1.47933
	0.21-0.50 1.73794		1.65553	1.88535	0.481954	1.07092
Affected Area	0.51-1.00	0.51-1.00 0.726034 1.1036		0.762366 0.094939		0.491201
	1.01-2.00	1.01-2.00 0.332391 0.395766 0.125255 0.030508	0.395766	0.125255		0.078759
	2.01-5.00	0	0.139605	0.139605 0.041248 0.0004	0.0004	0.0012
	> 5.00	0	0.054174 0.018735	0.018735	0	0

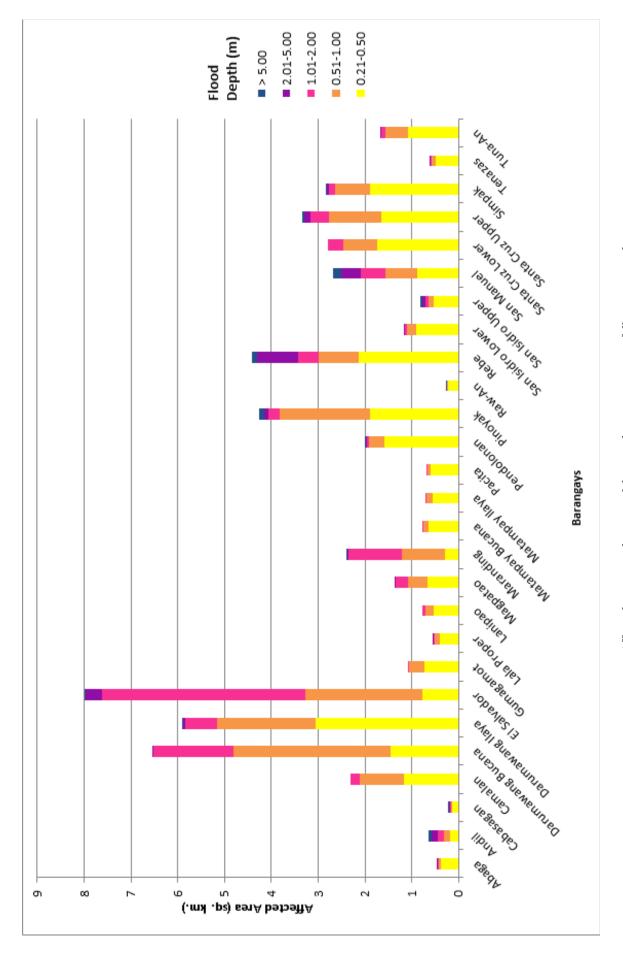


Figure 88. Affected areas in Lala, Lanao del Norte during 25-year rainfall return period

For the municipality of Salvador, with an area of 46.46 sq. km., 23.52% will experience flood levels of less 0.20 meters; 1.73% of the area will experience flood levels of 0.21 to 0.50 meters; while 0.78%, 0.88%, 1.03%, and 0.39% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 48 are the affected areas in square kilometres by flood depth per barangay.

Table 48. Affected areas in Salvador, Lanao del Norte during 25-year rainfall return

		Affected Bar	Affected Barangays in Salvador	llvador								
BUTADON-BALILI BASIN	BASIIN	Camp III	Camp III	Curva- Miagao	Inasagan	Mabatao	Padianan	Mabatao Padianan Pagayawan	Panaliwad- Panganta- Poblacion Sudlon On	Panganta- pan	Poblacion	Sudlon
	0.03-0.20 2.87042	2.87042	0.890981 1.04467		1.45989	0.145715	0.035369	0.659671	0.145715 0.035369 0.659671 0.006209 1.18229		1.12408	1.26288
	0.21-0.50	0.21-0.50 0.321941	0.355637	0.355637 0.238856 0.06436	0.06436	0.020508	0.020508 0.003836 0.19082		0.00293	0.041469	0.041469 0.145573 0.084626	0.084626
Affected Area	0.51-1.00	0.51-1.00 0.198428	0.123323 0.0	0.01952	0.035866	0.000369 0.0005	0.0005	0.223969	0	0.036404	0.036404 0.078048 0.051633	0.051633
	1.01-2.00	1.01-2.00 0.110469	0.090474 0.0	0.007049	007049 0.019869	0.000664 0	0	0.288435	0	0.025036	0.025036 0.072404 0.062226	0.062226
	2.01-5.00	2.01-5.00 0.047327	0.154019 0.0007	0.0007	0.002657	0.00069 0.0001	0.0001	0.455195	0	0.004596	0.004596 0.076271 0.035005	0.035005
	> 5.00	0.0008	0	0	0	0	0	0.263248	0	0.043139	0	0

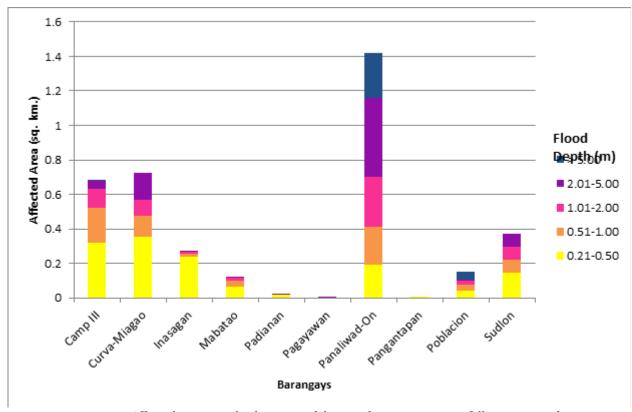


Figure 89. Affected areas in Salvador, Lanao del Norte during 25-year rainfall return period

For the municipality of Sapad, with an area of 65.13 sq. km., 2.15% will experience flood levels of less 0.20 meters; 0.89% of the area will experience flood levels of 0.21 to 0.50 meters; while 1.41%, 0.46%, 0.20%, and 0.10% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 49 are the affected areas in square kilometres by flood depth per barangay.

Table 49. Affected areas in Sapad, Lanao del Norte during 25-year rainfall return period

DUTADON DALW	I DACIN	Affected Bai	rangays in Sa	ıpad	
BUTADON-BALIL	I BASIN	Mabugnao	Mapurog	Pancilan	Panoloon
	0.03-0.20	0.541182	0.389401	0	0.00968
	0.21-0.50	0.075331	0.245422	0.0003	0.02064
Affected Area (sq. km.)	0.51-1.00	0.062149	0.520633	0.013828	0.0497
(Sq. Kill)	1.01-2.00	0.186013	0.470577	0.336615	0.178137
	2.01-5.00	0.030179	0.137181	0.041874	0.011947
	> 5.00	0.015868	0.056696	0	0

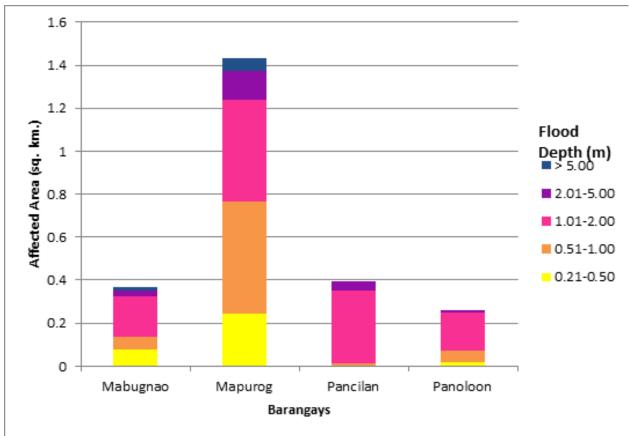


Figure 90. Affected areas in Sapad, Lanao del Norte during 25-year rainfall return period

For the municipality of Tubod, with an area of 121.95 sq. km., 12.74% will experience flood levels of less 0.20 meters; 067% of the area will experience flood levels of 0.21 to 0.50 meters; while 0.46%, 0.29%, 0.15%, and 0.04% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 50 are the affected areas in square kilometres by flood depth per barangay.

Table 50. Affected areas in Tubod, Lanao del Norte during 25-year rainfall return period

		Affected Bar	Affected Barangays in Tubod	poq							
BU IADON-BALILI BASIN	I BASIIN	Bulod	Candis	Licapao	Malingao	Patudan Pinpin		Poblacion Pualas		San Antonio	Santo Niño
	0.03-0.20	0.03-0.20 0.265069 0.3	0.351044	51044 2.77308 2.72772		1.01946	2.08268	1.18229	1.01946 2.08268 1.18229 0.781151 1.46984 2.25839	1.46984	2.25839
	0.21-0.50	0.21-0.50 0.007408 0.015558 0.17407	0.015558		0.191031	0.056251	0.108491	0.041469	0.056251 0.108491 0.041469 0.031737 0.034409 0.238741	0.034409	0.238741
Affected Area	0.51-1.00	0.51-1.00 0.010925 0.001788 0.119079 0.143898	0.001788	0.119079		0.050041	0.08056	0.036404	0.050041 0.08056 0.036404 0.045292	0.051592 0.167833	0.167833
	1.01-2.00 0.0063	0.0063	0.000747 0.12037		0.107287 0.041645 0.058239 0.025036 0.05002	0.041645	0.058239	0.025036		0.084113 0.091735	0.091735
	2.01-5.00	0	0	0.084175 0.07968	0.07968	0.031024	0.02639	0.004596	0.031024 0.02639 0.004596 0.008515 0.037809 0.01796	608780.0	0.01796
	> 5.00	0	0	0	0.053096	0	0.030533	0.030533 0.043139 0	0	0	0

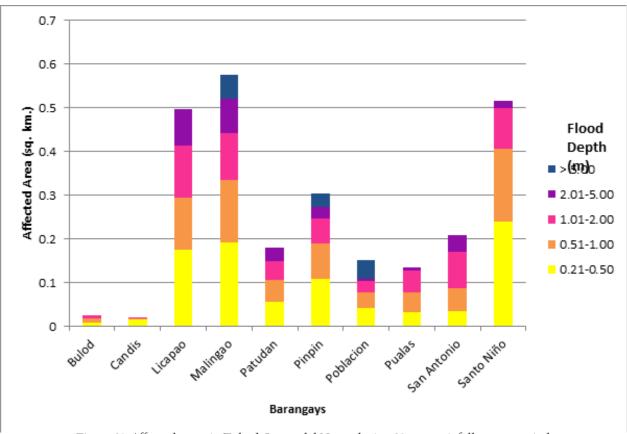


Figure 91. Affected areas in Tubod, Lanao del Norte during 25-year rainfall return period

Table 51. Affected areas in Aurora, Zamboanga del Sur during 100-year rainfall return period

BUTADON-BAI	.ILI BASIN	Affected Barangays in Aurora
	-	Anonang
	0.03-0.20	1.74136
	0.21-0.50	0.244848
Affected Area (sq. km.)	0.51-1.00	1.28596
(Sq. Killi)	1.01-2.00	1.64243
	2.01-5.00	0.0069
	> 5.00	0.0001

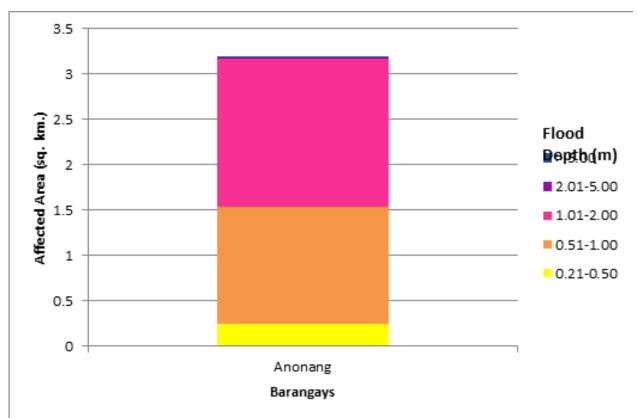


Figure 92. Affected areas in Aurora, Zamboanga del Sur during 100-year rainfall return period

For the municipality of Baroy, with an area of 32.08 sq. km., 79.47% will experience flood levels of less 0.20 meters; 8.49% of the area will experience flood levels of 0.21 to 0.50 meters; while 5.09%, 2.92%, 2.16%, and 1.24% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 52 are the affected areas in square kilometres by flood depth per barangay.

Table 52. Affected areas in Baroy, Lanao del Norte during 100-year rainfall return period

		Affected Bar	Affected Barangays in Baroy	roy									
BO IADON-BALILI BASIN		Andil	Bagong Dawis	Baroy Daku	Bato	Cabasagan Dalama	Dalama	Libertad	Limwag	Lindongan	Maliwanag Manan-Ao	Manan-Ao	
	0.03-0.20	4.1699	1.568	0.771113	1.83972	2.57914	1.77467	1.1196	1.22999	2.34039	3.04292	1.73139	
	0.21-0.50	0.207506	0.288336	0.223375	0.106927	0.159096	0.293875	0.391821	0.116123	0.218244	0.242051	0.246042	
Affected Area	0.51-1.00	0.140753	0.195344	0.192101	0.047805	0.042558	0.09347	0.19456	0.024153	0.110536	0.145642	0.083173	
	1.01-2.00	0.138584	0.099803	0.046137	0.029303	0.031431	0.021816	0.058074	0.021061	0.107534	0.065459	0.046281	
	2.01-5.00	0.148306	0.052666	0.003959	0.024405	0.014015	0.011995	0.017771	0.037782	0.025972	0.108467	0.013111	
	> 5.00	0.111688	0.021111	0	0.0016	0.0017	0.0039	0.004619	0.060917	0	0.150858	0.0001	
		Affected Bar	Affected Barangays in Baroy	roy									
BO IADON-BALILI BASIN	I BASIIN	Pange	Pindolonan Poblacion	Poblacion	Princesa	Rawan Point	Riverside	Sagadan	Sagadan Upper	Salong	San Juan	Tinubdan	Village
	0.03-0.20	1.70504	2.23233	1.17049	3.6443	1.57667	5.05135	1.41586	0.994706	3.61781	0.333341	4.07544	1.3546
	0.21-0.50	0.243969	0.270396	0.04118	0.175112	0.734279	0.284249	0.156986	0.202867	0.213166	0.07636	0.318038	0.061653
Affected Area	0.51-1.00	0.124488	0.072231	0.038491	0.139784	0.546323	0.155906	0.120933	0.20289	0.115928	0.040918	0.266236	0.065231
	1.01-2.00	0.064894	0.046893	0.032336	0.142245	0.093033	0.104776	0.130509	0.145416	0.067684	0.024535	0.213938	0.080469
	2.01-5.00	0.036492	0.059185	0.007295	0.225778	0.052841	0.125438	0.106807	0.026515	0.058374	0.000556	0.143673	0.038506
	> 5.00	0.000233	0.0001	0.054745	0.111277	0.026987	0.102694	0.037875	0	0	0	0.078956	0

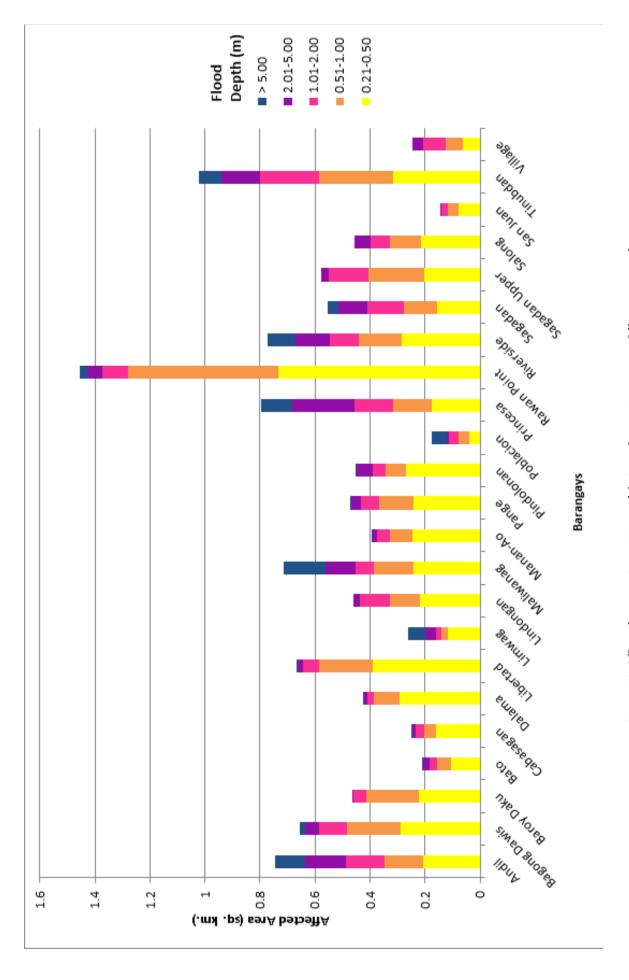


Figure 93. Affected areas in Baroy, Lanao del Norte during 100-year rainfall return period

For the Municipality of Kapatagan, with an area of 184.77 sq. km., 9.16% will experience flood levels of less 0.20 meters; 3.07% of the area will experience flood levels of 0.21 to 0.50 meters; while 6.84%, 12.01%, 2.00%, and 0.28% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 53 are the affected areas in square kilometres by flood depth per barangay.

Table 53. Affected areas in Kapatagan, Lanao del Norte during 100-year rainfall return period

		Affected Bar	Affected Barangays in Balili	≣									
BUTADON-BALILI BASIN	LI BASIN	Bagong Silang	Balili	Bansarvil	Buenavista	Butadon	Cathedral Falls	Concepcion Curvada		De Asis	Donggoan	Durano	Lapinig
	0.03-0.20	0.177695	1.17159	0.115609	1.24916	0.149141	0.70308	0.36793	0.03487	0.113671	3.33205	0.837806	1.05979
	0.21-0.50	0.718437	0.518964	0.004527	0.127006	0.239611	0.457581	0.559387	0.128743	0.339498	0.259939	0.015079	0.434852
Affected Area	0.51-1.00	1.89178	0.656465	0.001048	0.048561	1.08274	0.455058	0.771606	0.510097	1.14222	0.206763	0.005995	1.35551
(iiii)	1.01-2.00	2.53346	1.2674	0.000145	0.023088	3.44668	0.201414	1.90272	0.501248	0.624311	0.066116	0.003483	4.26509
	2.01-5.00	0.844673	0.534266	0.0002	0.005293	0.534962	0.106061	0.085513	0.17717	0.023167	0.034517	0.0015	0.374893
	> 5.00	0.037404	0.084246	0	0.0003	0.093582	0.04892	0.047708	0.013299	0.007859	0.001594	0.000107	0.000493
		Affected Bar	Affected Barangays in Balili										
BUTADON-BALILI BASIN	II BASIIN	Malinas	Maranding Margos	Margos	Poblacion	San Vicente	Santa Cruz	Santo Tomas	osns	Taguitic	Tiacongan	Tulatulahan Waterfalls	Waterfalls
	0.03-0.20	0.327051	0.06549	0.756131	1.17049	0.079536	0.27354	0.065845	1.34642	1.28998	1.58707	0.053299	0.601919
	0.21-0.50	0.016063	0.157067	0.127838	0.04118	0.249539	0.166409	0.148655	0.351515	0.219939	0.221516	0.0001	0.166361
Affected Area (sq. km.)	0.51-1.00	0.007223	0.618916	0.235121	0.038491	0.315664	0.328403	0.763823	0.509847	0.972827	0.217067	0	0.493836
	1.01-2.00	0.0017	1.44263	1.16636	0.032336	0.795752	0.225622	0.546114	0.381208	1.95929	0.076465	0	0.719918
	2.01-5.00	0	0.243789	0.103846	0.007295	0.146459	0.005501	0.017627	0.022298	0.017406	0.004646	0	0.403994
	> 5.00	0	0.023008	0.0001	0.054745	0.00041	0.0187	0.00084	0.041365	0	0	0	0.044028

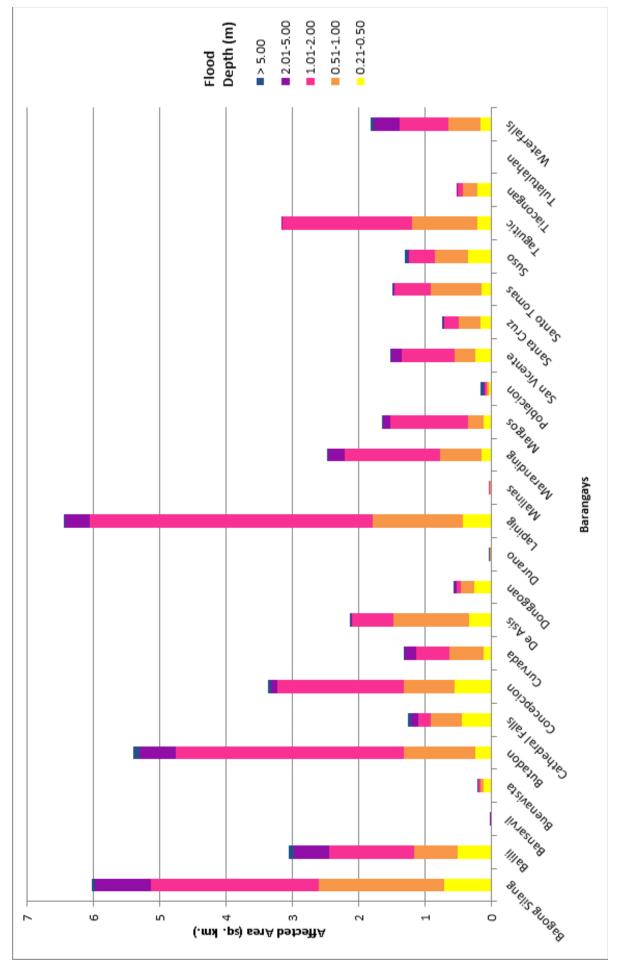


Figure 94. Affected areas in Kapatagan, Lanao del Norte during 100-year rainfall return period

For the municipality of Lala, with an area of 125.18 sq. km., 41.94% will experience flood levels of less 0.20 meters; 19.66% of the area will experience flood levels of 0.21 to 0.50 meters; while 18.02%, 16.32%, 2.83%, and 0.67% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 54 are the affected areas in square kilometres by flood depth per barangay.

Table 54. Affected areas in Lala, Lanao del Norte during 5-year rainfall return period

		Affected Bar	Affected Barangays in Lala	<u>e</u>								
BOIADON-BALILI BASIN		Abaga	Andil	Cabasagan Camalan	Camalan	Darumawang Bucana	Darumawang Darumawang El Salvador Gumagamot Lala Proper Lanipao Ilaya	El Salvador	Gumagamot	Lala Proper		Magpatao
	0.03-0.20 1.62361		4.1699	2.57914	1.13091	0.54081	2.4194	0.060992 1.85725		0.772655	0.772655 0.932328 2.00569	2.00569
	0.21-0.50	0.21-0.50 0.520495 0.207506 0.159096	0.207506		0.873563	0.664719	2.8758	0.196089	0.896586 0.457586 0.662325 0.661436	0.457586	0.662325	0.661436
Affected Area (sq. km.)	0.51-1.00	0.51-1.00 0.058657 0.140753 0.042558	0.140753		1.4193	2.52536	2.6127	1.26632	0.438446 0.185458 0.204185 0.525129	0.185458	0.204185	0.525129
	1.01-2.00	01-2.00 0.020341 0.138584 0.031431	0.138584		0.428048 4.31332		2.18611	5.64087	0.078854 0.037659 0.138756 0.441832	0.037659	0.138756	0.441832
	2.01-5.00	2.01-5.00 0.045861 0.148306 0.014015	0.148306	0.014015	0.00228	0.03575	0.040058	1.14008	0	0.0026	0	0.016476
	> 5.00	0	0.111688 0.0017	0.0017	0	0	0.013704	0.017641	0	0	0	0

		Affected Bar	Affected Barangays in Lala	<u>e</u>								
BUTADON-BALILI BASIN	BASIN	Maranding Bucana	Matampay Matampay Bucana Ilaya		Pacita	Pendolonan Pinoyak	Pinoyak	Raw-An	Rebe	San Isidro San Isidro Lower Upper		San Manuel
	0.03-0.20 0.06549		1.76257	0.619675	1.19337	3.68474	1.13767	1.10252	3.72604	2.70838	3.09034	1.92167
	0.21-0.50	0.21-0.50 0.157067 0.806143 0.489372	0.806143	0.489372	0.696716	1.47869	0.965526	0.310549 2.41588	2.41588	1.23719	0.691314 0.779179	0.779179
Affected Area (sg. km.)	0.51-1.00	0.51-1.00 0.618916 0.44025	0.44025	0.493868	0.163236	0.72698	2.56115	0.067479 1.34833	1.34833	0.398999	0.398999 0.149797 0.739669	0.739669
	1.01-2.00	01-2.00 1.44263	0.075965 0.03941	0.03941	0.004212	0.050728	1.53624	0.00384	0.538904 0.037025 0.060693 0.834135	0.037025	0.060693	0.834135
	2.01-5.00	2.01-5.00 0.243789	0	0	0	0.0171	0.082202	0.000245 0.920395 0.023102 0.094496 0.447942	0.920395	0.023102	0.094496	0.447942
	> 5.00	0.023008	0	0	0	0.0002	0.119802	0.000004 0.162316	0.162316	0	0.054251 0.254082	0.254082

	2	Affected Barangays in Lala	angays in La	<u>e</u>		
BU IADON-BALILI BASIN	BASIN	Santa Cruz Santa Cruz Lower Upper		Simpak	Tenazas	Tuna-An
	0.03-0.20	0.03-0.20 1.69206 5.19777		3.75823	1.62438	1.12107
	0.21-0.50	0.21-0.50 0.931505 1.83862		2.03709	0.620767	0.984099
Affected Area	0.51-1.00 1.96329		1.38619	1.11295	0.175264	0.798465
	1.01-2.00 1.27893		0.630253 0.17744	0.17744	0.061898	0.205435
	2.01-5.00	2.01-5.00 0.003856 0.193204 0.05855	0.193204	0.05855	0.0008	0.012331
	> 5.00	0	0.060474 0.019635	0.019635	0	0

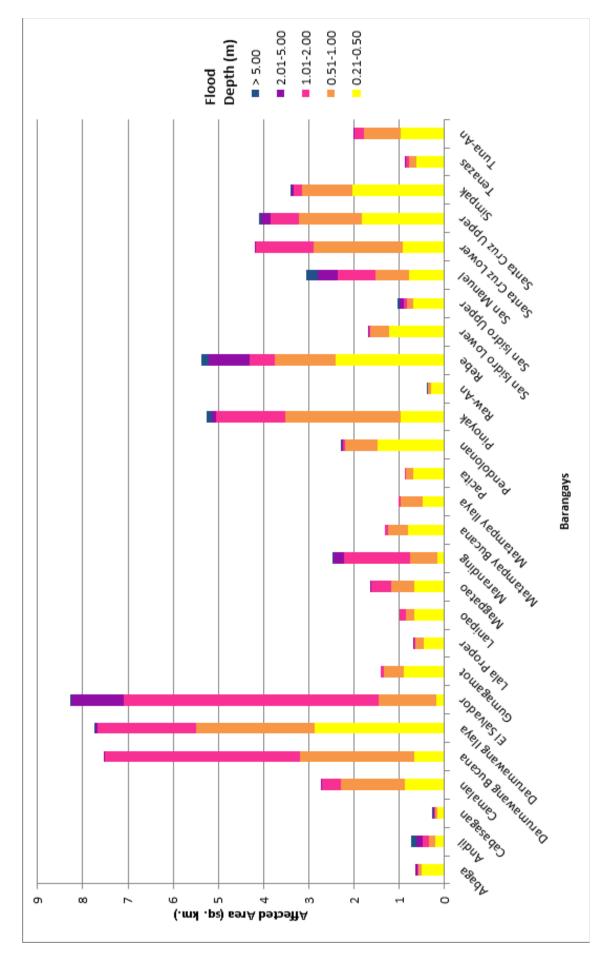


Figure 95. Affected areas in Lala, Lanao del Norte during 100-year rainfall return period

For the municipality of Salvador, with an area of 46.46 sq. km., 18.28% will experience flood levels of less 0.20 meters; 3.27% of the area will experience flood levels of 0.21 to 0.50 meters; while 2.03%, 1.97%, 1.52%, and 1.33% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 55 are the affected areas in square kilometres by flood depth per barangay.

Table 55. Affected areas in Salvador, Lanao del Norte during 100-year rainfall return period

		Affected Bar	Affected Barangays in Salvador	Ivador								
BO FADON-BALILI BASIN	I BASIIN	Camp III	Camp III	Curva- Miagao	Inasagan	Mabatao	Padianan	Mabatao Padianan Pagayawan On	aliwad-	Panganta- pan	Poblacion	Sudlon
	0.03-0.20 2.75792	2.75792	0.66442	0.93799 1.44091	1.44091	0.140007	0.033801	0.315921	0.140007 0.033801 0.315921 0.000275 1.17049 1.03217 1.26288	1.17049	1.03217	1.26288
	0.21-0.50	0.21-0.50 0.337176 0.396702 0.31	0.396702	0.319958	19958 0.071357	0.026095	0.005004	0.149166	0.026095 0.005004 0.149166 0.00067 0.04118 0.170098 0.084626	0.04118	0.170098	0.084626
Affected Area (sq. km.)	0.51-1.00 0.256625		0.184033	0.184033 0.041751 0.040846		0.00039 0.0008		0.256164	0.256164 0.007664 0.038491 0.117403 0.051633	0.038491	0.117403	0.051633
	1.01-2.00	01-2.00 0.134534	0.141723	0.141723 0.009999 0.024696		0.000565 0.0001		0.499169 0.00053		0.032336	0.032336 0.070893 0.062226	0.062226
	2.01-5.00	2.01-5.00 0.062127	0.182405 0.0011		0.004841	0.00089 0.0001		0.341783	0	0.007295	0.007295 0.105807 0.035005	0.035005
	> 5.00	0.001	0.04515	0	0	0	0	0.519136 0	0	0.054745 0	0	0

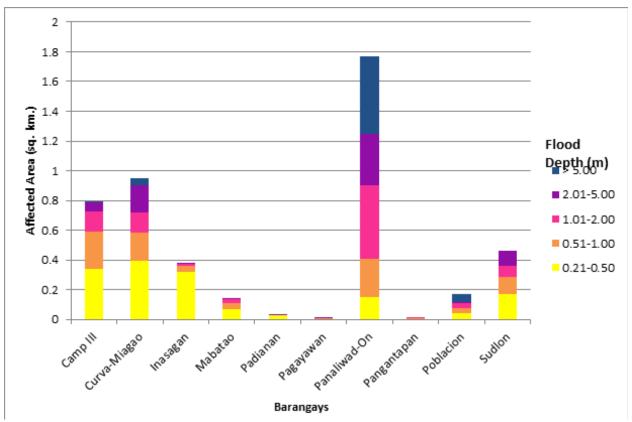


Figure 96. Affected areas in Salvador, Lanao del Norte during 100-year rainfall return period

For the municipality of Sapad, with an area of 65.13 sq. km., 1.23% will experience flood levels of less 0.20 meters; 0.34% of the area will experience flood levels of 0.21 to 0.50 meters; while 0.81%, 1.83%, 0.88%, and 0.13% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 56 are the affected areas in square kilometres by flood depth per barangay.

Table 56. Affected areas in Sapad, Lanao del Norte during 100-year rainfall return period

DUTADON BALLI	I DACIN	Affected Bar	rangays in Sa	pad	
BUTADON-BALIL	II BASIN	Mabugnao	Mapurog	Pancilan	Panoloon
	0.03-0.20	0.513932	0.282155	0	0.004028
0.21-0.5	0.21-0.50	0.078871	0.13696	0	0.005142
Affected Area (sq. km.)	0.51-1.00	0.066993	0.425635	0.000384	0.034355
(541 11111)	1.01-2.00	0.172747	0.722034	0.192054	0.104129
	2.01-5.00	0.061812	0.191911	0.19588	0.122449
	> 5.00	0.016368	0.061216	0.0043	0

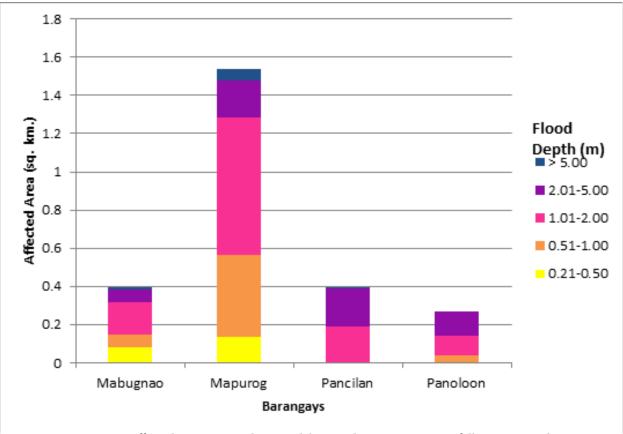


Figure 97. Affected areas in Sapad, Lanao del Norte during 100-year rainfall return period

For the municipality of Tubod, with an area of 121.95 sq. km., 11.84% will experience flood levels of less 0.20 meters; 0.82% of the area will experience flood levels of 0.21 to 0.50 meters; while 0.66%, 0.59%, 0.32%, and 0.15% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 57 are the affected areas in square kilometres by flood depth per barangay.

Table 57. Affected areas in Tubod, Lanao del Norte during 25-year rainfall return period

		Affected Bar	Affected Barangays in Tubod	poq							
BUTADON-BALILI BASIN	BASIN	Bulod	Candis	Licapao	Malingao	Patudan Pinpin		Poblacion Pualas		San Antonio	Santo Niño
	0.03-0.20	0.03-0.20 0.261262 0.345767 2.69663 2.64028	0.345767	2.69663		0.991715	1.95965	1.17049	0.991715 1.95965 1.17049 0.766122 1.45168 2.15577	1.45168	2.15577
	0.21-0.50	0.21-0.50 0.008352	0.019623	0.196496	0.019623 0.196496 0.209508 0.055078 0.157235 0.04118	0.055078	0.157235		0.030981 0.037499 0.243176	0.037499	0.243176
Affected Area	0.51-1.00	0.51-1.00 0.010755	0.002811	0.122056	0.002811 0.122056 0.161114 0.055505 0.114205 0.038491 0.039692 0.043694 0.214537	0.055505	0.114205	0.038491	0.039692	0.043694	0.214537
	1.01-2.00	1.01-2.00 0.009333	0.000936	0.130131	0.000936 0.130131 0.131926 0.046327 0.084266 0.032336 0.064537 0.093955 0.124455	0.046327	0.084266	0.032336	0.064537	0.093955	0.124455
	2.01-5.00	0	0	0.124854	0.124854 0.074095 0.049696 0.034042 0.007295 0.015384 0.050934 0.03672	0.049696	0.034042	0.007295	0.015384	0.050934	0.03672
	> 5.00	0	0	90000	0.085796 0.0001	0.0001	0.037492	0.037492 0.054745 0	0	0	0

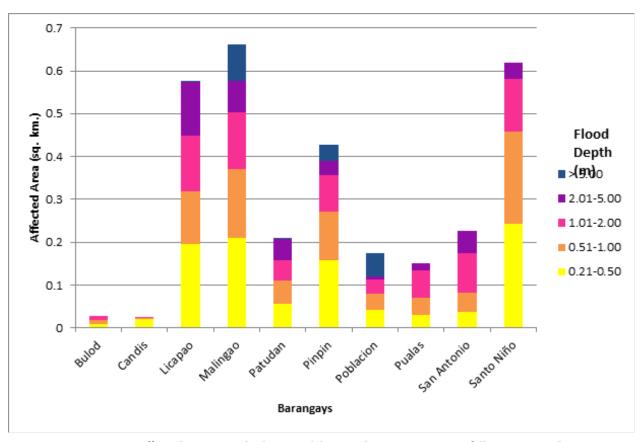


Figure 98. Affected areas in Tubod, Lanao del Norte during 100-year rainfall return period

Among the barangays in the municipality of Aurora, only Anonang is projected to have the percentage of area that will experience flood levels at 3.03%.

Among the barangays in the municipality of Baroy, Riverside is projected to have the highest percentage of area that will experience flood levels at 9.38%. Meanwhile, Tinubdan posted the second highest percentage of area that may be affected by flood depths at 8.21%.

Among the barangays in the Municipality of Kapatagan, Lapinig is projected to have the highest percentage of area that will experience flood levels at 4.05%. Meanwhile, Bagong Silang posted the second highest percentage of area that may be affected by flood depths at 3.36%.

Among the barangays in the municipality of Lala, Darumawang Ilaya is projected to have the highest percentage of area that will experience flood levels at 8.11%. Meanwhile, Santa Cruz Upper posted the second highest percentage of area that may be affected by flood depths at 7.43%.

Among the barangays in the municipality of Salvador, Camp III is projected to have the highest percentage of area that will experience flood levels at 7.64%. Meanwhile, Panaliwad-On posted the second highest percentage of area that may be affected by flood depths at 4.48%.

Among the barangays in the municipality of Sapad, Mapurog is projected to have the highest percentage of area that will experience flood levels at 2.79%. Meanwhile, Mabugnao posted the second highest percentage of area that may be affected by flood depths at 1.40%.

Among the barangays in the municipality of Tubod, Malingao is projected to have the highest percentage of area that will experience flood levels at 2.71%. Meanwhile, Licapao posted the second highest percentage of area that may be affected by flood depths at 2.68%.

Moreover, the generated flood hazard maps for the Balili Floodplain were used to assess the vulnerability of the educational and medical institutions in the floodplain. Using the flood depth units of PAGASA for hazard maps—"low", "medium", and "high"—the affected institutions were given their individual assessment for each flood hazard scenario (5 yr, 25 yr, and 100 yr).

Table 58. Area covered by each warning level with respect to the rainfall scenario

	Area Covere	d in sq. km.	
Warning Level	5 year	25 year	100 year
Low	41.80	45.72	40.45
Medium	29.72	67.10	76.74
High	7.25	17.83	33.95

Of the 393 identified education institutions in Balili Floodplain, 66 schools were assessed to be exposed to low-level flooding during a 5-year scenario while 61 schools were assessed to be exposed to medium-level flooding and 1 school was assessed to be exposed to high-level flooding in the same scenario. In the 25-year scenario, 86 schools were assessed to be exposed to low-level flooding while 108 schools were assessed to be exposed to high-level flooding and 7 schools were assessed to be exposed to high-level flooding in the same scenario. For the 100-year scenario, 65 schools were assessed for low-level flooding and 118 schools for medium-level flooding. In the same scenario, 28 schools were assessed to be exposed to high-level flooding. See ANNEX 12 for a detailed enumeration of schools inside Balili Floodplain.

Of the 72 identified medical institutions in Balili Floodplain, 14 were assessed to be exposed to low-level flooding during a 5-year scenario while 10 were assessed to be exposed to medium-level flooding and 1 was assessed to be exposed to high-level flooding in the same scenario. In the 25-year scenario, 11 were assessed to be exposed to low-level flooding while 19 were assessed to be exposed to medium-level flooding and 2 were assessed to be exposed to high-level flooding. For the 100-year scenario, 16 schools were assessed for low-level flooding and 21 for medium-level flooding. In the same scenario, 4 were assessed to be exposed to high-level flooding. See ANNEX 13 for a detailed enumeration of medical institutions inside Balili Floodplain.

5.11 Flood Validation

In order to check and validate the extent of flooding in different river systems, there is a need to perform validation survey work. Field personnel gathered secondary data regarding flood occurrence in the area within the major river system in the Philippines.

From the Flood Depth Maps produced by Phil-LiDAR 1 Program, multiple points representing the different flood depths for different scenarios were identified for validation.

The validation personnel went to the specified points identified in a river basin and gathered data regarding the actual flood level in each location. Data gathering can be done through a local DRRM office to obtain maps or situation reports about the past flooding events or interview some residents with knowledge of or have had experienced flooding in a particular area.

After which, the actual data from the field were compared to the simulated data to assess the accuracy of the Flood Depth Maps produced and to improve on what is needed.

The flood validation consists of 117 points randomly selected all over the Balili floodplain. It has an RMSE value of 1.51.

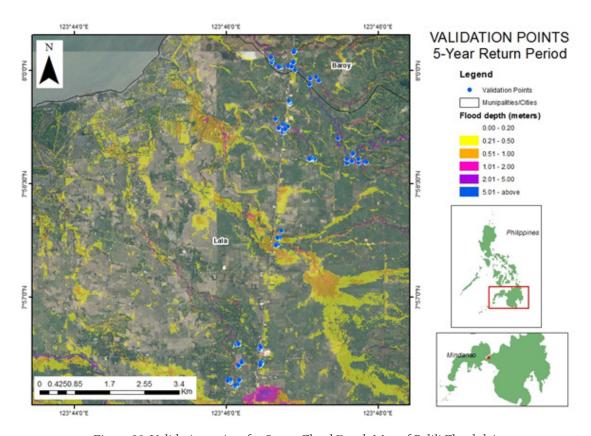


Figure 99. Validation points for 5-year Flood Depth Map of Balili Floodplain

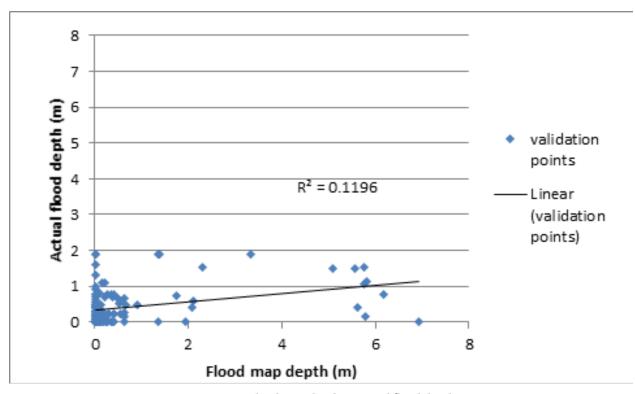


Figure 100. Flood map depth vs actual flood depth

Table 53. Actual flood vs simulated flood depth at different levels in the Balili River Basin.

BUTADON-E	BALILI	Modele	ed Flood De	pth (m)				
BASIN		0-0.20	0.21-0.50	0.51-1.00	1.01-2.00	2.01-5.00	> 5.00	Total
Actual	0-0.20	38	7	2	2	0	2	51
Flood Depth (m)	0.21-0.50	20	4	4	0	1	1	30
Deptii (iii)	0.51-1.00	9	6	3	1	1	1	21
	1.01-2.00	6	0	0	2	2	5	15
	2.01-5.00	0	0	0	0	0	0	0
	> 5.00		0	0	0	0	0	0
Total		73	17	9	5	4	9	117

The overall accuracy generated by the flood model is estimated at 40.17%, with 47 points correctly matching the actual flood depths. In addition, there were 40 points estimated one level above and below the correct flood depths while there were 17 points and 13 points estimated two levels above and below, and three or more levels above and below the correct flood. A total of 29 points were overestimated while a total of 41 points were underestimated in the modelled flood depths of Balili.

Table 60. Summary of Accuracy Assessment in Balili

	No. of Points	%
Correct	47	40.17
Overestimated	29	24.79
Underestimated	41	35.04
Total	117	100

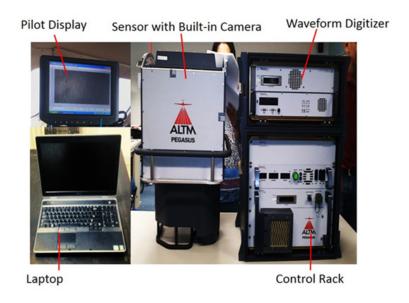
REFERENCES

Ang M.O., Paringit E.C., et al. 2014. DREAM Data Processing Component Manual. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Balicanta L.P., Paringit E.C., et al. 2014. DREAM Data Validation Component Manual. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Lagmay A.F., Paringit E.C., et al. 2014. DREAM Flood Modeling Component Manual. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Paringit E.C, Balicanta L.P., Ang, M.O., Sarmiento, C. 2017. Flood Mapping of Rivers in the Philippines Using Airborne Lidar: Methods. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.


Sarmiento C., Paringit E.C., et al. 2014. DREAM Data Acquisition Component Manual. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

UP TCAGP 2016, Acceptance and Evaluation of Synthetic Aperture Radar Digital Surface Model (SAR DSM) and Ground Control Points (GCP). Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

ANNEXES

ANNEX 1. Technical Specifications of the LIDAR Sensors used in the Balili Floodplain Survey

1. PEGASUS SENSOR

Parameter	Specification
Parameter	Specification
Operational envelope (1,2,3,4)	150-5000 m AGL, nominal
Laser wavelength	1064 nm
Horizontal accuracy (2)	1/5,500 x altitude, 1σ
Elevation accuracy (2)	< 5-20 cm, 1σ
Effective laser repetition rate	Programmable, 100-500 kHz
Position and orientation system	POS AV ™AP50 (OEM)
Scan width (FOV)	Programmable, 0-75 °
Scan frequency (5)	Programmable, 0-140 Hz (effective)
Sensor scan product	800 maximum
Beam divergence	0.25 mrad (1/e)
Roll compensation	Programmable, ±37° (FOV dependent)
Vertical target separation distance	<0.7 m
Range capture	Up to 4 range measurements, including 1st, 2nd, 3rd, and last returns
Intensity capture	Up to 4 intensity returns for each pulse, including last (12 bit)
Image capture	5 MP interline camera (standard); 60 MP full frame (optional)
Full waveform capture	12-bit Optech IWD-2 Intelligent Waveform Digitizer
Data storage	Removable solid state disk SSD (SATA II)
Power requirements	28 V, 800 W, 30 A
Dimensions and weight	Sensor: 630 x 540 x 450 mm; 65 kg;
	Control rack: 650 x 590 x 490 mm; 46 kg
Operating Temperature	-10°C to +35°C
Relative humidity	0-95% non-condensing

2. D-8900 Aerial Digital Camera

Parameter	Specification
Camera Head	
Sensor type	60 Mpix full frame CCD, RGB
Sensor format (H x V)	8, 984 x 6, 732 pixels
Pixel size	6µm x 6 µm
Frame rate	1 frame/2 sec.
FMC	Electro-mechanical, driven by piezo technology (patented)
Shutter	Electro-mechanical iris mechanism 1/125 to 1/500++ sec. f-stops: 5.6, 8, 11, 16
Lenses	50 mm/70 mm/120 mm/210 mm
Filter	Color and near-infrared removable filters
Dimensions (H x W x D)	200 x 150 x 120 mm (70 mm lens)
Weight	~4.5 kg (70 mm lens)
Controller Unit	
Computer	Mini-ITX RoHS-compliant small-form-factor embedded
computers with AMD TurionTM 64 X2 CPU	5 MP interline camera (standard); 60 MP full frame (optional)
4 GB RAM, 4 GB flash disk local storage	12-bit Optech IWD-2 Intelligent Waveform Digitizer (optional)
IEEE 1394 Firewire interface	Sensor:250 x 430 x 320 mm; 30 kg;
Removable storage unit	~500 GB solid state drives, 8,000 images
Power consumption	~8 A, 168 W
Dimensions	2U full rack; 88 x 448 x 493 mm
Weight	~15 kg
Image Pre-Processing Software	
Capture One	Radiometric control and format conversion, TIFF or JPEG
Image output	8,984 x 6,732 pixels

ANNEX 2. NAMRIA Certification of Reference Points Used in the LIDAR Survey

October 30, 2014

CERTIFICATION

To whom it may concern:

This is to certify that according to the records on file in this office, the requested survey information is as follows -

	Province: ZAMB	OANGA DEL NORTE			
	Station Na	ame: ZGN-138			
	Order	2nd			
Island: MINDANAO Municipality: KATIPUNAN	Barangay: MSL Eleval	tion;			
	PRSS	2 Coordinates			
Latitude: 8° 30' 40.65974"	Longitude:	123° 18' 14.44217"	Ellipsoid	lal Hgt:	6.71500 m.
	WGS	84 Coordinates			
Latitude: 8° 30' 36.94779"	Longitude:	123° 18' 19.85548"	Ellipsoid	lal Hgt:	70.92500 m
	PTM / PI	RS92 Coordinates			
Northing: 941106.14 m.	Easting:	533471.036 m.	Zone:	4	
	UTM / PI	RS92 Coordinates			
Northing: 940,776.74	Easting:	533,459.32	Zone:	51	

Location Description

The station is marked by an 4" copper nail with its head flushed at the center of an cement putty on a concrete open canal with inscription " ZGN-138, 2009 NAMRIA".Located at brgy. Taga katipunan zamboanga del norte. The monument is situated inside taga central school 10 meters from the main gate going north west 6 meters from the flag pole going south east.

Requesting Party: PHIL-LIDAR I Purpose: Reference OR Number: 8075910 I

2014-2584

T.N.:

RUE DM. BELEN, MNSA Director, Mapping And Geodesy Branch

NAMENIA CHFICES: Main : Lawton Avenue, Fort Bonitacio, 1634 Taguig City, Philippines Tel. No.: (632) 810-4831 to 41 Branch : 421 Barraca St. San Nicotas, 1010 Manila, Philippines, Tel. No. (632) 241-3494 to 98 www.namria.gov.ph

July 11, 2014

CERTIFICATION

To whom it may concern:

This is to certify that according to the records on file in this office, the requested survey information is as follows -

Province: ZAMBOANGA DEL SUR

Station Name: ZGS-88

Order: 2nd

Island: MINDANAO

Barangay: SAN JOSE Municipality: AURORA MSL Elevation:

PRS92 Coordinates

Latitude: 7° 57' 13.25316" Longitude: 123° 34' 56.50093" Ellipsoidal Hgt: 258.34500 m.

WGS84 Coordinates

Latitude: 7° 57' 9.71271" Longitude: 123° 35' 1.96243" Ellipsoidal Hgt: 324.37300 m.

PTM / PRS92 Coordinates

Northing: 879474.685 m. Easting: 564207.26 m. Zone:

UTM / PRS92 Coordinates

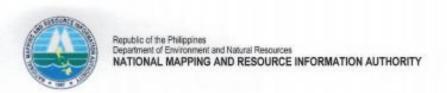
Northing: 879,166.85 Easting: 564,184.79 Zone: 51

Location Description

ZGS-88

Is located on the S end of the W wedge-shaped island in Purok Saray, Brgy. San Jose, Aurora. It is about 500 m. N of the municipal hall, 30 m. W of the Seaoil Gasoline Station and 5 m. E of the W side of the road. Mark is the head of a 3 in. copper nail embedded and centered on a 27 cm. x 26 cm. x cement putty, with inscriptions "ZGS-88 2005 NAMRIA LEP IX".

Requesting Party: UP TCAGP / Engr. Christopher Cruz


Pupose: Reference OR Number: 8796507 A T.N.: 2014-1601

> RUEL DM. BELEN, MNSA Director, Mapping And Geodesy Branch

NAMRIA OFFICES: Notation, CPFILES: Main : Lawton Avenue, Fort Bonifacio, 1634 Taguig City, Philippines Tel. No.: (632) 810-4831 to 41 Branch : 421 Barraca St. San Nicolas, 1010 Manila, Philippines, Tel. No. (632) 241-3494 to 98 www.namria.gov.ph

February 10, 2016

CERTIFICATION

To whom it may concern:

This is to certify that according to the records on file in this office, the requested survey information is as follows -

	Province: ZAMBOANGA DEL SUR		
	Station Name: ZGS-16		
	Order: 2nd		
Island: MINDANAO Municipality: TUKURAN	Barangay: BACLAY MSL Elevation: PRS92 Coordinates		
Latitude: 7° 52' 32.53106"	Longitude: 123° 36' 23.39905"	Ellipsoidal Hgt	18.17800 m.
	WGS84 Coordinates		
Latitude: 7º 52' 29.01321"	Longitude: 123° 36' 28.86762"	Ellipsoidal Hgt	84.42000 m.
	PTM / PRS92 Coordinates		
Northing: 870854.959 m.	Easting: 566881.259 m.	Zone: 4	
	UTM / PRS92 Coordinates		
Northing: 870,550.15	Easting: 566,857.85	Zone: 51	

Location Description

ZGS-16

Is located at Purok Nangka, Brgy. Baclay. It is situated 1 m. NE of Km. Post # 1644 and about 50 m. SW of the chapel, approx. 3 km. from the road junction leading to Aurora town. Mark is the head of a 3 in. concrete nail embedded and centered on a 30 cm. x 30 cm. x 58 cm. concrete monument, with inscriptions "ZGS-16 2005 NAMRIA/LEP-IX".

Requesting Party: UP DREAM Purpose: Reference OR Number: 80897741 T.N.: 2016-0334

RUEL DM. BELEN, MNSA Director Mapping And Geodesy Branch

NAMEN A CH-TLEST
Main: Lusten Avenue, Fot Bonibaio, 1634 Taguig City, Philippines Tel. No. (632) 816-4631 to 41
Burnch: 421 Berrace St. San Nicolas, 9010 Manila, Philippines, Tel. No. (632) 241-3494 to 96 www.namria.gov.ph

February 10, 2016

CERTIFICATION

To whom it may concern:

This is to certify that according to the records on file in this office, the requested survey information is as follows -

Province: ZAMBOANGA DEL SUR

Station Name: ZGS-17

Order: 2nd

Island: MINDANAO

Barangay: BACLAY

MSL Elevation:

Easting:

Municipality: TUKURAN

PRS92 Coordinates

Longitude: 123° 36' 29.22049"

Ellipsoidal Hgt: 29.68400 m.

WGS84 Coordinates

Latitude: 7º 52' 39.19813"

Latitude: 7º 52' 42.71658"

Longitude: 123° 36' 34.68878"

Ellipsoidal Hgt: 95.92400 m.

PTM / PRS92 Coordinates

Northing: 871168.108 m.

Easting: 567059.131 m.

Zone:

Zone:

ne. 4

Northing: 870,863.18

UTM / PRS92 Coordinates

51

Location Description

567,035.66

ZGS-17

Is located at Purok Kasoy, Brgy. Baclay, Tukuran. It is situated on the slope of a cultivated hill. It is about 100 m. NW of UCCP chapel and about 200 m. NNE of the roman catholic chapel. Mark is the head of a 4 in. copper nail embedded and centered on a 30 cm. x 30 cm. x 38 cm., with inscriptions "ZGS-17 2005 NAMRIA/LEP-IX".

Requesting Party:

UP DREAM

Purpose:

Reference

OR Number: T.N.: 8089774 I 2016-0333

RUEL DM. BELEN, MNSA Director, Mapping And Geodesy Branch

December 01, 2016

CERTIFICATION

To whom it may concern:

This is to certify that according to the records on file in this office, the requested survey information is as follows -

Province: MISAMIS OCCIDENTAL

Station Name: MSW-5

Order: 2md

Barangay: POBLACION Island: MINDANAO

MSL Elevation: Municipality: SAPANG DALAGA

PRS92 Coordinates

Longitude: 123° 33' 56.01853" Ellipsoidal Hgt: 113.48100 m. Latitude: 8º 32' 35.68185"

WGS84 Coordinates

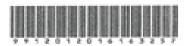
Longitude: 123° 34' 1.42685" Ellipsoidal Higt: 178.27400 m. Latitude: 8° 32' 31.98501"

PTM / PRS92 Coordinates

Northing: 944671.948 m. 562262.537 m. Zone: Easting:

UTM / PRS92 Coordinates

Easting: 562,240.75 Zonec 51 Northing: 944,341.30


Location Description

T.N.:

From Dipolog City, travel along the Narl. Highway going to Calamba until reaching Sapang Dalaga Proper, Station is located inside Sapang Dalaga Mun. Hall compound, beside the fence near the basketball court. It is about 50 m. from the DAR office and 100 m. from the mun. hall. Mark is the head of a 4 in. copper nail embedded on a 30 cm. x 30 cm. concrete block, with inscriptions "MSW-5 2007 NAMRIA".

Requesting Party: PHIL-LIDAR 1 Purpose: Reference OR Number: FREE ISSUE

2016-2168 N RUEL DM. BELEN, MNSA Director, Mapping And Geodesy Branch

MAMPIA OFFICES: Warn Landon Avenue, Fort-Bondone, 1904 Tagung City, Philippines - Tex. No.: (802) 810-4821 to 41 Branch : GT Burnos St. San Noosan, 1010 Marela, Philippines, Tel. No. (802) 341-3454 to 66 www.namria.gov.ph

Republic of the Philippines Department of Environment and Natural Resources NATIONAL MAPPING AND RESOURCE INFORMATION AUTHORITY

October 30, 2014

CERTIFICATION

To whom it may concern:

This is to certify that according to the records on file in this office, the requested survey information is as follows -

Province: ZAMBOANGA DEL NORTE

Station Name: ZN-53

Island: Mindanao

Municipality: KATIPUNAN

Barangay: DAANGLUNGSOD

0

Elevation: 10.0561 +/- 0.00 m.

Order: 1st Order

Datum: Mean Sea Level

Latitude:

Longitude:

Location Description

ZN-53

Along Dipolog Liloy National Road. The station is located at the compound of Taga Central School, near the flagpole and about 50 meters northwest of the centerline of the road. Mark is the head of a 4" copper nail set on a derilled hole and cemented flushed on top of 15cm x 15cm cement putty with inscription " ZN-53 2008 NAMRIA".

Requesting Party: PHIL-LIDAR I

Purpose: OR Number:

T.N.:

Reference 8075910 I 2014-2589

> RUEL DM. BELEN, MNSA Director, Mapping And Geodesy Branch

American Carriagos.

Main: Lawton Vantrue, Fort Bonifacio, 1634 Taguig City, Philippines Tel. No.: (632) 810-4831 to 41 Branch: 421 Barraca St. San Nicotas, 1010 Manilla, Philippines, Tel. No. (632) 241-3494 to 98 www.namria.gov.ph

June 24, 2014

CERTIFICATION

To whom it may concern:

This is to certify that according to the records on file in this office, the requested survey information is as follows -

Province: LANAO DEL NORTE

Station Name: LAN-2

Order: 1st

Island: MINDANAO

Municipality: LALA

PRS92 Coordinates

Latitude: 7° 54' 46.07859"

Longitude: 123° 46' 0.85333"

Ellipsoidal Hgt:

Barangay: PINOYAK

17.35400 m.

WGS84 Coordinates

Latitude: 7º 54' 42.56546"

Longitude: 123° 46' 6.31720"

Ellipsoidal Hgt:

83.92120 m.

PTM Coordinates

Northing: 875110.149 m.

Easting: 364025.74 m. Zone:

Northing: 874,680.35

UTM Coordinates

Easting: 584,533.45

Zone:

51

Location Description

LAN-2

LAN-2 From Iligan City, travel southwest along the National highway for 74.5 kilometers to the municipality of Lala. Travel farther along the national highway for 1.4 kilometers up to Maranding junction. Thence from the junction travel southeast along the national highway for another 1.3 kilometers to a dirt road going to Pinoyak barangay proper. Turn right on the dirt road and national highway intersection and continue travelling westward for 400 meters up to the irrigation canal. Station is located on top of the concrete irrigation canal water gate. Station mark is 0.15 m x 0.01 m in diameter brass rod, with cross cut on top, set in a drill hole on top of the concrete irrigation canal water gate; centered in cement patty and inscribed on top with the station name. All reference marks are 0.15 m x 0.01 m in diameter brass rod, with cross cut on top, set in drill holes on top of the concrete irrigation canal water gate; centered in cement patty and inscribed with the reference mark numbers and arrow pointing to the station.

Requesting Party:

Pupose:

Engr. Cruz

OR Number:

Reference

T.N.:

8796376 A 2014-1441

RUEL DM. BELEN, MNSA Director, Mapping And Geodesy Branch

December 09, 2014

CERTIFICATION

To whom it may concern:

This is to certify that according to the records on file in this office, the requested survey information is as follows -

Province: ZAMBOANGA DEL NORTE

Station Name: ZN-123

Island: Mindanao Municipality: SINDANGAN

Barangay: GOLEO

Elevation: 13.1013 +/- 0.00 m.

Order: 1st Order

Datum: Mean Sea Level

Latitude:

Longitude:

Location Description

BM ZN-123 is in the Province of Zamboanga Del Norte, Town of Sindangan, Brgy. Goleo, along the Dipolog-Sindangan National Road. The station is located west-northwest of Sindangan Bridge at KM. 1921 + 182 and about 4 meters northwest of the centerline of the road.

Mark is the head of a 4" copper nail set on a drilled hole and cemented flushed on the top of 15cm x 15cm cement putty with inscription "BM ZN-123,2009,NAMRIA".

Requesting Party: Christopher Cruz

Purpose:

Reference

OR Number: T.N.: 8077396 I 2014-2985

> RUEL DM. BELEN, MNSA Director, Mapping And Geodesy Branch

> > 6

9 9 1 2 0 9 2 0 1 4 1 0

NAMRIA OFFICES:
Main : Lawton Avenue, Fort Bonifacio, 1634 Taguig City, Philippines Tel. No.: (632) 810-4831 to 41

Branch : 421 Barraca St. San Nicolas, 1010 Manila, Philippines, Tel. No. (532) 241-3494 to 98

www.namria.gov.ph

ANNEX 3. Baseline Processing Reports of Control Points used in the LIDAR Survey

1. ZN-53

Baseline Processing Report

Processing Summary

Observation	From	То	Solution Type	H. Prec. (Meter)	V. Prec. (Meter)	Geodetic Az.	Ellipsoid Dist. (Meter)	ΔHeight (Meter)
zgn 138 — zn 53 am (B1)	zgn 138	zn 53 am	Fixed	0.001	0.002	344*25'59"	12.263	0.357
zgn 138 zn 53 pm (82)	zgn 138	zn 53 pm	Fixed	0.003	0.004	344*25'44"	12.270	0.372

Acceptance Summary

Processed	Passed	Flag	P	Fail	P
2	2	0		0	

Vector Components (Mark to Mark)

From:	zgn 138					
	Grid		Local	Global		
Easting	533459.321 m	Latitude	N8*30'40.65974*	Latitude	N8*30'36.94779'	
Northing	940776.736 m	Longitude	E123°18'14.44217"	Longitude	E123°18'19.86648"	
Elevation	5.484 m	Height	6.715 m	Height	70.925 m	

To:	zn 63 am	zn 63 am							
	Grid		Local	Global					
Easting	633456.022 m	Latitude	N8°30'41.04428"	Latitude	N8°30'37.33230"				
Northing	940788.542 m	Longitude	E123*18'14.33457"	Longitude	E123*18*19.74787*				
Elevation	5.842 m	Height	7.072 m	Height	71.282 m				

Vector							
ΔEasting	-3.299 m	NS Fwd Azimuth	344*25'59"	ΔX	3.517 m		
ΔNorthing	11.806 m	Ellipsoid Dist.	12.263 m	ΔΥ	0.641 m		
ΔElevation	0.358 m	ΔHeight	0.367 m	ΔZ	11.736 m		

Standard Errors

Vector errors:									
σ ΔEasting	0.001 m o NS fwd Azimuth	0*00*09* σ ΔΧ	0.001 m						
σ ΔNorthing	0.000 m or Ellipsoid Dist.	0.000 m σ ΔΥ	0.001 m						
σ ΔElevation	0.001 m σ ΔHeight	0.001 m σ ΔZ	0.000 m						

Aposteriori Covariance Matrix (Meter*)

	X	Y	Z
х	0.0000005629		
Y	-0.0000004033	0.0000010310	
z	-0.0000000776	0.0000001462	0.0000001693

2. LE-50

Project Information		Coordinate Syste	om .
Name:		Name:	UTM
Size:		Datum:	WGS 1984
Modified:	10/12/2012 4:40:11 PM (UTC:-6)	Zone:	51 North (123E)
Time zone:	Mountain Standard Time	Geoid:	EGMPH
Reference number:		Vertical datum:	
Description:			

Baseline Processing Report

Processing Summary

Observatio n	From	То	Occupat ion Start Time		п Туре	H. Prec. (Meter)		ΔX (Motor)	ΔΥ (Meter)	ΔZ (Meter)	tic Az.	Ellipsol d Dist. (Meter)	Height	Proces sing Start Time	Proces sing Stop Time	Satelit e Avalia bie
LE50 LAN2 (B1)	LAN2	LE50	6/20/20 14 10:05:3 4 AM	014 2:59:5		0.012	0.024		15348. 670	27636. 104	37*51' 51*		10.469	6/20/2 014 10:05: 34 AM	014 2:59:5 9 PM	15 GLON

Acceptance Summary

Processed	Passed	Flag	_	Fall	_
1	1	0		0	

Vector Components (Mark to Mark)

From:	LAN2	AN2							
G	rid	Lo	cal	Global					
Easting	584699.973 m	Latitude	N7°54'42.56546"	Latitude	N7°54'42.56546"				
Northing	874628.035 m	Longitude	E123°46'06.31720"	Longitude	E123°46'06.31720"				
Elevation	15.242 m	Height	83.921 m	Height	83.921 m				

To:	LE50	50						
G	rid	Lo	ocal	Global				
Easting	606345.902 m	Latitude	N8°09'51.11024"	Latitude	N8°09'51.11024"			
Northing	902577.426 m	Longitude	E123°57'55.36634"	Longitude	E123°57'55.36634"			
Elevation	4.394 m	Height	73.452 m	Height	73.452 m			

Vector								
ΔEasting	21645.929 m	NS Fwd Azimuth	37°51'51"	ΔΧ	-15847.070 m			
ΔNorthing	27949.392 m	Ellipsoid Dist.	35361.439 m	ΔΥ	-15348.392 m			
ΔElevation	-10.847 m	ΔHeight	-10.469 m	ΔZ	27636.144 m			

3. LE-76

Vector Components (Mark to Mark)

From:	LE-50			50	
Grid		Local		Global	
Easting	606180.417 m	Latitude	N8'09'54.67217"	Latitude	N8'09'51.11024"
Northing	902629.434 m	Longitude	E123'57'49.92699"	Longitude	E123"57'55.36634"
Elevation	4.394 m	Height	6.900 m	Height	73.452 m

Ta:	LE-76				
Grid		Local		Global	
Easting	588530.790 m	Latitude	N8'03'05.36825"	Latitude	N8'03'01.82183"
Northing	890021.013 m	Longitude	E123'48'12.37307'	Longitude	E123'48'17.82405'
Elevation	7.017 m	Height	9.335 m	Height	75.717 m

Vector					
ΔEasting	-17649.627 m	NS Fwd Azimuth	234'35'42'	ΔX	13688.663 m
ΔNorthing	-12608.421 m	Ellipsoid Dist.	21696.715 m	ΔΥ	11332.042 m
ΔElevation	2.623 m	ΔHeight	2.435 m	ΔZ	-12447.993 m

Standard Errors

Vector errors:					
σ ΔEasting	0.021 m	σ NS fwd Azimuth	0.00.00.	σΔΧ	0.024 m
σ ΔNorthing	0.006 m	σ Ellipsoid Dist.	0.015 m	σΔΥ	0.034 m
σ ΔElevation	0.036 m	σ ΔHeight	0.036 m	σΔΖ	0.009 m

Aposteriori Covariance Matrix (Meter*)

	X	Y	Z
х	0.0005606089		
Υ	-0.0003223999	0.0011623638	
z	-0.0000556148	0.0002703935	0.0000791896

4. ZS-198

Vector Components (Mark to Mark)

From:	ZGS-1				
	Grid		Local		Global
Easting	553699.482 m	Latitude	N8°04'26.98335"	Latitude	N8°04'23.40249"
Northing	892472.300 m	Longitude	E123°29'14.53868"	Longitude	E123°29'19.99013"
Elevation	20.051 m	Height	22.611 m	Height	88.163 m

To:	ZS-188A	ZS-188A				
	Grid	Local		Global		
Easting	553627.634 m	Latitude	N8°03'56.69408"	Latitude	N8°03'53.11537"	
Northing	891542.089 m	Longitude	E123°29'12.15500"	Longitude	E123°29'17.60722"	
Elevation	17.277 m	Height	19.832 m	Height	85.400 m	

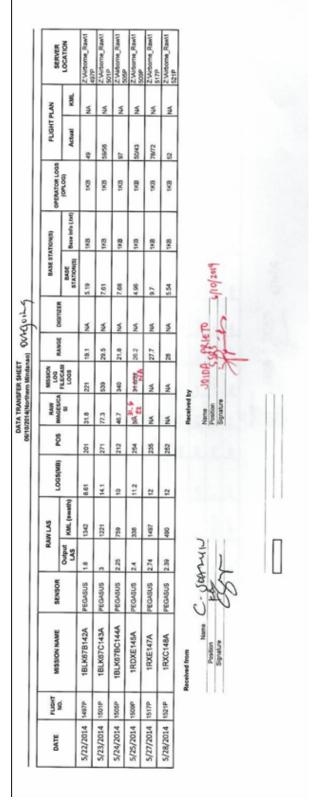
Vector					
ΔEasting	-71.848 m	NS Fwd Azlmuth	184°29'06"	ΔΧ	-9.705 m
ΔNorthing	-930.211 m	Ellipsoid Dist.	933.322 m	ΔΥ	146.900 m
ΔElevation	-2.773 m	ΔHeight	-2.778 m	ΔZ	-921.644 m

Standard Errors

Vector errors:					
σ ΔEasting	0.004 m	σ NS fwd Azimuth	0°00'01"	σΔΧ	0.001 m
σ ΔNorthing	0.001 m	σ Ellipsoid Dist.	0.001 m	σΔΥ	0.005 m
σ ΔElevation	0.004 m	σΔHeight	0.004 m	σΔΖ	0.001 m

Aposteriori Covariance Matrix (Meter²)

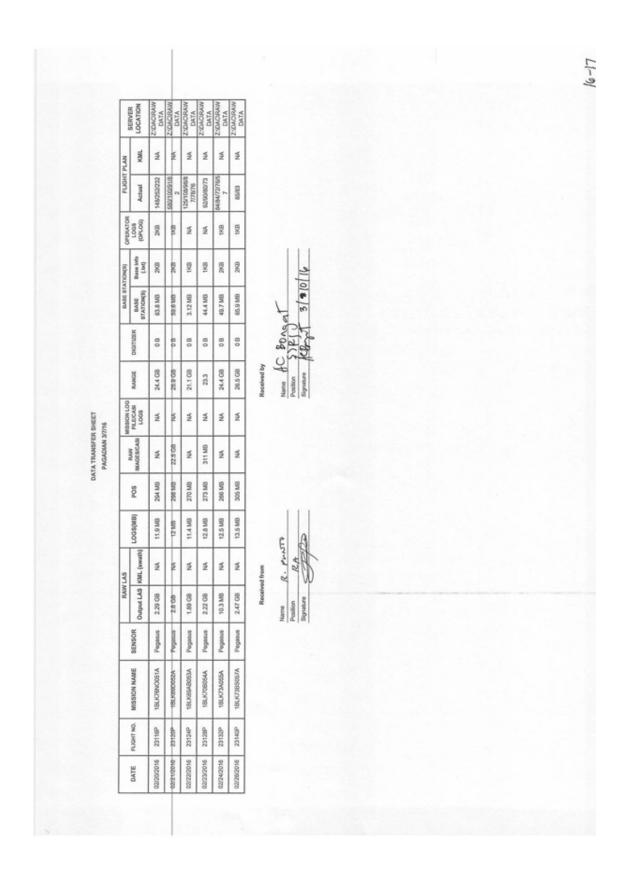
	X	Y	z
x	0.0000013603		
Υ	0.0000026352	0.0000296273	
z	0.0000004069	0.0000057486	0.0000013978

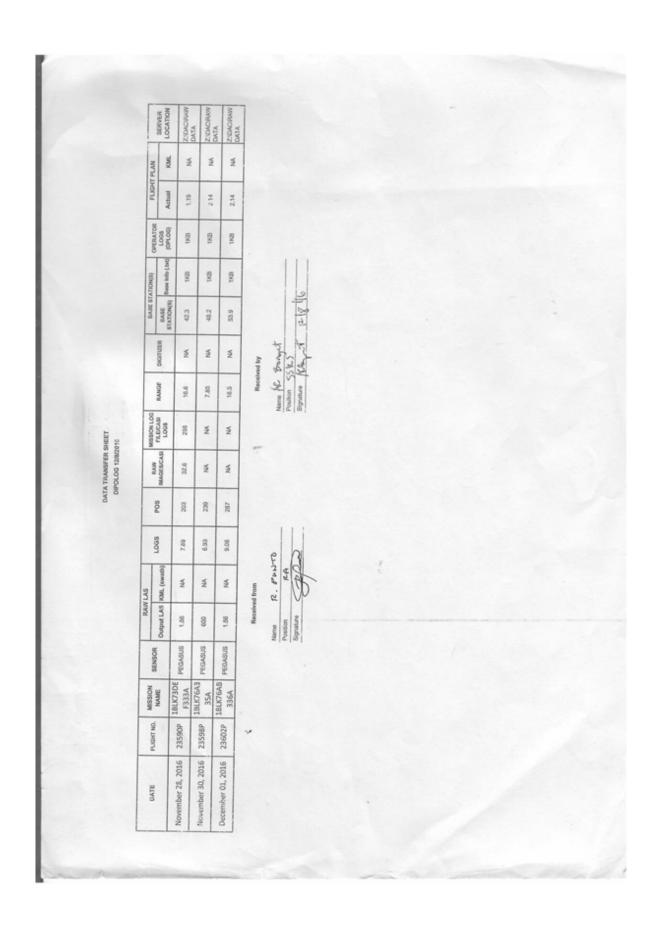

ANNEX 4. The LIDAR Survey Team Composition

Data Acquisition Component Sub-Team	Designation	Name	Agency/ Affiliation
PHIL-LIDAR 1	Program Leader	ENRICO C. PARINGIT, D.ENG	UP-TCAGP
Data Acquisition Component Leader	Data Component Project Leader - I	ENGR. CZAR JAKIRI SARMIENTO	UP-TCAGP
	Data Component Project Leader – I	ENGR. LOUIE P. BALICANTA	UP-TCAGP
Survey Supervisor	Chief Science Research Specialist (CSRS)	ENGR. CHRISTOPHER CRUZ	UP-TCAGP
		LOVELY GRACIA ACUÑA	UP-TCAGP
	Supervising Science Research Specialist (Supervising SRS)	LOVELYN ASUNCION	UP-TCAGP

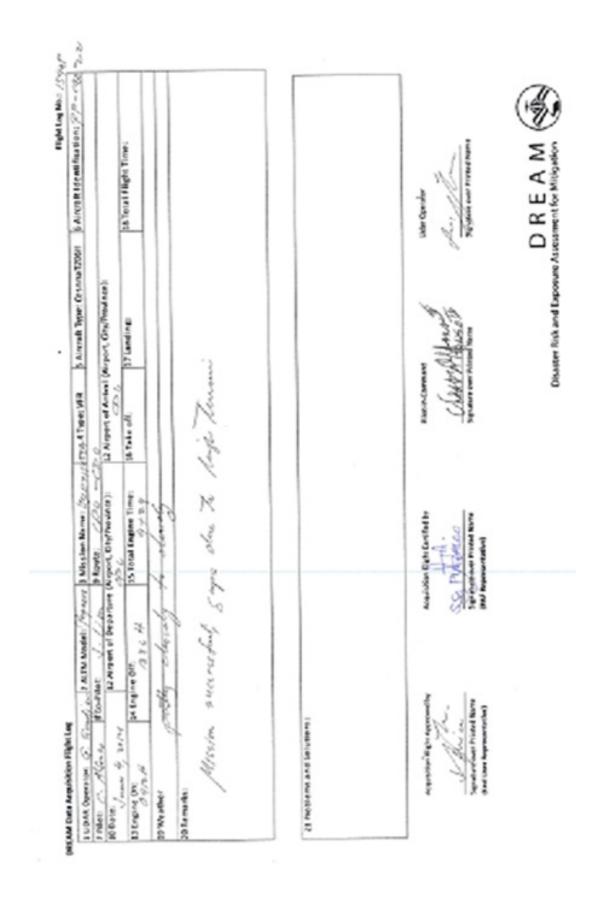
FIELD TEAM

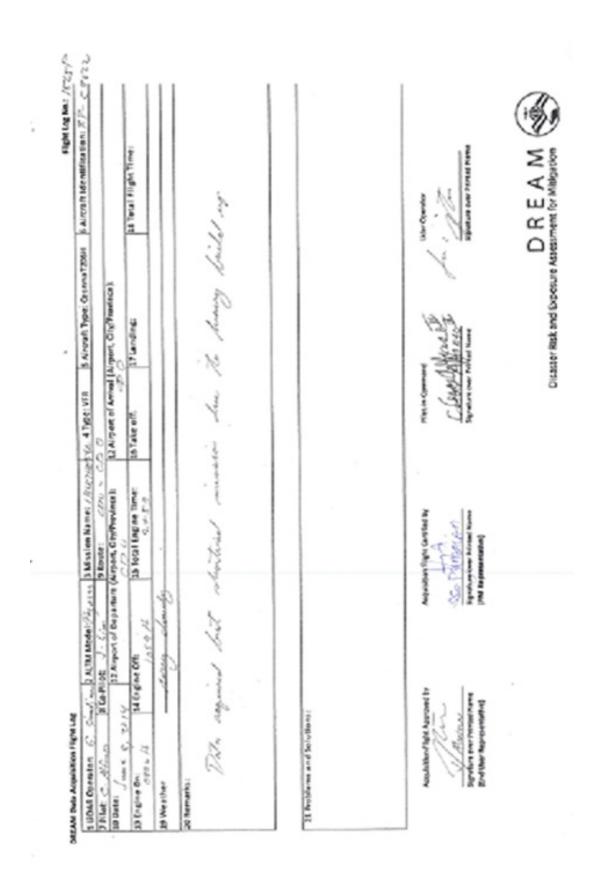
	1	ı	1
LiDAR Operation	Senior Science Research Specialist (SSRS)	ENGR. GEROME HIPOLITO	UP-TCAGP
		PAULINE JOANNE ARCEO	UP-TCAGP
	Research Associate (RA)	MA. VERLINA TONGA	UP-TCAGP
		JONALYN GONZALES	UP-TCAGP
		ENGR. RENAN PUNTO	UP-TCAGP
		ENGR. IRO NIEL ROXAS	UP-TCAGP
		JERIEL PAUL ALAMBAN, GEOL.	UP-TCAGP
		ENGR. KENNETH QUISADO	UP-TCAGP
		ENGR. GRACE SINADJAN	UP-TCAGP
		JONATHAN ALMALVEZ	UP-TCAGP
		ENG. GEF SORIANO	UP-TCAGP
		FRANK NICOLAS ILEJAY	UP-TCAGP
Ground Survey, Data Download and Transfer	Research Associate (RA)	JASMIN DOMINGO	UP-TCAGP
		MERLIN FERNANDO	UP-TCAGP
LiDAR Operation	Airborne Security	SSG. JAYCO MANZANO	PHILIPPINE AIR FORCE (PAF)
		SSG. GERONIMO BALICOW III	PAF
		SSG. LEEJAY PUNZALAN	PAF
	Pilot	CAPT. BRYAN DONGUINES	ASIAN AEROSPACE CORPORATION (AAC)
		CAPT. SHERWIN CESAR ALFONSO	AAC
		CAPT. ERNESTO SAYSAY JR.	AAC
		CAPT. ANTON DAYO	AAC


ANNEX 5. Data Transfer Sheet for Balili Floodplain

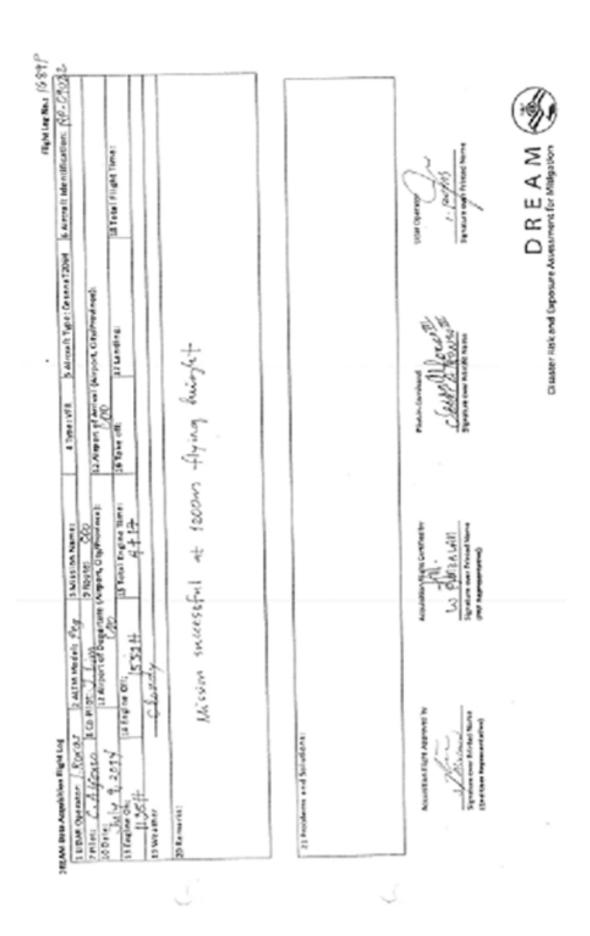

SERVER	LOCATION	NA 525P	NA 533P	NA S41P	NA 545P	NA 545P	NA 561P	Z'Autome_Rawrit sesse		
W	KML	2	ž	N.	N.	2	2	2		
FLIGHT PLAN	Actual	40	47/38	47/45/40/34	141	54/50/45	71	88		
OPERATOR LOGS	(04/08)	1103	1103	1108	1108	1108	1103	11/3		
	Base lefo (.fxt)	9.83 TKB	8.87 743	12.6 1/0	9.95 TKB	11.2 168	8.1 148	1KB	_	
BASE STATIONES	BASE STATIONIS	9.83	8.87	12.6	9.95	11.2	8.1	7.75 1KB	PM45512	- Lake
-		NA	33.3 NA	39 674MB	40.1 272MB	34.6 NA	22 NA	13.3 NA	CIENT	7
RANDE		26.5 NA	33.3	38	40.1	34.6	22	15.3 NA 15.3 N		
NOSSIN 100		2	929	139	633	NA	NA.	163	100	2 1
RAW	н	,	13.2	19.7	200	5	5	1.22	Received by Name Doubloo	
3		265 "	224 452	285 19.7	253 69.7	284 NA	187 NA	168 22.1		.,
- Octobre	(muleono)	9.27	14.4	0	13	14.3	NA	6.36		
RAWLAS	KML (swath)	457	270	242	2259	150	44	16		
3	Output	1.6	3.32	*	4.13	3.48	**	NA.	3	.1
900000	-	PEGASUS	PEGASUS	PEGASUS	PEGASUS	PEGASUS	PEGASUS	PEGASUS	Town of the	Y.
***************************************	-	1808149A	18L067151A	18LK718153A	18UX71C154A	18UK71D155A	1R0E158A	18LK718159A	Received from Name C	
-		1525#	15339	15419	1545₽	15499	1561P	1565#	ž	
277		29-May-14	32-May-14	2-Jun-14	3-Jun-14	4-Jun-14	7-Jun-14	8-Jun-14		

	LOCATION	Z.Wirtome_ Raw	Z.Wirtome_ Raw	Z.Wirtome_ Raw	Z.Wirtome_ Raw	Z-Wirtome_ Raw	Z.Wirtome_	Z-Wirboma_ Raw		
LAN	KML	ž	Ř	NA	NA N	N.	×	N		
FUGHT PLAN	Actual	36	92/84	130	184	NA	196/207	53		
CPERATOR	10018	1100	1103	1103	1103	1103	11/3	1108		
now(s)	Base lafe (tot)	1108	1108	103	1930	19/3	19/8	900		
BASE STATION(S)	BASE STATION(S)	6.94	60.9	4.94	4.39	4.39	3.68	4.08		8/4/14
	DIGHTERR	×	27.8	NA	67.4	X	*	75		X IETO
	RANGE	6.77 NA	12.5 27.8	7.79 NA	22.4 47.4	7.47 NA	27.1 NA	16.9 NA		JOIDA F. PRICTO
MSSION LOG	FLEICASI LOSS	NA	167	99	268	NA	NA	NA		diop
	MAGESICASI			11.2	25	3	3	5	Received by	Name Position Signature
Nossee	808	169 NA	190 22.4	141 112	242 37	136 NA	257 NA	175 NA		2,2,0)
	SHP	94.5	335	188	878	176	740	448		
	LOGS(MB)	4.69	7.58	5.33	1	4.81	12.6	8.11		
SVI	KML (wwsth)	93	379	89	515	79	156	551		
RAIN LAS	Output LAS	909	1.06	989	2.31	749	2.56	1.78		
	SENSOR	Pegasus	Pegasus	Pogasus	Pegasus	Pegasus	Pepasus	Pegasus		L ANDROP
	MISSION NAME	18LK71ES184A	18UK71ES186A	IBLK71S187A	18LK71S189A	18LK71S1898	1BLK71S190A	1RXES191A	Received from	Name TIN ANDRYA Poston B.A Square
	FUGHT NO.	1665₽	16739	1677P	1685₽	16879	16896	1693P		
	DATE	7/3/2014	7/5/2014	7/6/2014	7/8/2014	7/8/2014	7/9/2014	7/10/2014		


				-													
-	FUGHT NO.	MISSION NAME	SENSOR		RAIN LAS	- Constant	900	PANY	NISSION FOO			BASE ST	BASE STATION(S)	CPERATOR	FUGH	FUGHT PLAN	
				Output LAS	KML	roceival	ŝ	MAGES/CASE	FLESCASI	RANGE	DIGITIZER	BASE	Base info	1003			LOCATION
	1565P	18LK718159A	Pegasus	ž	36	693	168	NA	474	0.00	,	STATION(S)	_		Actual	KW	
Ι.	1569P	18LKRXF160A	Dansen	7.7	9					13.3 nm	5	7.75	11/0	1103	88	ž	Raw Raw
Ι,	6020	TOTAL PROPERTY.	enseda.	\neg	832	16.5		290 8.86	23	38.5 NA	2	10	11KD	1KB	88	NA	Z:Wittome_
	1/601	1BUKRXE167A	Pegatus	2.18	332	10.5		237 NA	NA	21.3 NA	NA	7.52	11KB	1108	68	2	Z:Wirbome
	\neg	1RX5170A	Pegasus	2.16	526	11.2		259 45.3	300	22.1 NA	NA	7.07	1KB	1KB	77/76		Z.Valbome_
	16139	18LK71G171A	Pegasus	3.44	177	13.7	258	67.3	437	33.2 NA	5	5.92	1148	193	46		Z'Mittorne_
~ 1	1625P	1BLK67BC174A	Pegasus	3.09	1112	11.7	212	603	415	29.4	99.6	4.97	1108	1900	52/56		Raw Z:Wittome_
-	1629P	1BLKRXES17SA	Pegasus	2.79	370	10.7	187	36.3	368	26.1 NA	5	4.45	ă	1108	£		Raw Z:Wirtome
	1641P	1BLK68A178A	Pegasus	254	1995	12.6	388	57.4	200	28 9 572	72	1,1	1KB	1KB	65/65/60/		Z.Withorne
-	16439	1BLK67ABS1788	Pegasus	205	86	4.33	119	*	ş	4	2		1KB	ě	8		Z-Wittome_
	1645P	18LK71C179A	Pegasus	2.84	NA	11.4	242	81.8	375	27.4 NA	5	6.25	1KB	1KB	59/58		Z.Wittome_
	-	Received from						Received by									Raw
	111	Name Position Signature	TIN ANDAM	₩,wa			-,-,-	Name Position Signature	Joinh Poer	Stern .	The same	7					



		1>-	I> c	1> m	2 ~	> m	2 4	
	LOCATION	Z:DACIBAW DATA/23104	Z:DACIBAW DATA(23100	Z-IDACIRAW DATAIZ3096	Z:DAC/RAW DATA/23092	Z:DACRAW DATA/23088	Z:DACIRAW DATA/23084 P	
LAN	KOML	2	2	2	2	2	2	
FUGHT PLAN	Actual	80	80	80	80	80	80	
0000	(00100)	1.08 KB	341B	8 cos	279 8	8 689 B	362 B	
	(100)	133 B	132 B	133 B	132.8	133 B	133 8	9)
BASE STATIONES	BASE Base STATION(S)		103.23 MB	90.32 MB	110.72 MB	101.29 MB	129.73 MB	1
-	B BTA	0.8 116	0.8 103	90	011 80	101	129	S S S S S S S S S S S S S S S S S S S
-							\vdash	Received by Name AC Sorter Separation 55.P.C.S. Separation 10.P.C.S.
	SI RANGE	18.3 GB	G 27.31 GB	B 7.07 GB	GB 22.33 GB	KB 24.65 GB	KB 29.36 GB	Received by Name Presison Signature
729/16	FILEICASI FILEICASI LOGS	193.97 KB	297.52 KB	82.64 KB	230.75 KB	3 263.38 KB	332.83 KB	
PAGADIAN 2/23/16	BANKESICASI	25.87 GB	38 GB	9.7 GB	28.87 GB	35.45 GB	44.56 GB	
	POS	287.01 MB	285.96 MB	164.2 MB	203.46 MB	283.62 MB	276.9 MB	
	LOGS(MB)	10.09 MB	12.33 MB	4.64 MB	10.66 MB	11.64 MB	13.36 MB	£ 01
	OML (swath)	2	2	ž	2	2	NA	R. P. V. J. T. R. P. V. J. T. D. V. J. T.
1	Output LAS KML (swath)	1,81 GB	233 GB	665.91 MB	2.19 GB	2.48 GB	3.01 GB	Racelved from R. 1 Stoyution R. 1
	SENSOR	Pegasus	Pegasus	Pegasus	Pegasus	Pegasus	Pegasus	w i m i m i
	MISSION NAME	1BLK76DLM48A	1BLK760047A	1BLK76NO46A	1BLK76IG04SA	1BLK76LM044A	18U/OBCUND43A	
	FLIGHT NO.	23104P	23100P	23096P	23002P	23088P	23064P 1	
	DATE	2016-02-17	2016-02-16	2016-02-15	2016-02-14	2016-02-13	2016-02-12	



ANNEX 6. Flight logs for the flight missions

100At Operator 9. Day	100	2 ALTIM Model: Species	SUBAN Operator G. Source 2 AUM Model Sector 3 Mission Name (PSS) 4 Sector	C. A Types VFR	S Alecott Type: Cesnes 72004	School: Specificana TOOR Substitution in the Committee of the Committee
10 Date:	3	32 Airport of Departure	22 Alignat of Disperture (Arriport, CTs/Prodince): 12 Al	12 Alegent of Antast	12 Airport of Amira! (Airport, Chylhovinte):	
D Engine Do:	S4 Crit	Michigan Off.	25 Tetal Engine Times	Strate off.	13. reading:	28 Tetal Flight Time:
19 Weather	200	tour Sal				
20 hamades;	1	Jernen () Jernen		living and about the fingle	, y	
28 Problems and Solutions	ē					
Assubstrue fright Agraead by	A Comment by A Com	And Solven	Agelessen fight Cartholity CCG PIRALLAN Spring out Prosibilities Ind Asymptotrished	Class A	And the State of Stat	Side Operators Signatura Society States Signatura States Signatura Society States Signatura States Signatura Society States Signatura Stat
					DREAM	REAM

	RATHAMAGE Pay 3 Mission Names (ACCOUNT) 4 4 TRESUM	1.1	Light type Grand 730H	Suitent transcount 1004 Micraft Meast Readon 100-070 82-
91.	Dependura	State of Arnal (Argan, Ctylhodece)	art Ctylthodoco):	
Strains On Land Ballogue Off.	122744 13 Total Engine Pores		1) Landing	salietal Hight Times
471104	gaps in RXE; started at 1200m then 1400m over RXE ext.	cd. of 1200m	the 1400m o	7-24
23 Problems and Saludons:				
A parado finil Agente by	Accomplishe Fig. 16 Gardhad Tar.	Pleate-Cemban	N.	Usine Operantive
Sepulation trace National Name (Seed than Asymmetric Prof.)	NECESSARY SANGER	Squares our Mingel Save	À 1.	Special over Printed Name
		Disade	Sisk and Exposure Asses	Disaster Risk and Exposure Assessment for MRIgarilon

High Log No.: 1672- 1 UDAR Operators: G. Sindaling LATTAM Model: Teg 3 Mission Name: [DUCTS) \$\frac{1}{2} \frac{1}{2} \frac{1}	Acquisition Flight Approved by Acquisition Flight Certified by Pilot-in-Command Main Certified by Pilot-in-Command Main Certified by Pilot-in-Certified by Pilot-in-Ce
---	--

1 UDAN Operator: (n. Singalian 2 Pelot: (n. Algona) 8 Go-Pilot 13 Engine On: 14 Engine 14 Engine 15 Problems and Solutions: 14 Environmental Name (Ind User Representative)

8		1	-	
RP C que 2			-	
6 Aircraft Identification: 18 Total Flight Time:			Udar Operator	
12 Airport of Arrival (Airport, City/Province): 16 Take off: 17 Landing:			Filor in Command The Start of the Start of Star	
12 Airport of Arrival CD0 16 Take off:			Pilot-in-Command	
3 Mission Name: [BLX 7/5/874 4 Type: VFR 9 Route: CDO 12 Airport, Clty/Province): 12 Airport of Arriv 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	BLK 714 OH 1200m.		Acquisition Flight Certified by MATERIAM Signature ofer Printed Name (PAF Representative)	
OX OX 2 ALTM Model: Peg 3 Mission Name: 1910 S 8 Co-Pilot: J. Lim 9 Route: O.C. C.	SUrruged BUK	ilons:	. pa	
1 UDAR Operator: . Rox as 7 Pilot: C . A 460430 8 C 10 Date: July 8, 2014 13 Engine On: 958#	20 Remarks:	21 Problems and Solutions:	Acquisition Fight Approved	

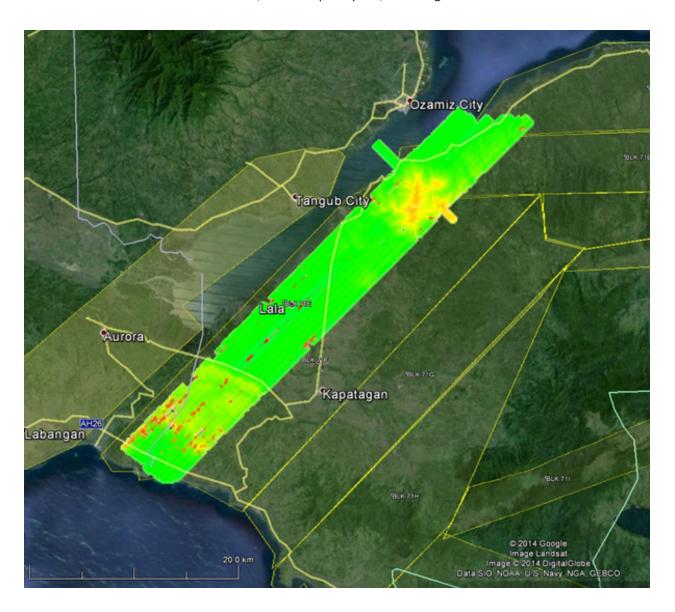
Flight Log No.: 62984 P	6 Aircraft Identification: PP CADL		18 Total Ellebs Times	total region of		7.							Aircraft Mechanic/ UDAR Technician	Signature over Printed Name	
	5 Aircraft Type: Cesnna T206H	12 Aiport of Arrival (Airport, Gty/Province):	17 Indian	H ±2/)		Surveyed BLK 76 C, J, K and							UDAR Operator	1.PU K AS Signature over Printed Name	
	3 Mission Name: BLD43 puckody 4 Type: VFR	Le on _ Congadi	16 Tota off. Squadlan	To lake off.		21 Remarks	aintenance ance						Pilot-in-Command	C. A Horse Mine Signature over Printed Name	
	3 Mission Name: (8LPA	lot: J. Sciol 9 Route: (125 12 Airport of Departure (Airport, City/Province):	15 Tates Engine Time	4+13		20.c Others	LiDAR System Maintenance Aircraft Maintenance Delli sings admin Activities) <u>M</u>	
ight Log	2 ALTM Model: Per	8 Co-Pilot: J. Seciel 12 Airport of Departure	Payadian Off.	14 Engine Off:	Portly and	20.b Non Billable	Aircraft Test Flight AAC Admin Flight						Acquisition Elight Certified by	AIC State of Montagen Signature Deer Printed Name (PAPSupresentative)	
PMIL-LIDAR 1 Data Acquisition Flight Log	1 UDAR Operator: - Pords	(forse III	Feb (6	La Engine On:	19 Weather	20 Flight Classification 20.a Billable	Acquisition Flight Ferry Flight Surfam Test Elishe	O Calibration Flight	22 Problems and Solutions	Weather Problem System Problem	O Pilot Problem	O Others:	Acquisition Flight Approved by	My Pale To C. M. Pale To Signature over Printed Name (End User Representative)	

1 Do as Operator	14 Engine Office 20c Others	ı				030802	0
SCo-Pilot: 3-3-co-total State St	14 Engine Off: 12 Airport of Departure (Airport, ChyProvince): 12 Airport of Airval (Airport, ChyProvince): 13 Total Flight Time: 16 Take off: 17 Individual 18 Total Flight Time: 18 Total F	2 AITM Model: 1	Mission Management			Flight Log No.:	
12 Airport of Departure (Airport, City/Province): 12 Airport of Arrivgl (Airport, City/Province): 7-5-5-6 (16-2-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	12 Airport of Departure (Airport, Clay/Province): 12 Airport of Arrival (Airport, Clay/Province): 16 Engine Off: 15 Clay Engin	o-Pilot: J. Jeerel	Route:		S Aircraft Type: CesnnaT206H		_
14 Engine Off: 15 Total Engine Time: 16 Take off: 17 Landing: 18.5 M 13.5	14 Engine Off: 12 Total Engine Time: 16 Take off: 17 Ending: 18 Total Engine Time: 16 Take off: 17 Ending: 18 Total Engine Time: 16 Take off: 17 Ending: 18 Total Engine Time: 16 Take off: 17 Ending: 18 Total Engine Time: 16 Take off: 17 Ending: 18 Total Engine Time: 18 Total Engine Tim	Feb 16 Parties 12 Airport of Departure	port, City/Province):	2 Airport of Arrival (Ai	rport, Gty/Province):		
20. Cohers O Alrcraft Test Flight O LIDAR System Maintenance O AAC Admin Flight O Others: O Others: O Others: O Others	200 Non Billible 20.0 Others Others:	14 Engine Off:	Total Engine Time:		707	18 Total Flight Time:	
20.b Non Billable 20.c Others O Aircraft Test Filight O LIDAR System Maintenance O AAC Admin Flight O Aircraft Maintenance O Others: O Phill-LIDAR Admin Activities	20.b Non Billable 20.c Others O Aircraft Test Flight O LIDAR System Maintenance O Others: O Others: O Others: Accudation Right Certified by Accudation Right Certified by Accudation Right Certified by Accudation Right Certified by Registrate coup Principle Name Signature over Principle Name Signature over Principle Name Signature over Principle Name	Clara	24.1	OFSH	11.5871	4113	
20.b Non Billable 20.c Others O Aircraft Test Flight O LIDAR System Maintenance O Athers: O Others: O Phil-LiDAR Admin Activities	20.b Non Billable 20.c Others O Aircraft Test Flight O LIDAR System Maintenance O Others: O Oth	· ·					
O Alversit Test Flight O LIDAR System Maintenance O AAC Admin Flight O Aircraft Maintenance O Others: O Others: O Phil-LIDAR Admin Activities	Others: Oth	. 20.b Non Billable	D.c Others		31476 I, L and		
and Solutions ather Problem tem Problem traft Problem tr Problem tr Problem trefts:	by Acquisition Right Cartified by Pilot-in-Command World Character Philot-in-Command World Character Chara	000		E A	control of the the olgodas.		
ather Problem raif Problem t Problem t Problem rers:	AC COAST CARTISTS (ATT 1970) Signature over Prifted Name (PAR Regissentative)	and Solutions					
tem Problem traft Problem troblem tress:	Acquisition Flight Certified by Alc COARO Chronic Command Alc COARO Chronic Managements (PAF Registered Name Signature over Priftied Name Signature over Priftied Name	ather Problem					
or Problem hers:	Acquisition Right Certified by Pilot-in-Command AC CONSOL SHOOT SECTION OF Signature over Priftied Name (PAR Regissentative)	tem Problem					
35,040	Acquisition Right Certified by Pilot-in-Command UCAR Operator Order Check Check Operator Order Check Check Operator Order Check Operator Order Order Order Printed Name (PAR Registersentative)	t Problem					
	Acquisition Right Certified by Pilot-in-Command AC CONSOL SHOOT SECTION OF Signature over Priftied Name (PAR Regissentative)	15.00					
		A. C.	EA	H 12 HS0	Signature over Printed Name	Signature over Printed Name	

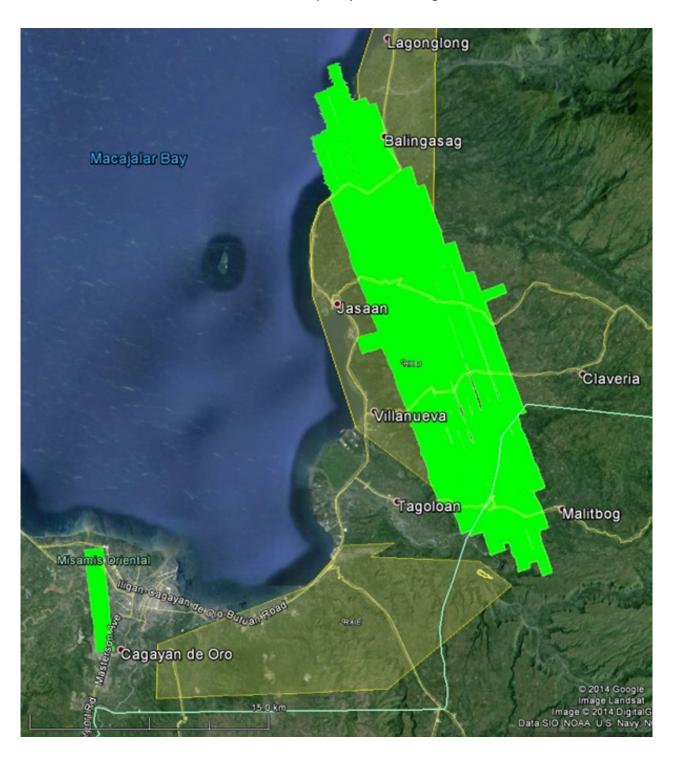
Flight Log No.: 23/04/P			18 Total Flight Time:		Ex76 PIK, Lend M		Alecratt Mechanic/ UDAR Technician N/A Signature over Printed Name	
S Aircraft Type: Cesnna 7206H		12 Airport of Arrival (Airport, Qty/Provipce):	17 Landing: Call H		rueyed voids over		UDAR Operation	7
3 Mission Name: (RLK 76b)Cum Matheme: VFR		12 Airport of Arriva	16 Take off: 08% H		21 Remarks	aintenance ance n Activities	Pilot-in-Command C, Amary Signature over Prifited Name	
3 Mission Name: (RLK)	9 Route:	(Airport, Gty/Province):	15 Total Engine Time:	cloudy	20.c Others	LiDAR System Maintenance Aircraft Maintenance Phil-LiDAR Admin Activities	冷巷	(14
VEZ. 2 ALTM Model: Per	8 Co-Pilot: J. Jecitel	12 Airport of Departure (Airport, City/Province):	4 Eng	Party	20.b Non Billable	Aircraft Test Flight AAC Admin Flight Others:	Acquisition Flight Acquisition Flight Acquisition Flight	(PAR Representative)
1 UDAR Operator: J. # [ma VC2, 2 ALTM Model:	7 Pilot: C. A. Fanso !!!	10 Date: 17 Feb 16	13 Engine On: OSOL H	19 Weather	20 Flight Classification 20.a Billable	Acquisition Flight Ferry Flight System Test Flight Calibration Flight	22 Problems and Solutions O Weather Problem O System Problem O Aircraft Problem O Pilot Problem O Others: Acquisition Flight Approved by Signature over Printed Name	(End User Representative)

8 9	SOUCH 2 ALTM Model: PROCESUS	3 Mission Name:	4 Type: VFR	S Aircra & Tong. Connect There	
10 Date: 2/23/2016 13 Engine On:	8 Co-Pilot: J. Jecre	Route:		and the results to the	Section: RPC912
13 Engine On:	12 Airport of Departure (A)		Pagodion	12 Airport of Arrival (Airport, City/Province):	
7:30	14 Engine Off:		16 Take off:	17 Landing:	18 Total Flight Time:
19 Weather But	Partly Cloudy			71.11	4407
20 Flight Classification	34		21 Remarks		
20.a Billable	20.b Non Billable	20.c Others			
Acquisition Flight Forty Flight System Test Flight Calibration Flight	Alcraft Test Flight AAC Admin Flight Others:	LIDAR System Maintenance Aircraft Maintenance Phil-LIDAR Admin Activities		Successful flight	
22 Problems and Solutions					
O Weather Problem					
O System Problem					
O Others:					
Acquisition Flight Approved by	Acquisition Flight Certified by	by Pilot-in-Command	The March	UDAR Operator	Aircraft Mechanic/ LIDAR Technician
Signature over Printed Name (End Uter Representative)	Signature over Printed Name	An.	Signature over Kinted Name	Kenneth Oulsallo	Signature over Printed Name

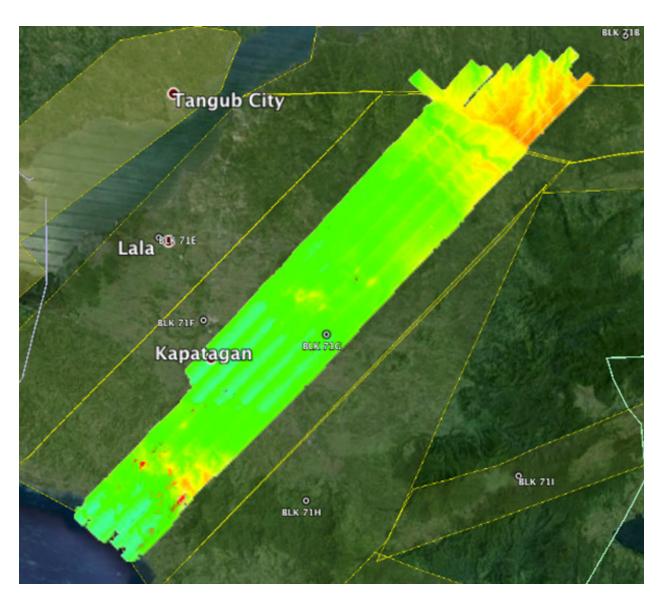
2.5	6 Aircraft Identification: 702	AND THE PERSON NAMED IN COLUMN TWO IS NOT THE OWNER, WHEN THE PERSON NAMED IN COLUMN TWO IS NOT THE OWNER, WHEN THE PERSON NAMED IN COLUMN TWO IS NOT THE OWNER, WHEN THE PERSON NAMED IN COLUMN TWO IS NOT THE OWNER, WHEN THE PERSON NAMED IN COLUMN TWO IS NOT THE OWNER, WHEN THE PERSON NAMED IN COLUMN TWO IS NOT THE OWNER, WHEN THE PERSON NAMED IN COLUMN TWO IS NOT THE OWNER, WHEN THE PERSON NAMED IN COLUMN TWO IS NOT THE OWNER, WHEN THE PERSON NAMED IN COLUMN TWO IS NOT THE OWNER, WHEN THE PERSON NAMED IN COLUMN TWO IS NOT THE OWNER, WHEN THE PERSON NAMED IN COLUMN TWO IS NOT THE OWNER, WHEN THE OWNE	18 Total Flight Time: 4+3C	NØC.			Alcraft Mechanic/ IEDAR Technician Signature over Printed Name
-1	S Aicra II Type: Cesnna 1206H 6	12 Airport of Arrival (Airport, Chy/Province):		1 Remarks Genreleted Bile 76A AND \$12 11 A DUBL Kunnaratanie fold FAGHTRESS.			LIDAR Operator Signature Lover Printed Name
-	d the ven			1			Pilot-ingland
MOLE SAME STANDARD	9 Route:	Inte (Airport, City/Province)	15 Total Engine Time:	20.c Oth	O Phil-LIDAK Admin Activities		
20 DALIMANDEL PEZA	B Co-Pilot: F SMSAY JR	-	14 Engine Off. 1514 H	20 b Hou Billable O Alcoatt Fest Plight O AAC Admin Flight			Acquisting right certified by
HDAR Operator: PJ ARC	Pilot: A DAND	12/01/2016		20.a Billable Acquisition Flight O Ferry Flight O System fest Flight	O Calibration Flight	Weather Problem System Problem Alerafi Problem Pilot Problem Others	Acquisition Fight Approved by Company of the Compa


ANNEX 7. Flight status reports

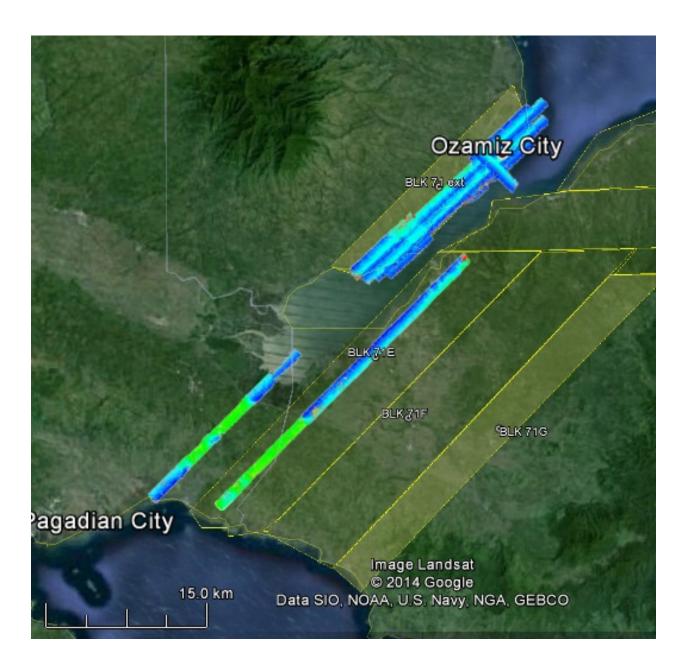
Northern Mindanao (June 4-July9, 2014; February 12-23, 2016; December 1, 2016)

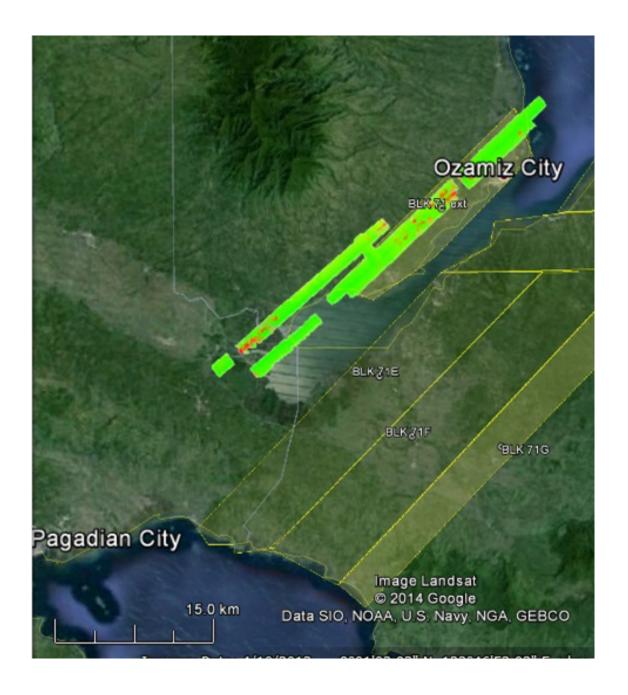

FLIGHT NO.	AREA	MISSION	OPERATOR	DATE FLOWN	REMARKS
1549P	BLK 71E	1BLK 71D155A	G. Sinadjan	June 4, 2014	Surveyed BLK 71E with gaps due to clouds; to be renamed to 1BLK71E155A
1565P	BLK 71F	1BLK71B159A	G. Sinadjan	June 8, 2014	Surveyed half of BLK 71F with gaps due to clouds; to be renamed 1BLK71F159A
1613P	BLK 71G	1BLK71G171A	G. Sinadjan	June 20, 2014	Mission successful; some lines cut due to high terrain
1665P	BLK 71 ext	1BLK71ES184A	J. Alviar	July 3, 2014	Heavy build up closing is over Lanao and Pagadian areas; searched for open areas and surveyed Ozamis City instead
1673P	BLK 71 ext	1BLK71ES186A	I.Roxas	July 5, 2014	Attempted to survey Lanao and Pagadian but transferred to Tangub and Ozamis due to heavy build up in the previous areas
1677P	BLK 71 ext	1BLK71S187A	G. Sinadjan	July 6, 2014	Heavy build over all remaining survey areas; surveyed supplementary lines to BLK 71ext
1685P	BLK 71F	1BLK71S189A	I.Roxas	July 8, 2014	Surveyed BLK 71F at 1200m
1689P	BLK 71E and BLK 71ABCs	1BLK71S190A	I.Roxas	July 9, 2014	Surveyed BLK 71E and the gaps in BLK 71ABC
23084P	BLK C,D,E,H,J,K,L	1BLK76JKLCs043A	I.Roxas	February 12, 2016	Finished BLK76C,J,K. Please also process tie lines as production data, using the intersecting line as tie line for BLK76D,E,H as they cover parts of FP
23088P	BLK I,L,M	1BLK76ILM044A	J. Almalvez	February 13, 2016	Cloudy over L & M. Pegasus problem encountered so no tie lines over I; please use 23078's and 23092's tie line
23104P	BLKD,L,M	1BLK76DLM048A	J. Almalvez	February 17, 2016	Cloudy on BLK76M so no tie line, please use 23088's tie line; also cloudy in BLK76L
23128P	BLK70B, 71A	1BLK70B054A	K. Quisado	February 23, 2016	Encountered Lost Channel A error several times; Surveyed blks
23602P	KUMALARANG, BALILI BLK 76A, 71A	1BLK76AB336A	P. Arceo	December 1, 2016	Compoleted Kumalarang floodplain and voids over Balili Floodplain

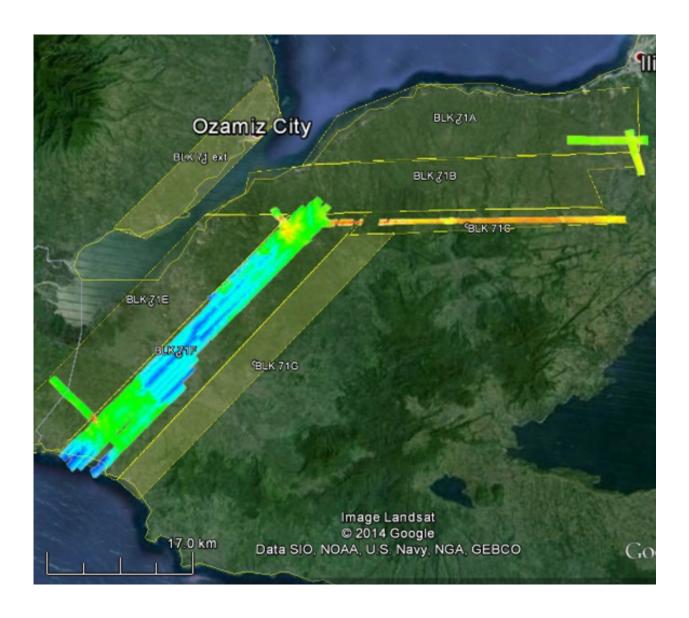
SWATH PER FLIGHT MISSION


Flight No.: 1549P Area: BLK 71E Mission Name: 1BLK71D155A

Flight No.: 1613P
Area: BLK 71G
Mission Name: 1BLK71G171A


Flight No.: 1613P Area: BLK 71G Mission Name: 1BLK71G171A


Flight No.: 1665P Area: BLK 71Es Mission Name: 1BLK71ES184A


Flight No.: 1673P Area: BLK 71 ext Mission Name: 1BLK71ES186A

Flight No. : 1677P
Area: BLK 71 ext
Mission Name: 1BLK71S187A

Flight No.: 1685P Area: BLK 71F Mission Name: 1BLK71S189A

Flight No.: 23084P

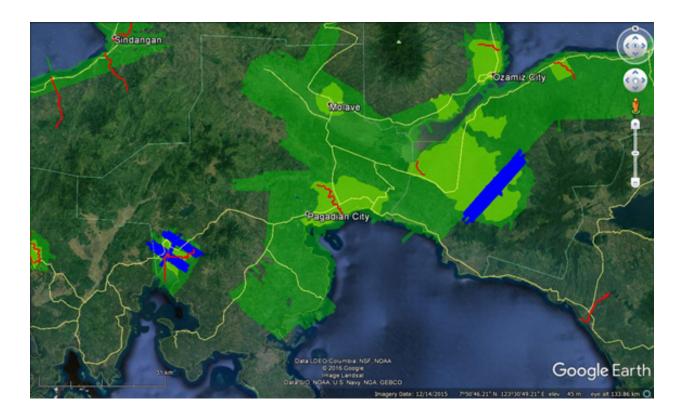
Area: BLK C,D,E,H,J,K,L Mission Name: 1BLK76JKLCs043A

Flight No. : 23088P Area: BLK I,L,M

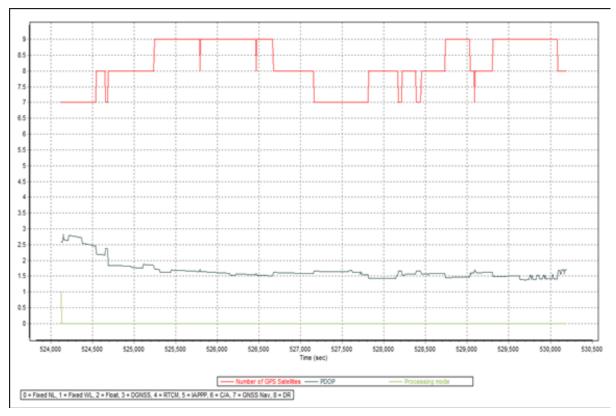
Mission Name: 1BLK76ILM044A

Flight No.: 23104P Area: BLK D,L,M

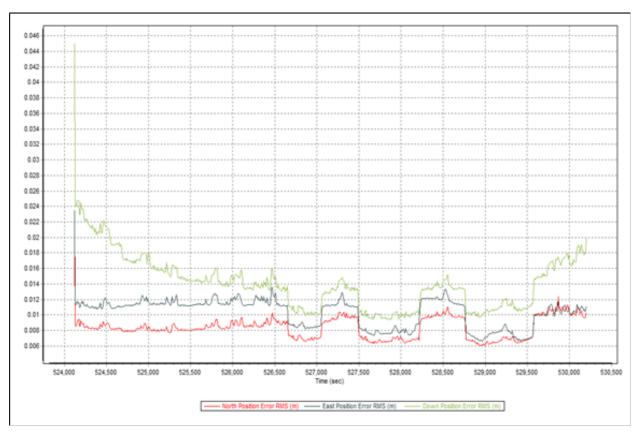
Mission Name: 1BLK76DLM048A


Flight No.: 23128P Area: BLK 70B, 71A Mission Name: 1BLK70B054A

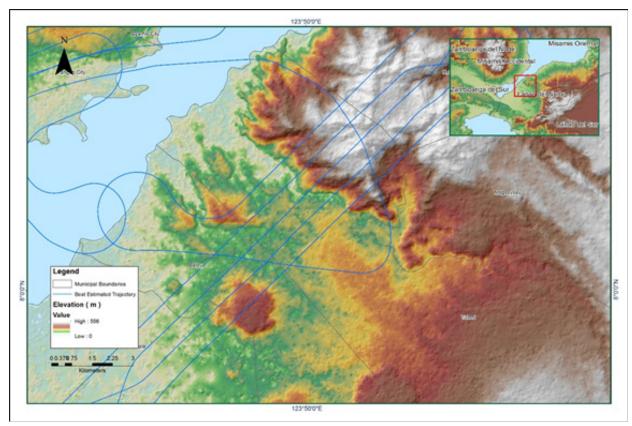
Flight No.: 23602P

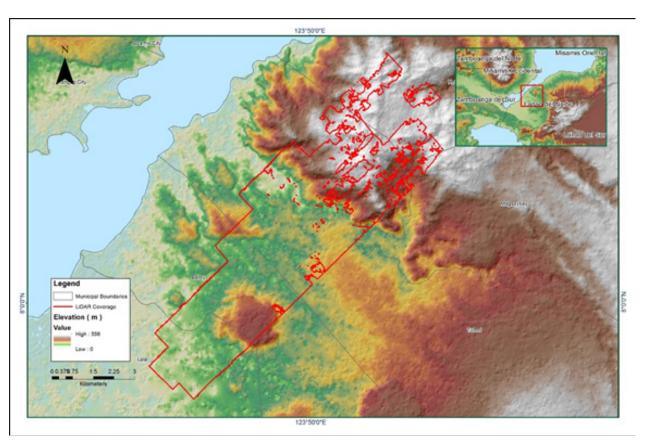

Area: KUMALARANG AND BALILI

Mission Name: 1BLK76AB336A



ANNEX 8. Mission Summary Reports


Flight Area	Pagadian
Mission Name	76J
Inclusive Flights	23088P
Range data size	24.65
POS data size	283.62
Base data size	101.29
Image	n/a
Transfer date	March 01, 2016
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	No
Processing Mode (<=1)	Yes
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	1.3
RMSE for East Position (<4.0 cm)	1.4
RMSE for Down Position (<8.0 cm)	2.5
Boresight correction stdev (<0.001deg)	0.000281
IMU attitude correction stdev (<0.001deg)	0.000180
GPS position stdev (<0.01m)	0.0014
Minimum % overlap (>25)	27.90
Ave point cloud density per sq.m. (>2.0)	3.23
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	72
Maximum Height	698.51 m
Minimum Height	68.61 m
Classification (# of points)	
Ground	34,165,050
Low vegetation	19,594,241
Medium vegetation	28,178,750
High vegetation	95,242,866
Building	801,190
Orthophoto	Yes
Processed by	Engr. Regis Guhiting, Engr. Jovelle Canlas, Engr. Krisha Marie Bautista


Solution Status

Smoothed Performance Metric Parameters

Best Estimated Trajectory

Coverage of LiDAR data

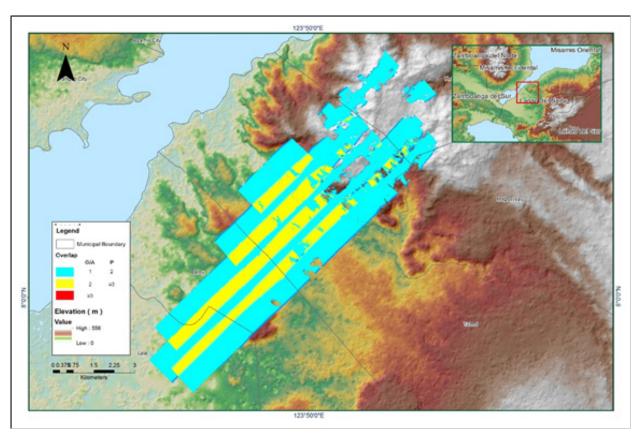
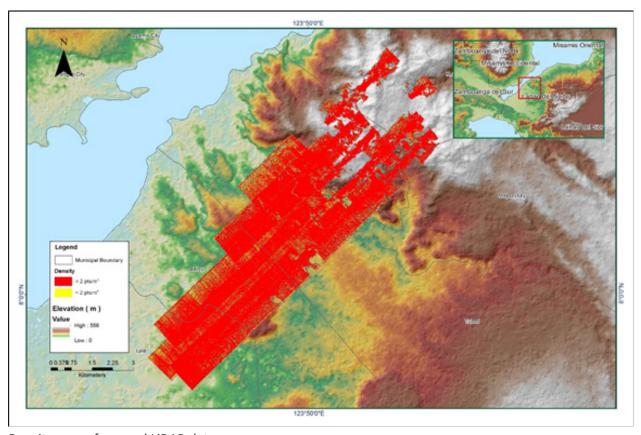
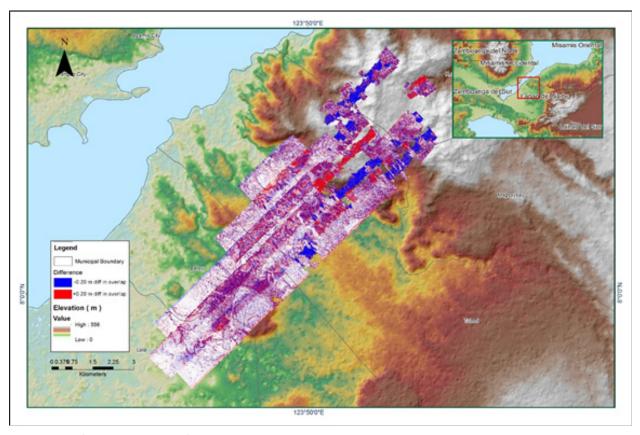
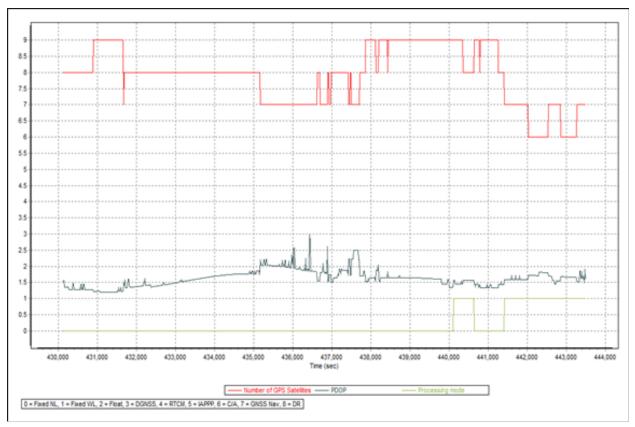
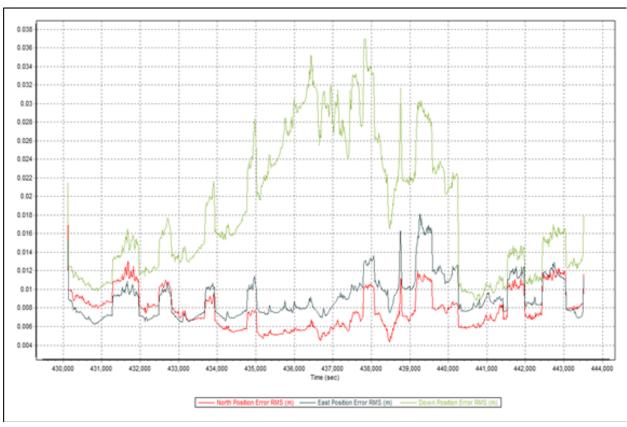




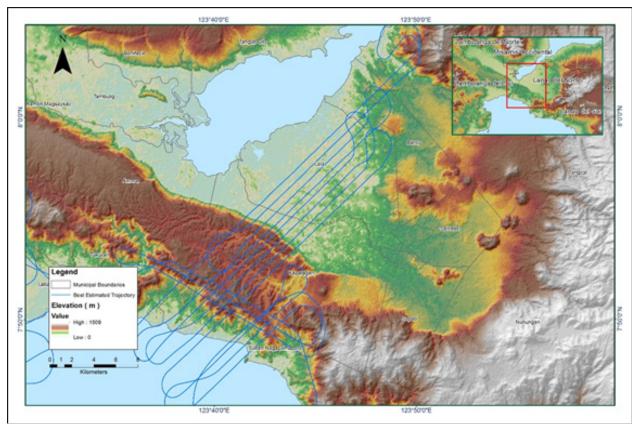
Image of Data Overlap

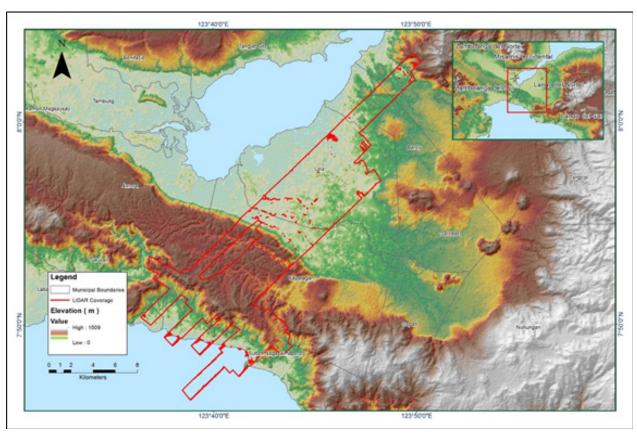


Density map of merged LiDAR data



Elevation difference between flight lines


Flight Area	Pagadian
Mission Name	76K
Inclusive Flights	23084P
Range data size	29.36
POS data size	276.9
Base data size	129.73
Image	n/a
Transfer date	March 01, 2016
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	No
Processing Mode (<=1)	Yes
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	1.3
RMSE for East Position (<4.0 cm)	1.8
RMSE for Down Position (<8.0 cm)	3.7
Boresight correction stdev (<0.001deg)	0.000134
IMU attitude correction stdev (<0.001deg)	0.000524
GPS position stdev (<0.01m)	0.0064
Minimum % overlap (>25)	39.61
Ave point cloud density per sq.m. (>2.0)	3.19
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	280
Maximum Height	475.01 m
Minimum Height	62.15 m
Classification (# of points)	
Ground	263,061,671
Low vegetation	186,080,376
Medium vegetation	173,663,045
High vegetation	1,062,882,246
Building	4,176,141
Orthophoto	Yes
Processed by	Engr. Kenneth Solidum, Engr. Justine Francisco, Maria Tamsyn Malabanan


Solution Status Parameters

Smoothed Performance Metrics Parameters

Best Estimated Trajectory

Coverage of LiDAR data

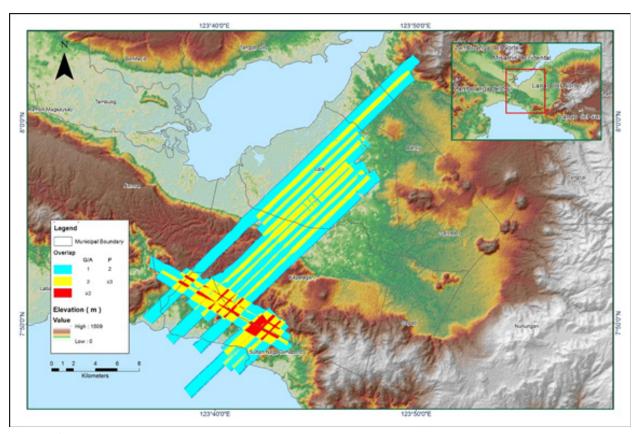
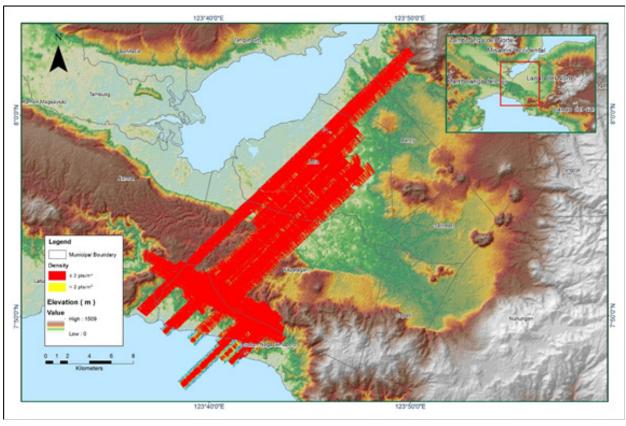
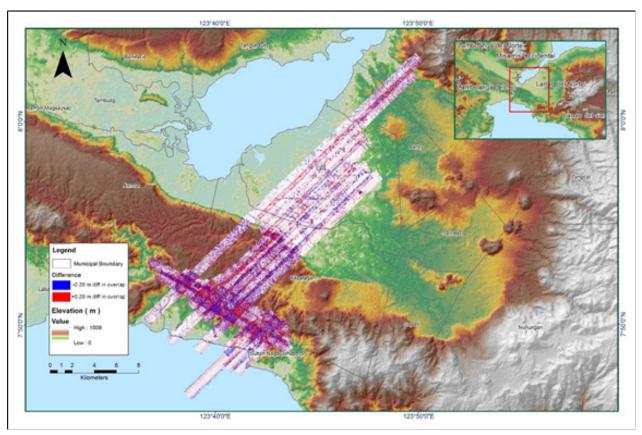
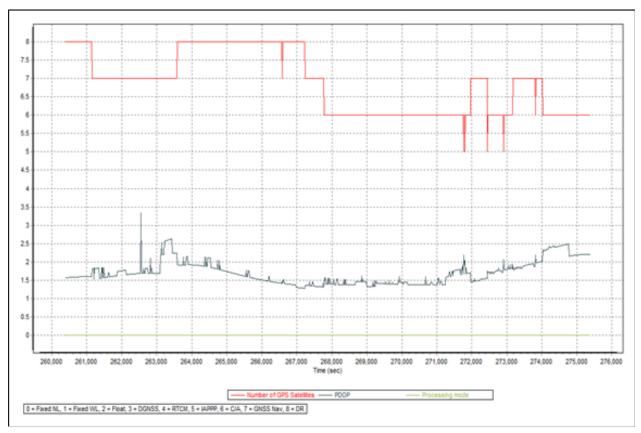
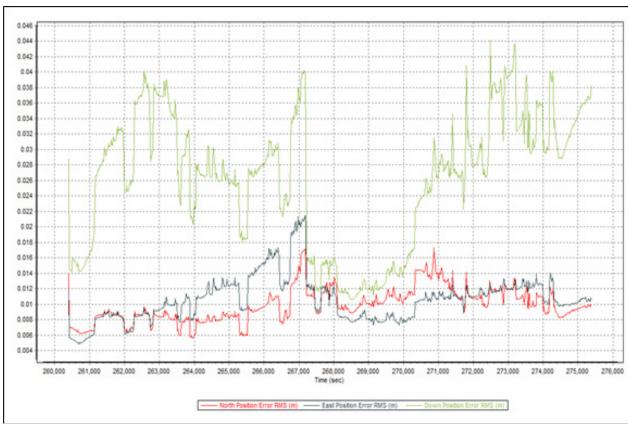




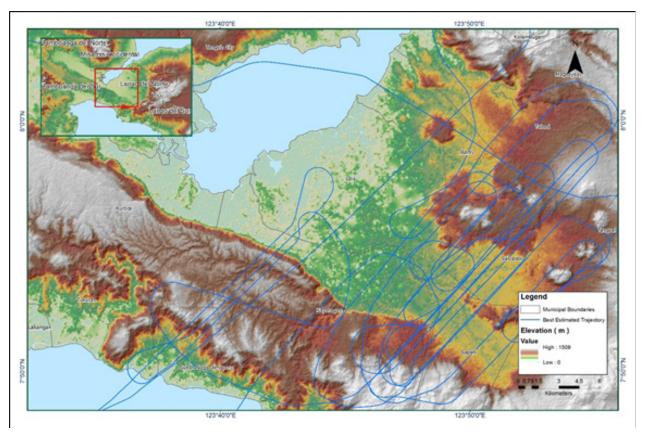
Image of Data Overlap

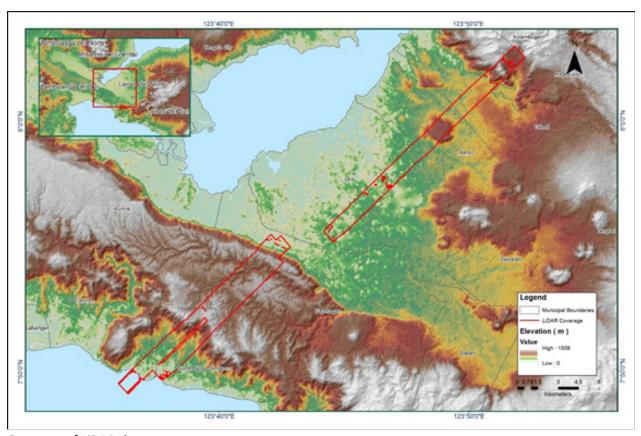


Density map of merged LiDAR data



Elevation difference between flight lines


Flight Area	Pagadian
Mission Name	76K_Additional
Inclusive Flights	23104P
Range data size	14.6
POS data size	202
Base data size	60.7
Image	n/a
Transfer date	March 16, 2016
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	No
Baseline Length (<30km)	No
Processing Mode (<=1)	Yes
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	1.8
RMSE for East Position (<4.0 cm)	2.2
RMSE for Down Position (<8.0 cm)	4.4
Boresight correction stdev (<0.001deg)	0.000102
IMU attitude correction stdev (<0.001deg)	N/A
GPS position stdev (<0.01m)	0.0014
Minimum % overlap (>25)	9.58
Ave point cloud density per sq.m. (>2.0)	2.85
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	105
Maximum Height	416.26 m
Minimum Height	68.45 m
Classification (# of points)	
Ground	64,960,783
Low vegetation	36,364,032
Medium vegetation	44,325,454
High vegetation	121,969,533
Building	1,432,563
Orthophoto	Yes
Processed by	Engr. Don Matthew Banatin, Engr. Melanie Hingpit, Engr. Karl Adrian Vergara


Solution Status

Smoothed Performance Metric Parameters

Best Estimated Trajectory

Coverage of LiDAR data

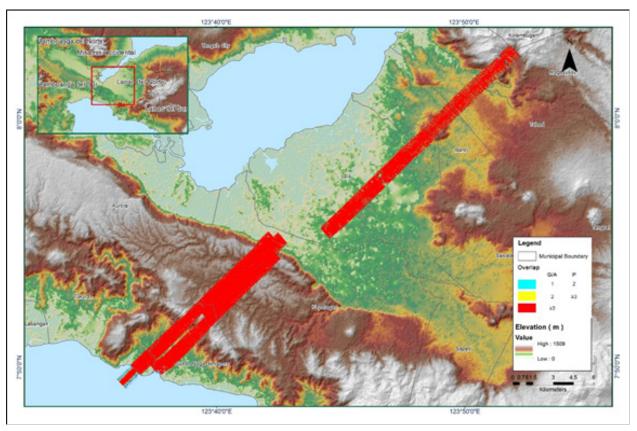
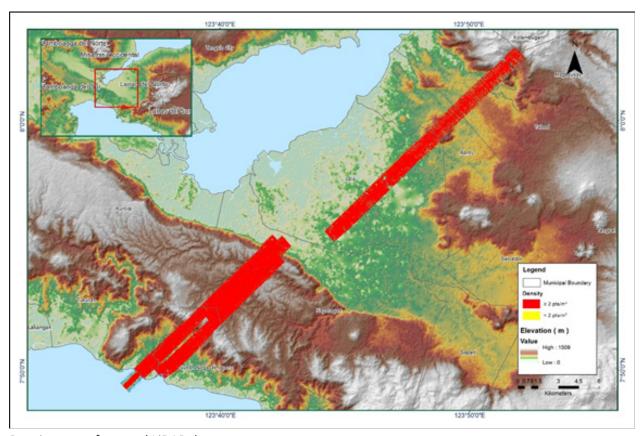
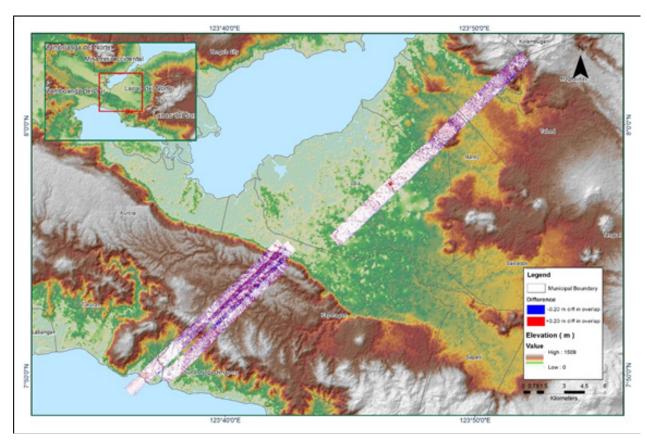
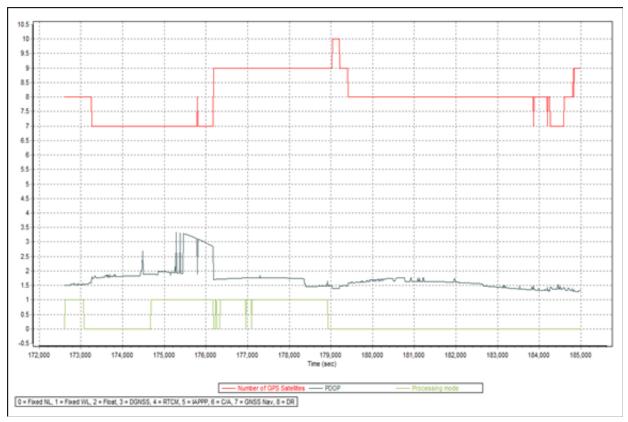
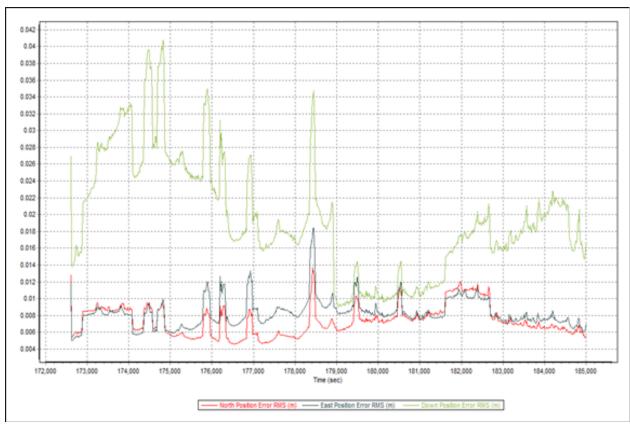




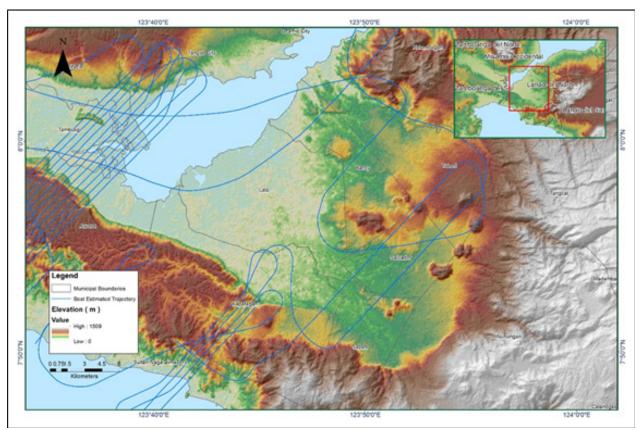
Image of Data Overlap

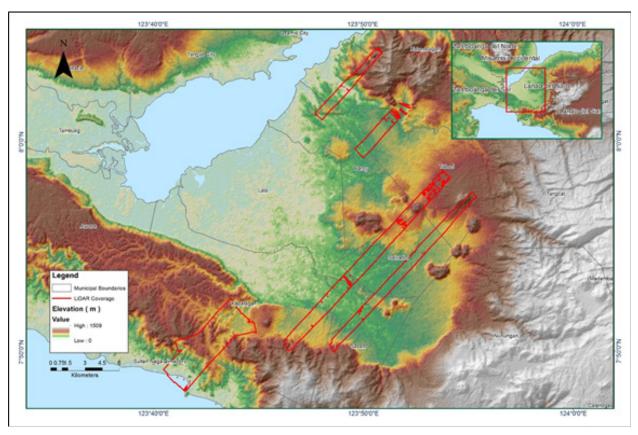


Density map of merged LiDAR data



Elevation difference between flight lines


Flight Area	Pagadian
Mission Name	76M
Inclusive Flights	23128P
Range data size	23.30 GB
POS data size	273 MB
Base data size	311 MB
Image	n/a
Transfer date	March 10, 2016
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	No
Baseline Length (<30km)	No
Processing Mode (<=1)	Yes
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	1.4
RMSE for East Position (<4.0 cm)	1.9
RMSE for Down Position (<8.0 cm)	4.1
Boresight correction stdev (<0.001deg)	0.000128
IMU attitude correction stdev (<0.001deg)	0.000139
GPS position stdev (<0.01m)	0.0122
Minimum % overlap (>25)	14.01
Ave point cloud density per sq.m. (>2.0)	3.32
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	173
Maximum Height	503.88 m
Minimum Height	67.66 m
Classification (# of points)	
Ground	100,531,253
Low vegetation	60,833,381
Medium vegetation	70,336,602
High vegetation	177,937,163
Building	1,895,317
Orthophoto	No
Processed by	Engr. Jennifer Saguran, Aljon Rei Araneta, Maria
	Tamsyn Malabanan


Solution Status

Smoothed Performance Metric Parameters

Best Estimated Trajectory

Coverage of LiDAR data

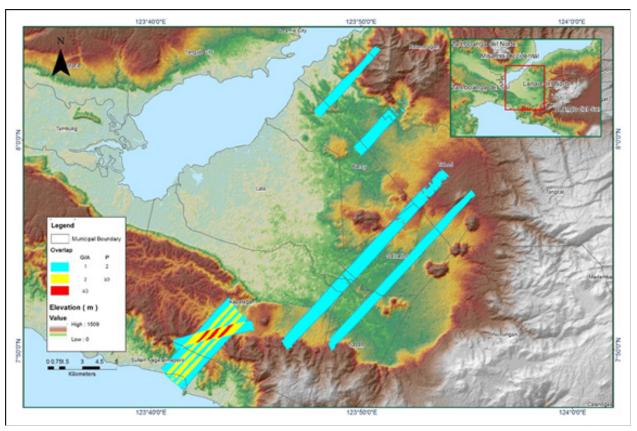
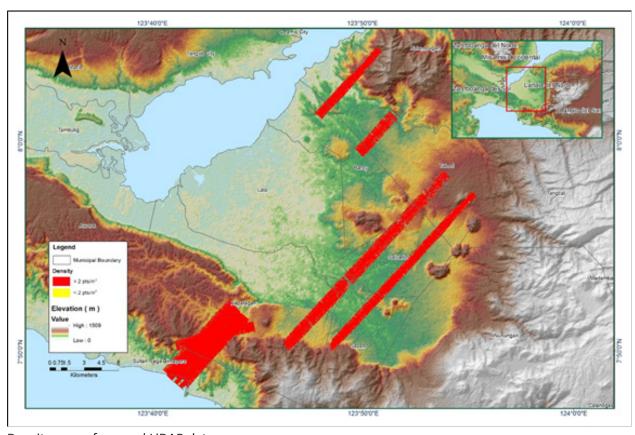
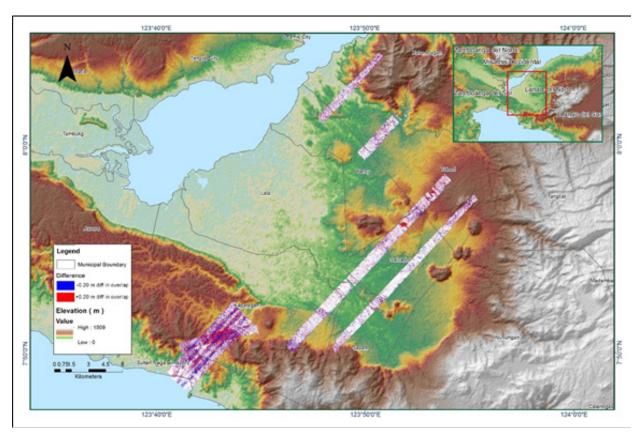
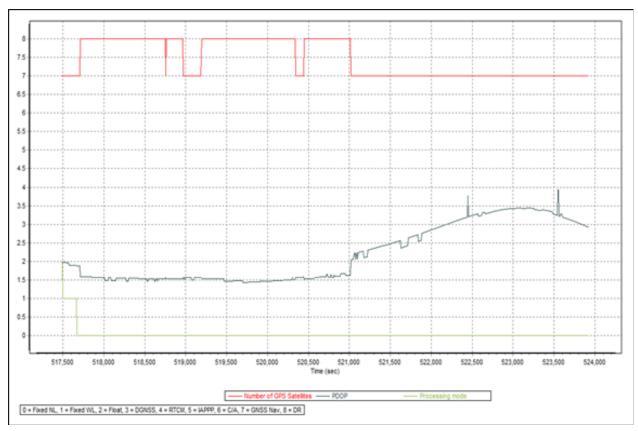
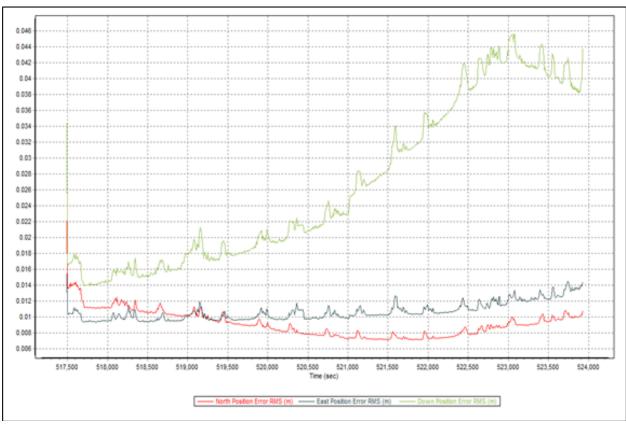




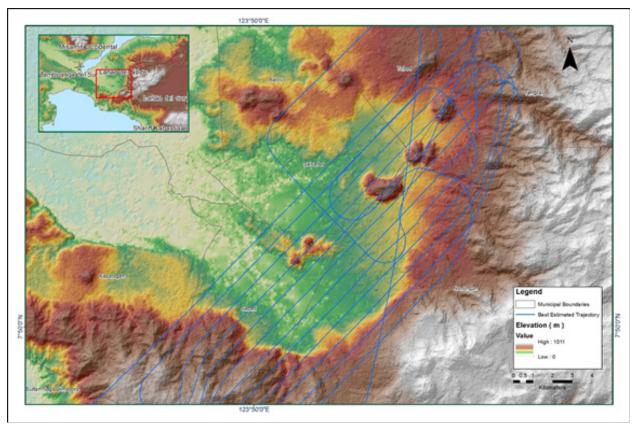
Image of Data Overlap

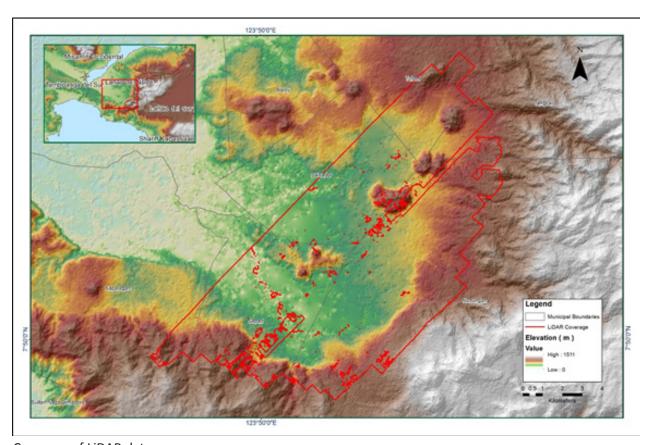


Density map of merged LiDAR data



Elevation difference between flight lines


Flight Area	Pagadian
Mission Name	76N
Inclusive Flights	23088P
Range data size	24.65
POS data size	283.62
Base data size	101.29
Image	n/a
Transfer date	March 01, 2016
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	No
Baseline Length (<30km)	No
Processing Mode (<=1)	Yes
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	1.5
RMSE for East Position (<4.0 cm)	1.5
RMSE for Down Position (<8.0 cm)	4.6
Boresight correction stdev (<0.001deg)	0.000274
IMU attitude correction stdev (<0.001deg)	0.001049
GPS position stdev (<0.01m)	0.0073
Minimum % overlap (>25)	41.91
Ave point cloud density per sq.m. (>2.0)	2.98
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	189
Maximum Height	726.06 m
Minimum Height	92.16 m
Classification (# of points)	
Ground	140,736,400
Low vegetation	124,627,028
Medium vegetation	126,549,841
High vegetation	285,028,320
Building	4,597,452
Orthophoto	Yes
Processed by	Engr. Analyn Naldo, Engr. Merven Matthew Natino, Marie Denise Bueno


Solution Status

Smoothed Performance Metric Parameters

Best Estimated Trajectory

Coverage of LiDAR data

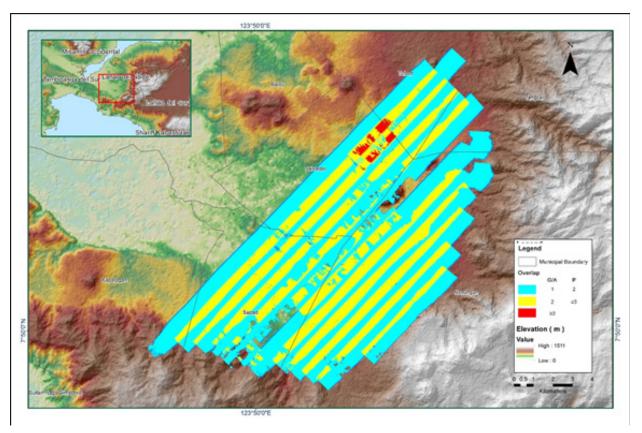
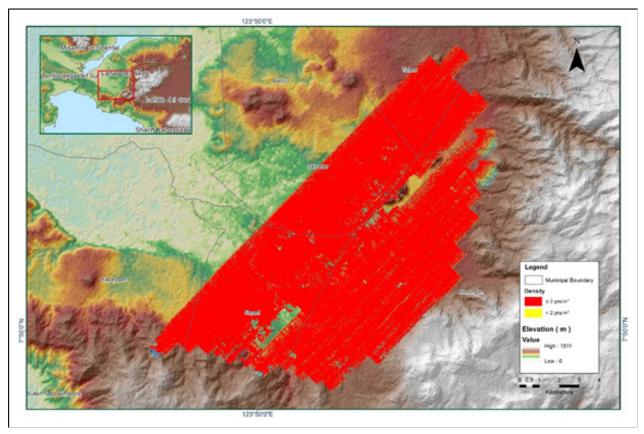
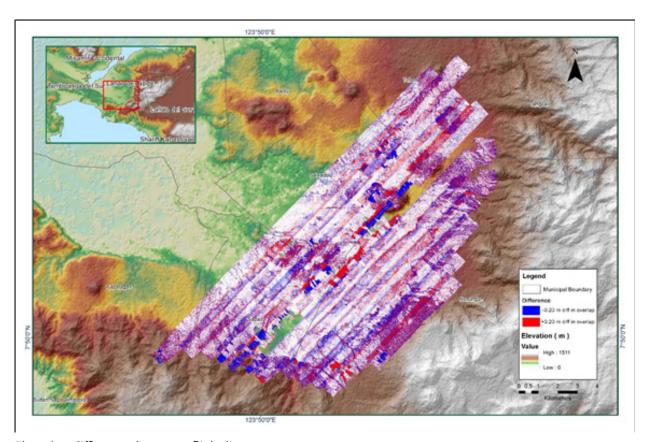
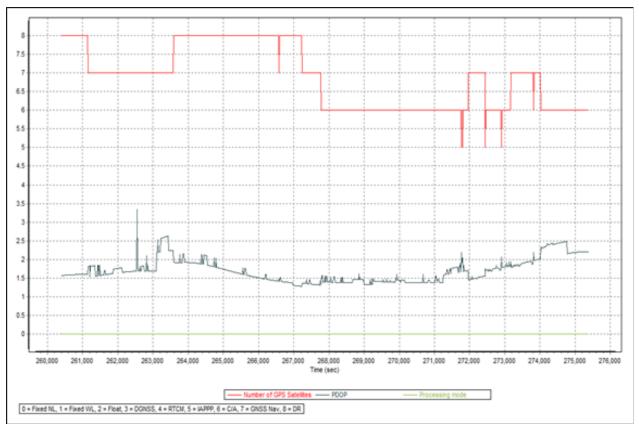
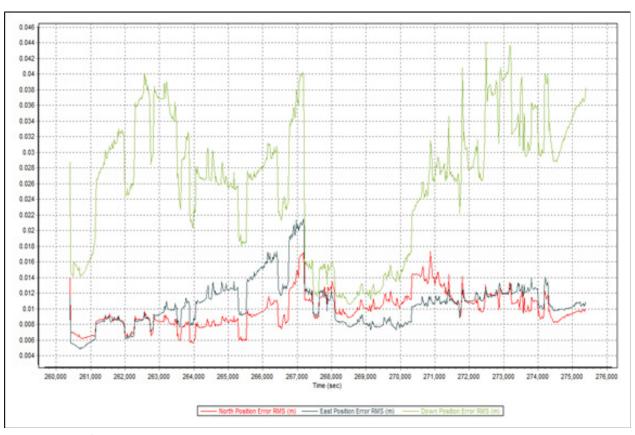




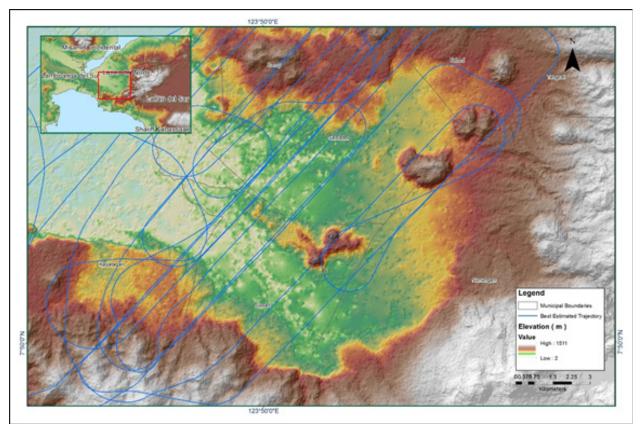
Image of Data Overlap

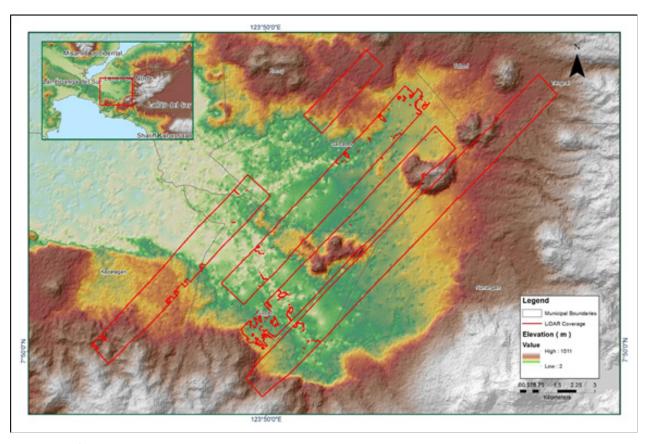


Density map of merged LiDAR data



Elevation difference between flight lines


Flight Area	Pagadian
Mission Name	76N_Additional
Inclusive Flights	23104P
Range data size	18.3
POS data size	287.01
Base data size	116.78
Image	n/a
Transfer date	March 01, 2016
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	No
Baseline Length (<30km)	No
Processing Mode (<=1)	Yes
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	1.7
RMSE for East Position (<4.0 cm)	2.2
RMSE for Down Position (<8.0 cm)	4.2
Boresight correction stdev (<0.001deg)	N/A
IMU attitude correction stdev (<0.001deg)	N/A
GPS position stdev (<0.01m)	N/A
Minimum % overlap (>25)	10.37
Ave point cloud density per sq.m. (>2.0)	2.38
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	124
Maximum Height	436.04 m
Minimum Height	90.14 m
Classification (# of points)	
Ground	56,765,012
Low vegetation	52,157,492
Medium vegetation	41,240,260
High vegetation	93,342,982
Building	1,335,125
Orthophoto	Yes
Processed by	Engr. Don Matthew Banatin, Engr. Merven Matthew Natino, Jovy Narisma


Solution Status

Smoothed Performance Metric Parameters

Best Estimated Trajectory

Coverage of LiDAR data

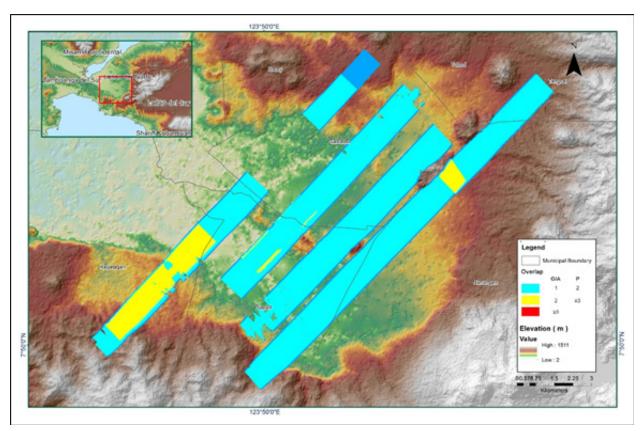
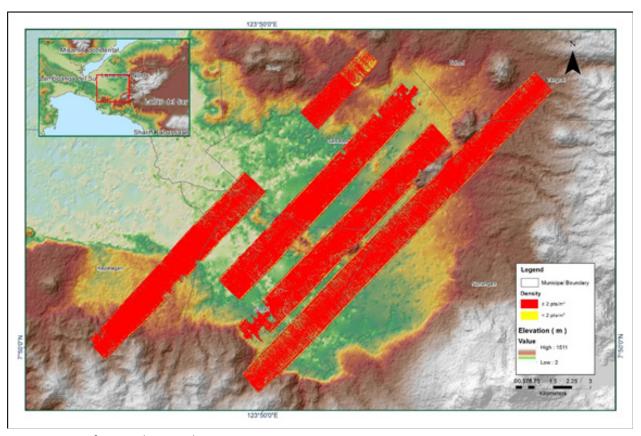
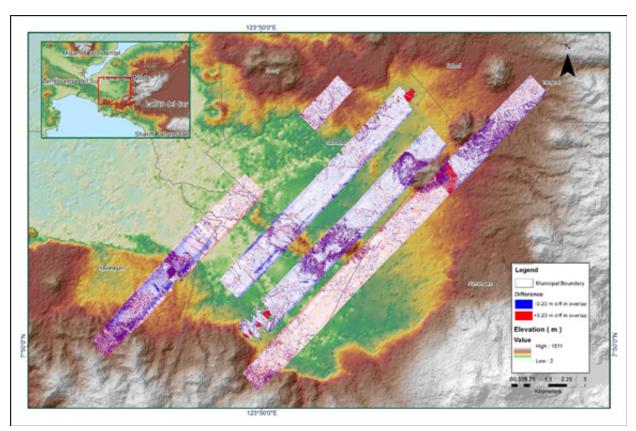
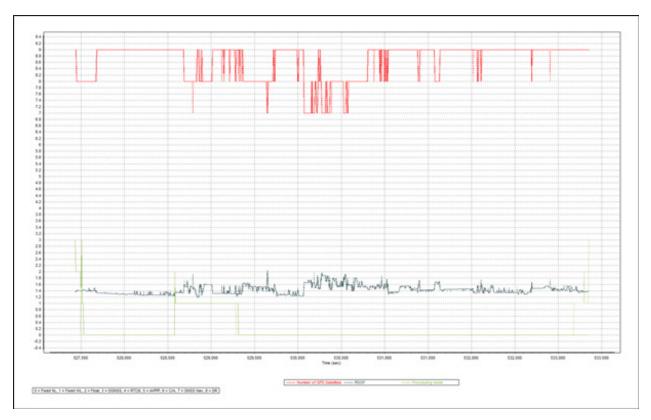
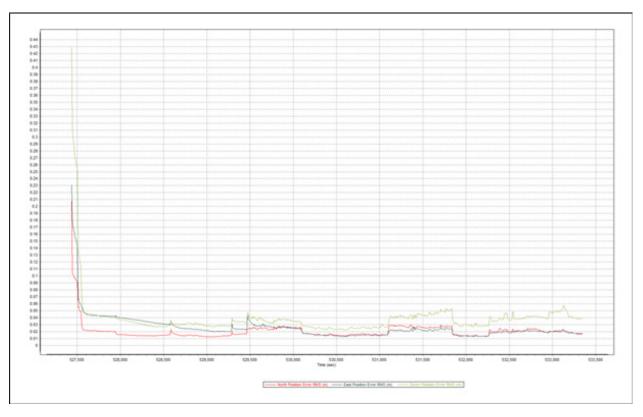




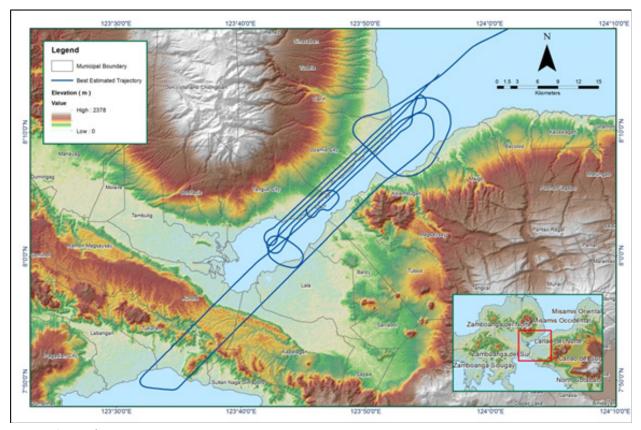
Image of Data Overlap

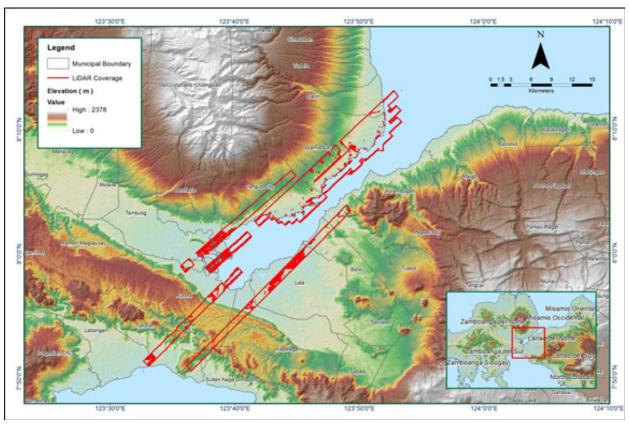


Density map of merged LiDAR data



Elevation difference between flight lines


Flight Area	Northern Mindanao
Mission Name	Blk71Extension
Inclusive Flights	1665P, 1673P, 1677P
Range data size	27.06 GB
POS	500 MB
Image	33.6 GB
Transfer date	August 6, 2014
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	No
Processing Mode (<=1)	Yes
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	3.0
RMSE for East Position (<4.0 cm)	4.0
RMSE for Down Position (<8.0 cm)	5.0
Boresight correction stdev (<0.001deg)	0.000243
IMU attitude correction stdev (<0.001deg)	0.001298
GPS position stdev (<0.01m)	0.0076
Minimum % overlap (>25)	27.83%
Ave point cloud density per sq.m. (>2.0)	2.41
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	243
Maximum Height	868.76 m
Minimum Height	63.2 m
Classification (# of points)	
Ground	107,907,148
Low vegetation	96,229,157
Medium vegetation	96,176,102
High vegetation	80,601,347
Building	17,253,174
Orthophoto	Yes
Processed by	Engr. Analyn Naldo, Engr. Edgardo Gubatanga Jr., Engr. Elainne Lopez
Processed by	Engr. Analyn Naldo, Engr. Merven Matthew Natino, Engr. Elainne Lopez


Solution Status

Smoothed Performance Metric Parameters

Best Estimated Trajectory

Coverage of LiDAR data

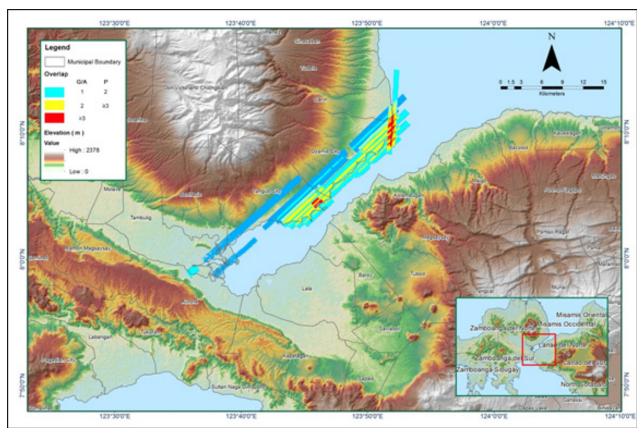
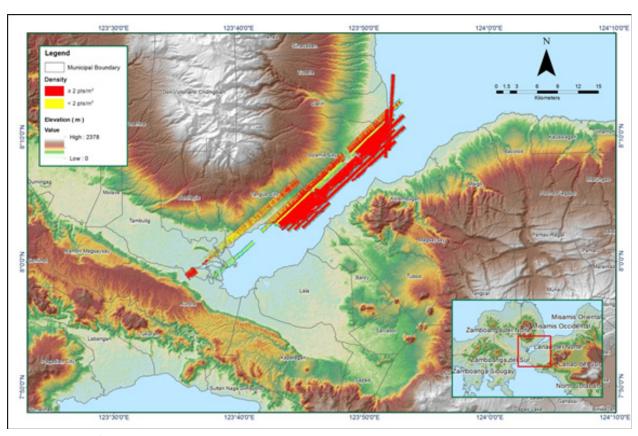
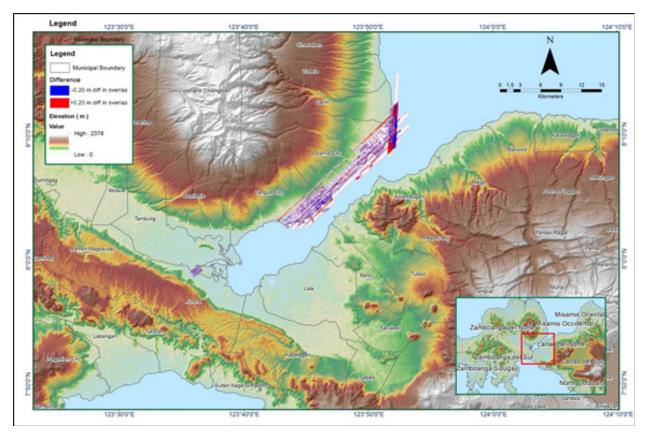
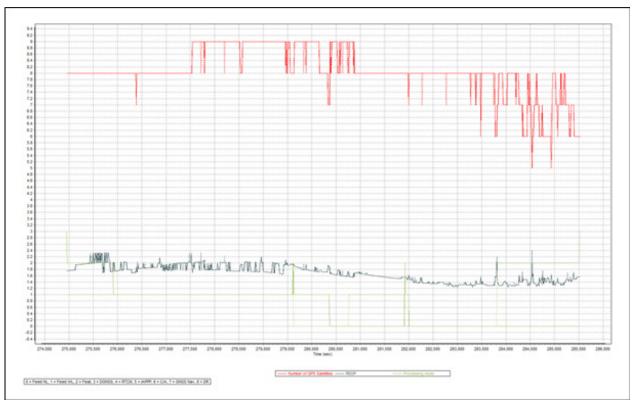
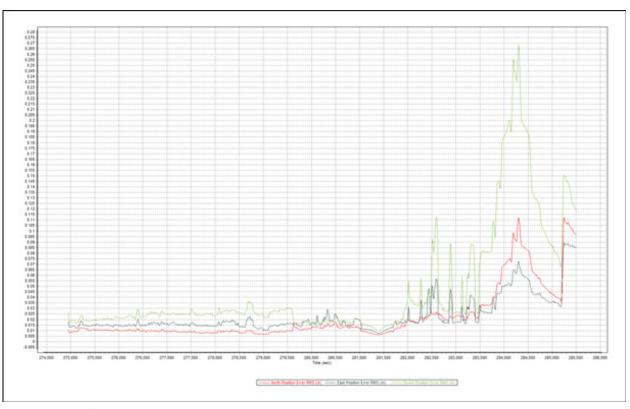




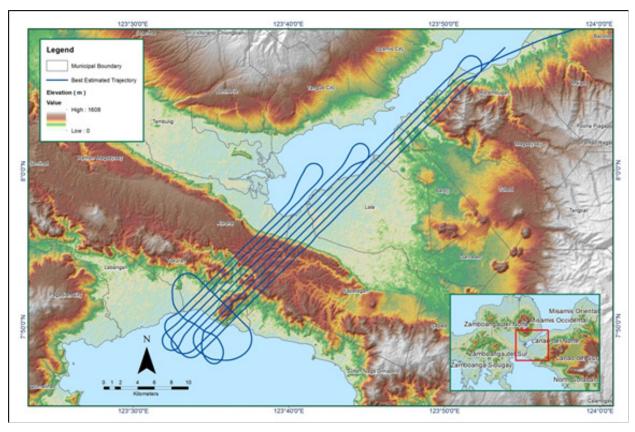
Image of Data Overlap

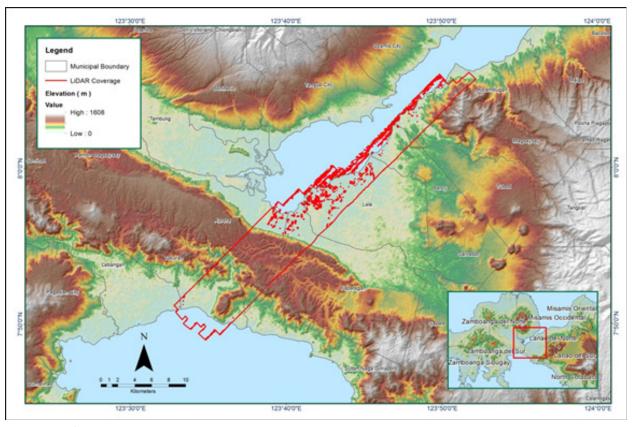


Density map of merged LiDAR data



Elevation difference between flight lines


Northern Mindanao
Blk71E
1689P
27.1 GB
257 MB
n/a
August 6, 2014
Yes
Yes
No
Yes
2.5
5.5
10
0.000536
0.001171
0.0079
35.35%
2.79
Yes
253
476.79
66.37
157,189,225
118,155,426
187,516,392
168,342,412
7,092,549
NO
Engr. Carlyn Ann Ibañez, Engr. Melanie Hingpit, Engr. John Dill Macapagal


Solution Status

Smoothed Performance Metric Parameters

Best Estimated Trajectory

Coverage of LiDAR data

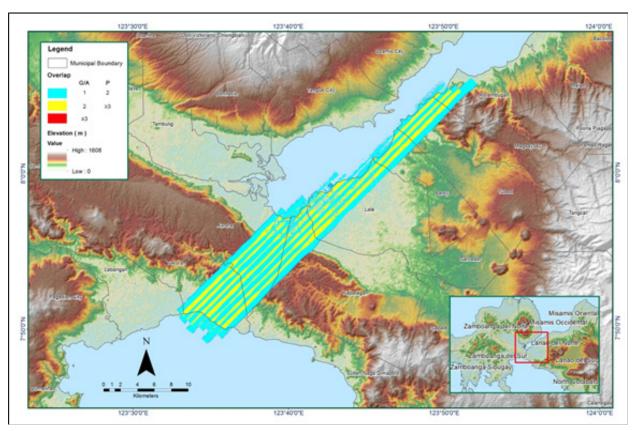
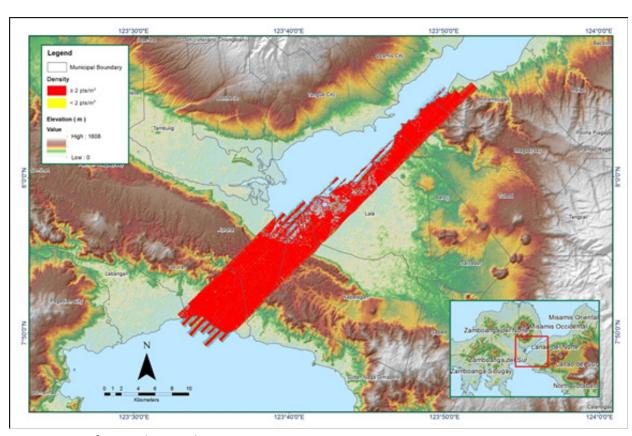
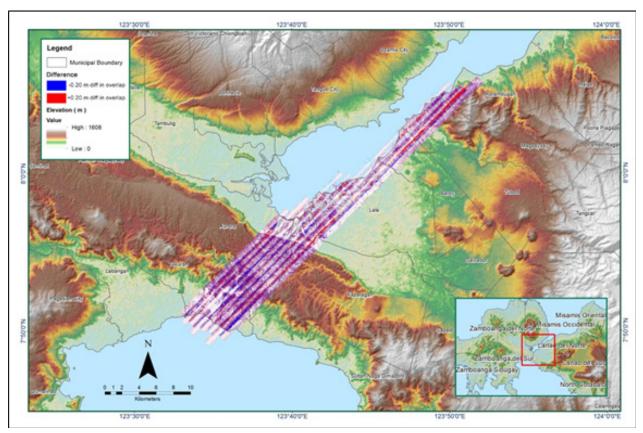
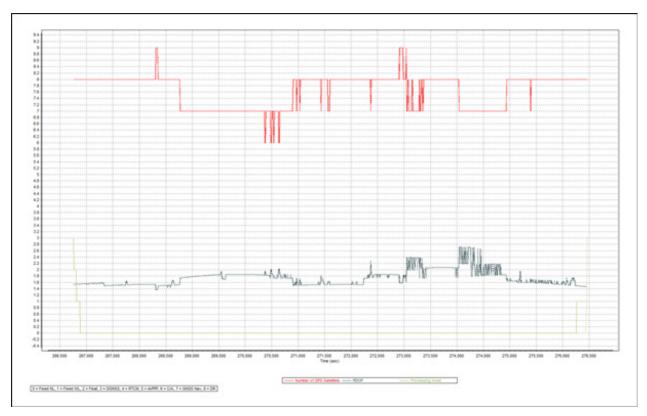
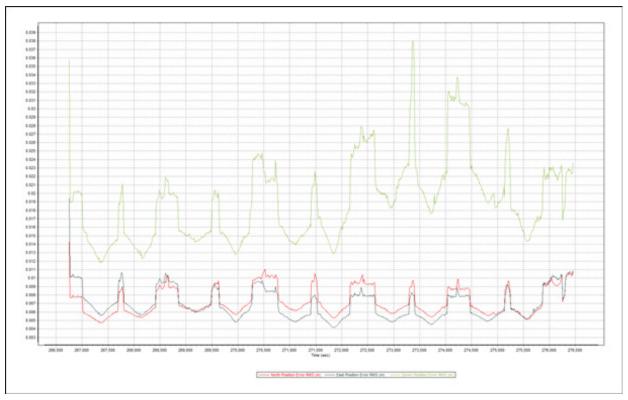




Image of Data Overlap

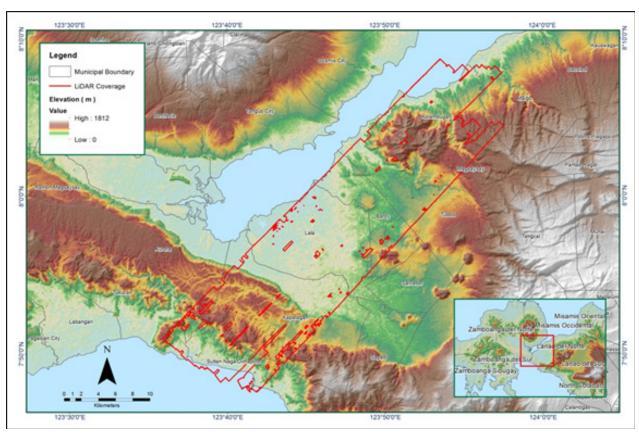


Density map of merged LiDAR data



Elevation difference between flight lines

Flight Area	Northern Mindanao
Mission Name	Blk71F
Inclusive Flights	1565P, 1549P, 1685P
Range data size	70.3 GB
POS	674 MB
Image	59.1 GB
Transfer date	June 23, 2014
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	No
Processing Mode (<=1)	Yes
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	1.1
RMSE for East Position (<4.0 cm)	1.1
RMSE for Down Position (<8.0 cm)	3.8
Boresight correction stdev (<0.001deg)	0.000471
IMU attitude correction stdev (<0.001deg)	0.004323
GPS position stdev (<0.01m)	0.0198
Minimum % overlap (>25)	51.56%
Ave point cloud density per sq.m. (>2.0)	4.06
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	614
Maximum Height	685.55
Minimum Height	64.65
Classification (# of points)	
Ground	591,908,481
Low vegetation	609,869,904
Medium vegetation	757,441,192
High vegetation	606,070,790
Building	21,867,436
Orthophoto	Yes
Processed by	Engr. Jennifer Saguran, Engr. Carlyn Ann Ibañez, Engr. Christy Lubiano, Engr. John Dill Macapagal


Solution Status

Smoothed Performance Metric Parameters

Best Estimated Trajectory

Coverage of LiDAR data

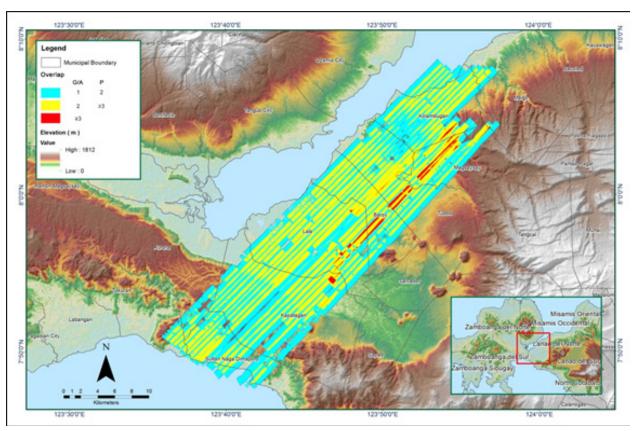
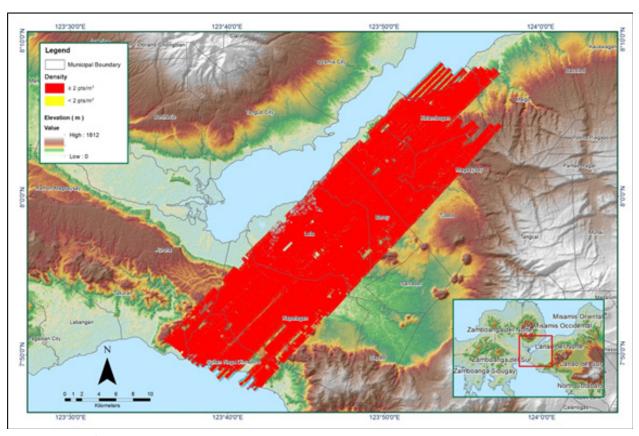
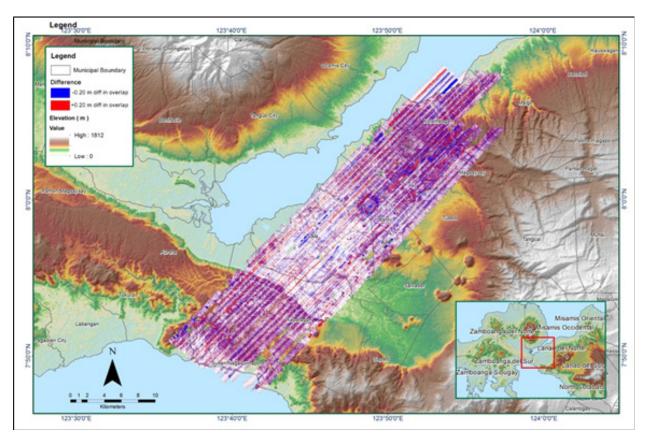
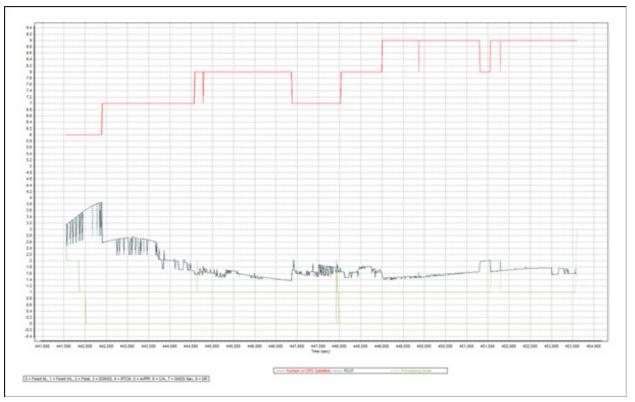
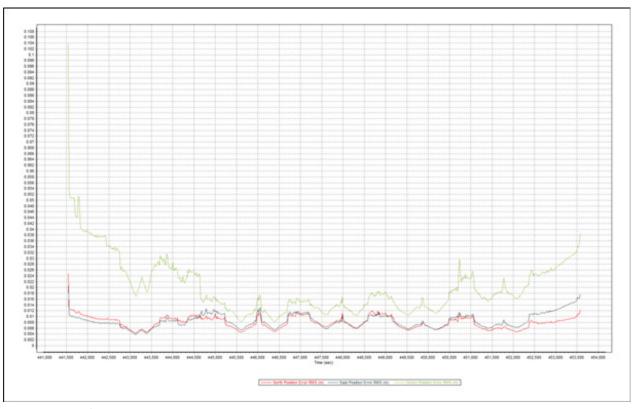




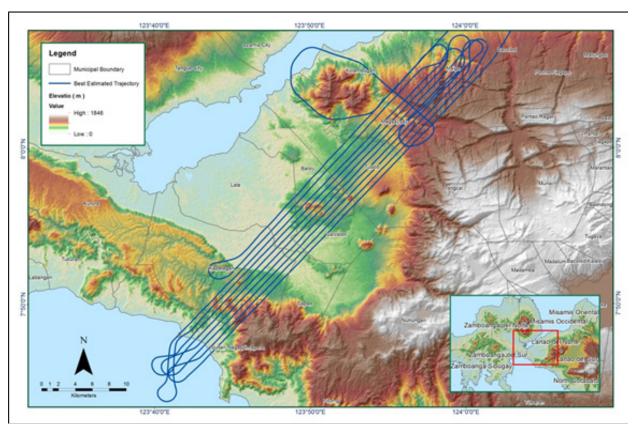
Image of Data Overlap

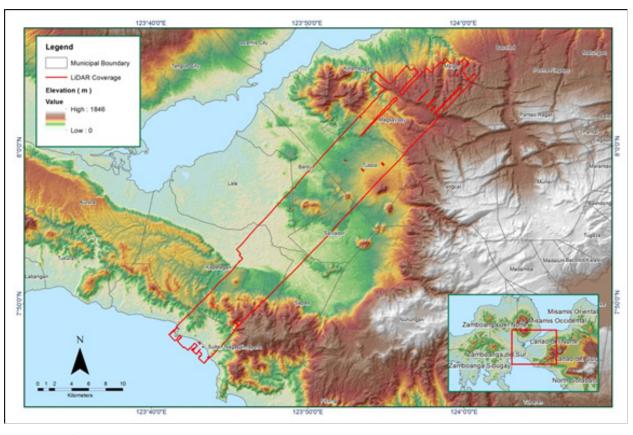


Density map of merged LiDAR data



Elevation difference between flight lines


Flight Area	Northern Mindanao
Mission Name	Blk71G
Inclusive Flights	1613P
Range data size	33.2 GB
POS	258 MB
Image	67.3 GB
Transfer date	August 1, 2014
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	No
Processing Mode (<=1)	Yes
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	1.2
RMSE for East Position (<4.0 cm)	1.3
RMSE for Down Position (<8.0 cm)	3.0
Boresight correction stdev (<0.001deg)	0.000236
IMU attitude correction stdev (<0.001deg)	0.000781
GPS position stdev (<0.01m)	0.0018
Minimum % overlap (>25)	36.24%
Ave point cloud density per sq.m. (>2.0)	6.63
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	362
Maximum Height	766.63 m
Minimum Height	62.51 m
Classification (# of points)	
Ground	286,954,240
Low vegetation	266,488,104
Medium vegetation	404,520,939
High vegetation	376,191,706
Building	8,947,468
Orthophoto	YES
	Yes
Processed by	Engr. Don Matthew Banatin, Engr. Merven Matthew Natino, Jovy Narisma


Solution Status

Smoothed Performance Metric Parameters

Best Estimated Trajectory

Coverage of LiDAR data

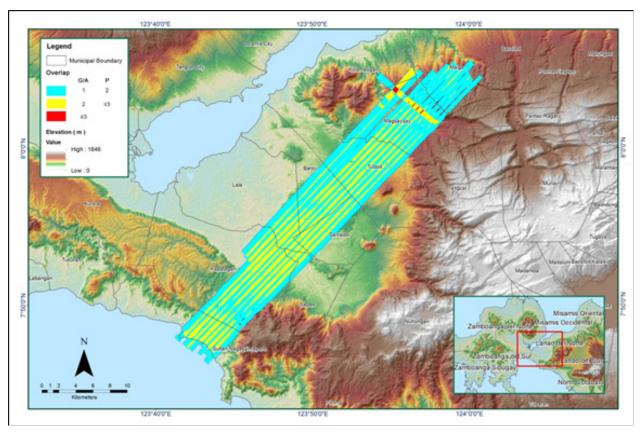
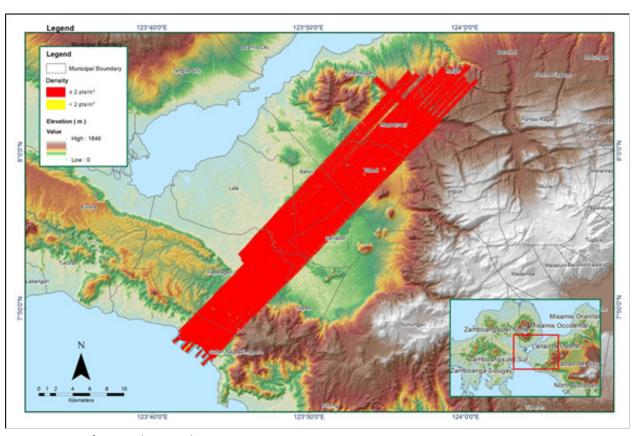
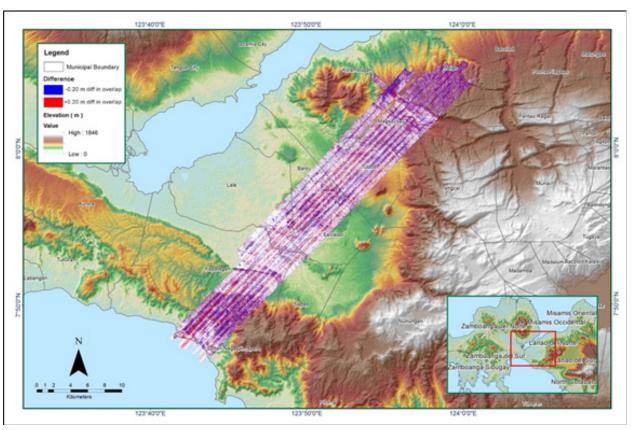
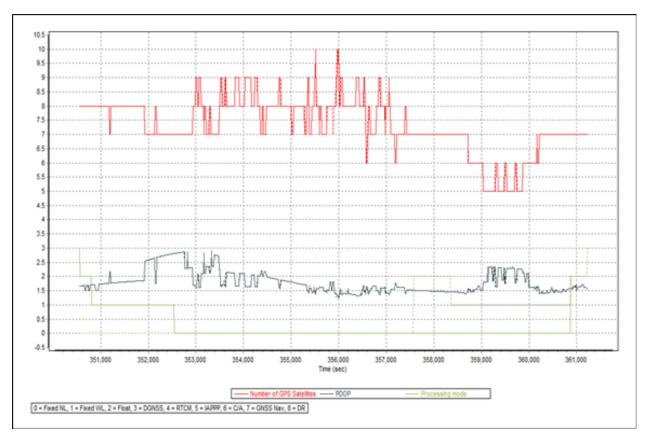
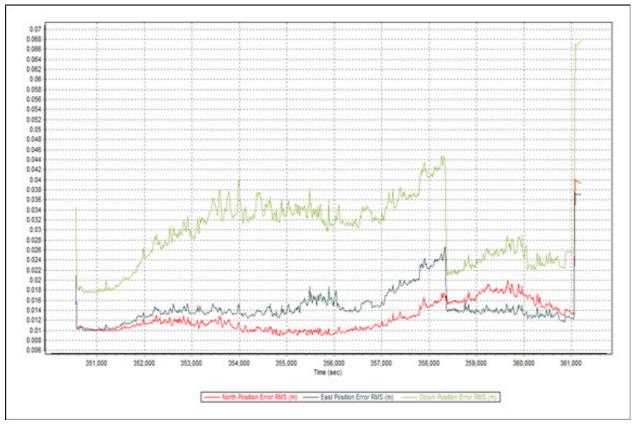




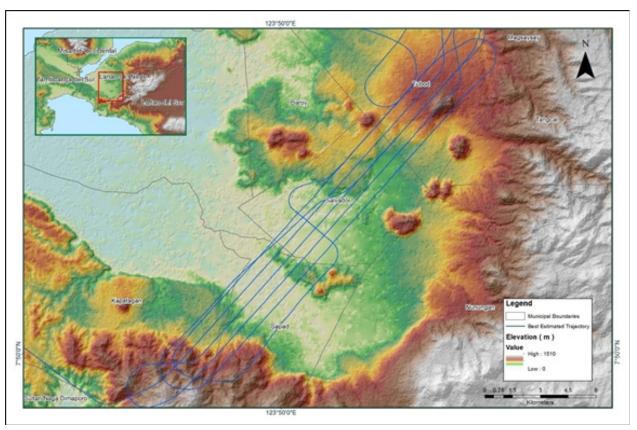
Image of Data Overlap

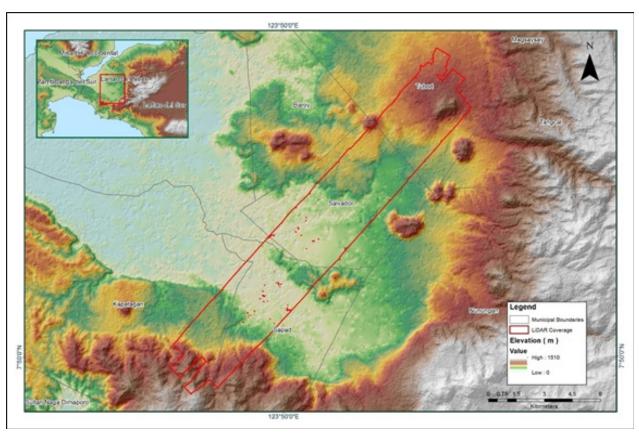


Density map of merged LiDAR data



Elevation difference between flight lines


Flight Area	Dipolog Reflights
Mission Name	Blk76M
Inclusive Flights	23602P
Range data size	16.5 GB
POS data size	287 MB
Base data size	53.7 MB
Image	n/a
Transfer date	December 6, 2016
Solution Status	
Number of Satellites (>6)	No
PDOP (<3)	Yes
Baseline Length (<30km)	No
Processing Mode (<=1)	Yes
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	2.005
RMSE for East Position (<4.0 cm)	2.665
RMSE for Down Position (<8.0 cm)	4.473
Boresight correction stdev (<0.001deg)	0.001490
IMU attitude correction stdev (<0.001deg)	0.001292
GPS position stdev (<0.01m)	0.0194
Minimum % overlap (>25)	42.48 %
Ave point cloud density per sq.m. (>2.0)	3.50
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	108
Maximum Height	745.53 m
Minimum Height	91.32 m
Classification (# of points)	
Ground	77,707,647
Low vegetation	71,425,986
Medium vegetation	116,978,079
High vegetation	217,831,248
Building	2,673,553
Orthophoto	No
Processed by	Engr. Irish Cortez, Engr. Erica Erin Elazegui, Engr. Monalyne Rabino


Solution Status

Smoothed Performance Metric Parameters

Best Estimated Trajectory

Coverage of LiDAR data

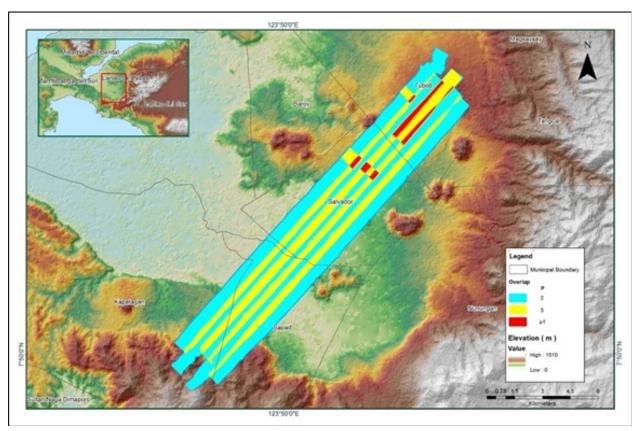
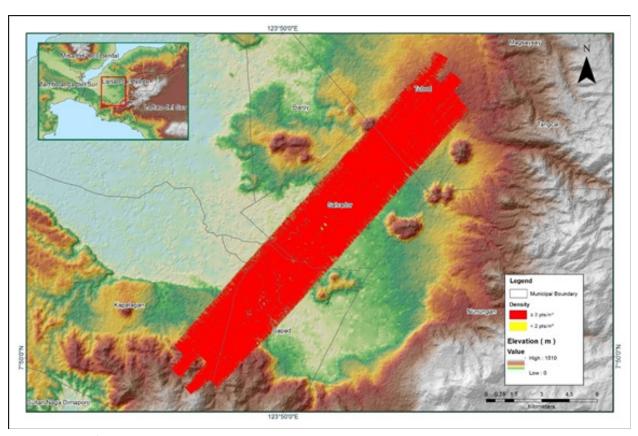
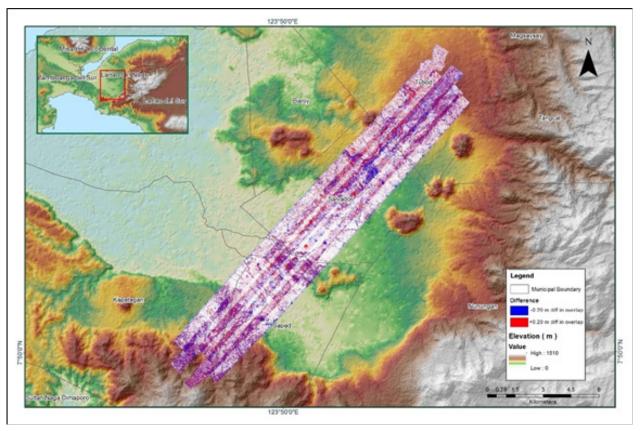
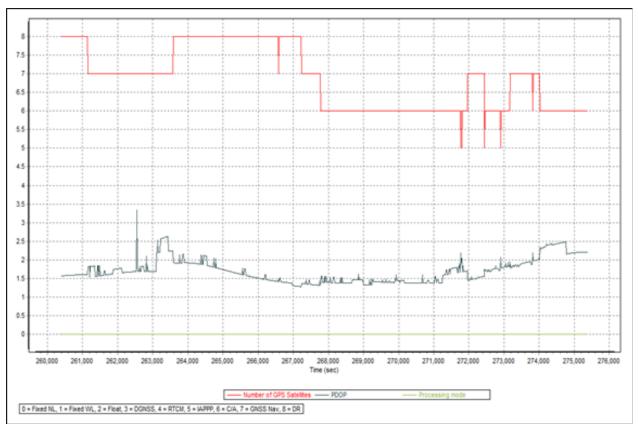
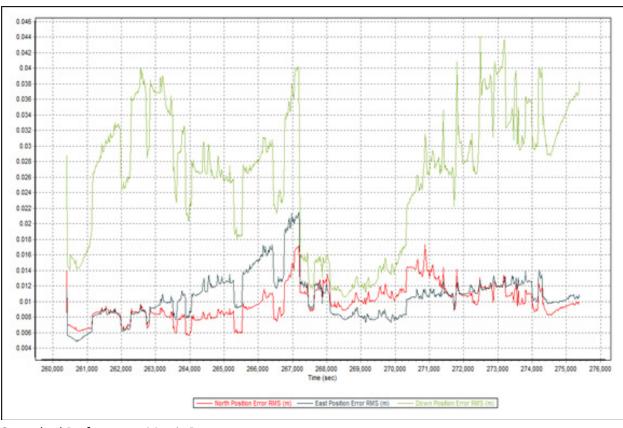




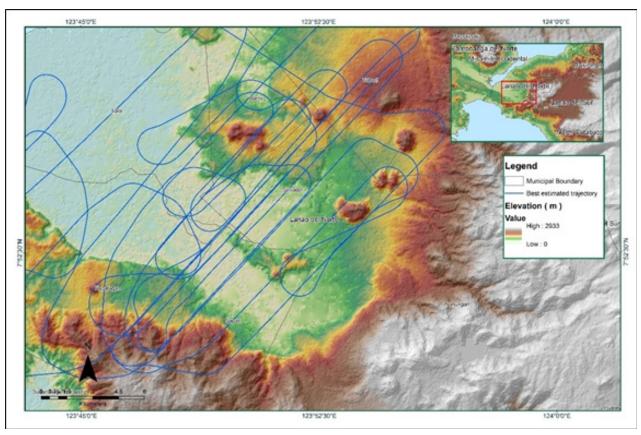
Image of Data Overlap

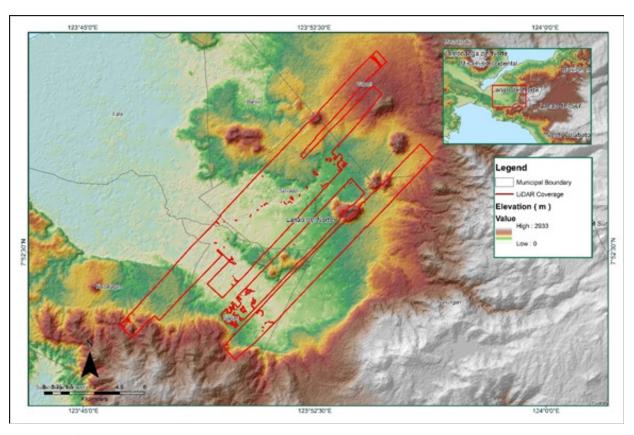


Density map of merged LiDAR data



Elevation difference between flight lines


Flight Area	Pagadian
Mission Name	Blk76N_Supplement
Inclusive Flights	23104P
Range data size	18.3 GB
POS data size	287.01 MB
Base data size	116.78 MB
Image	25.87 GB
Transfer date	March 1, 2016
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	No
Baseline Length (<30km)	No
Processing Mode (<=1)	Yes
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	1.7
RMSE for East Position (<4.0 cm)	2.2
RMSE for Down Position (<8.0 cm)	4.2
Boresight correction stdev (<0.001deg)	0.000502
IMU attitude correction stdev (<0.001deg)	0.001509
GPS position stdev (<0.01m)	0.0017
Minimum % overlap (>25)	14.43
Ave point cloud density per sq.m. (>2.0)	2.64
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	13
Maximum Height	368.25
Minimum Height	93.58
Classification (# of points)	
Ground	4,438,634
Low vegetation	1,755,258
Medium vegetation	1,534,601
High vegetation	4,444,966
Building	34,342
Orthophoto	Yes
Processed by	Engr. Don Matthew Banatin, Engr. Justine Francisco, Engr. Gladys Mae Apat


Solution Status

Smoothed Performance Metric Parameters

Best Estimated Trajectory

Coverage of LiDAR data

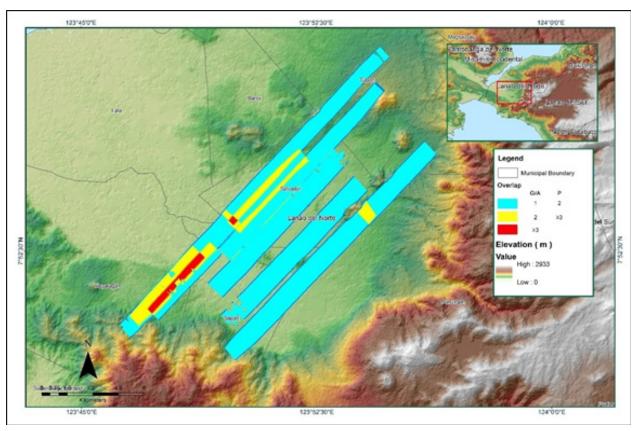
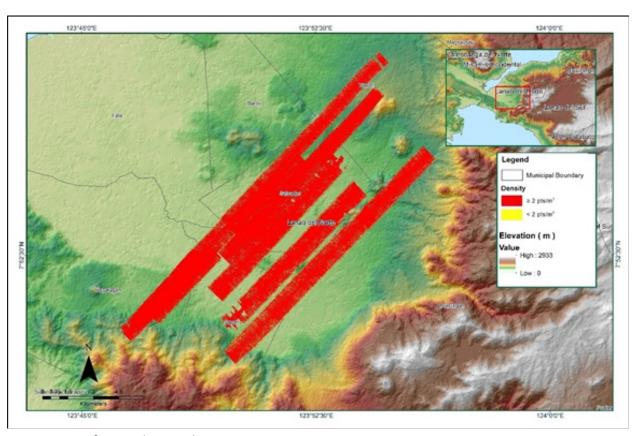
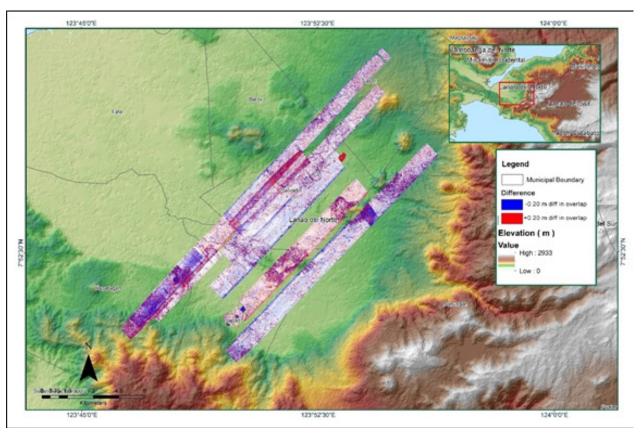




Image of Data Overlap

Density map of merged LiDAR data

Elevation difference between flight lines

ANNEX 9. Basili Model Basin Parameters

Basin Number	SCS Curve Number Loss	nber Loss		Clark Unit Hydrograph Transform	ograph	Recession Baseflow	Saseflow			
	Initial Abstraction (mm)	Curve Number	Impervious (%)	Time of Concentration (HR)	Storage Coefficient (HR)	Initial Type	Initial Discharge (M3/S)	Recession Constant	Threshold Type	Ratio to Peak
W380	14.861	54.821	0	10.956	17.161	Discharge	0.34905	0.2925	Ratio to Peak	0.45
W410	22.271	54.926	0	10.87	5.2306	Discharge	0.0624926	0.19453	Ratio to Peak	0.56288
W430	30.051	55.424	0	6.2015	4.4773	Discharge	0.14128	0.28593	Ratio to Peak	0.63787
W470	17.632	61.653	0	18.939	13.652	Discharge	0.49898	0.13078	Ratio to Peak	0.45
W510	30.933	56.448	0	7.9208	5.7183	Discharge	0.0968188	0.1988	Ratio to Peak	0.93391
W520	15.091	75.996	0	1.233	1.8236	Discharge	0.0563880	0.13298	Ratio to Peak	0.126
W530	25.229	68.245	0	14.38	4.635	Discharge	0.16404	0.19942	Ratio to Peak	1
W540	16.113	47.731	0	12.885	6.2107	Discharge	0.22111	0.1954	Ratio to Peak	0.40677
W560	12.702	73.296	0	0.83399	2.1197	Discharge	0.17728	0.19923	Ratio to Peak	0.27763
W570	18.7	64.9	0	0.30261	1.7355	Discharge	0.10364	0.19947	Ratio to Peak	
W580	13.825	65.987	0	0.18359	0.69631	Discharge	0.0791453	0.19937	Ratio to Peak	0.18231
W630	15.887	44.293	0	18.101	4.0259	Discharge	0.14479	0.19943	Ratio to Peak	0.28236
W640	29.717	81.093	0	1.7484	2.86	Discharge	0.0879821	0.43771	Ratio to Peak	0.27246
W670	17.79	80.036	0	0.42766	1.0673	Discharge	0.0781045	0.19849	Ratio to Peak	
W680	13.199	73.495	0	0.65455	12.764	Discharge	0.20171	0.19937	Ratio to Peak	0.41966
W690	20.585	39.31	0	5.2462	6.0288	Discharge	0.19086	0.19849	Ratio to Peak	0.18824
W710	27.387	53.019	0	1.7111	1.9169	Discharge	0.0926106	0.19849	Ratio to Peak	0.41003
W740	12.892	49.912	0	1.6632	4.1429	Discharge	0.11373	0.29767	Ratio to Peak	0.28591

ANNEX 10. Balili Model Reach Parameters

Reach	Muskingum Cunge Channel Routing	Routing					
Number	Time Step Method	Length (m)	Slope	Manning's n	Shape	Width	Side Slope
R100	Automatic Fixed Interval	924.97	0.0021559	0.040	Trapezoid	8.816	1
R110	Automatic Fixed Interval	2311.4	0.0035353	0.040	Trapezoid	9.32	1
R120	Automatic Fixed Interval	1139.5	0.0020861	0.040	Trapezoid	11.09	1
R140	Automatic Fixed Interval	1463.7	0.0019643	0.040	Trapezoid	12.672	1
R170	Automatic Fixed Interval	3664.6	.0007217389191504974	0.040	Trapezoid	11.736	1
R190	Automatic Fixed Interval	490.42	0.0171794	0.040	Trapezoid	11.876	1
R200	Automatic Fixed Interval	500.42	0.0071852	0.040	Trapezoid	7.334	1
R220	Automatic Fixed Interval	1043.3	0.0025472	0.040	Trapezoid	10.136	1
R250	Automatic Fixed Interval	4694.2	0.0038027	0.040	Trapezoid	18.622	1
R260	Automatic Fixed Interval	1623.0	0.0022718	0.040	Trapezoid	6.5925	1
R270	Automatic Fixed Interval	168.28	0.0277707	0.040	Trapezoid	8.41	1
R280	Automatic Fixed Interval	2837.6	0.0051239	0.040	Trapezoid	8.356	1
R310	Automatic Fixed Interval	523.55	0.0081022	0.040	Trapezoid	19.236	1
R330	Automatic Fixed Interval	1356.7	0.0024456	0.040	Trapezoid	2.6067	1
R360	Automatic Fixed Interval	4955.1	0.0166752	0.040	Trapezoid	30.422	1
R70	Automatic Fixed Interval	922.55	0.0059499	0.040	Trapezoid	7.876	1
R90	Automatic Fixed Interval	488.70	0.0067411	0.040	Trapezoid	7.772	1

ANNEX 11. Balili Field Validation Points

Point Number	Validation Co (in WGS84)	oordinates	Model Var (m)	Validation Points (m)	Error	Event/Date	Rain Return / Scenario
	Lat	Long					
1	7.981514	123.794207	0.03	0.00	0.03	Typhoon Lando / Oct. 12-22, 2015	5-Year
2	7.981691	123.794444	0.03	0.00	0.03	Typhoon Lando / Oct. 12-22, 2015	5-Year
3	7.988185	123.778945	0.03	0.55	-0.52	Typhoon Lando / Oct. 12-22, 2015	5-Year
4	7.992743	123.780535	0.03	0.40	-0.37	Typhoon Lando / Oct. 12-22, 2015	5-Year
5	7.992821	123.780438	0.03	0.40	-0.37	Typhoon Lando / Oct. 12-22, 2015	5-Year
6	7.980504	123.785704	0.03	0.30	-0.27	Typhoon Lando / Oct. 12-22, 2015	5-Year
7	7.980538	123.785841	0.03	0.30	-0.27	Typhoon Lando / Oct. 12-22, 2015	5-Year
8	7.980555	123.785979	0.03	0.30	-0.27	Typhoon Lando / Oct. 12-22, 2015	5-Year
9	7.980754	123.785458	0.03	0.30	-0.27	Typhoon Lando / Oct. 12-22, 2015	5-Year
10	7.992839	123.780658	0.03	0.62	-0.59	Typhoon Lando / Oct. 12-22, 2015	5-Year
11	7.980768	123.785349	0.03	0.30	-0.27	Typhoon Lando / Oct. 12-22, 2015	5-Year
12	7.986539	123.779016	0.03	0.00	0.03	Typhoon Lando / Oct. 12-22, 2015	5-Year
13	7.986316	123.779231	0.03	0.70	-0.67	Typhoon Lando / Oct. 12-22, 2015	5-Year
14	7.964649	123.778707	0.03	0.00	0.03	Typhoon Lando / Oct. 12-22, 2015	5-Year
15	7.964705	123.778708	0.03	0.00	0.03	Typhoon Lando / Oct. 12-22, 2015	5-Year
16	7.935516	123.774080	0.03	0.23	-0.2	Typhoon Lando / Oct. 12-22, 2015	5-Year
17	7.938687	123.773976	0.03	0.15	-0.12	Typhoon Lando / Oct. 12-22, 2015	5-Year
18	7.939533	123.768720	0.03	0.10	-0.07	Typhoon Lando / Oct. 12-22, 2015	5-Year
19	7.939532	123.768876	0.03	0.10	-0.07	Typhoon Lando / Oct. 12-22, 2015	5-Year
20	7.980594	123.785456	0.03	0.00	0.03	Typhoon Lando / Oct. 12-22, 2015	5-Year
21	7.992973	123.780689	0.03	0.00	0.03	Typhoon Lando / Oct. 12-22, 2015	5-Year
22	7.998681	123.786342	0.03	0.20	-0.17	Typhoon Lando / Oct. 12-22, 2015	5-Year
23	7.979651	123.795676	0.03	1.90	-1.87	Typhoon Lando / Oct. 12-22, 2015	5-Year
24	8.001841	123.776630	0.03	0.46	-0.43	Typhoon Lando / Oct. 12-22, 2015	5-Year

Point Number	Validation ((in WGS84)	Coordinates	Model Var (m)	Validation Points (m)	Error	Event/Date	Rain Return / Scenario
	Lat	Long					
25	7.986442	123.779019	0.03	0.00	0.03	Typhoon Lando / Oct. 12-22, 2015	5-Year
26	7.987221	123.778188	0.03	0.17	-0.14	Typhoon Lando / Oct. 12-22, 2015	5-Year
27	7.938662	123.774095	0.03	0.15	-0.12	Typhoon Lando / Oct. 12-22, 2015	5-Year
28	7.993127	123.780453	0.03	0.40	-0.37	Typhoon Lando / Oct. 12-22, 2015	5-Year
29	7.932016	123.767185	0.04	0.17	-0.13	Typhoon Lando / Oct. 12-22, 2015	5-Year
30	7.987876	123.779290	0.03	0.09	-0.06	Typhoon Lando / Oct. 12-22, 2015	5-Year
31	7.931320	123.767503	0.03	0.00	0.03	Typhoon Lando / Oct. 12-22, 2015	5-Year
32	7.988000	123.779309	0.03	0.55	-0.52	Typhoon Lando / Oct. 12-22, 2015	5-Year
33	7.935873	123.770076	0.03	0.00	0.03	Typhoon Lando / Oct. 12-22, 2015	5-Year
34	7.938848	123.774109	0.04	0.15	-0.11	Typhoon Lando / Oct. 12-22, 2015	5-Year
35	7.938566	123.773949	0.05	0.15	-0.1	Typhoon Lando / Oct. 12-22, 2015	5-Year
36	7.935001	123.769311	0.03	0.00	0.03	Typhoon Lando / Oct. 12-22, 2015	5-Year
37	7.932096	123.767065	0.09	0.10	-0.01	Typhoon Lando / Oct. 12-22, 2015	5-Year
38	7.931829	123.769548	0.06	0.00	0.06	Typhoon Lando / Oct. 12-22, 2015	5-Year
39	7.986930	123.779105	0.03	0.92	-0.89	Typhoon Lando / Oct. 12-22, 2015	5-Year
40	7.931425	123.767514	0.03	0.00	0.03	Typhoon Lando / Oct. 12-22, 2015	5-Year
41	7.987375	123.778212	0.03	0.17	-0.14	Typhoon Lando / Oct. 12-22, 2015	5-Year
42	7.980544	123.784704	0.03	0.40	-0.37	Typhoon Lando / Oct. 12-22, 2015	5-Year
43	7.939183	123.774124	0.13	0.17	-0.04	Typhoon Lando / Oct. 12-22, 2015	5-Year
44	7.939014	123.774196	0.14	0.30	-0.16	Typhoon Lando / Oct. 12-22, 2015	5-Year
45	7.930260	123.768649	0.03	0.00	0.03	Typhoon Lando / Oct. 12-22, 2015	5-Year
46	7.935010	123.769158	0.17	0.00	0.17	Typhoon Lando / Oct. 12-22, 2015	5-Year
47	7.993366	123.780460	0.03	0.98	-0.95	Typhoon Lando / Oct. 12-22, 2015	5-Year
48	7.979634	123.793113	0.03	1.60	-1.57	Typhoon Lando / Oct. 12-22, 2015	5-Year
49	7.996981	123.784958	0.03	0.00	0.03	Typhoon Lando / Oct. 12-22, 2015	5-Year
50	7.987914	123.779655	0.10	0.50	-0.4	Typhoon Lando / Oct. 12-22, 2015	5-Year

Point Number	Validation Co (in WGS84)	oordinates	Model Var (m)	Validation Points (m)	Error	Event/Date	Rain Return / Scenario
	Lat	Long	1				
51	7.935659	123.769877	0.13	0.00	0.13	Typhoon Lando / Oct. 12-22, 2015	5-Year
52	7.931861	123.767512	0.17	0.00	0.17	Typhoon Lando / Oct. 12-22, 2015	5-Year
53	7.939637	123.769425	0.09	0.39	-0.3	Typhoon Lando / Oct. 12-22, 2015	5-Year
54	7.939741	123.769304	0.09	0.00	0.09	Typhoon Lando / Oct. 12-22, 2015	5-Year
55	7.935179	123.774188	0.18	0.26	-0.08	Typhoon Lando / Oct. 12-22, 2015	5-Year
56	7.939873	123.769270	0.11	0.00	0.11	Typhoon Lando / Oct. 12-22, 2015	5-Year
57	7.935655	123.770007	0.14	0.00	0.14	Typhoon Lando / Oct. 12-22, 2015	5-Year
58	7.930678	123.769031	0.13	0.00	0.13	Typhoon Lando / Oct. 12-22, 2015	5-Year
59	7.931603	123.766996	0.27	0.00	0.27	Typhoon Lando / Oct. 12-22, 2015	5-Year
60	7.934922	123.769301	0.19	0.00	0.19	Typhoon Lando / Oct. 12-22, 2015	5-Year
61	7.935779	123.774412	0.23	0.00	0.23	Typhoon Lando / Oct. 12-22, 2015	5-Year
62	7.939654	123.769303	0.21	0.10	0.11	Typhoon Lando / Oct. 12-22, 2015	5-Year
63	8.000130	123.781743	0.03	0.77	-0.74	Typhoon Lando / Oct. 12-22, 2015	5-Year
64	8.004384	123.781422	0.03	0.47	-0.44	Typhoon Lando / Oct. 12-22, 2015	5-Year
65	7.987845	123.779666	0.12	0.50	-0.38	Typhoon Lando / Oct. 12-22, 2015	5-Year
66	7.935589	123.774291	0.29	0.23	0.06	Typhoon Lando / Oct. 12-22, 2015	5-Year
67	7.930747	123.769059	0.26	0.00	0.26	Typhoon Lando / Oct. 12-22, 2015	5-Year
68	7.935669	123.774413	0.30	0.23	0.07	Typhoon Lando / Oct. 12-22, 2015	5-Year
69	8.004526	123.781697	0.09	0.09	0	Typhoon Lando / Oct. 12-22, 2015	5-Year
70	7.987685	123.780079	0.22	0.72	-0.5	Typhoon Lando / Oct. 12-22, 2015	5-Year
71	7.931765	123.769431	0.36	0.00	0.36	Typhoon Lando / Oct. 12-22, 2015	5-Year
72	7.935619	123.774513	0.42	0.23	0.19	Typhoon Lando / Oct. 12-22, 2015	5-Year
73	7.935541	123.774396	0.42	0.23	0.19	Typhoon Lando / Oct. 12-22, 2015	5-Year
74	8.001823	123.781163	0.11	0.80	-0.69	Typhoon Lando / Oct. 12-22, 2015	5-Year
75	7.935156	123.774110	0.51	0.51	0	Typhoon Lando / Oct. 12-22, 2015	5-Year
76	7.980502	123.793189	0.03	0.50	-0.47	Typhoon Lando / Oct. 12-22, 2015	5-Year

Point Number	Validation Co (in WGS84)	ordinates	Model Var (m)	Validation Points (m)	Error	Event/Date	Rain Return / Scenario
	Lat	Long					
77	8.001977	123.781444	0.15	1.10	-0.95	Typhoon Lando / Oct. 12-22, 2015	5-Year
78	7.989308	123.777450	0.03	0.30	-0.27	Typhoon Lando / Oct. 12-22, 2015	5-Year
79	7.989308	123.777450	0.03	0.10	-0.07	Typhoon Lando / Oct. 12-22, 2015	5-Year
80	7.935554	123.774184	0.55	0.23	0.32	Typhoon Lando / Oct. 12-22, 2015	5-Year
81	7.987678	123.780216	0.37	0.70	-0.33	Typhoon Lando / Oct. 12-22, 2015	5-Year
82	8.001891	123.781368	0.20	1.10	-0.9	Typhoon Lando / Oct. 12-22, 2015	5-Year
83	7.935045	123.774146	0.63	0.26	0.37	Typhoon Lando / Oct. 12-22, 2015	5-Year
84	7.980517	123.785039	0.48	0.65	-0.17	Typhoon Lando / Oct. 12-22, 2015	5-Year
85	8.004312	123.781313	0.03	0.78	-0.75	Typhoon Lando / Oct. 12-22, 2015	5-Year
86	7.987061	123.779624	0.63	0.15	0.48	Typhoon Lando / Oct. 12-22, 2015	5-Year
87	8.004427	123.781601	0.07	0.41	-0.34	Typhoon Lando / Oct. 12-22, 2015	5-Year
88	7.980478	123.785081	0.64	0.65	-0.01	Typhoon Lando / Oct. 12-22, 2015	5-Year
89	7.980526	123.785126	0.64	0.00	0.64	Typhoon Lando / Oct. 12-22, 2015	5-Year
90	7.980548	123.784899	0.67	0.50	0.17	Typhoon Lando / Oct. 12-22, 2015	5-Year
91	7.961692	123.777837	0.27	0.79	-0.52	Typhoon Lando / Oct. 12-22, 2015	5-Year
92	7.961655	123.777889	0.34	0.79	-0.45	Typhoon Lando / Oct. 12-22, 2015	5-Year
93	7.961480	123.777559	0.42	0.79	-0.37	Typhoon Lando / Oct. 12-22, 2015	5-Year
94	7.963154	123.778349	0.54	0.58	-0.04	Typhoon Lando / Oct. 12-22, 2015	5-Year
95	8.001065	123.780271	0.03	1.30	-1.27	Typhoon Lando / Oct. 12-22, 2015	5-Year
96	7.930322	123.768669	1.35	0.00	1.35	Typhoon Lando / Oct. 12-22, 2015	5-Year
97	7.963125	123.777910	0.90	0.50	0.4	Typhoon Lando / Oct. 12-22, 2015	5-Year
98	7.979766	123.797006	0.03	1.90	-1.87	Typhoon Lando / Oct. 12-22, 2015	5-Year
99	7.997823	123.786970	0.38	0.00	0.38	Typhoon Lando / Oct. 12-22, 2015	5-Year
100	7.930692	123.768669	1.95	0.00	1.95	Typhoon Lando / Oct. 12-22, 2015	5-Year

Point Number	Validation ((in WGS84)	Coordinates	Model Var (m)	Validation Points (m)	Error	Event/Date	Rain Return
	Lat	Long	1				
101	7.998250	123.785045	0.40	0.00	0.4	Typhoon Lando / Oct. 12-22, 2015	5-Year
102	8.004088	123.781440	2.11	0.60	1.51	Typhoon Lando / Oct. 12-22, 2015	5-Year
103	8.001012	123.777848	1.75	0.73	1.02	Typhoon Lando / Oct. 12-22, 2015	5-Year
104	7.979806	123.797487	1.34	1.90	-0.56	Typhoon Lando / Oct. 12-22, 2015	5-Year
105	7.980514	123.795708	1.37	1.90	-0.53	Typhoon Lando / Oct. 12-22, 2015	5-Year
106	8.000880	123.778092	2.09	0.40	1.69	Typhoon Lando / Oct. 12-22, 2015	5-Year
107	8.000870	123.781029	2.31	1.52	0.79	Typhoon Lando / Oct. 12-22, 2015	5-Year
108	7.980019	123.794219	3.33	1.90	1.43	Typhoon Lando / Oct. 12-22, 2015	5-Year
109	8.002403	123.776674	5.10	1.51	3.59	Typhoon Lando / Oct. 12-22, 2015	5-Year
110	8.000846	123.778118	5.61	0.40	5.21	Typhoon Lando / Oct. 12-22, 2015	5-Year
111	8.002970	123.776507	5.77	1.06	4.71	Typhoon Lando / Oct. 12-22, 2015	5-Year
112	8.000736	123.778621	5.56	1.50	4.06	Typhoon Lando / Oct. 12-22, 2015	5-Year
113	8.000801	123.778297	5.77	1.54	4.23	Typhoon Lando / Oct. 12-22, 2015	5-Year
114	8.000747	123.778686	5.81	1.13	4.68	Typhoon Lando / Oct. 12-22, 2015	5-Year
115	8.000762	123.778461	5.78	0.15	5.63	Typhoon Lando / Oct. 12-22, 2015	5-Year
116	8.000830	123.778207	6.17	0.77	5.4	Typhoon Lando / Oct. 12-22, 2015	5-Year
117	7.985071	123.791123	6.94	0.00	6.94	Typhoon Lando / Oct. 12-22, 2015	5-Year

ANNEX 12. Educational Institutions Affected by flooding in Balili Flood Plain

LANAO DEL NORTE				
BAROY				
Building Name	Barangay	Rainfall Sc	enario	
		5-year	25-year	100-year
Day Care	Andil			
Daycare Center	Andil			
Estevan Elementary School	Andil			
Grade High and 4	Andil			
Grade 5 and 6	Andil			
Pre-school and Grade Low	Andil			
Bagong Dawis Elementary School	Bagong Dawis			
Bag.ong Dawis Elementary School (Preschool)	Bagong Dawis			
Daycare Center	Bagong Dawis			Low
Faculty Office	Bagong Dawis			
Grade Low	Bagong Dawis	Low	Low	Medium
Grade Medium	Bagong Dawis	Low	Low	Medium
Grade High	Bagong Dawis		Low	Medium
Grade 5 and 6	Bagong Dawis			
Kindergarten	Bagong Dawis		Low	Medium
Lanao Norte Nat'l High School	Baroy Daku			
Baroy Central Elem. School	Baroy Daku			
daycare	Baroy Daku			
Daycare	Baroy Daku			
Day Care Center	Bato			
Day Care Center	Cabasagan			
Non-functional School	Cabasagan	Low	Medium	Medium
Pendulonan Primary School	Cabasagan			
Daycare	Dalama			
canteen	Libertad			
Central elementary	Libertad	Low	Low	Low

LANAO DEL NORTE				
BAROY				
Building Name	Barangay	Rainfall Sc	enario	
		5-year	25-year	100-year
Computer Room	Libertad	Low	Medium	Medium
Diosdado Yap HIgh School	Libertad	Low	Low	Low
Primary School	Limwag			
Day Care Center	Lindongan			
Daycare	Manan-Ao			
Manan ao Elem	Manan-Ao			
Manan ao Elem Schhol	Manan-Ao			
Manan ao Elem School	Manan-Ao			
Sario de roda elementary school (grade Low)	Pange			
Sario de roda elementary school (grade 4 and High)	Pange			
HE Building	Pindolonan			
Lindongan Elem. School	Pindolonan			
Principal's Office	Pindolonan			
School Canteen	Pindolonan			
Baroy Central Elem. School	Poblacion			
District Office	Poblacion			
Lanao School of Science and Technology	Poblacion			
Principal's Office	Poblacion			
School Canteen	Poblacion			
Sto Nino Academy	Poblacion	İ		
Day Care Center	Princesa			
Princessa Elem. School	Princesa			
Compter Center/ Pre School	Rawan Point			
Grade Low-High-4	Rawan Point			
Grade 6	Rawan Point	Low	Medium	Medium
Multi-purpose Hall	Rawan Point			
Raw-an Point Elem. School	Rawan Point			
Mediumnd Yr	Riverside			

LANAO DEL NORTE				
BAROY				
Building Name	Barangay	Rainfall Scer	nario	
		5-year	25-year	100-year
Diosdado Yap HIgh School	Riverside	Medium	Medium	Medium
Sr High	Riverside		Low	Low
Temporary Rooms	Riverside			
Baroy Central Elem. School	San Juan			
Elementary School	San Juan			
Primary School	San Juan			
UCCP Pre-School	San Juan			
Daycare	Tinubdan			
Maliwanag Elem School	Tinubdan			
Lanao Norte Nat'l High School	Village			

LANAO DEL NORTE				
KAPATAGAN				
Building Name	Barangay	Rainfall Sco	enario	
		5-year	25-year	100-year
Computer Room	Bagong Silang	Low	Medium	Medium
Day Care Center	Bagong Silang	Low	Medium	Medium
Grade Medium	Bagong Silang	Low	Medium	Medium
Grade 4	Bagong Silang	Low	Medium	Medium
Kinder	Bagong Silang	Low	Medium	Medium
Principal's Office	Bagong Silang		Low	Medium
School Canteen	Bagong Silang	Low	Medium	Medium
Daycare Center Tiacongan	Bagong Silang		Medium	Medium
Day Care Center	Balili		Medium	Medium
Grade 4	Balili		Medium	Medium
Grade 5-6	Balili		Medium	Medium
Grade 6	Balili		Medium	Medium
Pinoyak Elem. School	Balili		Medium	Medium
Principal's Office	Balili		Medium	Medium
Stage	Balili		Medium	Medium
Grade Low	Cathedral Falls			
Kitchen	Cathedral Falls			
Anacurita Elem School	Cathedral Falls	Medium	Medium	Medium
Anacurita Elem.	Cathedral Falls	Medium	Medium	Medium
Day Care	Cathedral Falls			
Day Care Center	Cathedral Falls	Low	Low	Medium
Grade High and gade 4	Cathedral Falls			
Grade 5 B	Cathedral Falls			
Grade 6 A	Cathedral Falls			
Preschool	Cathedral Falls			
Day Care	Concepcion	Medium	Medium	High
Grade High	Concepcion	Low	Medium	Medium
Grade 4	Concepcion	Low	Medium	Medium
Grade 5&6	Concepcion	Low	Medium	Medium

LANAO DEL NORTE					
KAPATAGAN					
Building Name	Barangay	Rainfall Scer	cenario		
		5-year	25-year	100-year	
Principals Office	Concepcion	Low	Medium	Medium	
Daycare Center	Concepcion		Low	Low	
Emiliano Dizon Elem School	Concepcion	Medium	Medium	High	
Curvada Elem	Curvada		Low	Medium	
Kindergarten	De Asis	Medium	Medium	Medium	
SCHOOL Stage	De Asis	Medium	Medium	Medium	
Daycare	De Asis		Low	Low	
Adventist School	Donggoan				
Balili Day Care Center	Donggoan				
Grade Low	Donggoan		Low	Medium	
Grade Low&4	Donggoan		Low	Medium	
Grade Medium	Donggoan	Low	Medium	Medium	
Grade High	Donggoan	Low	Medium	Medium	
HE Building	Donggoan		Low	Medium	
Kinder Low	Donggoan		Low	Low	
Learning Center	Donggoan				
Old Buildng	Donggoan				
Donggoan Elem School	Donggoan				
Daycare center	Lapinig	High	High	High	
placida mequiabas national high school	Lapinig	Medium	Medium	High	
Placida Mequiabas National High School	Lapinig		İ		
Dishwashing Area	Maranding	Medium	Medium	Medium	
School of Born Again Church	Maranding	Medium	Medium	Medium	
Stage	Maranding	Medium	Medium	Medium	
Waiting Shed	Maranding	Medium	Medium	Medium	
Paradero Day Care	Maranding	Medium	Medium	Medium	
Daycare Center	Margos				
Sixto Magnanoy Sr. Central School	Margos		Low	Low	
Abandoned	Poblacion	Low	Medium	High	

LANAO DEL NORTE				
KAPATAGAN				
Building Name	Barangay	Rainfall Sco	enario	
		5-year	25-year	100-year
Abandoned Day Care	Poblacion	Medium	Medium	High
Canteen	Poblacion	Low	Medium	Medium
District Office	Poblacion	Medium	Medium	Medium
Grade Low Classroom	Poblacion	Low	Medium	Medium
Grade High Classroom	Poblacion	Low	Medium	Medium
Grade 5 Classroom	Poblacion	Low	Medium	Medium
grade 6	Poblacion	Medium	Medium	High
Grade 6 Classroom	Poblacion		Medium	Medium
HE Classroom	Poblacion	Low	Medium	Medium
San Vicente Elem. School	Poblacion	Low	Medium	High
School Room	Poblacion	Low	Medium	High
Technical School	Poblacion	Low	Medium	Medium
Daycare	Poblacion	Medium	Medium	High
Daycare Center	Poblacion		Low	Medium
reading center(purok)	Poblacion	Low	Medium	Medium
Day Care Center	Santo Tomas	Low	Low	Medium
Grade Low	Santo Tomas	Medium	Medium	Medium
Grade 4 Room	Santo Tomas	Medium	Medium	Medium
Grade 6 Room	Santo Tomas		Low	Low
Kindergarten	Santo Tomas			
Balili Elementary	Suso	Low	Medium	Medium
Daycare	Suso			
Daycare Center	Suso	Medium	Medium	Medium
Anacurita Elem.	Waterfalls	Medium	Medium	Medium
Daycare Center	Waterfalls	Medium	Medium	Medium
Itans Learning Center	Waterfalls	Low	Low	Medium

LANAO DEL NORTE				
LALA				
Building Name	Barangay	Rainfall Sce	enario	
		5-year	25-year	100-year
Abaga Central Elementary School	Abaga			Low
Classroom	Abaga		1	Low
CR & Hand Washing	Abaga	Medium	Medium	Medium
Day Care Center Low	Abaga			
DU Tenazas Memorial Elem. School	Abaga		Low	Low
Function Hall	Abaga		Low	Low
Grade Low-High	Abaga			
Grade 4	Abaga		Low	Low
Grade 5	Abaga			
Grade 6 & Kinder	Abaga		Low	Low
Hand Washing Area	Abaga	Low	Medium	Medium
Maranding Christian School KLow- KMedium rooms	Abaga			
MCS Gym	Abaga			
MCS Office	Abaga			
MCS Old Buildings	Abaga			
Principal's Office	Abaga	Low	Medium	Medium
School Canteen	Abaga		Low	Low
School Multipurpose Hall	Abaga	Low	Low	Low
Science Room	Abaga			
Sario de roda elementary school (grade Low)	Andil			
Sario de roda elementary school (grade 4 and High)	Andil			
Sario de roda elementary school stage	Andil			
Daycare center	Andil			
Sario de roda elementary school (grade 5 and 6)	Andil			Low
Daycare Center	Cabasagan			
Francisco Bolante Memorial School (Pre- School to grade 6)	Cabasagan			
Purok 4-B Daycare Center	Cabasagan			

LANAO DEL NORTE					
LALA					
Building Name	Barangay	Rainfall Sc	II Scenario		
		5-year	25-year	100-year	
Purok 6 Daycare Center	Cabasagan				
Camalan Primary School	Camalan				
Grade High-4	Camalan				
Day Care Center	Darumawang Bucana				
School Bldg	Darumawang Bucana				
School C.R.	Darumawang Bucana				
C.R.	Darumawang Ilaya				
Day Care	Darumawang Ilaya				
Grade Low	Darumawang Ilaya		Low	Low	
Grade 4	Darumawang Ilaya		Low	Low	
Grade 5	Darumawang Ilaya	Low	Low	Low	
Grade 6	Darumawang Ilaya		Low	Low	
Guidance Office	Darumawang Ilaya				
Lutuanan	Darumawang Ilaya				
Office and SchoolDormitory	Darumawang Ilaya				
Principal's Office	Darumawang Ilaya		Low	Low	
School Canteen	Darumawang Ilaya				
Simpak Adventist Institute of Technology	Darumawang Ilaya				
Social hall	Darumawang Ilaya				
Vocational Bldg	Darumawang Ilaya		Low	Low	
Vocational Bldg. Medium	Darumawang Ilaya				
Library	Darumawang Ilaya				
El Salvador Elem. School	El Salvador		Medium	Medium	
Grade 4	El Salvador		Medium	Medium	

LANAO DEL NORTE				
LALA				
Building Name	Barangay	Rainfall Scer	nario	
		5-year	25-year	100-year
Grade 4	El Salvador		Medium	Medium
Grade 4-5-6	El Salvador		Medium	Medium
Principal's Office	El Salvador		Low	Medium
Stage	El Salvador		Medium	Medium
Grade Low-6	Gumagamot	Low	Low	Medium
Panadtaran Elem. School	Gumagamot		Low	Low
LALA Elem School Proper	Lala Proper	Low	Low	Medium
Daycare	Lanipao			
LALA North District School	Lanipao			
Classroom	Magpatao			
Computer Center	Magpatao			
Grade Low-Medium-High	Magpatao			
Grade 6	Magpatao			
HE Room	Magpatao			
Magpatao Elem	Magpatao			
Prk Medium Day Care Center	Magpatao			
School Stage	Magpatao			
Stage	Magpatao			
Daycare center	Magpatao			
Magpatao Elementary School	Magpatao			
Bible Baptist School	Maranding	Medium	Medium	Medium
Calssroom LowMedium	Maranding	Medium	High	High
Canteen	Maranding	Medium	Medium	Medium
Classroom	Maranding	Medium	Medium	Medium
Classroom LowLow	Maranding	Medium	Medium	High
Classroom 4	Maranding	Medium	Medium	Medium
Classroom 5	Maranding	Medium	High	High
Classroom 6	Maranding	Medium	Medium	High
Classroom 7	Maranding	Medium	Medium	High

LANAO DEL NORTE				
LALA				
Building Name	Barangay	Rainfall Scenario		
		5-year	25-year	100-year
Classroom 8	Maranding	Medium	Medium	High
Classroom 9	Maranding	Medium	Medium	High
ClassroomLow	Maranding	Medium	High	High
ClassroomMedium	Maranding	Medium	High	High
Faculty Room	Maranding	Medium	Medium	High
Grade Medium	Maranding	Medium	Medium	Medium
grade High	Maranding	Medium	High	High
Grade 4	Maranding	Medium	Medium	Medium
Grade 5	Maranding	Medium	Medium	Medium
Guard House	Maranding	Medium	Medium	High
Lanao Norte-Learning Resource Center	Maranding	Medium	Medium	Medium
LNHS Gym	Maranding	Medium	High	High
LNHS Principal's Office	Maranding	Medium	Medium	High
Mini Canteen	Maranding	Medium	Medium	High
NCMC Building	Maranding	Low	Low	Medium
NCMC Collge Department	Maranding	Low	Low	Medium
NCMC Elementary Department	Maranding	Low	Medium	Medium
NCMC Gym	Maranding		Low	Low
NCMC HRM Department	Maranding	Medium	Medium	Medium
Preschool	Maranding	Medium	Medium	Medium
Principal's Office	Maranding		Low	Low
Prk. Rambutan Day Care Center	Maranding		Low	Medium
PTA Office	Maranding	Medium	Medium	Medium
School Clinic	Maranding	Medium	Medium	Medium
Social Hall	Maranding	Medium	Medium	Medium
Stage	Maranding	Medium	Medium	Medium
Grade Low	Maranding	Medium	Medium	Medium
Day Care Center Old	Matampay Bucana			
Matampay Bucana Elem. School	Matampay Bucana		Low	Medium

LANAO DEL NORTE				
LALA				
Building Name	Barangay	Rainfall So	cenario	
		5-year	25-year	100-year
San Roque Chapel	Matampay Bucana			
Classrooms Low	Pacita			
Classrooms Medium	Pacita			
Day Care Center	Pacita			
Doggoan Elementary School	Pacita			
Grade Low-Medium	Pacita			
Grade High	Pacita			
Grade 4-5	Pacita			
Grade 6	Pacita			
Matampay Ilaya Elem. School	Pacita			
Prk Medium Day Care Center	Pacita	Low	Low	Low
School Clinic	Pacita			
Stage	Pacita			
Day Care Center Medium	Pendolonan		Low	Low
Comfort Room	Pendolonan			
Day Care Center	Pendolonan			
Generoso Lapasaran Memorial School Canteen	Pendolonan			
Grade Low	Pendolonan			
Grade 6	Pendolonan			
Pre-school and Faculty Office	Pendolonan			
School Library	Pendolonan			
Cabrera Day Care Center	Pinoyak	Low	Low	Low
Saavedra Day Care Center	Pinoyak			Low
FM Posadas Elementary School	Raw-An		Low	Medium
Classroom Low	Raw-An	Low	Low	Medium
Classroom Medium	Raw-An	Low	Low	Medium
Economics building	Raw-An		Low	Medium
Grade 5 and 6	Raw-An	Low	Medium	Medium
Kindergarten	Raw-An		Low	Medium

LANAO DEL NORTE				
LALA				
Building Name	Barangay	Rainfall Scer	ario	
		5-year	25-year	100-year
School Canteen	Raw-An		Low	Medium
Pedro B. Liwanag Memorial Elem	Rebe			
Antonio Lim Sr. Elem School	San Isidro Lower			
Brgy. Sta. Cruz Lower Elem. School	San Isidro Lower			
Day Care	San Isidro Lower			Low
daycare	San Isidro Lower			
Grade Low	San Isidro Lower			
Grade Low-Medium-4	San Isidro Lower			
Grade High	San Isidro Lower			
Grade 5-6	San Isidro Lower			
HE Room	San Isidro Lower			
Pre-School	San Isidro Lower			
Canteen	San Isidro Upper			
Computer Laboratory	San Isidro Upper	Low	Low	Low
Daycare Center	San Isidro Upper			
Grade Low	San Isidro Upper			
Pre-school and faculty room	San Isidro Upper			
San Isidro Elementary School(grade Medium-6)	San Isidro Upper			
Stage	San Isidro Upper			
Daycare	San Manuel	Medium	Medium	Medium
San Manuel Elem	San Manuel			
Daycare	Santa Cruz Lower			
Daycare	Santa Cruz Upper		Medium	Medium
Auditorium	Simpak		Low	Low
Grade Low	Simpak		Low	Low
Grade Medium	Simpak		Low	Low
Grade High	Simpak	Low	Low	Medium
Grade 4	Simpak	Medium	Medium	Medium
Grade 5	Simpak	Low	Medium	Medium

LANAO DEL NORTE					
LALA					
Building Name	Barangay	Rainfall Sc	Rainfall Scenario		
		5-year	25-year	100-year	
Kindergarten	Simpak	Low	Medium	Medium	
Principal's Office	Simpak	Low	Medium	Medium	
Saavedra Elementary School	Simpak	Low	Low	Medium	
School C.R.	Simpak				
School Canteen	Simpak	Low	Medium	Medium	
School Clinic	Simpak		Low	Low	
School Guard House	Simpak		Low	Low	
School Old Canteen	Simpak		Low	Low	
Stage	Simpak		Low	Low	
Vermi Culture Center	Simpak		Low	Low	
D.U. Tenzasas Elem	Tenazas				
D.u.Tenazasas Elem	Tenazas				
Daycare	Tenazas				
Montesory	Tenazas			Low	
BFAR Dorm Low	Tuna-An				
BFAR Dorm Medium	Tuna-An	Low	Low	Medium	
Day Care Center	Tuna-An				
Dorm High	Tuna-An	Medium	Medium	Medium	
Dorm 4	Tuna-An				
Dorm 5	Tuna-An	Medium	Medium	Medium	
Grade Low-4	Tuna-An				
Grade 5-6	Tuna-An				
Library	Tuna-An				
Tunaan Elem. School Stage	Tuna-An				

LANAO DEL NORTE				
SAVADOR				
Building Name	Barangay	Rainfall Scenario		
		5-year	25-year	100-year
Daycare Center	Camp III		Low	Medium
Grade Low - High	Camp III		Low	Low
Grade Medium and 5	Camp III			
Grade 5	Camp III			Low
Grade 6	Camp III	Low	Low	Low
School Booth	Camp III			
School Stage	Camp III			
Sudlon Elementary School	Camp III		Low	Low
Abandoned School	Curva-Miagao		Low	Low
Classroom	Curva-Miagao	Low	Medium	High
Curva-Miagao Elem. School	Curva-Miagao		Medium	Medium
Day Care Center	Curva-Miagao			
School Waiting Shed	Curva-Miagao	Low	Medium	High
Stage	Curva-Miagao		Medium	High
San Manuel Elem	Curva-Miagao			
Classroom	Inasagan	Low	Low	Low
Classroom Medium	Inasagan			
Classroom High	Inasagan			
Day Care Center	Inasagan		Low	Low
Day Care Center Kalahi	Inasagan			
Former Canteen	Inasagan		Low	Low
Grade Medium	Inasagan			
Grade 4	Inasagan	Low	Low	Low
Grade 5-6	Inasagan		Low	Low
Grade 6	Inasagan			
Kinder	Inasagan	Medium	Medium	Medium
School Bldg.	Inasagan			
Stock Room	Inasagan	Low	Low	Low
Social Hall	Inasagan			
Day Care Center	Mabatao			

LANAO DEL NORTE				
TUBOD				
Building Name	Barangay	Rainfall Scer	nario	
		5-year	25-year	100-year
Day Care Center Medium	Licapao			
Lanao Norte Provincial Science and Technology High School	Licapao			Low
Licapao Elem. School	Licapao			
LNPSTHS School Bldg	Licapao			
Malingao Central School	Licapao			
School Bldg.	Licapao		Low	Low
School Stage	Licapao			

LANAO DEL NORTE						
AURORA						
Building Name	Barangay	Rainfall Sce	Rainfall Scenario			
		5-year	25-year	100-year		
Canteen	Anonang		Low	Low		
Comfort Room	Anonang	Low	Low	Low		
Computer Room	Anonang					
Grade Higha	Anonang		Low	Low		
Grade 4	Anonang	Medium	Medium	Medium		
Grade 5	Anonang	Low	Low	Low		
Margos Elementary School	Anonang	Low	Medium	Medium		
Principal's Office	Anonang					
School Health Center	Anonang			Low		
School Waiting Shed	Anonang	Low	Low	Low		
Social Hall	Anonang	Low	Low	Medium		
grade 6	Anonang		Low	Low		
HE room	Anonang	Medium	Medium	Medium		
School Waiting Shed	Anonang		Low	Low		

ANNEX 13. Health Institutions affected by flooding in Balili Floodplain

LANAO DEL NORTE				
BAROY				
Building Name	Barangay Rainfall Scenario			
		5-year	25-year	100-year
Health Center	Andil			
Health Care Center	Bagong Dawis			
Health Center	Bagong Dawis			Low
Health Center	Cabasagan			
Health center	Dalama			
Health Center	Libertad			
Health Center	Limwag			
Health Center	Lindongan			
OB Gyne Clinic	Poblacion			
Pharmacy	Poblacion			
Health Center	Princesa			
Temporary Health Center	Salong			Low

LANAO DEL NORTE				
KAPATAGAN		Rainfall Scenario		
Building Name	Barangay			
		5-year	25-year	100-year
Clinic	Bagong Silang	Low	Medium	Medium
Polipog Health Center	Balili	Low	Medium	Medium
Health Center	Cathedral Falls	Medium	Medium	Medium
Health Center	De Asis		Low	Low
Balili Health Center Extension	Donggoan			
Health Center	Donggoan	Low	Low	Low
Health Center	Maranding	Medium	High	High
Provincial Hospital	Maranding	Low	Low	Medium
Provincial Hospital	Maranding			Low
Balili Provincial Hospital	Poblacion	Low	Medium	Medium
Mercury	Poblacion	Low	Medium	Medium

LANAO DEL NORTE				
KAPATAGAN				
Building Name	Barangay	Rainfall Scenario		
		5-year	25-year	100-year
RightMeds Pharmacy	Poblacion			Low
Delbert Jon's Hospital	Poblacion		Medium	Medium
Dr. Gatchalian Hospital (OLD)	Poblacion	Medium	Medium	High
Municipal Health Office	Poblacion		Medium	High
Old Health Center	Santo Tomas			
Sto Tomas Health Center	Santo Tomas	Medium	Medium	Medium
Clinic	Waterfalls	Low	Medium	Medium

LANAO DEL NORTE					
LALA					
Building Name	Barangay	Rainfall Sce	Rainfall Scenario		
		5-year	25-year	100-year	
Health Center	Abaga				
School Clinic	Abaga			Low	
Health center	Andil				
Health Center	Cabasagan				
Brgy. Health Center	Darumawang Bucana			Low	
Health Center	Darumawang Ilaya				
Health Center	El Salvador			Low	
Health Center	Lala Proper		Low	Low	
Vet Clinic	Lanipao	Low	Low	Low	
Prk Medium Health Center	Magpatao				
Health Center	Magpatao				
AFC AMY Pharmacy	Maranding	Medium	Medium	Medium	
Asintesta Medical Clinic	Maranding	High	High	High	
Barangay Health Station	Maranding	Medium	Medium	Medium	
Bontilao Country Hospital	Maranding	Medium	Medium	Medium	
Gozo Community Hospital	Maranding	Low	Medium	Medium	

LANAO DEL NORTE					
LALA					
Building Name	Barangay	Rainfall Scenario			
		5-year	25-year	100-year	
Maranding Community Hospital	Maranding			Low	
Mendoza Macayan Optical Clinic	Maranding	Medium	Medium	Medium	
Mercury Drug	Maranding	Medium	Medium	Medium	
NCMC Lying In	Maranding	Low	Low	Medium	
The Generics Pharmacy	Maranding	Low	Medium	Medium	
Bulaclac Pharmacy	Maranding	Medium	Medium	Medium	
Barangay Health Center	Matampay Bucana				
Health Center	Pacita				
Pacita Health Center	Pacita			Low	
Health Center	Pendolonan				
Health Center	Rebe				
Health Center	San Isidro Lower				
Health Center	San Isidro Upper				
Health Center	San Manuel	Low	Low	Low	
Health Center	Santa Cruz Upper		Low	Medium	
Lanipao Health Center	Santa Cruz Upper		Low	Medium	
Health Center	Simpak				
Health Center	Tuna-An				

LANAO DEL NORTE				
SALVADOR				
Building Name	Barangay	Rainfall Scenario		
		5-year	25-year	100-year
Barangay Health Center	Camp III			
Health Center	Curva-Miagao			
Barangay Health Center	Inasagan	Low	Low	Low
Health Center	Inasagan	Low	Medium	Medium
Health Center	Panaliwad-On			
Old Rural Health Center	Poblacion		Low	Low

LANAO DEL NORTE				
SALVADOR				
Building Name	Barangay	Rainfall Scenario		
		5-year	25-year	100-year
Margos Health Center	Anonang			