Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1

LiD/AR Surveys and Flood Mapping of Dapitan River

University of the Philippines Training Center for Applied Geodesy and Photogrammetry Mindanao State University-Iligan Institute of Technology

APRIL 2017

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

© University of the Philippines Diliman and Mindanao State University-Iligan Institute of Technology 2017

Published by the UP Training Center for Applied Geodesy and Photogrammetry (TCAGP) College of Engineering University of the Philippines – Diliman Quezon City 1101 PHILIPPINES

E.C. Paringit and A.E. Milano (eds.) (2017), LiDAR Surveys and Flood Mapping of Dapitan River, Quezon City: University of the Philippines Training Center for Applied Geodesy and Photogrammetry-222pp.

The text of this information may be copied and distributed for research and educational purposes with proper acknowledgement. While every care is taken to ensure the accuracy of this publication, the UP TCAGP disclaims all responsibility and all liability (including without limitation, liability in negligence) and costs which might incur as a result of the materials in this publication being inaccurate or incomplete in any way and for any reason.

For questions/queries regarding this report, contact:

Prof. Alan E. Milano

Project Leader, Phil-LiDAR 1 Program Mindanao State University - Iligan Institute of Technology Iligan City, Lanao del Norte, Philippines 9200 E-mail: aemilano1960@yahoo.com

Enrico C. Paringit, Dr. Eng.

Program Leader, Phil-LiDAR 1 Program University of the Philippines Diliman Quezon City, Philippines 1101 E-mail: ecparingit@up.edu.ph

National Library of the Philippines ISBN: 978-621-430-072-3

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

TABLE OF CONTENTS

List of Tab	les	v			
List of Figu	ıre	vii			
List of Acr	onyms and Abbreviations	ix			
Chapter 1	: Overview of the Program and Dapitan River	1			
1.1	Background of the Phil-LiDAR 1 Program	1			
1.2	Overview of the Dapitan River Basin	1			
Chapter 2	: LiDAR Data Acquisition of the Dapitan Floodplain	3			
. 2.1	Flight Plans	3			
2.2	Ground Base Stations	4			
2.3	Elight Missions	10			
2.0	Survey Coverage	11			
Chanter 3	I IDAR Data Processing of the Danitan Floodnlain	13			
2 1	Overview of the LiDAR Data Pre-Processing	12			
2.1	Transmittal of Acquired LiDAP Data	1J 1/1			
3.2	Trainstantial of Acquired Liban Data	14 1 <i>1</i>			
5.5	LiDAD Deint Cloud Computation	14			
3.4	LIDAR Point Cloud Computation	1/			
3.5	LIDAR Data Quality Checking	18			
3.6					
3.7	LiDAR Image Processing and Orthophotograph Rectification	24			
3.8	DEM Editing and Hydro-Correction	26			
3.9	Mosaicking of Blocks	27			
3.10	Calibration and Validation of Mosaicked LiDAR DEM	28			
3.11	Integration of Bathymetric Data into the LiDAR Digital Terrain Model	31			
3.12	Feature Extraction	32			
	3.12.1 Quality Checking of Digitized Features' Boundary	33			
	3.12.2 Height Extraction	33			
	3.12.3 Feature Attribution	34			
	3.12.4 Final Quality Checking of Extracted Features	35			
Chapter 4	LiDAR Validation Survey and Measurements of the Dapitan River Basin				
4.1	Summary of Activities				
4.2	Control Survey	37			
4.3	Baseline Processing	40			
4.4	Network Adjustment	л10 Д1			
4.4	Cross-section and Bridge Ac-Built survey and Water Level Marking				
4.5	Validation Doints Acquisition Survey	4J 47			
4.0	Piver Pathymetric Survey	4/ E0			
4./	River Daulymetric Survey				
Chapter 5	: Flood Modeling and Mapping				
5.1	Data Used for Hydrologic Wodeling				
	5.1.1. Hydrometry and Rating Curves				
	5.1.2 Precipitation	53			
	5.1.3 Rating Curves and River Outflow	54			
5.2	RIDF Station	56			
5.3	HMS Model	58			
5.4	Cross-Section Data	62			
5.5	FLO-2D Model	63			
5.6	Results of HMS Calibration	64			
5.7	Calculated Outflow Hydrographys and Discharge Values for				
	Different Rainfall Return Periods	66			
	5.7.1 Hydrograph using the Rainfall Runoff Model	66			
5.8	River Analysis (RAS) Model Simulation	70			
5.9	Flow Depth and Flood Hazard	71			
5.10	Inventory of Areas Exposed to Flooding of Affected Areas				
5.11	Flood Validation				
Reference	s				
Λομονος 116					
Ann	ex 1 Technical Specifications of the LiDAR Sensors used in the				
AIIII	Danitan Eloodalain Survey	116			
۸۰۰	Annex 2 NAMRIA Certification of Reference Points Lised in the LiDAR Survey 119				
AIIII	Annex 2 Raseline Processing Reports of Reference Doints				
AIIII	ex 2 paseline Floressing reports of reference follits				

Used in the LiDAR Survey	
Annex 4 The LiDAR Survey Team Composition	
Annex 5 Data Transfer Sheet for Dapitan Floodplain	
Annex 6 Flight Logs for the Flight Missions	
Annex 7 Flight Status Reports	
Annex 8 Mission Summary Reports	
Annex 9 Dapitan Model Basin Parameters	
Annex 10 Dapitan Model Reach Parameters	
Annex 11 Dapitan Field Validation Points	
Annex 12 Educational Institutions Affected in Dapitan Floodplain	207
Annex 13 Medical Institutions Affected in Dapitan Floodplain	211

LIST OF TABLES

Table 1. Flight planning parameters for Pegasus LiDAR system.Table 2. Details of the recovered NAMRIA horizontal control point ZGN-138 used as base	3
station for the LiDAR Acquisition.	5
Table 3. Details of the recovered NAMIRIA vertical horizontal control point ZGN-60 used as base station for the LiDAR Acquisition	6
Table 4. Details of the establishedpoint MSW-05 used as base station for the LiDAR Acquisition	7
Table 5. Details of the established point ZN-11 used as base station for the LiDAR Acquisition	8
Table 6. Details of the established point ZGN-53 used as base station for the LiDAR Acquisition.	9
Table 7. Ground control points used during LiDAR data acquisition Table 8. Elight missions for LiDAR Data Acquisition in Labason Elogdalain	.10
Table 9. Actual parameters used during LiDAR data acquisition	. 10
Table 10. List of municipalities and cities surveyed during Labason floodplain LiDAR survey	.11
Table 11. Self-Calibration Results values for Dapitan flights	. 17
Table 12. List of LiDAR blocks for Dapitan floodplain	. 18
Table 13. Dapitan classification results in TerraScan	. 22
Table 14. LiDAR blocks with its corresponding area	. 26
Table 15. Shift Values of each LiDAR Block of Dapitan floodplain Table 15. Shift Values of each LiDAR Block of Dapitan floodplain	. 27
Table 16. Calibration Statistical Measures	. 30
Table 17. Validation Statistical Measures	.31 22
Table 19. Building Features Extracted for Dapitan Floodnlain	. 55 34
Table 20. Total Length of Extracted Roads for Dapitan Floodplain	.34
Table 21. Number of Extracted Water Bodies for Dapitan Floodplain	.35
Table 22. List of References and Control Points used in Dapitan River Survey	
(Source: NAMRIA, UP-TCAGP)	. 38
Table 23. Baseline Processing for Dapitan River Survey	. 40
Table 24. Control points constraints.	.41
Table 25. Adjusted grid coordinates	. 41
Table 25. Adjusted Geodetic Coordinates	.42
Table 27. Reference and control points used and its location (Source: NAMIRIA, UP-TCAGP)	.43
Table 29. Range of Calibrated Values for Danitan	. 50
Table 30. Summary of the Efficiency Test of Dapitan HMS Model	. 66
Table 31. Peak values of the Dapitan HECHMS Model outflow using Dipolog RIDF	.67
Table 32. Summary of Dapitan river (1) discharge generated in HEC-HMS	. 70
Table 33. Summary of Dapitan river (2) discharge generated in HEC-HMS	. 70
Table 34. Summary of Dapitan river (3) discharge generated in HEC-HMS	. 70
Table 35. Summary of Dapitan river (4) discharge generated in HEC-HM	. 70
Table 36. Validation of river discharge estimates	. 70
Table 37. Municipalities affected in Dapitan Floodplain	. / 1
Table 30. Affected Areas in La Libertad. Zamboanga del Norte during 5-Year Rainfall Return Period	.79 .81
Table 40. Affected Areas in Pinan. Zamboanga del Norte during 5-Year Rainfall Return Period	.82
Table 41. Affected Areas in Polanco. Zamboanga del Norte during 5-Year Rainfall Return Period	.83
Table 42. Affected Areas in Rizal, Zamboanga del Norte during 5-Year Rainfall Return Period	.84
Table 43. Affected Areas in Sapang Dalaga, Misamis Occidental during 5-Year Rainfall Return Period	.86
Table 44. Affected Areas in Sibutad, Zamboanga del Norte during 5-Year Rainfall Return Period	. 87
Table 45. Affected Areas in Dapitan City, Zamboanga del Norte during 25-Year Rainfall Return Period	.90
Table 46. Affected Areas in La Libertad, Zamboanga del Norte during 25-Year Rainfall Return Period	.92
Table 47. Affected Areas in Pinan, Zamboanga del Norte during 25-Year Rainfall Return Period	.93
Table 40. Affected Areas in Polatico, Zamboanga del Norte during 25-Year Rainfall Return Period	.94 95
Table 50. Affected Areas in Sapang Dalaga, Misamis Occidental during 25-Year Rainfall Return	
Period	. 97
Table 51. Affected Areas in Sibutad, Zamboanga del Norte during 25-Year Rainfall Return Period	.98
Table 52. Affected Areas in Dapitan City, Zamboanga del Norte during 100-Year Rainfall Return	
Period	101
Table 53. Affected Areas in La Libertad, Zamboanga del Norte during 100-Year Rainfall Return Period. 2	103
Table 54. Affected Areas in Pinan, Zamboanga del Norte during 100-Year Rainfall Return Period	104
Table 55. Affected Areas in Polarico, Zamboanga dei Norte during 100-Year Kaintali Keturn Period	102

Table 56. Affected Areas in Rizal, Zamboanga del Norte during 100-Year Rainfall Return Period	107
Table 57. Affected Areas in Sapang Dalaga, Misamis Occidental during 100-Year Rainfall Return	
Period	109
Table 58. Affected Areas in Sibutad, Zamboanga del Norte during 100-Year Rainfall Return Period	110
Table 59. Area covered by each warning level with respect to the rainfall scenario	112
Table 60. Actual Flood Depth vs Simulated Flood Depth in Dapitan River Basin	114
Table 61. Summary of Accuracy Assessment in Dapitan River Basin Survey	114

LIST OF FIGURE

Figure 1. Map of the DapitanRiver Basin (in brown)	2
Figure 2. Flight plan and base stations for DapitanFloodplain.	4
point ZGN-138 as recovered by the field team	5
Figure 4. a) GPS set-up over ZGN-60in (a) Layawan Bridge, Brgy. San Pedro, Polanco, Zamboanga	6
Figure 5. a) GPS set-up over MSW-05 in (a) Sapang Dalaga, Misamis Occidental and (b) NAMRIA refere	nce
Figure 6. a) GPS set-up over ZN-11 at (a) Potungan Bridge, Dapitan, Zamboanga del Norte and (b)	/ Ջ
Figure 7. a) GPS set-up over ZN-53 at (a) Brgy. Daanglungsod, Katipinan, Zamboanga del Norte and (b)	
NAMRIA reference point ZN-53 as recovered by the field team	9
Figure 8. Actual LIDAR survey coverage for Dapitan Floodplain	12
Figure 9. Schematic diagram for Data Pre-processing Component	14
Figure 10. Smoothed Performance Metric Parameters of Dapitan Flight 23124P	15
Figure 11. Solution Status Parameters of Dapitan Flight 23124P	16
Figure 12. Best Estimated Trajectory for Dapitan floodplain	1/
Figure 13. Boundary of the processed LIDAR data over Dapitan Floodplain	18
Figure 14. Image of data overlap for Dapitan Floodplain	19
Figure 15. Density map of merged LiDAR data for Dapitan Floodplain	20
Figure 16. Elevation difference map between flight lines for Dapitan Floodplain	21
Figure 17. Quality checking for a Dapitan flight 23124P using the Profile Tool of QT Modeler	22
Figure 18. Tiles for Dapitan Floodplain (a) and classification results (b) in TerraScan	23
Figure 19. Point cloud before (a) and after (b) classification	23
Figure 20. The production of last return DSM (a) and DTM (b), first return DSM (c) and	
secondary DTM (d) in some portion of Dapitan Floodplain	24
Figure 21. Dapitan floodplain with available orthophotographs	25
Figure 22. Sample orthophotograph tiles for Dapitan floodplain	25
Figure 23. Portions in the DTM of Dapitan floodplain – a bridge before (a) and after (b)	
manual editing; a paddy field before (c) and after (d) data retrieval	26
Figure 24. Map of Processed LiDAR Data for Dapitan Floodplain	28
Figure 25. Figure 21. Map of Dapitan Flood Plain with validation survey points in green	29
Figure 26. Correlation plot between calibration survey points and LiDAR data	30
Figure 27. Correlation plot between validation survey points and LiDAR data.	31
Figure 28. Map of Dapitan Flood Plain with bathymetric survey points shown in blue	32
Figure 29. QC blocks for Dapitan building features.	33
Figure 30. Extracted features for Dapitan floodplain.	35
Figure 31. Extent of the Dapitan River Bathymetric Survey	37
Figure 32. GNSS network for Dapitan River field survey	38
Figure 33. GNSS receiver occupation, Trimble [®] SPS 882 at ZN-44, Miputak Bridge, in Brgy. Miputak,	
Dipolog City, Zamboanga del Norte	39
Figure 34. GNSS base receiver setup, Trimble [®] SPS 852 at ZGN-138 in TAGA Central School Brgy. Taga,	
Municipality of Katipunan, Zamboanga del Norte	39
Figure 35. GNSS base receiver, Trimble [®] SPS 882, setup at UP-ILA in Ilaya Bridge, Brgy. Ilaya,	
Dapitan City	40
Figure 36. Cross-sectional diagram of Dapitan River along Ilaya Bridge with marked water-level	43
Figure 37. Cross-section survey at Ilaya Bridge	44
Figure 38. Ilaya bridge cross-section location map	45
Figure 39. Data form for Ilaya Bridge	46
Figure 40. Water-level marking at Ilaya Bridge	47
Figure 41. LIDAR Ground Validation Setup	48
Figure 42. Obtained ground validation points in the vicinity of Dapitan River overlayed with river	40
	49
Figure 43. Irimble SPS 882 Rover and OHMEX TH single beam echo sounder set up on a boat with "katig" for the Dapitan River bathymetric survey	50
Figure 11 Rathymetric noints gathered in Danitan River	50 51
Figure 45. Riverhed profile of Danitan Piver	27 21
Figure 45. The location man of Dapitan HEC-HMS model used for calibration	52
Figure 40. The location map of Dapital nec-nivis model used for Calibration	54 55
Figure 47. CIUSS-JECLIUII FIUL UI IIdya DI IUge	55 57
Figure 40. Natility curve at llaya Diluge	22
Figure 43. Natilial and Outlow data at Haya Bridge Used for Modeling	50 57
Figure 50. Editation of Diputors Riber Station relative to Dapitali River Basin	5/ 57
Figure 51. Synthetic storm generated for a 24-hr period rainfail for Various return periods	5/

Figure 52.	Soil Texture Map of Dapitan River Basin	58
Figure 53.	Land Cover Map of Dapitan River Basin	59
Figure 54.	Slope Map of the Dapitan River Basin	. 60
Figure 55	Stream Delineation Man of the Danitan River Basin	61
Figure 55.	The Dapitan Hydrologic Model generated in HEC Cookins	62
Figure 50.	The Dapitan Hydrologic Model generated in Het-Geomiss	02
Figure 57.	River cross-section of Dapitan River generated through Arcmap HEC GeoRAS tool	63
Figure 58.	Screenshot of subcatchment with the computational area to be modeled in	
	FLO-2D GDS Pro	64
Figure 59.	Outflow Hydrograph of Ilaya Bridge generated in HEC-HMS model compared with	
U	observed outflow	. 65
Figure 60	Outflow hydrograph at Danitan Station generated using Dipolog RIDE simulated in	
inguic oo.		67
F ¹ C A		. 07
Figure 61.	Dapitan river (1) generated discharge using 5-, 25-, and 100-year Dipolog rainfall	
	intensity-duration-frequency (RIDF) in HEC-HMS	68
Figure 62.	Dapitan river (2) generated discharge using 5-, 25-, and 100-year Dipolog rainfall	
	intensity-duration-frequency (RIDF) in HEC-HMS	68
Figure 63.	Dapitan river (3) generated discharge using 5-, 25-, and 100-year Dipolog rainfall	
0	intensity-duration-frequency (RIDE) in HEC-HMS	69
Figure 64	Danitan river (A) generated (ischarge using 5-25- and 100-year Dipolog rainfall	
ngure 04.	Diptrarity duration fraguoney (DID) in LEC HAG	60
F ¹ CF	intensity-duration-inequeicy (KIDF) in HEC-HWS	09
Figure 65.	Sample output of Dapitan RAS Model	/1
Figure 66.	100-year Hazard Map for Dapitan (Paro-Dapitan) Floodplain overlaid on Google Earth	
	imagery	. 72
Figure 67.	100-year Flow Depth Map for Dapitan (Paro-Dapitan) Floodplain overlaid on Google Earth	
0	imagery	. 73
Figure 68	25-year Hazard Man for Danitan (Paro-Danitan) Floodplain overlaid on Google	
inguie oo.	Earth imagen	7/
	La un initiager y	. 74
Figure 69.	25-year Flow Depth Map for Dapitan (Paro-Dapitan) Floodplain Overlaid on	
	Google Earth Imagery	75
Figure 70.	5-year Hazard Map for Dapitan (Paro-Dapitan) Floodplain overlaid on Google	
	Earth imagery	. 76
Figure 71.	5-year Flow Depth Map for Dapitan (Paro-Dapitan) Floodplain overlaid on	
-	Google Earth Imagery	. 77
Figure 72	Affected Areas in Danitan City, Zamboanga del Norte during 5-Year Rainfall	
inguic / 2.	Poturn Pariod	<u>م</u>
Figuro 72	Affected Areas in La Libertad, Zamboanga del Norte during E Vear Bainfall	. 00
rigule 75.	Anected Areas in La Libertad, Zamboanga dei Norte during 5-rear Kaman	~ ~
	Return Period	81
Figure 74.	Affected Areas in Pinan, Zamboanga del Norte during 5-Year Rainfall Return Period	82
Figure 75.	Affected Areas in Polanco, Zamboanga del Norte during 5-Year Rainfall Return Period	83
Figure 76.	Affected Areas in Rizal, Zamboanga del Norte during 5-Year Rainfall Return Period	85
Figure 77.	Affected Areas in Sapang Dalaga, Misamis Occidental during 5-Year Rainfall Return	
0.	Period	86
Figure 78	Affected Areas in Sibutad, Zamboanga del Norte during 5-Vear Bainfall Return Deriod	20
Figure 70.	Affected Areas in Danitan City, Zamboanga del Norte during 3 Lear Nainfall Return	00
Figure 79.	Anected Areas in Dapitan City, Zamboanga der Norte during 25-tear Kainan Keturn	01
	Period	91
Figure 80.	Affected Areas in La Libertad, Zamboanga del Norte during 25-Year Rainfall Return	
	Period	92
Figure 81.	Affected Areas in Pinan, Zamboanga del Norte during 25-Year Rainfall Return Period	93
Figure 82.	Affected Areas in Polanco, Zamboanga del Norte during 25-Year Rainfall Return Period	94
Figure 83.	Affected Areas in Rizal, Zamboanga del Norte during 25-Year Rainfall Return Period	96
Figure 8/	Affected Areas in Sanang Dalaga Misamis Occidental during 25-Year Rainfall Return	
inguic 04.	Dariad	07
	Period	. 97
Figure 85.	Allected Areas in Sibutad, Zamboanga dei Norte during 25-rear Rainian Return Period	99
Figure 86.	Affected Areas in Dapitan City, Zamboanga del Norte during 100-Year Rainfall Return	
	Period	102
Figure 87.	Affected Areas in La Libertad, Zamboanga del Norte during 100-Year Rainfall Return	
	Period	103
Figure 88	Affected Areas in Pinan, Zamboanga del Norte during 100-Year Rainfall Return Period	104
Figure 89	Affected Areas in Polanco, Zamboanga del Norte during 100-Vear Rainfall Return Period	105
Figure 00	Affected Areas in Rizal Zamboanga del Norte during 100 Year Dainfall Deturn Deriod	100
Eiguro 01	Affected Areas in Sanang Dalaga, Micamic Occidental during 100 Year Dainfall Deturn	100
rigule 91.	Anecteu Areas in Sapang Daiaga, Misamis Occidental during 100-Year Kamiali Keturn	100
		103
Figure 92.	Affected Areas in Sibutad, Zamboanga del Norte during 100-Year Rainfall Return Period	111
Figure 93.	Validation points for 5-year Flood Depth Map of Dapitan Floodplain	113
Figure 94.	Flood map depth vs actual flood depth	114

LIST OF ACRONYMS AND ABBREVIATIONS

AAC	Asian Aerospace Corporation		
Ab	Abutment		
ALTM	Airborne LiDAR Terrain Mapper		
ARG	Automatic Rain Gauge		
ATQ	Antique		
AWLS	Automated Water Level Sensor		
BA	Bridge Approach		
BM	Benchmark		
CAD	Computer-Aided Design		
CN	Curve Number		
CSRS	Chief Science Research Specialist		
DAC	Data Acquisition Component		
DEM	Digital Elevation Model		
DENR	Department of Environment and Natural Resources		
DOST	Department of Science and Technology		
DPPC	Data Pre-Processing Component		
DREAM	Disaster Risk and Exposure Assessment for Mitigation [Program]		
DRRM	Disaster Risk Reduction and Management		
DSM	Digital Surface Model		
DTM	Digital Terrain Model		
DVBC	Data Validation and Bathymetry Component		
FMC	Flood Modeling Component		
FOV	Field of View		
GiA	Grants-in-Aid		
GCP	Ground Control Point		
GNSS	Global Navigation Satellite System		
GPS	Global Positioning System		
HEC-HMS	Hydrologic Engineering Center - Hydrologic Modeling System		
HEC-RAS	Hydrologic Engineering Center - River Analysis System		
НС	High Chord		
IDW	Inverse Distance Weighted [interpolation method]		
IMU	Inertial Measurement Unit		
kts	Knots		
LAS	LiDAR Data Exchange File format		
LC	Low Chord		
LGU	Local Government Unit		
Lidar	Light Detection and Ranging		
LMS	LiDAR Mapping Suite		

m AGL	meters Above Ground Level		
MMS	Mobile Mapping Suite		
MSL	mean sea level		
MSU-IIT	Mindanao State University-Iligan Institute of Technology		
NAMRIA	National Mapping and Resource Information Authority		
NSTC	Northern Subtropical Convergence		
PAF	Philippine Air Force		
PAGASA	Philippine Atmospheric Geophysical and Astronomical Services Administration		
PDOP	Positional Dilution of Precision		
РРК	Post-Processed Kinematic [technique]		
PRF	Pulse Repetition Frequency		
PTM	Philippine Transverse Mercator		
QC	Quality Check		
QT	Quick Terrain [Modeler]		
RA	Research Associate		
RIDF	Rainfall-Intensity-Duration- Frequency		
RMSE	Root Mean Square Error		
SAR	Synthetic Aperture Radar		
SCS	Soil Conservation Service		
SRTM	Shuttle Radar Topography Mission		
SRS	Science Research Specialist		
SSG	Special Service Group		
ТВС	Thermal Barrier Coatings		
UP-TCAGP	University of the Philippines – Training Center for Applied Geodesy and Photogrammetry		
UTM	Universal Transverse Mercator		
WGS	World Geodetic System		

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

CHAPTER 1: OVERVIEW OF THE PROGRAM AND DAPITAN RIVER

1.1 Background of the Phil-LiDAR 1 Program

The University of the Philippines Training Center for Applied Geodesy and Photogrammetry (UP-TCAGP) launched a research program in 2014 entitled "Nationwide Hazard Mapping using LiDAR" or Phil-LiDAR 1, supported by the Department of Science and Technology (DOST) Grants-in-Aid (GiA) Program. The program was primarily aimed at acquiring a national elevation and resource dataset at sufficient resolution to produce information necessary to support the different phases of disaster management. Particularly, it targeted to operationalize the development of flood hazard models that would produce updated and detailed flood hazard maps for the major river systems in the country.

Also, the program was aimed at producing an up-to-date and detailed national elevation dataset suitable for 1:5,000 scale mapping, with 50 cm and 20 cm horizontal and vertical accuracies, respectively. These accuracies were achieved through the use of the state-of-the-art Light Detection and Ranging (LiDAR) airborne technology procured by the project through DOST.

The implementing partner university for the Phil-LiDAR 1 Program is the Mindanao State University-Iligan Institute of Technology (MSU-IIT). MSU-IIT is in charge of processing LiDAR data and conducting data validation reconnaissance, cross section, bathymetric survey, validation, river flow measurements, flood height and extent data gathering, flood modeling, and flood map generation for the 16 river basins in the Northern Mindanao Region. The university is located in Iligan City in the province of Lanao Del Norte.

1.2 Overview of the Dapitan River Basin

Dapitan river basin is located in the Northwestern coast of the island of Mindanao, province of Zamboanga del Norte, Region IX. The city's topography is described as hilly and mountainous with level to rolling. There are some hilly terrains along the northern coastlines but the coastal areas are generally plain. The climate of Dapitan is characterized by rainfall more or less regularly distributed throughout the year. The delineated Dapitan river basin traverses through Dapitan and Oroquieta cities and the municipalities of Sibutad, Rizal, Sapang Dalaga, Concepcion, La Libertad and Don Victoriano Chiongban. The main river used in delineating the basin is Dapitan River which traverses mainly within Dapitan City. The outlet of the basin, where flow measurements were obtained, is located at Ilaya Bridge, Dapitan City.

Dapitan river basin has an estimated drainage area of 363.93 square kilometres. The floodplain area delineated within the basin has an area of 208.9 square kilometres, which is 50.20% of the whole area of the basin. The municipalities of Sibutad, La Libertad and Rizal; and Dapitan City are found within the floodplain. A total of 23,738 building features were extracted within the floodplain which belongs to the municipalities and cities within the flood prone area.

It was reported on February 9, 2012 by Minda News that 13 barangays in Dapitan City were affected Thursday with no sign of the flood water receding. According to the city's councilor Apple Marie Agolong the flood was caused by continuous heavy rains which started Wednesday night until 10:00am Thursday. The councilor also said that the roads were impassable except for the big vehicles, some areas were described as neck-deep while other areas were up to eight feet high. When flooding like this occurs to Dapitan City, local residents affected by the flood can't help but worry if the water would not recede quickly because it's going to be hightide at midnight, it will only worsen the current flood situation. The affected barangays are Barcelona, Ba-ao, Burgos, Dampalan, Diwa-an, Ilaya, Masidlakon, Oyan, Opao, Potungan, Polo, Sulangon and Tamion. As of the time the article was published in <u>www.mindanews.com</u>, casualties and extent of damage property were still unknown. Because of this heavy rains, not only Dapitan city was affected but also the neighboring municipality, Sapang Dalaga in Misamis Occidental, which experienced landslide that caused delay among those who were travelling. Lastly, vehicles bound for the cities of Dipolog and Dapitan were stranded as flood waters blocked the main roads and highways.

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

Figure 1. Map of the Dapitan River Basin (in brown)

Rappler also reported on the same flood incident that happened in Dapitan city. Moreover, Rappler released the partial reports: nearly 311 families or 780 persons were affected by the flooding incident and thus damaging about 120 houses. DOH's Health Emergency Managemnt Staff (HEMS) deployed a rescue team that saved at least 7 families from Barangay Sulangon. Evacuation centers were in San Pedro Elementary School, Dapitan Cultural Center and Department of Social Welfare and Development shelter in Brgy. Antipolo. It was also reported that the Philippine Red Cross (PRC) deployed 2 emergency response teams and ambulance and a rubber boat were directed to the affected areas. There were a total of 57 families or 228 persons that sought refuge in the evacuation centers.

CHAPTER 2: LIDAR DATA ACQUISITION OF THE DAPITAN FLOODPLAIN

Engr. Louie P. Balicanta, Engr. Christopher Cruz, Lovely Gracia Acuña, Engr. Gerome Hipolito, Ms. Julie Pearl S. Mars, and Ms. Kristine Joy P. Andaya

The methods applied in this Chapter were based on the DREAM methods manual (Sarmiento, et al., 2014) and further enhanced and updated in Paringit, et al. (2017).

2.1 Flight Plans

Plans were made to acquire LiDAR data within the delineated priority area for Dapitan floodplain in Zamboanga del Norte. These missions were planned for 14 lines and ran for at most four and a half (4.5) hours including take-off, landing and turning time. The flight planning parameters for the LiDAR system is found in Table 1. Figure 2 shows the flight plans for Dapitan Floodplain.

Block Name	Flying Height (AGL)	Overlap (%)	Field of View (θ)	Pulse Repetition Frequency (PRF) (kHz)	Scan Frequency (Hz)	Average Speed (kts)	Average Turn Time (Minutes)
BLK69A	700/1000	30	50	200	30	130	5
BLK69B	750/800/ 1000	30	50	200	30	130	5
BLK69C	750/800/ 1000	30	50	200	30	130	5
BLK69D	700/ 800/1000	30	50	200	30	130	5
BLK69BC	1000	30	50	200	30	130	5

Table 1. Flight planning parameters for Pegasus LiDAR System.

Figure 2. Flight plan and base stations used for Labason Floodplain.

2.2 Ground Base Stations

The project team was able to recover three (3) NAMRIA ground control points: ZGN-138 , ZGN-60 and MSW-05 which are of second (2nd) order accuracy and two (2) bench markpoints: ZN-53 and ZN-11. The certifications for the NAMRIA reference points and processing report for the established points are found in Annex B. These were used as base stations during flight operations for the entire duration of the

survey (October22-November 31, 2014; February 4-March 4, 2016; November 18- December 2, 2016). Base stations were observed using dual frequency GPS receivers, TRIMBLE SPS 882, SPS 852, SPS 985 and Topcon GR-5. Flight plans and location of base stations used during the aerial LiDAR acquisition in Dapitan floodplain are also shown in Figure 1.

Figure 3 to Figure 7 shows the recovered NAMRIA control stations within the area, in addition Table 2 to Table 6 show the details about the following NAMRIA control stations and established points, Table 7 shows the list of all ground control points occupied during the acquisition together with the dates they are utilized during the survey.

(b)

Figure 3. GPS set-up overZGN-138(a) in Katipinan Zamboanga del Norte and NAMRIA reference point ZGN-138 (b) as recovered by the field team.

Table 2. Details of the recovered NAMRIA horizontal control point ZGN-138 used as base station for the LiDAR Acquisition.

Station Name	ZGN-138		
Relative Error (horizontal positioning)	1 in 50,000		
	Latitude	8° 30' 40.65974"North	
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Longitude	122° 18' 14.44217" East	
	Ellipsoidal Height	6.715 meters	
Grid Coordinates, Philippine Transverse	Easting	533471.036 meters	
Mercator Zone 5 (PTM Zone 5 PRS 92)	Northing	941106.14 meters	
	Latitude	8° 30′ 36.94779″ North	
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Longitude	123° 18' 19.85548" East	
	Ellipsoidal Height	70.925 meters	
Grid Coordinates, Universal Transverse	Easting	533459.32 meters	
Mercator Zone 51 North (UTM 51N PRS 1992)	Northing	940776.74 meters	

(a)

Figure 4. GPS set-up over ZGN-60(a) in Layawan Bridge, Brgy. San Pedro, Polanco, Zamboanga del Norte and NAMRIA reference point ZGN-60(b) as recovered by the field team.

Table 3. Details of the recovered NAMRIA horizontal control point ZGN-60 used as base station for the LiDAR Acquisition.

	l .		
Station Name	ZGN-60		
Order of Accuracy	2 rd		
Relative Error (horizontal positioning)	1 in 50,000		
	Latitude	8° 24' 13.24705"North	
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Longitude	123° 23' 43.64096"East	
	Ellipsoidal Height	78.371meters	
Grid Coordinates, Philippine Transverse	Easting	543551.053 meters	
Mercator Zone 4 (PTM Zone 5 PRS 92)	Northing	29214.294meters	
	Latitude	8° 24' 9.57149" North	
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Longitude	123° 23' 49.06324" East	
System 1964 Datam (WGS 64)	Ellipsoidal Height	143.029meters	
Grid Coordinates, Universal Transverse	Easting	543535.81meters	
Mercator Zone 51 North (UTM 51N PRS 1992)	Northing	928889.05meters	

Figure 5. GPS set-up overMSW-05 (a) in Sapang Dalaga, Misamis Occidental and NAMRIA reference point MSW-05 (b) as recovered by the field team.

Table 4. Details of the recovered NAMRIA horizontal control point MSW-05 used as base station for the LiDAR Acquisition.

Station Name	MSW-05		
Order of Accuracy	2 rd		
Relative Error (horizontal positioning)	1 in 50,000		
	Latitude	8° 32′ 35.68185″North	
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Longitude	123° 33' 56.01853"East	
	Ellipsoidal Height	113.481meters	
Grid Coordinates, Philippine Transverse	Easting	562262.537 meters	
Mercator Zone 4 (PTM Zone 5 PRS 92)	Northing	944671.948meters	
	Latitude	8° 32' 31.98501" North	
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Longitude	123° 34' 1.42685"East	
	Ellipsoidal Height	178.247 meters	
Grid Coordinates, Universal Transverse	Easting	562240.75meters	
Mercator Zone 51 North (UTM 51N PRS 1992)	Northing	944341.30meters	

Figure 6. GPS set-up over ZN-11 at Potungan Bridge, Dapitan, Zamboanga del Norte (a) reference point ZN-11 (b) as established by the field team.

Table 5. Details of the established pointZN- 11 used as base station for the LiDAR Acquisition.

Station Name	ZN-11		
Order of Accuracy (benchmark)	2 nd		
Elevation (horizontal positioning)	1	1:50,000	
	Latitude	8°32'19.31150"North	
Geographic Coordinates, Philippine Refer- ence of 1992 Datum (PRS 92)	Longitude	123°29'19.41683"East	
	Ellipsoidal Height	21.953meters	
	Latitude	8°32′15.60892″ North	
Geographic Coordinates, World Geodetic	Longitude	123°29'24.82623"East	
System 1964 Datum (WOS 64)	Ellipsoidal Height	86.565meters	
Grid Coordinates, Universal Transverse Mer-	Easting	553,785.501meters	
cator Zone 51 North (UTM 51N PRS 92)	Northing	943,827.025meters	

(a)

Figure 7. GPS set-up over ZN-53 at Brgy. Daanglungsod, Katipunan, Zamboanga del Norte (a) reference point ZN-53 (b) as established by the field team.

Table 6. Details of the established point ZN- 53 used as base station for the LiDAR Acquisition.

Station Name	ZN-53		
Order of Accuracy (benchmark)	2 nd		
Elevation (horizontal positioning)	1:50,000		
	Latitude	8°30'41.04428"North	
Geographic Coordinates, Philippine Refer- ence of 1992 Datum (PRS 92)	Longitude	123°18'14.33457"East	
	Ellipsoidal Height	7.072 meters	
	Latitude	8°30'37.33230" North	
Geographic Coordinates, World Geodetic	Longitude	123°18'19.74787"East	
System 1964 Datum (WGS 64)	Ellipsoidal Height	71.282 meters	
Grid Coordinates, Universal Transverse Mer- cator Zone 51 North (UTM 51N PRS 92)	Easting Northing	533456.022 meters 940788.542 meters	

Date Surveyed	Flight Number	Mission Name	Ground Control Points
October 22, 2014	2111P	1BLK69B295A	ZGN-138 and ZN-53
October 23, 2014	2113P	1BLK69B296A	ZGN-138 and ZN-53
October 23, 2014	2115P	1BLK69DBA296B	ZGN-138 and ZN-53
October 26, 2014	2125P	1BLK69C299A	ZGN-138 and ZN-53
October 31, 2014	2145P	1BLk69C304A	ZGN-138 and ZN-53
February 21, 2016	23120P	1BLK69D052A	ZGN-60
February 22, 2016	23124P	1BLK69AB053A	ZGN-60
November 20, 2016	23558P	1BLK69BC325A	MSW-05 and ZN-11
November 21, 2016	23562P	1BLK69BD326A	MSW-05 and ZN-11
November 24, 2016	23574P	1BLK69AD329A	MSW-05 and ZN-11

Table 7. Ground control points used during LiDAR data acquisition

2.3 Flight Missions

Ten (10) missions were conducted to complete LiDAR data acquisition in Dapitan Floodplain, for a total of 37 hours and 15 minutes (37+15) of flying time for RP-C9022. All missions were acquired using the Pegasus system. Table 8 shows the total area of actual coverage per mission and the flying hours per mission and Table 9 presents the actual parameters used during the LiDAR data acquisition.

Date	Date Flight		Surveyed	Area Surveyed	Area Surveyed	No. of	Flying Hours	
Surveyed	Number	Area (km²)	Area (km²)	Floodplain (km²)	Outside the Floodplain (km²)	Images (Frames)	폭	Min
October 22, 2014	2111P	219.61	177.11	58.92	118.19	578	4	05
October 23, 2014	2113P	196.35	164.11	10.9	153.21	514	3	35
October 23, 2014	2115P	196.36	72.76	16.29	56.47	224	1	59
October 26, 2014	2125P	291.99	106.67	32.26	74.41	475	2	05
October 31, 2014	2145P	177.10	154.73	60.60	94.13	675	3	17
February 21, 2016	23120P	227.63	167.99	18.59	149.4	392	4	30
February 22, 2016	23124P	123.34	124.91	29.23	95.68	NA	4	35
November 20, 2016	23558P	163.59	142.50	45.84	96.66	NA	4	29
November 21, 2016	23562P	152.77	193.37	37.65	155.72	NA	4	29
November 24, 2016	23574P	316.13	149.32	77.37	71.95	NA	4	11
TOTA	L	2064.87	1453.47	387.65	1065.82	2858	37	15

Flight Number	Flying Height (AGL)	Overlap (%)	Field of View (θ)	Pulse Repetition Frequency (PRF) (kHz)	Scan Frequency (Hz)	Average Speed (kts)	Average Turn Time (Minutes)
2111P	1000	30	50	200	30	130	5
2113P	1000	30	50	200	30	130	5
2115P	800/ 1000	30	50	200	30	130	5
2125P	800	30	50	200	30	130	5
2145P	750	30	50	200	30	130	5
23120P	1000	30	50	200	30	130	5
23124P	1000	30	50	200	30	130	5
23558P	800	30	50	200	30	130	5
23562P	800	30	50	200	30	130	5
23574P	700/ 1000	30	50	200	30	130	5

Table 9. Actual parameters used during LiDAR data acquisition.

2.4 Survey Coverage

Dapitan Floodplain is located in the province of Zamboanga del Norte with the floodplain situated within the municipalities of Dapitan City, La Libertad, Pinan, Polanco, Rizal and Sibutad. The list of municipalities and cities surveyed with at least one (1) square kilometer coverage, is shown in Table 10. The actual coverage of the LiDAR acquisition for Dapitan floodplain is presented in Figure 8.

Table 10. List of municipalities and cities surveyed in Dapitan floodplain LiDAR survey.

Province	Municipality/City	Area of Municipality/City (km²)	Total Area Surveyed (km²)	Percentage of Area Surveyed =(Total Area covered/ Area of Municipality)*100
Misasmis	Baliangao	58.16	4.13	7%
Occidental	Sapang Dalaga	85.68	27.34	32%
	Dapitan City	222.95	217.66	98%
	Dipolog City	184.42	114.26	62%
	Katipunan	189.62	35.70	19%
	La Libertad	66.24	21.81	33%
Zamboanga	Pinan	135.87	55.07	41%
del Norte	Polanco	86.49	85.24	99%
	Pres. Manuel A. Roxas	163.60	2.68	2%
	Rizal	61.97	57.34	93%
	Sibutad	75.69	75.38	99%
	Total	1330.69	696.61	52.35%

Figure 8. Actual LiDAR data acquisition for Dapitan Floodplain.

CHAPTER 3: LIDAR DATA PROCESSING OF THE DAPITAN FLOODPLAIN

Engr. Ma. Rosario Concepcion O. Ang, Engr. John Louie D. Fabila, Engr. Sarah Jane D. Samalburo , Engr. Joida F. Prieto , Engr. Harmond F. Santos , Engr. Ma. Ailyn L. Olanda, Engr. Chelou P. Prado, Engr. James Kevin M. Dimaculangan , Engr. Jommer M. Medina, and John Arnold C. Jaramilla

The methods applied in this Chapter were based on the DREAM methods manual (Ang, et al., 2014) and further enhanced and updated in Paringit, et al. (2017)

3.1 Overview of the LIDAR Data Pre-Processing

After the acquisition of LiDAR data, the latter is transmitted to the DPPC. Upon acceptance of the field data, the DPPC checks it for completeness and accuracy based on the list of raw files needed to proceed with its pre-processing. After which, the flight trajectory is georeferenced to obtain the exact location of the LiDAR sensor when the laser was shot.

Subsequently, the point cloud georectification is performed to incorporate the correct position and orientation for each point acquired. The georectified LiDAR point clouds are then subjected to a quality check to ensure that the required accuracies of the program, namely the minimum point density and vertical and horizontal accuracies, are met. These point clouds are then classified into various classes, which are integral in the generation of Digital Elevation Models (DEMs) such as the Digital Terrain Model (DTM) and the Digital Surface Model (DSM).

After this, the LiDAR-derived digital models are calibrated using the elevation of points gathered in the field. Parts of the river basin that were barely penetrated by the LiDAR system are then replaced by the actual river geometry measured from the field by the DVBC. Temporally acquired LiDAR data are then mosaicked to completely cover the target river systems in the Philippines. Images acquired from the field are orthorectified simultaneously with the LiDAR data through the help of the georectified point clouds and the metadata containing the time the image was captured.

These processes are summarized in the flowchart shown in Figure 9.

Figure 9. Schematic diagram for Data Pre-processing Component.

3.2 Transmittal of Acquired LIDAR Data

Data transfer sheets for all the LiDAR missions for Dapitan Floodplain can be found in Annex 5. Missions flown for all the surveys conducted used the Airborne LiDAR Terrain Mapper (ALTM[™] Optech Inc.) Pegasus system over Dipolog, Zamboanga del Norte and Pagadian, Zamboanga del Sur.

In total, the Data Acquisition Component (DAC) transferred 210.98 Gigabytes of Range data, 2.34 Gigabytes of POS data, 610.43 Megabytes of GPS base station data, and 182.60 Gigabytes of raw image data to the data server on October 22, 2014 for the first survey and November 24, 2016 for the last survey. The Data Pre-processing Component (DPPC) verified the completeness of the transferred data. The whole dataset for Dapitan was fully transferred on December 6, 2016, as indicated on the Data Transfer Sheets for Dapitan Floodplain.

3.3 Trajectory Computation

The *Smoothed Performance Metrics* of the computed trajectory for flight 23124P, one of the Dapitan flights, which is the North, East, and Down position RMSE values are shown in Figure 10. The x-axis corresponds to the time of flight, which is measured by the number of seconds from the midnight of the start of the GPS week, which on that week fell onFebruary 22, 2016 00:00 AM. The y-axis, on the other hand is the RMSE value for that particular position.

Figure 10. Smoothed Performance Metrics of Dapitan Flight 23124P.

The time of flight was from 90000 seconds to 101000 seconds, which corresponds to morning of February 22, 2016. The initial spike seen on the diagram above corresponds to the time that the aircraft was getting into position to start the acquisition, and the POS system starts computing for the position and orientation of the aircraft. Redundant measurements from the POS system quickly minimized the RMSE value of the positions. The periodic increase in RMSE values from an otherwise smoothly curving RMSE values correspond to the turn-around period of the aircraft, when the aircraft makes a turn to start a new flight line. Figure 11 shows that the North position RMSE peaks at 2.60 centimeters, the East position RMSE peaks at 2.20 centimeters, and the Down position RMSE peaks at 3.80 centimeters, which are within the prescribed accuracies described in the methodology.

Figure 11. Solution Status Parameters of Dapitan Flight 23124P.

The Solution Status parameters of flight 23124P, indicating the number of GPS satellites, Positional Dilution of Precision, and the GPS processing mode used, are presented in Figure 11. The graphs indicate that the number of satellites during the acquisition did not go down below 6. Most of the time, the number of satellites tracked was between 6 and 10. The PDOP value also did not go above the value of 3, which indicates optimal GPS geometry. The processing mode remained at 0 for majority of the survey with some peaks up to 1, attributed to the turns performed by the aircraft. The value of 0 corresponds to a Fixed, Narrow-Lane mode, which is the optimum carrier-cycle integer ambiguity resolution technique available for POSPAC MMS. All of the parameters adhered to the accuracy requirements for optimal trajectory solutions, as indicated in the methodology. The computed best estimated trajectory for all Dapitan flights is shown in Figure 12.

Figure 12. Best estimated trajectory for Dapitan floodplain.

3.4 LIDAR Point Cloud Computation

The data generated in LAS contains 194 flight lines, with each flight line comprised of two channels, since the Pegasus system contains two channels. The summary of the self-calibration results obtained from LiDAR processing in LiDAR Mapping Suite (LMS) software for all flights over Dapitan Floodplain are given in Table 11.

Table 11. Self-Calibration Result	values for Dapitan flights.
-----------------------------------	-----------------------------

Parameter	Acceptable Value	Computed Value
Boresight Correction stdev	(<0.001degrees)	0.000371
IMU Attitude Correction Roll and Pitch Corrections stdev	(<0.001degrees)	0.000999
GPS Position Z-correction stdev	(<0.01meters)	0.0067

The optimum accuracy is obtained for all Dapitan flights based on the computed standard deviations of the corrections of the orientation parameters. Standard deviation values for individual blocks are available in Annex 8 (Mission Summary Reports).

3.5 LIDAR Data Quality Checking

The boundary of the processed LiDAR data is shown in Figure 13. The map shows gaps in the LiDAR coverage that are attributed to cloud coverage.

Figure 13. Boundary of the processed LiDAR data on top of a SAR Elevation Data over Dapitan Floodplain.

The total area covered by the Dapitan missions is 1,328.95 square kilometers that is comprised of ten (10) flight acquisitions grouped and merged into nine (9) blocks as shown in Table 12.

LiDAR Blocks	Flight Numbers	Area (sq. km)
Pagadian_Blk69A	23124P	117.93
Pagadian_Blk69D	23120P	166.98
	2111P	
Dipolog_Blk69B	2113P	345.02
	2145P	
Dipolog_Blk69C	2125P	92.17
Dinalag BlkCOD	2113P	167.75
DIDOIOG_RIK6AD	2115P	107.75
Dipolog_Reflights_Blk69B_supplement	23574P	57.73
Dipolog_Reflights_Blk69B	23558P	141.49
Dipolog_Reflights_Blk69D	23562P	155.81
Dipolog_Reflights_Blk69D_supplement	23574P	84.08
	TOTAL	1,328.95 sq.km

Table 12. List of LiDAR blocks for Dapitan floodplain.

The overlap data for the merged LiDAR blocks, showing the number of channels that pass through a particular location is shown in Figure 14. Since the Pegasus system employs two channels, an average value of 2 (blue) for areas where there is limited overlap, and a value of 3 (yellow) or more (red) for areas with three or more overlapping flight lines.

Figure 14. Image of data overlap for Dapitan Floodplain.

The overlap statistics per block for the Dapitan Floodplain can be found in the Mission Summary Reports (Annex 8). One pixel corresponds to 25.0 square meters on the ground. For this area, the minimum and maximum percent overlaps are 25.26% and 49.03% respectively, which passed the 25% requirement.

Figure 15 shows the pulse density map for the merged LiDAR data, with the red parts showing the portions of the data that satisfy the 2 points per square meter criterion. It was determined that all LiDAR data for Dapitan Floodplain satisfy the point density requirement, and the average density for the entire survey area is 2.83 points per square meter.

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

Figure 15. Pulse density map of merged LiDAR data for Dapitan Floodplain.

The elevation difference between overlaps of adjacent flight lines is shown in Figure 16. The default color range is from blue to red, where bright blue areas correspond to portions where elevations of a previous flight line, identified by its acquisition time, are higher by more than 0.20m relative to elevations of its adjacent flight line. Bright red areas indicate portions where elevations of a previous flight line are lower by more than 0.20m relative to elevations of its adjacent flight line. Areas with bright red or bright blue need to be investigated further using Quick Terrain Modeler software.

Figure 16. Elevation difference map between flight lines for Dapitan Floodplain.

Figure 17 presents a screen capture of the processed LAS data from a Dapitan flight 23124P loaded in QT Modeler. The upper left image shows the elevations of the points from two overlapping flight strips traversed by the profile, illustrated by a dashed yellow line. The x-axis corresponds to the length of the profile. It is evident that there are differences in elevation, but the differences do not exceed the 20-centimeter mark. This profiling was repeated until the quality of the LiDAR data becomes satisfactory. No reprocessing was done for this LiDAR dataset.

Figure 17. Quality checking for a Dapitan flight 23124P using the Profile Tool of QT Modeler.

3.6 LIDAR Point Cloud Classification and Rasterization

Pertinent Class	Total Number of Points
Ground	934,483,440
Low Vegetation	848,827,483
Medium Vegetation	1,473,853,858
High Vegetation	2,705,859,178
Building	56,476,014

Table 13. Dapitan classification results in TerraScan.

The tile system that TerraScan employed for the LiDAR data and the final classification image for a block in Dapitan Floodplain is shown in Figure 18. A total of 1,194 tiles with 1km X 1km were produced. Correspondingly, Table 13 shows the number of points classified to the pertinent categories. The point cloud has a maximum and minimum height of 710.92 meters and 62.16 meters respectively.

Figure 18. Tiles for Dapitan Floodplain (a) and classification results (b) in TerraScan.

An isometric view of an area before and after running the classification routines is shown in Figure 19. The ground points are in orange, the vegetation is in different shades of green, and the buildings are in cyan. It can be seen that residential structures adjacent or even below canopy are classified correctly, due to the density of the LiDAR data.

Figure 19. Point cloud before (a) and after (b) classification.

Correspondingly, Figure 20 shows the production of last return (V_ASCII) and the secondary (T_ ASCII) DTM, as well as the first (S_ASCII) and last (D_ASCII) return DSM of the area in top view display. It suggests that DTMs are the representation of the bare earth while on the DSMs, all features are present such as buildings and vegetation.

Figure 20. The production of last return DSM (a) and DTM (b), first return DSM (c) and secondary DTM (d) in some portion of Dapitan Floodplain.

3.7 LIDAR Image Processing and Orthophotograph Rectification

The 772 1km by 1km tiles area covered by Dapitan Floodplain is shown in Figure 21. After tie point selection to fix photo misalignments, color points were added to smoothen out visual inconsistencies along the seamlines where photos overlap. The Dapitan Floodplain has a total of 596.97 sq.km orthophotogaph coverage comprised of 2,369 images. A zoomed in version of sample orthophotographs named in reference to its tile number is shown in Figure 22.

Figure 21. Dapitan floodplain with available orthophotographs.

Figure 22. Sample orthophotograph tiles for Dapitan floodplain.

3.8 DEM Editing and Hydro-Correction

Nine (9) mission blocks were processed for Dapitan Floodplain. These blocks are composed of Pagadian, Dipolog and Dipolog_Reflights blocks with a total area of 1,328.95 square kilometers. Table 14 shows the name and corresponding area of each block in square kilometers.

LiDAR Blocks	Area (sq.km)
Pagadian_Blk69A	117.93
Pagadian_Blk69D	166.98
Dipolog_Blk69B	345.02
Dipolog_Blk69C	92.17
Dipolog_Blk69D	167.75
Dipolog_Reflights_Blk69B	141.49
Dipolog_Reflights_Blk69B_supplement	57.73
Dipolog_Reflights_Blk69D	155.81
Dipolog_Reflights_Blk69D_supplement	84.08
TOTAL	1,328.95 sq.km

Table 14. LiDAR blocks with its corresponding area.

Portions of DTM before and after manual editing are shown in Figure 23. The bridge (Figure 23a) is considered to be an impedance to the flow of water along the river and has to be removed (Figure 23b) in order to hydrologically correct the river. The river embankment (Figure 23c) has been misclassified and removed during classification process and has to be retrieved to complete the surface (Figure 23d) to allow the correct flow of water.

Figure 23. Portions in the DTM of Dapitan floodplain – a bridge before (a) and after (b) manual editing; a paddy field before (c) and after (d) data retrieval.

3.9 Mosaicking of Blocks

Dipolog_Blk69B was used as the reference block at the start of mosaicking because it comprises the largest area among the missions' blocks. Table 15 shows the shift values applied to each LiDAR block during mosaicking.

Mosaicked LiDAR DTM for Dapitan Floodplain is shown in Figure 24. It can be seen that the entire Dapitan Floodplain is 99.58% covered by LiDAR data.

Mission Blocks	Shift Values (meters)			
	x	У	z	
Pagadian_Blk69A	0.00	0.00	0.96	
Pagadian_Blk69D	0.00	0.00	0.66	
Dipolog_Blk69B	0.00	0.00	0.00	
Dipolog_Blk69C	0.00	0.00	0.00	
Dipolog_Blk69D	0.00	0.00	0.00	
Dipolog_Reflights_Blk69B	-0.40	0.00	0.00	
Dipolog_Reflights_Blk69B_supplement	-0.80	0.10	0.00	
Dipolog_Reflights_Blk69D	-0.50	2.40	0.30	
Dipolog_Reflights_Blk69D_supplement	0.50	-0.35	0.00	

Figure 24. Map of Processed LiDAR Data for Dapitan Floodplain.

3.10 Calibration and Validation of Mosaicked LiDAR Digital Elevation Model

The extent of the validation survey done by the Data Validation and Bathymetry Component (DVBC) in Dapitan to collect points with which the LiDAR dataset is validated is shown in Figure 25. A total of 12,287 survey points were gathered for all the flood plains within the provinces of Zamboanga del Norte and Misamis Occidental wherein the Dapitan floodplain is located. Random selection of 80% of the survey points, resulting to 9,830 points, were used for calibration.

A good correlation between the uncalibrated mosaicked LiDAR DTM and ground survey elevation values is shown in Figure 26. Statistical values were computed from extracted LiDAR values using the selected points to assess the quality of data and obtain the value for vertical adjustment. The computed height difference between the LiDAR DTM and calibration points is 4.25 meters with a standard deviation of 0.15 meters. Calibration of the LiDAR data was done by adding the height difference value, 4.25 meters, to the mosaicked LiDAR data. Table 16 shows the statistical values of the compared elevation values between the LiDAR data.

Figure 25. Map of Dapitan Floodplain with validation survey points in green.

Figure 26. Correlation plot between calibration survey points and LiDAR data.

Calibration Statistical Measures	Value (meters)
Height Difference	4.25
Standard Deviation	0.15
Average	4.25
Minimum	3.90
Maximum	4.60

Tahle 1	6	Calibration	Statistical	Measures
Ianic T	υ.	Campration	Statistical	ivieasures.

The remaining 20% of the total survey points were intersected to the flood plain, resulting to 210 points, were used for the validation of calibrated Dapitan DTM. A good correlation between the calibrated mosaicked LiDAR elevation values and the ground survey elevation, which reflects the quality of the LiDAR DTM is shown in Figure 27. The computed RMSE between the calibrated LiDAR DTM and validation elevation values is 0.15 meters with a standard deviation of 0.06 meters, as shown in Table 17.

Figure 27. Correlation plot between validation survey points and LiDAR data.

Validation Statistical Measures	Value (meters)
RMSE	0.15
Standard Deviation	0.06
Average	-0.13
Minimum	-0.30
Maximum	0.23

Table 17. Validation Statistical Measures.

3.11 Integration of Bathymetric Data into the LIDAR Digital Terrain Model

For bathy integration, only centerline and zigzag line data were available for Dapitan with 15,981 bathymetric survey points. The resulting raster surface produced was done by Kernel interpolation method. After burning the bathymetric data to the calibrated DTM, assessment of the interpolated surface is represented by the computed RMSE value of 0.30 meters. The extent of the bathymetric survey done by the Data Validation and Bathymetry Component (DVBC) in Dapitan integrated with the processed LiDAR DEM is shown in Figure 28.

Figure 28. Map of Dapitan Floodplain with bathymetric survey points shown in blue.

3.12 Feature Extraction

The features salient in flood hazard exposure analysis include buildings, road networks, bridges and water bodies within the floodplain area with 200-meter buffer zone. Mosaicked LiDAR DEM with 1-m resolution was used to delineate footprints of building features, which consist of residential buildings, government offices, medical facilities, religious institutions, and commercial establishments, among others. Road networks comprise of main thoroughfares such as highways and municipal and barangay roads essential for routing of disaster response efforts. These features are represented by a network of road centerlines.

3.12.1 Quality Checking of Digitized Features' Boundary

Dapitan Floodplain, including its 200-meter buffer, has a total area of 226.74 sq km. Of this area, a total of 7.0 sq km, which corresponds to a total of 2083 building features, were considered for QC. Figure 29 shows the QC blocks for Dapitan Floodplain.

Figure 29. QC blocks for Dapitan building features.

Quality checking of Dapitan building features resulted in the ratings shown in Table 18.

Table 18. Quality Checking Ratings for Dapitan Building Features.

FLOODPLAIN	COMPLETENESS	CORRECTNESS	QUALITY	REMARKS
Dapitan	97.38	99.57	80.09	PASSED

3.12.2 Height Extraction

A total of 23,738 building features in the Dapitan Floodplain underwent a height extraction. Of these building features, 211 were filtered out after height extraction, resulting to 23,527 buildings with height attributes. The lowest building height is at 2.00 meters, while the highest building is at 22.69 meters.

3.12.3 Feature Attribution

Dapitan Floodplain is shared by two (2) municipalities and a city namely the City of Dapitan, Municipality of Rizal, and Municipality of Sibutad. The building attribution on the City of Dapitan and on the Municipalities of Rizal and Sibutad was done with the Google Earth approach. In Google Earth approach, aid from purok representatives were sought for participatory mapping over the Google Earth software. The attributions of road, bridge and water body features were done using NAMRIA maps, municipal and city records, and participatory mapping of municipals and cities.

Table 19 summarizes the number of building features per type. On the other hand, Table 20 shows the total length of each road type, while Table 21 shows the number of water features extracted per type.

Facility Type	No. of Features
Residential	22,038
School	338
Market	10
Agricultural/Agro-Industrial Facilities	192
Medical Institutions	37
Barangay Hall	37
Military Institution	0
Sports Center/Gymnasium/Covered Court	16
Telecommunication Facilities	2
Transport Terminal	1
Warehouse	154
Power Plant/Substation	1
NGO/CSO Offices	6
Police Station	6
Water Supply/Sewerage	30
Religious Institutions	91
Bank	4
Factory	1
Gas Station	9
Fire Station	0
Other Government Offices	81
Other Commercial Establishments	473

Table 19. Building Features Extracted for Dapitan Floodplain.

Table 20. Total Length of Extracted Roads for Dapitan Floodplain.

Road Network Length (km)							
Floodplain	n Barangay City/Municipal Provincial National Others Road Road Road Others						
Dapitan	338.32	32.20	0.00	38.26	0.00	408.78	

Eleadalain		Tatal					
Floodplain	Rivers/Streams	Lakes/Ponds	Sea	Dam	Fish Pen	IOLAI	
Dapitan	98	3	0	0	485	586	

Table 21. Number of Extracted Water Bodies for Dapitan Floodplain.

A total of 73 bridges and culverts over small channels that are part of the river network were also extracted for the floodplain.

3.12.4 Final Quality Checking of Extracted Features

All extracted ground features were completely given the required attributes. All these output features comprise the flood hazard exposure database for the floodplain. This completes the feature extraction phase of the project.

Figure 30 shows the Digital Surface Model (DSM) of Dapitan Floodplain overlaid with its ground features.

Figure 30. Extracted features for Dapitan Floodplain.

CHAPTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE DAPITAN RIVER BASIN

Engr. Louie P. Balicanta, Engr. Joemarie S. Caballero, Ms. Patrizcia Mae. P. dela Cruz, Engr. Dexter T. Lozano, For. Dona Rina Patricia C. Tajora, Elaine Bennet Salvador, and For. Rodel C. Alberto

The methods applied in this Chapter were based on the DREAM methods manual (Balicanta, et al., 2014) and further enhanced and updated in Paringit, et al. (2017).

4.1 Summary of Activities

TheData Validation and Bathymetry Component (DVBC) field survey in Dapitan River was conducted on June 4 - 16, 2015 with the following scope of work: (i) site reconnaissance, (ii) courtesy calls to the LGUs, (iii) control survey for the establishment of control point in bridge's approach, (iv) cross-section survey, (v) bridge as-built features determination and water elevation marking in one of the bridge's pier, (vi) acquisition of validation points along concrete roads and bathymetric survey covering 12.0911 kilometers The general survey area is shown in Figure 31.

Figure 31. Extent of the Dapitan River Bathymetric Survey

4.2 Control Survey

The GNSS network used for Dapitan survey is composed of a single loop established on June 6, 2015 occupying the reference points: ZGN-138, a second order GCP located in Brgy. Daang Lugsod, Municipality of Katipunan, Zamboanga Del Norte; and ZN-44, a first order BM in Brgy. Miputak, Dipolog City, Zamboanga Del Norte; with values fixed from Dapitan Survey.

A control point was established along approach of Ilaya Bridge, Brgy. Ilaya, Dapitan City, Zamboanga Del Norte, to use as marker during the survey.

An elevation difference of 4.243 meters between geoid (EGM2008) and MSL values of ZN44 was applied to adjust the elevation of the included control points with reference to MSL. The list of control points occupied is shown in Table 22, while the GNSS network established is shown in Figure 32.

Figure 32. GNSS network for Dapitan River field survey

Table 22. List of References and Control Points used in Dapitan River Survey (Source: NAMRIA, UP-TCAGP)

		Geographic Coordinates (WGS 84)						
Control Point	Order of Accuracy	Latitude	Longitude	Ellipsoidal Height (Meter)	Elevation in MSL (Meter)	Date Established		
ZGN-138	2 nd Order, GCP	8d30'36.94779"E	123d18'19.85548"N	70.925	-	2009		
ZN-44	1 st Order BM	-	-	70.802	9.726	2007		
UP-POL	UP Established	-	-	-	-	June 7, 2015		

The GNSS set up for control points used in the Dapitan survey are shown in Figures 33 to 35.

Figure 33. GNSS receiver occupation, Trimble[®] SPS 882 at ZN-44, Miputak Bridge, in Brgy. Miputak, Dipolog City, Zamboanga del Norte

Figure 34. GNSS base receiver setup, Trimble[®] SPS 852 at ZGN-138 in TAGA Central School Brgy. Taga, Municipality of Katipunan, Zamboanga del Norte

Figure 35. GNSS base receiver, Trimble[®] SPS 882, setup at UP-ILA in Ilaya Bridge, Brgy. Ilaya, Dapitan City

4.3 Baseline Processing

GNSS baselines were processed simultaneously in TBC by observing that all baselines have fixed solutions with horizontal and vertical precisions within +/- 20 cm and +/- 10 cm requirement, respectively. In cases where one or more baselines did not meet all of these criteria, masking was performed. Masking is done by removing/masking portions of these baseline data using the same processing software. It is repeatedly processed until all baseline requirements are met. If the reiteration yields out of the required accuracy, resurvey is initiated. Baseline processing result of control points in Dapitan River Basin is summarized in Table .

Observation	Date of Obser- vation	Solution Type	Horizontal Precision (m)	Vertical Precision (m)	Geodetic Azimuth	Ellipsoid Distance (m)	Δ Height (m)
ZGN138 ZN44	June 6, 2015	Fixed	0.005	0.021	26°13′36″	8210.379	-0.122
ZGN138 UP- ILA	June 6, 2015	Fixed	0.005	0.023	74°44'54"	14046.868	6.171
UP-ILA ZN44	June 6, 2015	Fixed	0.006	0.021	290°18'49"	10580.669	-6.279

Table 23. Baseline Processing for Dapitan River Survey

4.4 Network Adjustment

After the baseline processing procedure, network adjustment is performed using TBC. Looking at the Adjusted Grid Coordinates Table 25 of the TBC generated Network Adjustment Report, it is observed that the square root of the sum of the squares of x and y must be less than 20 cm and z less than 10 cm or in equation form:

$$\sqrt{((x_e)^2 + (y_e)^2)}$$
<20cm and $z_e < 10 \ cm$

Where:

 x_e is the Easting Error, y_e is the Northing Error, and z_e is the Elevation Error

for each control point. The detailed Network Adjustment Report is discussed in Tables 24 and 25.

The three control points ZGN-138, ZN-44 and UP-ILA were occupied and observed simultaneously to form a GNSS loop. Coordinates and elevation values of ZGN-138 and ZN-44 were held fixed during the processing of the control point as presented in Table 24.

|--|

Point ID	East σ (m)	North σ (m)	Height σ (m)	Elevation σ (m)				
ZGN138	Global	Fixed	Fixed	Fixed				
Fixed = 0.000001 (m)								

The coordinates of control point ZGN-138 were held fixed during the network adjustment as shown in Table 25. This control point was used to derive the geodetic coordinates for the rest of the network.

Table 25. Adjusted grid coordinates

Point ID	Easting (m)	Easting Error (m)	Northing (m)	Northing Error (m)	Elevation (m)	Elevation Error (m)	Constraint
UP-ILA	547168.592	0.004	944426.675	0.003	10.899	0.024	
ZGN138	533624.515	?	940722.222	?	5.484	?	LLh
ZN44	537245.631	0.005	948087.419	0.003	5.484	0.022	

The network is fixed at reference point ZGN138. Using the given equations for the horizontal accuracy and for the vertical accuracy, the computations are as follows:

a. ZN44

horizontal accuracy	$= \sqrt{(0.5)^2 + (0.3)^2}$
	= √(0.25 + 0.09)
	= 0.34 cm < 20 cm

vertical accuracy = 2.2 cm < 10 cm

b. UP-ILA

horizontal accuracy	$= \sqrt{(0.4)^2 + (0.3)^2}$
	= v(0.16 + 0.09)
	= 0.25 cm < 20 cm
vertical accuracy	= 2.4< 10 cm

From the given formula, the resulting horizontal and vertical accuracies of the three occupied control points are within the required accuracy.

Point ID	Latitude	Longitude	Height (Meter)	Height Error (Meter)	Constraint
ZGN138	N8°30'36.94779"	E123°18'19.85548"	70.925	?	LLh
UP-ILA	N8°32'37.15488"	E123°25'43.00843"	77.088	0.024	
ZN44	N8°34'36.67923"	E123°20'18.51204"	70.802	0.022	

Table 26. Adjusted Geodetic Coordinates

The adjusted geodetic coordinates is presented in Table 26. The height error for ZN-44 is 2.4 cm, which is less than the 10 cm accuracy requirement by the project. The established point UP-ILA has a height error of 2.2 cm also less than the 10 cm accuracy requirement. Both points complied with the vertical accuracy required by the program.

The summary of reference and control points used is indicated in Table 27.

Con- trol Point	Order of Accuracy	Geogra	aphic Coordinates (W	UTM ZONE 51 N			
		Latitude	Longitude	Ellipsoidal Height (m)	Northing	Easting	MSL Elevation (m)
ZGN-	2 nd order,						
138	GCP	8°30'36.94779"	123°18′19.85548″	70.925	940722.222	533624.515	9.727
ZN-	1st - usla - DNA						
44	1 st order Bivi	8°34'36.67923"	123°20′18.51204″	70.802	948087.419	537245.631	9.726
UP-	Used as						
ILA	Marker	8°32′37.15488″	123°25′43.00843″	77.088	944426.675	547168.592	15.142

 Table 27. Reference and control points used and its location (Source: NAMRIA, UP-TCAGP)

4.5 Cross-section and Bridge as Built Survey and Water Level Marking

Cross-section and as-built survey were conducted along the downstream side of Ilaya Bridge, in Brgy. Ilaya, Dapitan City, Zamboanga Del Norte on June 6 and 8, 2015 using GNSS receiver, Trimble[®] SPS 882 in PPK survey technique as shown in Figure 36.

Figure 36. Cross-section survey at Ilaya Bridge

There are twenty-one (21) points acquired with an estimated length of 121.09 meters gathered using the control point UP-ILA as GNSS base station. The location map and cross-section diagram are shown in Figure 37 and Figure 38, while the bridge as-built form in shown in Figure 39.

Abutment: Is the abutment sloping? If yes, fill in the following information: No; Yes

1.0	Station (Distance from BA1)	Elevation	
Ab1	33.80m	5.93	
Ab2			

Pier (Please start your measurement from the left side of the bank facing downstream)

	Shape:	Number of Piers: 0	
	Station (Distance from BA1)	Elevation	Pier Width
Pier 1		101 10 10 10 10 10 10 10 10 10 10 10 10	
1. Mar. 2010	NOTE-like the center of the r	lar as reference to its station.	

Figure 39. Data form for Ilaya Bridge

The water surface elevation of Dapitan River was acquired on June 8, 2015 at 1:44:18 PM using Trimble[®] SPS 882 in GNSS PPK survey technique with a value of 5.94 meter in MSL. This was translated into marking in the bridge's abutment to serve as reference for the flow measurement and depth gauge deployment of Phil-LiDAR 1 partner HEI, Mindanao State University-Iligan Institute of Technology.

Figure 40. Water-level marking at Ilaya Bridge

4.6 Validation Points Acquisition Survey

Validation Points Acquisition Survey was conducted on June 8, 2015 using a survey-grade GNSS Rover receiver, Trimble[®] SPS 882, mounted on a pole which was attached in front of the vehicle as shown in Figure 41. It was secured with a nylon rope to ensure that it was horizontally and vertically balanced and stable. The antenna height was measured from the bottom of the notch of the GNSS receiver down to the ground with a measurement of 1.945 meters. The survey was conducted using PPK technique on a continuous topo mode.

The team covered the major roads running along Dipolog-Polanco-Oroquieta Road and Dipolog-Oroquieta National Road as shown in Figure 42.

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

Figure 41. LiDAR Ground Validation Setup

About three thousand eight hundred twenty (3,820) ground validation points were gathered with an approximate length of 37.342 km using UP-ILA as GNSS base station.

Figure 42. Obtained ground validation points in the vicinity of Dapitan River overlayed with river basin delineation.

4.7 River Bathymetric Survey

The bathymetric survey was conducted on June 8, 2015 using an Ohmex[™] single beam echo sounder and Trimble[®] SPS 882 GNSS receiver in PPK survey techniques as shown in Figure . The survey began in Ilaya Bridge in Brgy. Ilaya, Dapitan City with coordinates 8°32′35.19009″ 123°25′50.01942″, down to the mouth of the river in Brgy. Polo, also in Dapitan City with coordinates 8°38′04.02425″ 123°24′49.54489″. The established point, UP-ILA, at the approach of Ilaya Bridge used as the GNSS base station.

A total of seven thousand one hundred two (7,102) bathymetry points were gathered starting from Brgy. Ilaya down to the mouth of the river along Brgys. Polo and Maria Uray. The entire coverage of the bathymetric survey is shown in the map in Figure 43.

Figure 43. Trimble[®] SPS 882 Rover and OHMEX[™] single beam echo sounder set up on a boat with "katig" for the Dapitan River bathymetric survey

Figure 44.Bathymetric points gathered in Dapitan River

A CAD drawing was also produced illustrating the Dapitan riverbed profile. As shown in Figure 45, the difference in elevation from upstream in Brgy. Ilaya down to the last point in Brgy. Polo is 1.947 meters. The deepest portion or the lowest elevation recorded is about 2.427 meters below MSL in Brgy.Diwa-an, while the highest elevation was 4.866 meters in MSL located in Brgy.Burgos.

CHAPTER 5: FLOOD MODELING AND MAPPING

Dr. Alfredo Mahar Lagmay, Christopher Uichanco, Sylvia Sueno, Marc Moises, Hale Ines, Miguel del Rosario, Kenneth Punay, and Neil Tingin

The methods applied in this Chapter were based on the DREAM methods manual (Lagmay, et al., 2014) and further enhanced and updated in Paringit, et al. (2017)

5.1 Data Used for Hydrologic Modeling

5.1.1 Hydrometry and Rating Curves

All data that affect the hydrologic cycle of the Dapitan River Basin were monitored, collected, and analyzed. Rainfall, water level, and flow in a certain period of time, which may affect the hydrologic cycle of the Dapitan River Basin were monitored, collected, and analyzed.

5.1.2 Precipitation

Precipitation data was taken from an Automatic Rain Gauge (ARG) installed upstream by the DOST. The ARG was specifically installed in the Municipality of Dapitan with coordinates 8°28'21.00"N Latitude and 123°31'27.84"E Longitude. The location of therain gauge is shown in Figure 46 below.

Figure 46. The location map of Dapitan HEC-HMS model used for calibration

5.1.3 Rating Curves and River Outflow

HQ curve analysis is important in determining the equation to be used in establishing Q values with R-Squared values closer to 1. A trendline is more accurate if the R-Squared value is closer or at 1.

Figure 47. Cross-Section Plot of Ilaya Bridge

Figure 48 shows the highest R-Squared value of 0.9054. In this case, Q boxed values with Q at bank-full were plotted versus the stage.

Figure 48. Rating Curve at Ilaya Bridge

This rating curve equation was used to compute the river outflow at Ilaya Bridge for the calibration of the HEC-HMS model.

Total rainfall taken from the ARG at La Libertad National High School, La Libertad was 285 mm. It peaked to 20 mm on 4 December 2016, 07:15. The lag time between the peak rainfall and discharge is 6 hours and 15 minutes.

Figure 49. Rainfall and outflow data at Ilaya Bridge used for modeling

5.2 RIDF Station

The Philippines Atmospheric Geophysical and Astronomical Services Administration (PAGASA) computed Rainfall Intensity Duration Frequency (RIDF) values for the Dipolog Rain Gauge. The RIDF rainfall amount for 24 hours was converted to a synthetic storm by interpolating and re-arranging the value in such a way certain peak value will be attained at a certain time. This station chosen based on its proximity to the Dapitan watershed. The extreme values for this watershed were computed based on a 51-year record.

COMPUTED EXTREME VALUES (in mm) OF PRECIPITATION									
T (yrs)	10 mins	20 mins	30 mins	1 hr	2 hrs	3 hrs	6 hrs	12 hrs	24 hrs
2	19.7	30.9	38.7	53.8	73.6	85.5	105.7	120.3	136.2
5	25.9	39.6	50.1	72.6	99.7	117.3	140.9	158.3	178.5
10	30	45.4	57.6	85.1	117	138.3	164.3	183.4	206.5
15	32.3	48.6	61.8	92.1	126.8	150.2	177.4	197.6	222.4
20	34	50.9	64.8	97.1	133.6	158.5	186.6	207.6	233.4
25	35.2	52.7	67.1	100.9	138.9	164.9	193.7	215.2	242
50	39	58.1	74.1	112.5	155.1	184.6	215.6	238.8	268.3
100	42.9	63.4	81.1	124.1	171.2	204.2	237.3	262.1	294.4

Table 28. RIDF values for Dipolog Rain Gauge computed by PAGASA

Figure 50. Location of Dipolog RIDF station relative to Dapitan River Basin

Dipolog Rainfall Intensity Duration Frequency

Figure 51. Synthetic storm generated for a 24-hr period rainfall for various return periods

5.3 HMS Model

The soil dataset was generated before 2004 by the Bureau of Soils under the Department of Agriculture (DA). The land cover dataset is from the National Mapping and Resource Information Authority (NAMRIA). The soil texture map of the Dapitan River basin was used as one of the factors for the estimation of the CN parameter.

Figure 52. Soil Map of Dapitan River Basin

Figure 52 shows the Land Cover inside Dapitan River Basin. The land cover map of Palilan River Basin was used as another factor for the estimation of the CN and watershed lag parameters of the rainfall-runoff model.

Figure 53. Land Cover Map of Dapitan River Basin

For Dapitan, the soil classes identified were clay loam, clay, and undifferentiated. The land cover types identified were shrubland, grassland, forest plantation, open forest, and closed forest.

Figure 54. Slope Map of the Dapitan River Basin

Figure 55. Stream Delineation Map of the Dapitan River Basin

Using the SAR-based DEM, the Dapitan basin was delineated and further subdivided into subbasins. The model consists of 42 sub basins, 24 reaches, and 24 junctions. The main outlet is located at Ilaya Bridge, Dapitan. This basin model is illustrated in Figure 56. Finally, it was calibrated using hydrological data derived from the depth gauge and flow meter deployed at Ilaya Bridge.

Figure 56. The Dapitan Hydrologic Model generated in HEC-GeoHMS

5.4 Cross-section Data

The riverbed cross-sections of the watershed are crucial in the HEC-RAS model setup. The cross-section data for the HEC-RAS model was derived using the LiDAR DEM data. It was defined using the HEC GeoRAS tool and was post-processed in ArcGIS.

Figure 57. River cross-section of Dapitan River generated through Arcmap HEC GeoRAS tool

5.5 Flo 2D Model

The automated modelling process allows for the creation of a model with boundaries that are almost exactly coincidental with that of the catchment area. As such, they have approximately the same land area and location. The entire area is divided into square grid elements, 10 meter by 10 meter in size. Each element is assigned a unique grid element number which serves as its identifier, then attributed with the parameters required for modelling such as x-and y-coordinate of centroid, names of adjacent grid elements, Manning coefficient of roughness, infiltration, and elevation value. The elements are arranged spatially to form the model, allowing the software to simulate the flow of water across the grid elements and in eight directions (north, south, east, west, northeast, northwest, southeast, southwest).

Based on the elevation and flow direction, it is seen that the water will generally flow from the southeast of the model to the northwest, following the main channel. As such, boundary elements in those particular regions of the model are assigned as inflow and outflow elements respectively.

Figure 58. Screenshot of subcatchment with the computational area to be modeled in FLO-2D GDS Pro

The simulation is then run through FLO-2D GDS Pro. This particular model had a computer run time of 61.63855 hours. After the simulation, FLO-2D Mapper Pro is used to transform the simulation results into spatial data that shows flood hazard levels, as well as the extent and inundation of the flood. Assigning the appropriate flood depth and velocity values for Low, Medium, and High creates the following food hazard level. For this particular level, the minimum h (Maximum depth) is set at 0.2 m while the minimum vh (Product of maximum velocity (v) times maximum depth (h)) is set at 0 m2/s.

The creation of a flood hazard map from the model also automatically creates a flow depth map depicting the maximum amount of inundation for every grid element. The legend used by default in Flo-2D Mapper is not a good representation of the range of flood inundation values, so a different legend is used for the layout. In this particular model, the inundated parts cover a maximum land area of 90649200.00 m2.

There is a total of 32792322.84 m3 of water entering the model. Of this amount, 20658761.57 m3 is due to rainfall while 12133561.27 m3 is inflow from other areas outside the model. 7576481.50 m3 of this water is lost to infiltration and interception, while 20057923.59 m3 is stored by the flood plain. The rest, amounting up to 5157937.04 m3, is outflow.

5.6 Results of HMS Calibration

After calibrating the Dapitan HEC-HMS river basin model, its accuracy was measured against the observed values. Figure 59 shows the comparison between the two discharge data.

Figure 59. Outflow Hydrograph of Ilaya Bridge generated in HEC-HMS model compared with observed outflow

Enumerated in Table 29 are the adjusted ranges of values of the parameters used in calibrating the model.

Hydrologic Element	Calculation Type	Method	Parameter	Range of Calibrated Values
	Loss	SCS Curve number	Initial Abstraction (mm)	62 - 147
	LUSS		Curve Number	41 - 62
Dacin	Transform	Clark Unit Undragraph	Time of Concentration (hr)	1 - 10
DdSIII	Transform		Storage Coefficient (hr)	2 - 14
	Deceflow	Desession	Recession Constant	0.2 – 0.3
	Basellow	Recession	Ratio to Peak	0.005
Reach	Routing	Muskingum-Cunge	Manning's Coefficient	0.0005

T I I 20	-	<u>ر</u>	<u> </u>		c	D
Table 29.	Kange	OŤ	Calibrated	Values	for	Dapitan

Initial abstraction defines the amount of precipitation that must fall before surface runoff. The magnitude of the outflow hydrograph increases as initial abstraction decreases. The range of values from 62 to 147mm means that there is a high amount of infiltration or rainfall interception by vegetation per subbasin.

The curve number is the estimate of the precipitation excess of soil cover, land use, and antecedent moisture. The magnitude of the outflow hydrograph increases as curve number increases. The range of 41 to 62 for curve number is lower than the advisable value for Philippine watersheds depending on the soil and land cover of the area.

The time of concentration and storage coefficient are the travel time and index of temporary storage of runoff in a watershed. The range of calibrated values from 1 to 14 hours determines the reaction time of the model with respect to the rainfall. The peak magnitude of the hydrograph also decreases when these

parameters are increased.

Recession constant is the rate at which baseflow recedes between storm events and ratio to peak is the ratio of the baseflow discharge to the peak discharge. Recession constant of 0.2 to 0.3 indicates that the basin is likely to quickly go back to its original discharge and instead, will be higher. Ratio to peak of 0.005 indicates a steeper receding limb of the outflow hydrograph.

Manning's roughness coefficient of 0.0005 corresponds lower than the common roughness of Philippine watersheds.

Accuracy Measure	Value
RMSE	1.86
r ²	0.91
NSE	0.77
PBIAS	-1.53
RSR	0.48

Table 30. Summary of the Efficiency Test of Dapitan HMS Model

The Root Mean Square Error (RMSE) method aggregates the individual differences of these two measurements. It was computed as 1.86 (m3/s).

The Pearson correlation coefficient (r2) assesses the strength of the linear relationship between the observations and the model. This value being close to 1 corresponds to an almost perfect match of the observed discharge and the resulting discharge from the HEC HMS model. Here, it measured 0.91.

The Nash-Sutcliffe (E) method was also used to assess the predictive power of the model. Here the optimal value is 1. The model attained an efficiency coefficient of 0.77.

A positive Percent Bias (PBIAS) indicates a model's propensity towards under-prediction. Negative values indicate bias towards over-prediction. Again, the optimal value is 0. In the model, the PBIAS is -1.53.

The Observation Standard Deviation Ratio, RSR, is an error index. A perfect model attains a value of 0 when the error in the units of the valuable a quantified. The model has an RSR value of 0.48.

5.7 Calculated Outflow Hydrographys and Discharge Values for Different Rainfall Return Periods

5.7.1 Hydrograph using the Rainfall Runoff Model

The summary graph (Figure 60) shows the Dapitan outflow using the Dipolog Rainfall Intensity-Duration-Frequency curves (RIDF) in 5 different return periods (5-year, 10-year, 25-year, 50-year, and 100-year rainfall time series) based on the Philippine Atmospheric Geophysical and Astronomical Services Administration (PAG-ASA) data. The simulation results reveal significant increase in outflow magnitude as the rainfall intensity increases for a range of durations and return periods.

Figure 60. Outflow hydrograph at Dapitan Station generated using Dipolog RIDF simulated in HEC-HMS

A summary of the total precipitation, peak rainfall, peak outflow and time to peak of the Dapitan discharge using the Dipolog Rainfall Intensity-Duration-Frequency curves (RIDF) in five different return periods is shown in Table 31.

RIDF Period	Total Precipitation (mm)	Peak rainfall (mm)	Peak outflow (m ³ /s)	Time to Peak
5-Year	178.32	25.9	238.8	16 hours 30 mins
10-Year	206.37	30	355.4	17 hours 10 mins
25-Year	241.91	35.2	526.6	17 hours
50-Year	268.14	39	666.8	16 hours 50 mins
100-Year	294.55	42.9	816.4	16 hours 40 mins

Table 31. Peak values of the Dapitan HECHMS Model outflow using Dipolog RIDF

5.7.2 Discharge Data using Dr. Horritts's Recommended Method

The river discharge values for the five rivers entering the floodplain are shown in Figure 61 to Figure 64, and the peak values are summarized in Table 32 to Table 35.

Figure 61. Dapitan river (1) generated discharge using 5-, 25-, and 100-year Dipolog rainfall intensityduration-frequency (RIDF) in HEC-HMS

Figure 62. Dapitan river (2) generated discharge using 5-, 25-, and 100-year Dipolog rainfall intensityduration-frequency (RIDF) in HEC-HMS

Figure 63. Dapitan river (3) generated discharge using 5-, 25-, and 100-year Dipolog rainfall intensityduration-frequency (RIDF) in HEC-HMS

Figure 64. Dapitan river (4) generated discharge using 5-, 25-, and 100-year Dipolog rainfall intensityduration-frequency (RIDF) in HEC-HMS

Та	ble 32. Summary	/ of Dapitan river	(1) discharge ge	nerated in HEC-HMS		
RIDI	F Period	Peak discharge	(cms)	Time-to-pea	k	
10	0-Year	530.8		17 hours, 30 min	utes	
25	5-Year	372 1		17 hours, 30 min	7 hours, 30 minutes	
5	-Year	189.7		17 hours, 40 minutes		
Та	ble 33. Summary	of Dapitan river	(2) discharge ge	enerated in HEC-H	HMS	
RIDI	F Period	Peak discharge	(cms)	Time-to-pea	k	
10	0-Year	334.3		15 hours, 50 min	utes	
25	5-Year	237.6		16 hours		
5	-Year	124.7		15 hours, 30 min	utes	
Та	ble 34. Summary	of Dapitan river	· (3) discharge ge	enerated in HEC-H	HMS	
RIDI	F Period	Peak discharge	(cms)	Time-to-pea	k	
10	0-Year	129.5		15 hours, 30 min	utes	
25	5-Year	91.1		15 hours, 40 min	utes	
5	-Year	46.7		15 hours, 40 min	utes	
Та	ble 35. Summary	of Dapitan river	· (4) discharge ge	enerated in HEC-H	HMS	
RIDI	F Period	Peak discharge	(cms)	Time-to-pea	k	
10	0-Year	171.6		14 hours, 30 minutes		
25	5-Year	118	118 14 hours, 30 mir			
5-Year		57.6	14 hours, 40 minutes			
	Table 3	36. Validation of	river discharge e	estimates		
licchargo				VALIE	DATION	
Point	Q _{MED(SCS)} , cms	Q _{BANKFUL} , cms	Q _{MED(SPEC)} , cms	Bankful Discharge	Specif Discha	
apitan (1)	166.936	112.780	333.804	PASS	PASS	
apitan (2)	109.736	214.838	186.516	PASS	PASS	

All four from the HEC-HMS river discharge estimates were able to satisfy the conditions for validation using the bankful and two out of four were able to satisfy the conditions for validation using the specific discharge methods. The passing values are based on theory but are supported using other discharge computation methods so they were good to use for flood modeling. These values will need further investigation for the purpose of validation. It is therefore recommended to obtain actual values of the river discharges for higher-accuracy modeling.

99.306

105.981

PASS

PASS

FAIL

FAIL

36.873

59.325

5.8 River Analysis (RAS) Model Simulation

41.096

50.688

Dapitan (3)

Dapitan (4)

The HEC-RAS Flood Model produced a simulated water level at every cross-section for every time step for every flood simulation created. The resulting model will be used in determining the flooded areas within the model. The simulated model will be an integral part in determining real-time flood inundation extent of the river after it has been automated and uploaded on the DREAM website. The sample generated map of Dapitan River using the calibrated HMS base flow is shown in Figure 65.

Figure 65. Sample output of Dapitan RAS Model

5.9 Flow Depth and Flood Hazard

The resulting hazard and flow depth maps have a 10m resolution. Figure 66 to Fgure 71 show the 5-, 25-, and 100-year rain return scenarios of the Dapitan Floodplain. The floodplain, with an area of 259.12 square kilometers covers Dapitan City and six municipalities namely Sapang Dalaga, La Libertad, Pinan, Polanco, Rizal, and Sibutad. Table 37 shows the percentage of area affected by flooding per municipality.

City / Municipality	Total Area	Area Flooded	% Flooded
Sapang Dalaga	85.68	4.85	6%
Dapitan City	222.95	146.70	66%
La Libertad	66.24	12.37	19%
Pinan	135.87	0.24	0.2%
Polanco	86.49	1.02	1%
Rizal	61.97	38.61	62%
Sibutad	75.68	55.24	73%

Table 37. Municipalities affected in Dapitan Floodplain

Figure 67. 100-year Flow Depth Map for Dapitan (Paro-Dapitan) Floodplain overlaid on Google Earth imagery

5.10 Inventory of Areas Exposed to Flooding of Affected Areas

Affected barangays in Dapitan River Basin are listed below, grouped accordingly by municipality. For the said basin, seven (7) municipalities consisting of 81 barangays are expected to experience flooding when subjected to 5-, 25-, and 100-yr rainfall return period.

For the 5-year return period, 55.44% of the city of Dapitan with an area of 222.95 square kilometers will experience flood levels of less 0.20 meters. 4.18% of the area will experience flood levels of 0.21 to 0.50 meters while 3.05%, 1.75%, 0.93%, and 0.46% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 38 are the affected areas in square kilometers by flood depth per barangay.

σ
<u>.0</u>
Ъ
Ъ
L
t
é
<u> </u>
പ്പ
Ē
ai
<u> </u>
g
¥
ம்
ഇ
rir
n
0
Ę
ō
Z
e
р
g
LE LE
ö
þ
E
Ñ
_≻`
E
č
Ea l
oit
al
⊇.
as
ě
Ł
σ
te
ec
£
<
ŝ
(1)
Зe
at
-

Affected area	Area of at	fected bal	rangavs ir	Dapitan C	City (in s	a. km.)								
(sq.km.) by flood depth (in m.)	Antipolo	Aseniero	ba-Ao	Bagting	Ban	onong B	arcelona	Baylimango	Burgos	Cawa-Cawa	Dampalan	Daro	Dawo	Diwa-An
0.03-0.20	6.02	5.75	3.28	0.17	1.32	1	1.32	0.64	0.83	0.15	1.6	1.06	1.1	11.22
0.21-0.50	0.37	0.3	0.14	0.027	0.14	0	.72	0.011	0.071	0.057).36	0.029	0.11	0.47
0.51-1.00	0.31	0.2	0.11	0.0002	0.05	i6 0	.51	0.0051	0.076	0.1).37	0.012	0.0054	0.47
1.01-2.00	0.077	60.0	0.055	0	0	0	.42	0.001	0.1	0	0.42	0.0034	0	0.44
2.01-5.00	0.018	0.02	0.031	0	0	0	.32	0.0003	0.062	0	0.26	0.0007	0	0.19
> 5.00	0	0	0.0055	0	0	0	.23	0	0.055	0	0.26	0	0	0.0071
Affected area	Area of a	iffected ba	arangays i	n Dapitan	City (in	sq. km.)								
(sq.km.) by flood depth (in m.)	Hilltop	Ilaya	Kausw	agan La	arayan	Linabo	Maria Cristina	Maria Uray	Masidla- kon	Matagobtob Poblacion	Opao	Oro	Owaon	Oyan
0.03-0.20	5.35	3.9	2	2.	44	0.19	9.22	8.47	6.27	1.4	1.55	1.85	0.96	3.6
0.21-0.50	0.16	0.35	0.054	0.	089	0.062	1.12	1.33	0.32	0.08	0.062	0.036	0.029	0.071
0.51-1.00	0.13	0.32	0.035	0.	11	0.011	0.8	1.02	0.26	0.088	0.054	0.038	0.011	0.067
1.01-2.00	0.12	0.68	0.011	0.	016	0	0.11	0.19	0.25	0.015	0.1	0.034	0.0052	0.11
2.01-5.00	0.028	0.17	0.000	t 0.	0031	0	0.0056	0.039	0.28	0	0.16	0.013	0.0003	0.13
> 5.00	0.0028	0.11	0	0.	0002	0	0	0	0.028	0	0.14	0	0	0.078
Affected area (s		a of affec	ted harar	navs in Da	nitan Ci	tv (in sa. I	(m.)							
km.) by flood de (in m.)	epth Po	lo Pc	otol	Potungan	San N	licolas S	an Pedro	San Vicente	Santa Cruz	Santo Niño	b Sicayab Bocana	Sinonoc	Sulango	ר Tamion
0.03-0.20	1.5	57 0.	34	3.14	8.81	2	.16	1.09	0.26	0.0059	0.91	1.51	2.12	7.03
0.21-0.50	0.1	.0	660	0.21	0.51		.49	0.14	0.027	0	0.017	0.33	0.56	0.17
0.51-1.00	0.0	028 0.	.022	0.2	0.28	C	.25	0.036	0.0065	0	0.0043	0.58	0.14	0.12
1.01-2.00	0.0	025 0		0.27	0.18	C	.034 (0.019	0.0004	0	0.0005	0.07	0.017	0.075
2.01-5.00	0.0	0 2900		0.23	0.051	C	.0042 (0.0025	0	0	0	0	0	0.036
> 5.00	0	0		0.096	0	0		(0	0	0	0	0	0.01

80

For the municipality of La Libertad, with an area of 66.24 square kilometers, 15.47% will experience flood levels of less 0.20 meters. 0.84% of the area will experience flood levels of 0.21 to 0.50 meters while 0.63%, 0.65%, 0.59%, and 0.27% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 39 are the affected areas in square kilometers by flood depth per barangay.

Affected area (sq.km.)	Area	Area of affected barangays in La Libertad (in sq. km.)							
by flood depth (in m.)	La Union	Mauswagon	New Carcar	Poblacion	Singaran				
0.03-0.20	2.57	4.95	0.39	0.84	1.51				
0.21-0.50	0.13	0.28	0.01	0.047	0.092				
0.51-1.00	0.1	0.2	0.0092	0.037	0.071				
1.01-2.00	0.095	0.17	0.0069	0.035	0.12				
2.01-5.00	0.15	0.15	0.0016	0.037	0.054				
> 5.00	0.13	0.048	0	0.0004	0				

Table 39. Affected Areas in La Libertad, Zamboanga del Norte during 5-Year Rainfall Return Period

Figure 73. Affected Areas in La Libertad, Zamboanga del Norte during 5-Year Rainfall Return Period

For the Municipality of Pinan, with an area of 135.87 square kilometers, 0.16% will experience flood levels of less 0.20 meters. 0.01% of the area will experience flood levels of 0.21 to 0.50 meters while 0.003%, and 0.0005% of the area will experience flood depths of 0.51 to 1 meter, and 1.01 to 2 meters, respectively. Listed in Table 40are the affected areas in square kilometers by flood depth per barangay.

Affected area (sq.km.) by	Area of affected barangays in Pinan (in sq. km.)
nood depth (in m.)	Adante
0.03-0.20	0.22
0.21-0.50	0.019039
0.51-1.00	0.004536
1.01-2.00	0.0007
2.01-5.00	0
> 5.00	0

Table 40. Affected Areas in Pinan, Zamboanga del Norte during 5-Year Rainfall Return Period

Figure 74. Affected Areas in Pinan, Zamboanga del Norte during 5-Year Rainfall Return Period

For the Municipality of Polanco, with an area of 86.49 square kilometers, 0.65% will experience flood levels of less 0.20 meters. 0.06% of the area will experience flood levels of 0.21 to 0.50 meters while 0.03%, 0.01%, and 0.0007% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, and more than 2 meters, respectively. Listed in Table 41are the affected areas in square kilometers by flood depth per barangay.

Affected area (sq.km.)	Area of affected barangays in Polanco (in sq. km.)
by hood depth (in m.)	San Miguel
0.03-0.20	0.88
0.21-0.50	0.077
0.51-1.00	0.039
1.01-2.00	0.019
2.01-5.00	0.0009
> 5.00	0

Table 41. Affected Areas in Polanco, Zamboanga del Norte during 5-Year Rainfall Return Period

Figure 75. Affected Areas in Polanco, Zamboanga del Norte during 5-Year Rainfall Return Period

For the Municipality of Rizal, with an area of 61.97 sq. km., 31.08% will experience flood levels of less 0.20 meters. 1.31% of the area will experience flood levels of 0.21 to 0.50 meters while 1.02%, 0.70%, 0.42%, and 0.18% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 42are the affected areas in square kilometres by flood depth per barangay.

		Napilan	1.2	0.05	0.036	0.029	0.045	0.0002
		Nangcaan	1.92	0.059	0.05	0.042	0.11	0.0015
		Mitimos	1	0.039	0.037	0.033	0.014	0.000083
	(in sq. km.)	Mabuhay	0.22	0.0092	0.0022	0.0006	0	0
)	rangays in Rizal	La Esperanza	2.72	0.16	0.16	0.15	0.095	0.0065
)	rrea of affected ba	East Poblacion	0.88	0.041	0.021	0.028	0.018	0
	A	Damasing	0.11	0.0015	0.0001	0	0	0
		Birayan	2.08	0.11	0.1	0.057	0.013	0
		Balubohan	0.17	0.00071	0.0001	0	0	0
	Affected area	(sq.km.) by flood depth (in m.)	0.03-0.20	0.21-0.50	0.51-1.00	1.01-2.00	2.01-5.00	> 5.00

_
Q
0
Ξ.
d)
Ā
_
2
÷
Ð
\simeq
_
_
<u>_</u>
7
·=
σ
2
C.
E
20
ų
ò
00
5
=
Ž.
C
d)
Ť
<u> </u>
0
7
<u> </u>
Ψ.
_
ō
þ
ga d
iga d
anga d
anga d
oanga d
boanga d
nboanga d
mboanga d
amboanga d
Zamboanga d
, Zamboanga d
al, Zamboanga d
zal, Zamboanga d
izal, Zamboanga d
Rizal, Zamboanga d
Rizal, Zamboanga d
n Rizal, Zamboanga d
in Rizal, Zamboanga d
s in Rizal, Zamboanga d
as in Rizal, Zamboanga d
eas in Rizal, Zamboanga d
reas in Rizal, Zamboanga d
Areas in Rizal, Zamboanga d
l Areas in Rizal, Zamboanga d
d Areas in Rizal, Zamboanga d
ed Areas in Rizal, Zamboanga d
cted Areas in Rizal, Zamboanga d
ected Areas in Rizal, Zamboanga d
fected Areas in Rizal, Zamboanga d
ffected Areas in Rizal, Zamboanga d
Affected Areas in Rizal, Zamboanga d
Affected Areas in Rizal, Zamboanga d
2. Affected Areas in Rizal, Zamboanga d
 Affected Areas in Rizal, Zamboanga d
42. Affected Areas in Rizal, Zamboanga d
e 42. Affected Areas in Rizal, Zamboanga d
le 42. Affected Areas in Rizal, Zamboanga d
ble 42. Affected Areas in Rizal, Zamboanga d
able 42. Affected Areas in Rizal, Zamboanga d
Table 42. Affected Areas in Rizal, Zamboanga d

	West Poblacion	1.02	0.049	0.032	0.018	0.0044	0
	Tolon	2.74	0.087	0.059	0.036	0.046	0.0043
km.)	South Mapang	2	0.08	0.048	0.04	0.042	0.00069
n Rizal (in sq.	San Roque	5.98	0.27	0.29	0.2	0.11	0.11
oarangays i	Rizalina	7.52	0.32	0.21	0.14	0.054	0
Area of affected l	North Mapang	0.043	0.0012	0.0009	0.0006	0	0
	Nilabo	3.09	0.14	0.082	0.047	0.0094	0.0001
	New Dapitan	0.95	0.032	0.023	0.035	0.077	0.017
	Nasipang	0.72	0.021	0.0078	0.0011	0.0001	0
Affected area (sq.	km.) by flood depth (in m.)	0.03-0.20	0.21-0.50	0.51-1.00	1.01-2.00	2.01-5.00	> 5.00

For the Municipality of Sapang Dalaga, with an area of 85.68 square kilometers, 5.15% will experience flood levels of less 0.20 meters. 0.19% of the area will experience flood levels of 0.21 to 0.50 meters while 0.13%, 0.11%, 0.09%, and 0.0005% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 43 are the affected areas in square kilometres by flood depth per barangay.

Affected area	Area of affe	cted baranga	ays in Sapa	ng Dalaga (in	sq. km.)
(sq.km.) by flood depth (in m.)	Agapito Yap, Sr.	Boundary	Casul	El Paraiso	Poblacion
0.03-0.20	0.21	2.36	0.73	0.28	0.84
0.21-0.50	0.006	0.09	0.0091	0.0091	0.047
0.51-1.00	0.0027	0.063	0.0026	0.0073	0.037
1.01-2.00	0.0021	0.048	0.0012	0.0066	0.035
2.01-5.00	0.0054	0.03	0.0002	0.0011	0.037
> 5.00	0	0	0	0	0.0004

Table 43. Affected Areas in Sapang Dalaga, Misamis Occidental during 5-Year Rainfall Return Period

Figure 77. Affected Areas in Sapang Dalaga, Misamis Occidental during 5-Year Rainfall Return Period

For the Municipality of Sibutad, with an area of 75.68 square kilometers, 51.24% will experience flood levels of less 0.20 meters. 2.76% of the area will experience flood levels of 0.21 to 0.50 meters while 2.77%, 2.07%, 0.95%, and 0.12% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 44 are the affected areas in square kilometers by flood depth per barangay.

		Sipaloc	5.51	0.41	0.46	0.32	0.1	0	
		Sibuloc	1.94	0.19	0.33	0.29	0.13	0	
		Poblacion	0.84	0.047	0.037	0.035	0.037	0.0004	
		Oyan	3.6	0.071	0.067	0.11	0.13	0.078	
		Minlasag	3.48	0.18	0.14	0.14	0.097	0.0002	
		Marapong	3.96	0.17	0.14	0.15	0.099	0.0054	
		Magsaysay	5.69	0.19	0.14	0.081	0.026	0.0002	
		Libay	0.48	0.0092	0.0023	0.0001	0	0	
	sq. km.)	Kanim	0.21	0.0027	0.0005	0	0	0	
	Sibutad (in	Delapa	3.63	0.33	0.36	0.25	0.058	0	
	rangays in S	rangays in S	Calube	1.44	0.041	0.015	0.0012	0	0
	affected ba	ffected bare Calilic 4.56 0.15	0.12	0.08	0.014	0			
	Area of a	Bagacay	3.43	0.3	0.28	0.11	0.028	0.0033	
	Affected area	(sq.km.) by flood depth (in m.)	0.03-0.20	0.21-0.50	0.51-1.00	1.01-2.00	2.01-5.00	> 5.00	

Table 44. Affected Areas in Sibutad, Zamboanga del Norte during 5-Year Rainfall Return Period

For the 25-Year return period, 51.29% of the city of Dapitan with an area of 222.95 square kilometers. will experience flood levels of less 0.20 meters. 4.41% of the area will experience flood levels of 0.21 to 0.50 meters while 4.16%, 2.65%, 2.53%, and 0.77% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 45 are the affected areas in square kilometers by flood depth per barangay.

		Diwa-An	10.86	0.53	0.42	0.57	0.39	0.022
		Dawo	0.97	0.23	0.018	0	0	0
r Rainfall Return Period <mark>in sq. km.)</mark>	Daro	1.05	0.037	0.015	0.0057	0.0011	0	
		Dampalan	4.06	0.27	0.23	0.38	0.97	0.35
	Cawa-Cawa	0.12	0.029	0.099	0.053	0	0	
ring 25-Yea	oitan City (Burgos	0.67	0.028	0.035	0.12	0.25	0.084
i del Norte du	rangays in Da _l	Baylimango	0.64	0.012	0.0077	0.0015	0.0005	0
, Zamboanga	f affected ba	Barcelona	10.29	0.75	0.71	0.75	0.66	0.38
n Dapitan City	Area o	Banonong	0.97	0.45	0.094	0.0079	0	0
ed Areas i		Bagting	0.15	0.029	0.011	0	0	0
45. Affect		Ba-Ao	3.18	0.12	0.13	0.12	0.065	0.0072
Table		Aseniero	5.57	0.34	0.25	0.16	0.036	0
		Antipolo	5.84	0.38	0.42	0.12	0.029	0.00062
	Affected area	(sq.km.) by flood depth (in m.)	0.03-0.20	0.21-0.50	0.51-1.00	1.01-2.00	2.01-5.00	> 5.00

	Oyan	3.54	0.076	0.052	0.061	0.2	0.12
	Owaon	0.95	0.035	0.015	0.0076	0.001	0
	Oro	1.83	0.041	0.034	0.046	0.026	0.0002
	Opao	1.46	0.052	0.034	0.039	0.24	0.25
(in sq. km.)	Matagobtob Poblacion	1.37	0.053	0.11	0.049	0	0
Dapitan City	Masidla- kon	5.58	0.39	0.44	0.41	0.45	0.14
rangays in I	Maria Uray	7.73	1.03	1.64	0.57	0.081	0
affected ba	Maria Cristina	8.33	1.08	1.43	0.39	0.014	0
Area of a	Linabo	0.15	0.041	0.071	0	0	0
	Larayan	2.4	0.09	0.13	0.027	0.0088	0.0006
	Kauswagan	1.97	0.058	0.043	0.02	0.0022	0
	Ilaya	3.29	0.15	0.28	0.61	1.07	0.14
	Hilltop	5.17	0.13	0.1	0.18	0.21	0.0049
Affected area	(sq.km.) by flood depth (in m.)	0.03-0.20	0.21-0.50	0.51-1.00	1.01-2.00	2.01-5.00	> 5.00

Affected area (sq.				Area of	affected ba	arangays in	Dapitan Cit	ty (in sq. kn	n.)			
km.) by flood depth (in m.)	Polo	Potol	Potungan	San Nicolas	San Pe- dro	San Vicente	Santa Cruz	Santo Niño	Sicayab Bocana	Sinonoc	Sulangon	Tamion
0.03-0.20	1.25	0.25	2.61	8.41	1.99	0.7	0.23	0.0059	6.0	1.36	1.6	6.91
0.21-0.50	0.44	0.088	0.13	0.62	0.38	0.44	0.053	0	0.026	0.15	0.89	0.19
0.51-1.00	0.066	0.12	0.14	0.43	0.51	0.11	0.011	0	0.006	0.6	0.32	0.15
1.01-2.00	0.0021	0.0011	0.33	0.27	0.059	0.031	0.0008	0	0.0011	0.37	0.023	0.11
2.01-5.00	0.008	0	0.74	0.12	0.0088	0.0093	0	0	0	0.0042	0.0056	0.046
> 5.00	0	0	0.2	0	0	0	0	0	0	0	0	0.032

For the Municipality of La Libertad, with an area of 66.24 square kilometers, 14.28% will experience flood levels of less 0.20 meters. 0.95% of the area will experience flood levels of 0.21 to 0.50 meters while 0.77%, 0.84%, 1.07%, and 0.55% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 46 are the affected areas in square kilometers by flood depth per barangay.

Affected area (sq.	Are	a of affected bara	ngays in La Lil	bertad (in sq. k	m.)
km.) by flood depth (in m.)	La Union	Mauswagon	New Carcar	Poblacion	Singaran
0.03-0.20	2.33	4.67	0.38	0.78	1.31
0.21-0.50	0.12	0.33	0.01	0.048	0.13
0.51-1.00	0.097	0.25	0.011	0.048	0.1
1.01-2.00	0.13	0.22	0.012	0.055	0.14
2.01-5.00	0.25	0.23	0.0035	0.061	0.17
> 5.00	0.25	0.11	0.000018	0.0039	0.0009

Table 46. Affected Areas in La Libertad, Zamboanga del Norte during 25-Year Rainfall Return Period

Figure 80. Affected Areas in La Libertad, Zamboanga del Norte during 25-Year Rainfall Return Period

For the Municipality of Pinan, with an area of 135.87 square kilometers, 0.15% will experience flood levels of less 0.20 meters. 0.01% of the area will experience flood levels of 0.21 to 0.50 meters while 0.007%, and 0.002% of the area will experience flood depths of 0.51 to 1 meter, and 1.01 to 2 meters, respectively. Listed in Table 47 are the affected areas in square kilometers by flood depth per barangay.

Table 47. Affected Areas in Pinan, Zamboanga del Norte during 25-Year Rainfall Return Period

Affected area (sq. km.) by flood	Area of affected baran- gays in Pinan (in sq. km.)				
depth (in m.)	Adante				
0.03-0.20	0.21				
0.21-0.50	0.019039				
0.51-1.00	0.004536				
1.01-2.00	0.0007				
2.01-5.00	0				
> 5.00	0				

Figure 81. Affected Areas in Pinan, Zamboanga del Norte during 25-Year Rainfall Return Period

For the Municipality of Polanco, with an area of 86.49 square kilometers, 0.61% will experience flood levels of less 0.20 meters. 0.06% of the area will experience flood levels of 0.21 to 0.50 meters while 0.05%, 0.03%, and 0.003% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, and more than 2 meters, respectively. Listed in Table 48are the affected areas in square kilometers by flood depth per barangay.

Table 48.	Affected	Areas in	Polanco.	Zamboanga	del Norte	during	25-Year	Rainfall R	eturn Period
10010	/ 11/201204	/	. orarree,	Lannoodinga		a ai ii b	20 1001	namman n	cturn criou

Affected area (sq. km.) by flood	Area of affected barangays in Polanco (in sq. km.)
depth (in m.)	San Miguel
0.03-0.20	0.83
0.21-0.50	0.086
0.51-1.00	0.065
1.01-2.00	0.036
2.01-5.00	0.0039
> 5.00	0

Figure 82. Affected Areas in Polanco, Zamboanga del Norte during 25-Year Rainfall Return Period

For the Municipality of Rizal, with an area of 61.97 square kilometers, 29.53% will experience flood levels of less 0.20 meters. 1.40% of the area will experience flood levels of 0.21 to 0.50 meters while 1.33%, 1.27%, 0.87%, and 0.32% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 49are the affected areas in square kilometers by flood depth per barangay.

	Napilan	1.11	0.055	0.049	0.051	0.065	0.029
	Nangcaan	1.74	0.075	0.081	0.09	0.11	0.089
	Mitimos	0.97	0.041	0.042	0.042	0.032	0.000083
ו sq. km.)	Mabuhay	0.21	0.011	0.0032	0.00092	0	0
arangays in Rizal (ir	La Esperanza	2.55	0.17	0.17	0.21	0.17	0.014
Area of affected ba	East Poblacion	0.84	0.053	0.039	0.024	0.036	0
	Damasing	0.11	0.0025	0.0002	0	0	0
	Birayan	2	0.11	0.13	0.1	0.027	0
	Balubohan	0.17	0.0022	0	0.0001	0	0
Affected area	(sq.km.) by flood depth (in m.)	0.03-0.20	0.21-0.50	0.51-1.00	1.01-2.00	2.01-5.00	> 5.00

n Period
ll Return
- Rainfal
25-Year
e during
el Norte
oanga d
l, Zambo
s in Riza
ed Areas
. Affecte
Table 49

_							
Area of affected barangays in Rizal (in sq. km.)	West Poblacion	0.99	0.059	0.043	0.027	0.0086	0
	Tolon	2.63	0.098	0.085	0.065	0.061	0.032
	South Mapang	1.89	0.1	0.08	0.073	0.06	0.01
	San Roque	5.53	0.25	0.36	0.4	0.27	0.15
	Rizalina	7.27	0.36	0.25	0.22	0.14	0
	North Mapang	0.042	0.0016	0.0009	0.001	0.0001	0
	Nilabo	3.02	0.16	0.099	0.069	0.02	0.0001
	New Dapitan	0.87	0.031	0.026	0.04	0.1	0.059
	Nasipang	0.71	0.025	0.011	0.0031	0.0001	0
Affected area (sq.	Affected area (sq. km.) by flood depth (in m.)		0.21-0.50	0.51-1.00	1.01-2.00	2.01-5.00	> 5.00

For the Municipality of Sapang Dalaga, with an area of 85.68 square kilometers, 4.98% will experience flood levels of less 0.20 meters. 0.21% of the area will experience flood levels of 0.21 to 0.50 meters while 0.17%, 0.16%, 0.15%, and 0.0006% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 50 are the affected areas in square kilometers by flood depth per barangay.

Affected area	Area of af	fected barangay	ys in Sapan	g Dalaga (in sq	. km.)
(sq.km.) by flood depth (in m.)	Agapito Yap, Sr.	Boundary	Casul	El Paraiso	Poblacion
0.03-0.20	0.2	2.28	0.73	0.27	0.78
0.21-0.50	0.0058 0.1		0.012	0.01	0.048
0.51-1.00	0.0038	0.078	0.0036	0.0089	0.048
1.01-2.00	0.0032	0.069	0.0015	0.0085	0.055
2.01-5.00	0.0059	0.056	0.0006	0.0025	0.061
> 5.00	0.00089	0	0	0	0.0039

Table 50. Affected Areas in Sapang Dalaga, Misamis Occidental during 25-Year Rainfall Return Period

Figure 84. Affected Areas in Sapang Dalaga, Misamis Occidental during 25-Year Rainfall Return Period

For the Municipality of Sibutad, with an area of 75.68 square kilometers, 48.29% will experience flood levels of less 0.20 meters. 2.34% of the area will experience flood levels of 0.21 to 0.50 meters while 2.96%, 3.67%, 2.36%, and 0.28% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 51 are the affected areas in square kilometers by flood depth per barangay.

	Sipaloc	5.19	0.34	0.45	0.56	0.26	0
	Sibuloc	1.69	0.11	0.21	0.53	0.32	0.004
	Poblacion	0.78	0.048	0.048	0.055	0.061	0.0039
	Oyan	3.54	0.076	0.052	0.061	0.2	0.12
	Minlasag	3.33	0.18	0.16	0.18	0.18	0.0035
	Marapong	3.58	0.2	0.26	0.21	0.22	0.067
	Magsaysay	5.59	0.22	0.14	0.14	0.044	0.0004
	Libay	0.48	0.014	0.0033	0.0001	0	0
n sq. km.)	Kanim	0.21	0.0036	0.0005	0.0002	0	0
Sibutad (i	Delapa	3.15	0.21	0.43	0.64	0.2	0
rangays in	Calube	1.42	0.049	0.023	0.0033	0	0
fected ba	Calilic	4.47	0.17	0.12	0.12	0.041	0
Area of af	Bagacay	3.13	0.15	0.33	0.28	0.25	0.014
Affected area	(sq.km.) by flood depth (in m.)	0.03-0.20	0.21-0.50	0.51-1.00	1.01-2.00	2.01-5.00	> 5.00

Table 51. Affected Areas in Sibutad, Zamboanga del Norte during 25-Year Rainfall Return Period

For the 100-year return period, 49.25% of the city of Dapitan with an area of 222.95 square kilometers will experience flood levels of less 0.20 meters. 4.22% of the area will experience flood levels of 0.21 to 0.50 meters while 4.45%, 3.21%, 3.43%, and 1.28% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 52 are the affected areas in square kilometers by flood depth per barangay.

ŏ
. <u></u>
อิ
Ā
~
Ľ,
~
-
I
÷
ai
Ř
_
σ
eر
~
Ó
0
Τ
60
Ē
- <u></u>
Б
õ
<u>_</u>
4
Ē
0
Z
<u>_</u>
0
_
σ
ga
anga
oanga
ooanga
nboanga
mboanga
amboanga
Zamboanga
y, Zamboanga
ity, Zamboanga
City, Zamboanga
ר City, Zamboanga
an City, Zamboanga
tan City, Zamboanga
oitan City, Zamboanga
apitan City, Zamboanga
Dapitan City, Zamboanga
ו Dapitan City, Zamboanga
in Dapitan City, Zamboanga
s in Dapitan City, Zamboanga
as in Dapitan City, Zamboanga
eas in Dapitan City, Zamboanga
vreas in Dapitan City, Zamboanga
Areas in Dapitan City, Zamboanga
d Areas in Dapitan City, Zamboanga
ed Areas in Dapitan City, Zamboanga
cted Areas in Dapitan City, Zamboanga
ected Areas in Dapitan City, Zamboanga
ffected Areas in Dapitan City, Zamboanga
Affected Areas in Dapitan City, Zamboanga
. Affected Areas in Dapitan City, Zamboanga
2. Affected Areas in Dapitan City, Zamboanga
52. Affected Areas in Dapitan City, Zamboanga
e 52. Affected Areas in Dapitan City, Zamboanga
ole 52. Affected Areas in Dapitan City, Zamboanga
able 52. Affected Areas in Dapitan City, Zamboanga
Table 52. Affected Areas in Dapitan City, Zamboanga

		Diwa-An	10.65	0.52	0.47	0.48	0.6	0.066	
		Dawo	0.88	0.3	0.034	0	0	0	
		Daro	1.04	0.043	0.018	0.008	0.0012	0	
turn Perioa		Dampalan	3.84	0.27	0.2	0.27	1.02	0.67	
ear kainiali ke	in sq. km.)	Cawa-Cawa	0.11	0.032	0.064	0.099	0	0	
nring tuu-r	ipitan City (Burgos	0.65	0.019	0.01	0.043	0.36	0.11	:/ · · · · · · · · · / ·
ga uei Norte u	arangays in Da	Baylimango	0.64	0.014	0.0085	0.0023	0.0006	0	
y, zamboan	f affected b	Barcelo- na	9.68	0.74	0.73	0.93	0.98	0.47	offoctod b
ו המסוומה בוני	Area o	Banonong	0.7	0.56	0.22	0.04	0	0	Jo oca A
eu Areas II		Bagting	0.14	0.034	0.014	0	0	0	
e dz. Alleci		Ba-Ao	3.03	0.12	0.11	0.15	0.19	0.018	
ICIPI		Aseniero	5.47	0.35	0.28	0.2	0.059	0	
		Antipolo	5.76	0.36	0.42	0.2	0.042	0.0034	
	Affected area	(sq.km.) by flood depth (in m.)	0.03-0.20	0.21-0.50	0.51-1.00	1.01-2.00	2.01-5.00	> 5.00	Affected ano

	Oyan	3.49	0.08	0.055	0.059	0.21	0.15	
	Owaon	0.94	0.038	0.02	0.008	0.0024	0	
	Oro	1.81	0.048	0.032	0.051	0.035	0.0004	
	Орао	1.43	0.054	0.037	0.03	0.12	0.41	
ı sq. km.)	Matagobtob Poblacion	1.36	0.054	0.092	0.078	0	0	
apitan City (in	Masidlakon	5.27	0.31	0.41	0.51	0.67	0.23	
angays in D	Maria Uray	7.37	0.83	1.75	0.97	0.13	0	
iffected ban	Maria Cristina	8.07	0.65	1.73	0.77	0.03	0	
Area of a	Linabo	0.14	0.038	0.071	0.022	0	0	
	Larayan	2.38	0.089	0.08	0.094	0.011	0.0006	
	Kauswagan	1.96	0.061	0.045	0.025	0.005	0	
	llaya	3.13	0.11	0.11	0.36	1.65	0.19	
	Hilltop	5.12	0.13	0.099	0.11	0.32	0.017	
Affected area	(sq.km.) by flood depth (in m.)	0.03-0.20	0.21-0.50	0.51-1.00	1.01-2.00	2.01-5.00	> 5.00	

ffected area				Ar	ea of affected	d barangay:	s in Dapitan C	ity (in sq. k	m.)			
km.) by flood epth (in m.)	Polo	Potol	Potungan	San Nicolas	San Pedro	San Vicente	Santa Cruz	Santo Niño	Sicayab Bocana	Sinonoc	Sulangon	Tamion
0.03-0.20	1.08	0.22	2.4	8.16	1.91	0.43	0.2	0.0059	0.89	1.31	1.28	6.85
0.21-0.50	0.53	0.057	0.12	0.66	0.27	0.65	0.07	0	0.031	0.098	0.87	0.19
0.51-1.00	0.13	0.11	0.11	0.51	0.56	0.15	0.016	0	0.0076	0.42	0.63	0.16
1.01-2.00	0.0014	0.07	0.17	0.35	0.19	0.043	0.0022	0	0.0015	0.65	0.04	0.13
2.01-5.00	0.0087	0	0.88	0.16	0.012	0.019	0	0	0	0.011	0.023	0.073
> 5.00	0.0003	0	0.48	0	0	0	0	0	0	0	0	0.036

102

For the Municipality of La Libertad, with an area of 66.24 square kilometers, 13.57% will experience flood levels of less 0.20 meters. 0.97% of the area will experience flood levels of 0.21 to 0.50 meters while 0.86%, 0.96%, 1.30%, and 0.80% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 53are the affected areas in square kilometers by flood depth per barangay.

Affected area (sq.km.)	Area	of affected bar	angays in La Li	bertad (in sq.	km.)
by flood depth (in m.)	La Union	Mauswagon	New Carcar	Poblacion	Singaran
0.03-0.20	2.19	4.51	0.37	0.75	1.17
0.21-0.50	0.13	0.32	0.012	0.047	0.13
0.51-1.00	0.11	0.27	0.01	0.045	0.14
1.01-2.00	0.12 0.27 0.0		0.015	0.064	0.16
2.01-5.00	0.26	0.28	0.0063	0.075	0.24
> 5.00	0.36	0.15	0.00022	0.012	0.0027

Table 53. Affected Areas in La Libertad, Zamboanga del Norte during 100-Year Rainfall Return Period

Figure 87. Affected Areas in La Libertad, Zamboanga del Norte during 100-Year Rainfall Return Period

For the Municipality of Pinan, with an area of 135.87 square kilometers, 0.15% will experience flood levels of less 0.20 meters. 0.01% of the area will experience flood levels of 0.21 to 0.50 meters while 0.009%, 0.002%, and 0.0002% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, and more than 2 meters, respectively. Listed in Table 54are the affected areas in square kilometers by flood depth per barangay.

Table FA	Affected	Aroos in Dinon	Zambaanga da	l Norto during	100 Voor	Dainfall	Doturn	Dariad
1able 54.	Allected	Areas in Pinan	. Zamooanga de	i Norie during	TUU-rear	Rainian	Return	Period
			,					

Affected area (sq.km.)	Area of affected baran- gays in Pinan (in sq. km.)
by nood depth (in m.)	Adante
0.03-0.20	0.21
0.21-0.50	0.019039
0.51-1.00	0.004536
1.01-2.00	0.0007
2.01-5.00	0
> 5.00	0

Figure 88. Affected Areas in Pinan, Zamboanga del Norte during 100-Year Rainfall Return Period

For the Municipality of Polanco, with an area of 86.49 square kilometers., 0.58% will experience flood levels of less 0.20 meters. 0.07% of the area will experience flood levels of 0.21 to 0.50 meters while 0.06%, 0.03%, and 0.006% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, and more than 2 meters, respectively. Listed in Table 55 are the affected areas in square kilometers by flood depth per barangay.

Affected area (sq.km.) by	Area of affected barangays in Polanco (in sq. km.)
	San Miguel
0.03-0.20	0.79
0.21-0.50	0.091
0.51-1.00	0.078
1.01-2.00	0.047
2.01-5.00	0.0087
> 5.00	0

Table 55. Affected Areas in Polanco, Zamboanga del Norte during 100-Year Rainfall Return Period

Figure 89. Affected Areas in Polanco, Zamboanga del Norte during 100-Year Rainfall Return Period

For the Municipality of Rizal, with an area of 61.97 square kilometers, 28.71% will experience flood levels of less 0.20 meters. 1.41% of the area will experience flood levels of 0.21 to 0.50 meters while 1.27%, 1.53%, 1.36%, and 0.44% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 56 are the affected areas in square kilometers by flood depth per barangay.

-	σ	
	0	
	Ξ	
	e	
	-	
	5	
	Ξ	
	긄	
	Å	
	_	
-	_	
ç	10	
	\subseteq	
	σ	
(r	
	۲	
	g	
	٣	
1	4	
2	ĸ	
	ŭ	
	h	
	ã	
•	Ξ	
	5	
-	ō	
	aر	
	٣	
	5	
	ž	
1	_	
	b	
-	_	
	0	
	o ø	
	gao	
	inga c	
	Danga C	
	ooanga c	
_	nboanga c	
-	amboanga c	
-	Zamboanga c	
-	. Zamboanga c	
-	al. Zamboanga c	
-	izal. Zamboanga c	
-	Rizal. Zamboanga c	
	n Rizal. Zamboanga c	
	in Rizal. Zamboanga c	
	is in Rizal, Zamboanga c	
	eas in Rizal. Zamboanga c	
	reas in Rizal, Zamboanga c	
	Areas in Rizal. Zamboanga c	
	d Areas in Rizal, Zamboanga c	
-	ed Areas in Rizal. Zamboanga c	
	tted Areas in Rizal. Zamboanga c	
-	ected Areas in Rizal, Zamboanga c	
	ttected Areas in Rizal. Zamboanga c	
	Affected Areas in Rizal, Zamboanga c	
	. Affected Areas in Rizal. Zamboanga c	
	6. Attected Areas in Rizal, Zamboanga c	
	56. Attected Areas in Rizal, Zamboanga c	
	e 56. Attected Areas in Rizal, Zamboanga c	
	ole 56. Affected Areas in Rizal. Zamboanga c	
	able 56. Attected Areas in Rizal. Zamboanga c	

Affected area (sq.km.)				Area of affected b	arangays in Rizal	(in sq. km.)			
by flood depth (in m.)	Balubohan	Birayan	Damasing	East Poblacion	La Esperanza	Mabuhay	Mitimos	Nangcaan	Napilan
0.03-0.20	0.17	1.94	0.11	0.82	2.47	0.21	0.95	1.67	1.04
0.21-0.50	0.003	0.13	0.003	0.05	0.14	0.012	0.041	0.066	0.059
0.51-1.00	0	0.13	0.0003	0.044	0.18	0.0042	0.044	0.077	0.05
1.01-2.00	0	0.13	0	0.033	0.23	0.0012	0.047	0.13	0.065
2.01-5.00	0.0001	0.042	0	0.046	0.24	0	0.043	0.14	0.096
> 5.00	0	0	0	0	0.022	0	0.000083	0.1	0.052

Affected area (sq.				Area of affecte	d barangay	s in Rizal (in sq. k	m.)		
km.) by flood depth (in m.)	Nasipang	New Dapitan	Nilabo	North Mapang	Rizalina	San Roque	South Mapang	Tolon	West Poblacion
0.03-0.20	0.7	0.82	2.98	0.042	7.13	5.29	1.83	2.56	0.97
0.21-0.50	0.026	0.039	0.16	0.0015	0.38	0.23	0.098	0.099	0.059
0.51-1.00	0.013	0.032	0.12	0.001	0.26	0.31	0.086	0.077	0.05
1.01-2.00	0.0044	0.043	0.082	0.0012	0.26	0.47	0.095	0.085	0.033
2.01-5.00	0.0002	0.11	0.027	0.0001	0.21	0.46	0.071	0.096	0.012
> 5.00	0	0.086	0.0002	0	0.0024	0.19	0.026	0.052	0.0001

For the Municipality of Sapang Dalaga, with an area of 85.68 square kilometers, 4.88% will experience flood levels of less 0.20 meters. 0.21% of the area will experience flood levels of 0.21 to 0.50 meters while 0.18%, 0.19%, 0.18%, and 0.02% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 57 are the affected areas in square kilometers by flood depth per barangay.

Affected area (sq.km.)	Area of af	fected baranga	ays in Sapa	ng Dalaga (in sq	. km.)
by flood depth (in m.)	Agapito Yap, Sr.	Boundary	Casul	El Paraiso	Poblacion
0.03-0.20	0.2	2.24	0.72	0.27	0.75
0.21-0.50	0.007	0.1	0.012	0.01	0.047
0.51-1.00	0.0034	0.092	0.0052	0.0091	0.045
1.01-2.00	0.0053	0.082	0.002	0.01	0.064
2.01-5.00	0.006	0.071	0.0007	0.0037	0.075
> 5.00	0.0016	0	0	0	0.012

Table 57. Affected Areas in Sapang Dalaga, Misamis Occidental during 100-Year Rainfall Return Period

Figure 91. Affected Areas in Sapang Dalaga, Misamis Occidental during 100-Year Rainfall Return Period

For the Municipality of Sibutad, with an area of 75.68 square kilometers, 46.83% will experience flood levels of less 0.20 meters. 2.21% of the area will experience flood levels of 0.21 to 0.50 meters while 2.64%, 4.18%, 3.38%, and 0.66% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 58are the affected areas in square kilometers by flood depth per barangay.

	Sipaloc	5.02	0.3	0.42	0.6	0.46	0.0036
	Sibuloc	1.53	0.11	0.18	0.46	0.57	0.018
	Poblacion	0.75	0.047	0.045	0.064	0.075	0.012
	Oyan	3.49	0.08	0.055	0.059	0.21	0.15
	Minlasag	3.24	0.19	0.17	0.2	0.23	0.008
	Marapong	3.44	0.16	0.24	0.32	0.2	0.19
	Magsaysay	5.52	0.24	0.15	0.16	0.058	0.0006
	Libay	0.47	0.017	0.0041	0.0002	0	0
sq. km.)	Kanim	0.21	0.0047	0.0007	0.0002	0	0
Sibutad (in	Delapa	3	0.15	0.35	0.74	0.39	0.0009
rangays in 3	Calube	1.41	0.053	0.028	0.005	0	0
affected ba	Calilic	4.39	0.18	0.13	0.14	0.076	0
Area of	Bagacay	2.97	0.13	0.23	0.43	0.29	0.12
Affected area	(sq.km.) by flood depth (in m.)	0.03-0.20	0.21-0.50	0.51-1.00	1.01-2.00	2.01-5.00	> 5.00

Table 58. Affected Areas in Sibutad, Zamboanga del Norte during 100-Year Rainfall Return Period

Among the barangays in the City of Dapitan, Barcelona is projected to have the highest percentage of area that will experience flood levels at 6.07%. Meanwhile, Diwa-An posted the second highest percentage of area that may be affected by flood depths at 5.74%.

Among the barangays in the Municipality of La Libertad, Mauswagon is projected to have the highest percentage of area that will experience flood levels at 8.75%. Meanwhile, La Union posted the second highest percentage of area that may be affected by flood depths at 4.80%.

Among the barangays in the Municipality of Pinan, only Adante is projected to experience flood levels at a percentage of 0.18%.

Among the barangays in the Municipality of Polanco, only San Miguel is projected to experience flood levels at a percentage of 0.75%.

Among the barangays in the Municipality of Rizal, Rizalina is projected to have the highest percentage of area that will experience flood levels at 13.31%. Meanwhile, San Roque posted the second highest percentage of area that may be affected by flood depths at 11.23%.

Among the barangays in the Municipality of Sapang Dalaga, Boundary is projected to have the highest percentage of area that will experience flood levels at 3.02%. Meanwhile, Poblacion posted the second highest percentage of area that may be affected by flood depths at 1.16%.

Among the barangays in the Municipality of Sibutad, Sipaloc is projected to have the highest percentage of area that will experience flood levels at 8.98%. Meanwhile, Magsaysay posted the second highest percentage of area that may be affected by flood depths at 8.10%.

Moreover, the generated flood hazard maps for the Dapitan Floodplain were used to assess the vulnerability of the educational and medical institutions in the floodplain. Using the flood depth units of PAG-ASA for hazard maps - "Low", "Medium", and "High" - the affected institutions were given their individual assessment for each Flood Hazard Scenario (5 yr, 25 yr, and 100 yr).

	Area	Covered in	sq. km.
Warning Level	5 year	25 year	100 year
Low	13.93	14.31	13.77
Medium	15.25	20.66	22.75
High	8.31	17.03	22.85
Total	37.49	52.00	59.37

Table 59. Area covered by each warning level with respect to the rainfall scenario

Of the 121 identified Education Institutions in Dapitan Floodplain, 11 schools were assessed to be exposed to the low-level flooding during a 5-year scenario while eight (8) schools were assessed to be exposed to medium-level flooding and three (3) schools were assessed to be exposed to high-level flooding in the same scenario. In the 25-year scenario, 18 schools were assessed to be exposed to the low-level flooding while nine (9) schools were assessed to be exposed to medium-level flooding and nine (9) schools were assessed to be exposed to high-level flooding in the same scenario. For the 100-year scenario, 17 schools were assessed for low-level flooding and 10 schools for medium-level flooding. In the same scenario, 14 schools were assessed to be exposed to high-level flooding. See Annex 12 for a detailed enumeration of schools inside Dapitan Floodplain.

Of the 28 identified Medical Institutions in Dapitan Floodplain, three were assessed to be exposed to the Low level flooding during a 5-year scenario while three were assessed to be exposed to Medium level flooding in the same scenario. In the 25-year scenario, three were assessed to be exposed to the Low level flooding while two were assessed to be exposed to Medium level flooding and one school was

assessed to be exposed to High level flooding in the same scenario. For the 100-year scenario, three schools were assessed for Low level flooding and one for Medium level flooding. In the same scenario, two were assessed to be exposed to High level flooding. See Annex 13 for a detailed enumeration of medical institutions inside Dapitan Floodplain.

5.11 Flood Validation

In order to check and validate the extent of flooding in different river systems, there is a need to perform validation on survey work. Field personnel gathered secondary data regarding flood occurrences in the respective areas within the major river systems in the Philippines.

From the flood depth maps produced by Phil-LiDAR 1 Program, multiple points representing the different flood depths for different scenarios are identified for validation.

The validation personnel went to the specified points identified in the river basin and gathered data regarding the actual flood level in each location. Data gathering was done through a local DRRM office to obtain maps or situation reports about the past flooding events or interview of some residents with knowledge of or have had experienced flooding in a particular area.

The actual data from the field were compared to the simulated data to assess the accuracy of the Flood Depth Maps produced and to improve on what is needed. The points in the flood map versus its corresponding validation depths are shown in Figure 94.

The flood validation consists of 168 points randomly selected all over the Dapitan Floodplain. It has an RMSE value of 0.44.

Figure 93. Validation points for 5-year Flood Depth Map of Dapitan Floodplain

Figure 94 . Flood map depth vs actual flood depth

Actual Flood			Modeled	Flood Depth (m)		
Depth (m)	0-0.20	0.21-0.50	0.51-1.00	1.01-2.00	2.01-5.00	> 5.00	Total
0-0.20	83	10	2	0	2	0	97
0.21-0.50	41	8	4	0	0	0	53
0.51-1.00	9	2	2	0	0	0	13
1.01-2.00	2	3	0	0	0	0	5
2.01-5.00	0	0	0	0	0	0	0
> 5.00	0	0	0	0	0	0	0
Total	135	23	8	0	2	0	168

Table 60. Actual Flood Depth vs Simulated Flood Depth in Dapitan River Basin

The overall accuracy generated by the flood model is estimated at 55.36%, with 93 points correctly matching the actual flood depths. In addition, there were 57 points estimated one level above and below the correct flood depths while there were 14 points and 4 points estimated two levels above and below, and three or more levels above and below the correct flood. A total of 18 points were overestimated while a total of 57 points were underestimated in the modelled flood depths of Dapitan.

Table 61. Summary	of Accuracy	Assessment in	Dapitan Rive	r Basin Survey
-------------------	-------------	---------------	--------------	----------------

	No. of Points	%
Correct	93	55.36
Overestimated	18	10.71
Underestimated	57	33.93
Total	168	100

REFERENCES

Ang M.O., Paringit E.C., et al. 2014. DREAM Data Processing Component Manual. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Balicanta L.P., Paringit E.C., et al. 2014. DREAM Data Validation Component Manual. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Brunner, G. H. 2010a. HEC-RAS River Analysis System Hydraulic Reference Manual. Davis, CA: U.S. Army Corps of Engineers, Institute for Water Resources, Hydrologic Engineering Center.

Lagmay A.F., Paringit E.C., et al. 2014. DREAM Flood Modeling Component Manual. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Paringit E.C, Balicanta L.P., Ang, M.O., Sarmiento, C. 2017. Flood Mapping of Rivers in the Philippines Using Airborne Lidar: Methods. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Sarmiento C., Paringit E.C., et al. 2014. DREAM Data Acquisition Component Manual. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

UP TCAGP 2016, Acceptance and Evaluation of Synthetic Aperture Radar Digital Surface Model (SAR DSM) and Ground Control Points (GCP). Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

ANNEXES

Annex 1. Technical Specifications of the LiDAR Sensors used in the Dapitan **Floodplain Survey**

1. Pegasus Sensor

Figure A-1.1. Pegasus Sensor.

Parameter	Specification
Operational envelope (1,2,3,4)	150-5000 m AGL, nominal
Laser wavelength	1064 nm
Horizontal accuracy (2)	1/5,500 x altitude, 1σ
Elevation accuracy (2)	< 5-20 cm, 1σ
Effective laser repetition rate	Programmable, 100-500 kHz
Position and orientation system	POS AV ™AP50 (OEM)
Scan width (FOV)	Programmable, 0-75 °
Scan frequency (5)	Programmable, 0-140 Hz (effective)
Sensor scan product	800 maximum
Beam divergence	0.25 mrad (1/e)
Roll compensation	Programmable, ±37° (FOV dependent)
Vertical target separation distance	<0.7 m
Range capture	Up to 4 range measurements, including 1st, 2nd, 3rd, and last returns
Intensity capture	Up to 4 intensity returns for each pulse, including last (12 bit)
Image capture	5 MP interline camera (standard); 60 MP full frame (optional)
Full waveform capture	12-bit Optech IWD-2 Intelligent Waveform Digitizer
Data storage	Removable solid state disk SSD (SATA II)
Power requirements	28 V, 800 W, 30 A

	-			6.0	~
lable A-1.1.	Parameters	and Sp	ecification	of Pegasi	is Sensor
		0 e p	00	000000	

1 Target reflectivity ≥20% 2 Dependent on selected operational parameters using nominal FOV of up to 40° in standard atmospheric conditions with 24-km visibility 3 Angle of incidence ≤20° 4 Target size ≥ laser footprint5 Dependent on system configuration

Dimensions and weight

Operating Temperature Relative humidity

Sensor: 630 x 540 x 450 mm; 65 kg; Control rack: 650 x 590 x 490 mm; 46 kg

-10°C to +35°C

0-95% non-condensing

Parameter	Specification
	Camera Head
Sensor type	60 Mpix full frame CCD, RGB
Sensor format (H x V)	8, 984 x 6, 732 pixels
Pixel size	6μm x 6 μm
Frame rate	1 frame/2 sec.
FMC	Electro-mechanical, driven by piezo technology (patented)
Shutter	Electro-mechanical iris mechanism 1/125 to 1/500++ sec. f-stops: 5.6, 8, 11, 16
Lenses	50 mm/70 mm/120 mm/210 mm
Filter	Color and near-infrared removable filters
Dimensions (H x W x D)	200 x 150 x 120 mm (70 mm lens)
Weight	~4.5 kg (70 mm lens)
	Controller Unit
Computer	Mini-ITX RoHS-compliant small-form-factor embedded computers with AMD TurionTM 64 X2 CPU 4 GB RAM, 4 GB flash disk local storage IEEE 1394 Firewire interface
Removable storage unit	~500 GB solid state drives, 8,000 images
Power consumption	~8 A, 168 W
Dimensions	2U full rack; 88 x 448 x 493 mm
Weight	~15 kg
Image	e Pre-Processing Software
Capture One	Radiometric control and format conversion, TIFF or JPEG
Image output	8,984 x 6,732 pixels 8 or 16 bits per channel (180 MB or 360 MB per image)

Table A-1.2. Parameters and Specification of D-8900 Aerial Digital Camera

Annex 2. NAMRIA Certification of Reference Points Used in the LIDAR Survey

1. ZGN-138

Location Description

The station is marked by an 4" copper nail with its head flushed at the center of an cement putty on a concrete open canal with inscription "ZGN-138, 2009 NAMRIA".Located at brgy. Taga katipunan zamboanga del norte. The monument is situated inside taga central school 10 meters from the main gate going north west 6 meters from the flag pole going south east.

 Requesting Party:
 PHIL-LIDAR I

 Purpose:
 Reference

 OR Number:
 8075910 I

 T.N.:
 2014-2584

RUEL DM. BELEN, MNSA Director, Mapping And Geodesy Branch (7

NAMIRA OFFICES: Main : Lawton Avenue, Fort Bonifacio, 1634 Taguig City, Philippines Tel. No.: (632) 810-4831 to 41 Branch : 421 Barraca SI. San Nicolas, 1010 Manila, Philippines, Tel. No. (632) 241-3494 to 98 www.namria.gov.ph

ISO 9001: 2008 CERTIFIED FOR MAPPING AND GEOSPATIAL INFORMATION MANAGEMENT

Figure A-2.1. ZGN-138

2. **ZGN-60**

Republic of the Philippines Department of Environment and Natural Resources NATIONAL MAPPING AND RESOURCE INFORMATION AUTHORITY

March 08, 2016

CERTIFICATION

To whom it may concern:

This is to certify that according to the records on file in this office, the requested survey information is as follows -

		Province: ZAMB	OANGA DEL NORTE			
		Station N	ame: ZGN-60			
		Order	2nd			
Island: MIND Municipality: F	ANAO POLANCO	Barangay: MSL Eleval	SAN PEDRO			
		PRS	92 Coordinates			
Latitude: 8º	24" 13.24705"	Longitude:	123° 23' 43.64096"	Ellipsoid	al Hgt:	78.37100 m.
		WGS	84 Coordinates			
Latitude: 8º	24' 9.57149"	Longitude:	123° 23' 49.06324"	Ellipsoid	al Hgt:	143.02900 m.
		PTM / PI	RS92 Coordinates			
Northing: 92	9214.294 m.	Easting:	543551.053 m.	Zone	4	
		UTM / PI	RS92 Coordinates			
Northing: 92	28,889.05	Easting:	543,535.81	Zone:	51	

ZGN-60

Location Description

It is situated on the sidewalk of Layawan Bridge. It is located near the SW edge of the bridge from its center. It is about 15 m. NNE of Barbaso Family residence and 300 m. SW of ZGN-61. Mark is the head of a 4 in. copper nail embedded and centered on a 30 cm. x 30 cm. cement putty, with inscriptions "ZGN-60 2005 NAMRIA LEP-9".

Requesting Party: UP DREAM Purpose: OR Number. T.N.:

Reference 80899791 2016-0567

RUEL DM. BELEN, MNSA Director, Mapping And Geodesy Branch

NAMBA OFFICES Main: Lawlon Avenue, Port Banilado, HEM Tagaig Gity, Philippines – Ted. No.: (KB) 418–4631 to 41 Branch: 42H Banzas B.: Sae Nicolae, 1959 Manila, Philippines, Tel. Na. (KB) 24H-46H to 68 www.namria.gov.ph

ISO 3001: 2008 CERTIFIED FOR MAPPING AND GEDSPATIAL INFORMATION NAMAGEMENT

Figure A-2.2. ZGN-60

3. **MSW-05**

Republic of the Philippines Department of Environment and Natural Resources NATIONAL MAPPING AND RESOURCE INFORMATION AUTHORITY

December 01, 2016

CERTIFICATION

To whom it may concern:

This is to certify that according to the records on file in this office, the requested survey information is as follows -

	Province: MISAMIS OCCIDENTAL		
	Station Name: MSW-5		
	Order: 2nd		
Island: MINDANAO	Barangay: POBLACION		
Municipality: SAPANG DALAGA	MSL Elevation:		
	PRS92 Coordinates		
Latitude: 8º 32' 35.68185"	Longitude: 123° 33' 56.01853"	Ellipsoidal Hgt:	113.48100 m.
	WGS84 Coordinates		
Latitude: 8º 32' 31.98501"	Longitude: 123° 34' 1.42685"	Ellipsoidal Hgt:	178.27400 m.
	DTM (DD000 Que will not a		
	PTM / PRS92 Coordinates		
Northing: 944671.948 m.	Easting: 562262.537 m.	Zone: 4	
	UTM / PPS02 Coordinates		
Northing: 944.341.30	Easting: 562.240.75	Zone: 51	
110101111g. 0-11,041.00	Loomig. Col, Millio		

Location Description

MSW-5

MSVV-3 From Dipolog City, travel along the Nat'l. Highway going to Calamba until reaching Sapang Dalaga Proper. Station is located inside Sapang Dalaga Mun. Hall compound, beside the fence near the basketball court. It is about 50 m. from the DAR office and 100 m. from the mun. hall. Mark is the head of a 4 in. copper nail embedded on a 30 cm. x 30 cm. concrete block, with inscriptions "MSW-5 2007 NAMRIA".

Requesting Party: PHIL-LIDAR 1 Purpose: Reference OR Number: FREE ISSUE 2016-2168 T.N.:

1 (avs W RUEL DM. BELEN, MNSA

Director, Mapping And Geodesy Branch

NAMRIA OFFICES: Man : Lawton Avenue, Fort Bonifacio, 1834 Taguig City, Philippines Tel. No.: (632) 810-4831 to 41 Branch : 421 Barrace St, San Nicolas, 1010 Mainila, Philippines, Tel. No. (632) 241-3494 to 98 www.namria.gov.ph

ISO 9001: 2008 CERTIFIED FOR MAPPING AND GEOSPATIAL INFORMATION MANAGEMENT

Figure A-2.3. MSW-05

4. ZN-53

Republic of the Philippines Department of Environment and Natural Resources NATIONAL MAPPING AND RESOURCE INFORMATION AUTHORITY

October 30, 2014

CERTIFICATION

To whom it may concern:

This is to certify that according to the records on file in this office, the requested survey information is as follows -

	Province: ZAMBOANGA DEL NORTE Station Name: ZN-53	
Island: Mindanao	Municipality: KATIPUNAN	Barangay: DAANGLUNGSOD
Elevation: 10.0561 +/- 0.00 m.	Order: 1st Order	Datum: Mean Sea Level
Latitude:	Longitude:	

Location Description

ZN-53

Along Dipolog Liloy National Road. The station is located at the compound of Taga Central School, near the flagpole and about 50 meters northwest of the centerline of the road. Mark is the head of a 4" copper nail set on a dsrilled hole and cemented flushed on top of 15cm x 15cm cement putty with inscription " ZN-53 2008 NAMRIA".

Requesting Party:	PHIL-LIDAR I
Purpose:	Reference
OR Number:	8075910 I
T.N.:	2014-2589

RUEL DM. BELEN, MNSA Director, Mapping And Geodesy Branch 0

NAMRIA OFFICES: Main : Lawion Avenue, Fort Bonifacio, 1634 Taguig City, Philippines Tei. No.: (632) 810-4831 to 41 Branch : 421 Barraca St. San Nicolas, 1010 Manila, Philippines, Tei. No. (632) 241-3494 to 98 www.namria.gov.ph

ISO 9001: 2008 CERTIFIED FOR MAPPING AND GEOSPATIAL INFORMATION MANAGEMENT

Figure A-2.4. ZN-53

Annex 3. Baseline Processing Reports of Control Points Used in the LIDAR Survey

			Processing	Summary							
Observation	From	То	Solution Type	H. Prec. (Meter)	V. Prec. (Meter)	Geodetic Az.	Ellipsoid Dist. (Meter)	∆Height (Meter)			
zgn 138 zn 53 am (B1)	zgn 138	zn 53 am	Fixed	0.001	0.002	344*25'59*	12.263	0.357			
zgn 138 zn 53 pm (82)	zgn 138	zn 53 pm	Fixed	0.003	0.004	344*25'44*	12.270	0.372			

Baseline Processing Report

Acceptance Summary

		,			
Processed	Passed	Flag	P	Fail	Þ
2	2	0		0	

Processing Summary

Observation	From	То	Solution Type	H. Prec. (Meter)	V. Prec. (Meter)	Geodetic Az.	Ellipsoid Dist. (Meter)	∆Height (Meter)
MSW-5 ZN-11 (B1)	MSW-6	ZN-11	Float	0.020	0.073	266"36'44"	8470.799	-93.731

	Acceptance	e Summary			
Processed	Passed	Flag	▶	Fail	1
1	1	0		0	

Vector Components (Mark to Mark)

From:	MSW-5					
	Grid	L	ocal		G	lade
Easting	662405.518 m	Latitude	N8"32'31.98501	Latitude		N8"32"31.98501"
Northing	944287.571 m	Longitude	E123*34'01.42685	Longitude		E123*34'01.42685*
Elevation	111.479 m	Height	178.274 n	Height		178.274 m
Τα:	ZN-11					
	Grid	U	ocal		G	lade
Easting	653963.442 m	Latitude	N8*32*15.58462	Latitude		N8*32*15.58462*
Northing	943772.319 m	Longitude	E123°29'24.92624	Longitude		E123°29'24.92624*
Elevation	18.000 m	Height	84,543 n	Height		84.543 m
Vector						
ΔEasting	-8452.0	76 m NS Fwd Azimuth	1	266°35'44"	ΔX	7058.852 m
∆Northing	-515.2	52 m Ellipsoid Dist.		8470.799 m	ΔY	4655.796 m
∆Elevation	-93.4	79 m AHeight		-93.731 m	ΔZ	-512.194 m

Standard Errors

Vector errors;					
σ ΔEasting	0.008 m	σ NS fwd Azimuth	0°00'00"	σΔX	0.023 m
σ ∆Northing	0.008 m	or Ellipsoid Dist.	0.008 m	σΔΥ	0.030 m
σ ΔElevation	0.037 m	σ ΔHeight	0.037 m	σΔZ	0.010 m

Aposteriori Covariance Matrix (Meter*)

	x	Y	Z
х	0.0005116012		
Y	-0.0006225709	0.0009222780	
z	-0.0001175407	0.0001737952	0.0000909524

Annex 4. The LIDAR Survey Team Composition

Data Acquisition Component Sub-Team	Designation	Name	Agency/ Affiliation
PHIL-LIDAR 1	Program Leader	ENRICO C. PARINGIT, D.ENG	UP-TCAGP
Data Acquisition Component Leader	Data Component Project Leader – I	ENGR. CZAR JAKIRI SARMIENTO	UP-TCAGP
	Chief Science Research Specialist (CSRS)	ENGR. CHRISTOPHER CRUZ	UP-TCAGP
Survey Supervisor	Supervising Science	LOVELY GRACIA ACUÑA	UP-TCAGP
Survey Supervisor	Research Specialist (Supervising SRS)	LOVELYN ASUNCION	UP-TCAGP
	FIELD	TEAM	
	Senior Science Research Specialist (SSRS)	JASMINE ALVIAR	UP-TCAGP
		ENGR. GEROME HIPOLITO	UP-TCAGP
	SSRS	PAULINE JOANNE ARCEO	UP-TCAGP
	Research Associate (RA)	ENGR. RENAN PUNTO	UP-TCAGP
	RA	ENGR. KENNETH QUISADO	UP-TCAGP
LiDAR Operation	RA	ENGR. IRO NIEL ROXAS	UP-TCAGP
	RA	ENGR. GRACE SINADJAN	UP-TCAGP
	RA	KRISTINE ANDAYA	UP-TCAGP
	RA	JERIEL PAUL ALAMBAN, GEOL	UP-TCAGP
	RA	ENGR. GEF SORIANO	UP-TCAGP
	RA	FRANK NICOLAS ILEJAY	UP-TCAGP
Ground Survey, Data	RA	JASMIN DOMINGO	UP-TCAGP
Download and Transfer	RA	MERLIN FERNANDO	UP-TCAGP
	Airborne Security	SSG. JAYCO MANZANO	PHILIPPINE AIR FORCE (PAF)
	Airborne Security	SSG. GERONIMO BALICOW III	PAF
	Airborne Security	TSG. JOSE RONALD MONTENEGRO	PAF
LiDAR Operation		CAPT. BRYAN DONGUINES	ASIAN AEROSPACE CORPORATION (AAC)
	Pilot	CAPT. SHERWIN CESAR ALFONSO	AAC
		CAPT. ERNESTO SAYSAY JR.	AAC
		CAPT. ANTON DAYO	AAC

Table A-4.1. The LIDAR Survey Team Composition

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

Image: barrier in the intervalue Operiod Operiod <t< th=""><th></th><th></th><th></th><th></th><th>808</th><th>N LAS</th><th></th><th></th><th></th><th>PICK DOLLARD</th><th></th><th></th><th>DALIE D</th><th>CATION (1)</th><th></th><th>PL DWT</th><th>PLAN.</th><th></th></t<>					808	N LAS				PICK DOLLARD			DALIE D	CATION (1)		PL DWT	PLAN.	
1004 3080 1004004870 Found 30 10	DATE	PLOPE NO.	AND NOISEN	RINSON	Deperor	POIL (Investig	Name	108	NAU VOI	PLANTAN LOOS	PANNE	CONTRACT	RAND RANK	Buside Gas	INCOLOR INCOLOR	Anna .	NR.	TOURSE .
3001 3110 3104 4001 201 40 10 201 40 10 10 400 40	19-04	2096P	18U089CMU82824	PECAGUS	8	ą	3.54	54	9.11	2	304	2	409	1	100	stor.	2	ZICHCHUM
3-0.01 31.19 undataset Fore 19 10 1	23.04	21119	ADDRESSES,	PROALUS	201	ą	12.4	962	28.5	2002	22	z	197	1ci	04	20104000	2	ZICHORNW
30-00 31-90 31-00 <th< td=""><td>29-00</td><td>2113P</td><td>10U-CRAEGEDA.</td><td>PERMANE</td><td>102</td><td>M</td><td>2</td><td>£</td><td>*98</td><td>88</td><td>-</td><td>2</td><td>181</td><td>101</td><td>0.11</td><td>48/STAURT</td><td>2</td><td>Z'DACIENT</td></th<>	29-00	2113P	10U-CRAEGEDA.	PERMANE	102	M	2	£	*98	88	-	2	181	101	0.11	48/STAURT	2	Z'DACIENT
30000 31170 0.0000301 FE0.001 1.0 <	19-04	2115P	100KGNOVGBOOK	PERMANE	181	Ē	979	-	315	115	81.0	1	131	RHI	192	101100	1	2-CHORAM
BCC 12.32 IL-MONCIENT Field 1.1	24-06	42112	(RUNNA297A)	PEGNOUS	NCN	217	123	ŝ	101	r,	12.4	a.	7.64	1920	145	405120		CONCINUE
Jack Jack <th< td=""><td>10-92</td><td>21259</td><td>(BL/09C293A</td><td>PEDNOUS</td><td>14</td><td>261</td><td>141</td><td>142</td><td>R</td><td>219</td><td>1LA</td><td>t</td><td>¥.0</td><td>1436</td><td>P</td><td>112/08/12/89</td><td>1</td><td>ZICACRAW</td></th<>	10-92	21259	(BL/09C293A	PEDNOUS	14	261	141	142	R	219	1LA	t	¥.0	1436	P	112/08/12/89	1	ZICACRAW
310c 2133 8600#6810, 02005 240 02 420 <	18-94	4/272	18UKB9TOA2968	Energia.	2.54	2	181	114	14		4/24	2	2.4	9	04	2011	5	LCALSAN
10-06 213/2 11.00070010 900401 240 11.0 1 <t< td=""><td>19-041</td><td>2133P</td><td>18UXHMFENDIA</td><td>SUBMER</td><td>2.06</td><td>Station</td><td>EON</td><td>-</td><td>1.51</td><td>96</td><td></td><td>2</td><td>2.3</td><td>110</td><td>1045</td><td>70/61/01/08</td><td>2</td><td>2.0ACMAN</td></t<>	19-041	2133P	18UXHMFENDIA	SUBMER	2.06	Station	EON	-	1.51	96		2	2.3	110	1045	70/61/01/08	2	2.0ACMAN
79:0: 213:7 18.0:003:0: 102 103 11.1 11.2 11.1 <	28-04	45512	101-1020-0010	PROVALI	802	TTONET	240	818	5	8	-	1	173	1001	041	u	2	ZIDACRAN
10:00 21630 16:00:05:04.0 10:00 10:00 216 10:0	29-Det	21379	181.47100 302A	PEGMILUS	100	453,050	de l	8	28.5	101	112	1	181	841	telli .	SUCREASED S	:	2.DACIMAN
1000 2169 %LOTGERIA 7ED043 13 14 227 213 16 713 16 713 16 713 16 713 71	31-Det	21459	1BLABBCSDAA	PEGAGUS	100	1116/034	0,11	ġ	48.0	x	22.4	3	-	-	telle	2	2	Z'ENCRAN
Mare 11:57 10:00:630:A Mean 1:3 1:3 1:0 1:3 1:0 1:3 1:0 1:3 1:0 1:3 1:0 1:3 1:0 1:3 1:0	1-Mov	1499	1BLK/10B004A	PEDMOUS	175	308	7.28	ġ	1.12	8	28.2	1	292	1845	148	1145	2	L'ONCIONN
0100 2160 18.0734310A nexuots 011 121 <	3-804	41215	18UC70C307A	PERMANE	2.29	10	112	8	-908-	50	1.82	2	111	163	24	я	,	D-Cadreere D-Cadreere
RNv 217P 1BL/00C131A PODALE 13 13 11 11 11 12 12 12 12 12 12 12 12 12 12 13 13 13 13 13 13 13 13 13 13 13 13 13 14 15 15 15 13	0.084	21690	1BUCT3ASTON.	2007034	101	-	111	8	5	2	816	5	213	143	805	8	2	ZICHCHANN
ative 336.0 Interstrated Production File 326 (11 112 12 12 12 12 12 12 12 12 12 12 12	BANN	21779	1BUC70C312A	POMAUS	273	R	64.9	8	512	1	411	2	6.51	8	84	100000	5	ZIDACRUN
Numerication Nu	1000	01815	VETENSION	PEGAStra		ñ	1.1	ġ.	2.4	2	-	z	4	10	0.6	COLUMN T	8	Z IDAGRAW
reation to a concernent of trapello Corto Boungat reation to a corto and a corto and a corto			Rented tem						Teleshind by									
HOZ / Lailly to Copy annets			Number of the second	HTON.					ant -	elo Co	d Bo	man						
			Sprein	L.	1				agreen -	tog	111	1 2014						

Figure A-5.1. Transfer Sheet for Dapitan Floodplain-A

	LOCATION	Z:IDACIRAW DATA	Z:IDACIRAW DATA	Z:IDACIRAW DATA	Z:IDACIRAW DATA	Z:IDACIRAW DATA	Z:\DAC\RAW DATA					
PLAN	KML	NA	NA	NA	NA	NA	NA					
FLIGHT	Actual	148/252/232	580/100/91/8 2	125/108/98/8 7/78/76	92/90/80/73	84/84/72/76/5 7	85/83					
on and a second	(OPLOG)	2KB	1KB	NA	NA	1KB	1KB					
TION(S)	Base Info (.txt)	2KB	2KB	1KB	1KB	2KB	2KB		116			
BASE STA	BASE STATION(S)	63.8 MB	59.6 MB	3.12 MB	44.4 MB	49.7 MB	65.9 MB		3/\$10			
	DIGITIZER	0.B	0.8	0.8	0.B	08	0.8		Bong			
	RANGE	24.4 GB	25.9 GB	21.1 GB	23.3	24.4 GB	26.5 GB	eceived by	lame AC osition ignature			
OC I NOISSI	FILE/CASI LOGS	NA	NA	NA	NA	NA	NA		211101			
-	MAGES/CASI	NA	22.5 GB	NA	311 MB	NA	NA					
	BOS	294 MB	298 MB	270 MB	273 MB	266 MB	305 MB					
	LOGS(MB)	11.9 MB	12 MB	11.4 MB	12.8 MB	12.5 MB	13.5 MB		e A			
AS	(ML (swath)	NA	NA	NA	NA	NA	NA	d from	R. Pund			
RAWL	Output LAS	2.29 GB	2.6 GB	1.89 GB	2.22 GB	10.3 MB	2.47 GB	Received	lame osition signature		 	
	SENSOR	Pegasus	Pegasus	Pegasus	Pegasus	Pegasus	Pegasus		21111001			
	MISSION NAME	1BLK76NO051A	1BLK69D052A	1BLK69AB053A	1BLK70B054A	1BLK73A055A	1BLK73BS057A					
	FLIGHT NO.	23116P	23120P	23124P	23128P	23132P	23140P					
	DATE	2/20/2016	9/21/2016	2/22/2016	2/23/2016	2/24/2016	2/26/2016					

Figure A-5.2. Transfer Sheet for Dapitan Floodplain-B

1-1-21

Figure A-5.3. Transfer Sheet for Dapitan Floodplain-C

	LOCATION	Z:\DAC\RAW	Z:\DAC\RAW	DATA	Z:\DAC\RAW DATA	Z:\DAC\RAW DATA	Z:IDACIRAW DATA]				
PLAN	KML	NA		W	NA	NA	NA					
FLIGHT	Actual	234	4 00	00.1	652	421	1.33			~		
ODEDATOD	(OPLOG)	1KB	ayt		1KB	1KB	1KB					
TION(S)	ase Info (.bd)	1KB	1KB		1KB	1KB	1KB					
BASE STA	BASE STATION(S) B	175	165		188	126	162		12 let			
	DIGITIZER	NA	NA		NA	NA	NA	d by	Bongal			
	RANGE	24.8	29.5		18	21.7	25.5	Receive	ame AC osition 35 ignature A			
MISSION LOG	FILE/CASI LOGS	NA	NA	1	NA	NA	274		2101001			
BAW	IMAGES/CASI	NA	NA		- WA	NA	25.1					
	POS	274	289	200	201	264	281					
	LOGS	11.2	12.2	0 40	0000	10	11.6					
LAS	KML (swath)	NA	NA	MM		NA	NA	d from	R. PUNT			
RAW	Output LAS	249	2.64	1.65		1.92	2.46	Receive	Vame		 	
CENCOD	GENOON	PEGASUS	PEGASUS	PEGASUS		PEGASUS	PEGASUS		-1-101			
MISSION NAME		LBLK69BC325 A	LBLK69BD326	BLK69E327A	BLK69AD329	A	BLK/3DE331 A					
FLIGHT NO.		23558P	23562P	23566P	1	235/4P	23582P					
DATE		ember 20, 2016	ember 21, 2016	imber 22, 2016	and actual and a	ember 24, 2016	ember 26, 2016					

Figure A-5.4. Transfer Sheet for Dapitan Floodplain-D

Annex 6. Flight Logs for the Flight Missions

1. Flight Log for 2111PMission

Figure A-6.1. Flight Log for Mission 2111P

Figure A-6.2. Flight Log for Mission 2113P

3. Flight Log for 2115P Mission

Figure A-6.3. Flight Log for Mission 2115P

Pilot: 0. DoNcurate 8 co-Pilot: P. 05 co-MID 0 Date: 6.0 2.6 12 Airport of Departure (3 Engine On: 14 Engine Off: 12 Airport of Departure (9 Weather 1.2 Successort P.0.64/6	9 Route: (Airport, City/Province):	Wilder Hikher ALL	During it i the contract to a	6 Aircraft Identification:
0 Date: 6.0. 24, 25 ld 12 Airport of Departure (3 Engine On: a :00 14 Engine Off: 9 Weather A: 00 Armarks:	(Airport, City/Province):			
3 Engine On: 9 Weather 0 Remarks: A UCATCENU FUGH		12 Airport of Arrival	(Airport, City/Province):	
9 Weather 0 Remarks: 6 Aurocatoput - PM GH ⁴	15 Total Engine Time: 8 29 485	16 Take off:	17 Landing:	18 Total Flight Time:
0 Remarks: Ruccercceur - PUGH+				
SUCCEPTURE TU CHT				
	· ·			
Acquisition Flight Approved by	uistiton Filight Certified by	Pitot-in-Coo	premu	Lider Operator
Signature.	A North Purch	FELDINOW B	DEDCA IMP	Signature over Printed Name

Figure A-6.4. Flight Log for Mission 2125P

5. Flight Log for 2145P Mission

Figure A-6.5. Flight Log for Mission 2145P
A TOTAL TOTAL TOTAL AND	ACA DAITMANALLI D.				Flight Log No.:
7 Pilot: C Altonso	8 Co-Pilot:). Pr(1P)	9 Route:	4 Type: VFR	5 Aircraft Type: Cesnna T206H	6 Aircraft Identification: RPC0127
10 Date: 2 21 2016	12 Airport of Departur Pagadian 72	e (Airport, City/Province): ambOandar del SUV	12 Airport of Arrival	Airport, City/Province):	
19 Weather	14 Engine Off:	15 Total Engine Time: 4+35	16 Take off: 8:17	17 Landing: 17 Landing: 12:42	18 Total Flight Time: 472.5
20 Flight Classification					
20.a Billable	20.b Non Billable	20.c Others	21 Remarks		
 Acquisition Flight Ferry Flight System Test Flight Calibration Flight 	 Aircraft Test Flight AAC Admin Flight Others: 	 UIDAR System Mair Aircraft Maintenan Phil-LIDAR Admin A 	itenance ce kctivities	successful flight	
22 Problems and Solutions			-		
Weather Problem System Problem Aircraft Problem Delta		÷			
O Plint Problem O Others:					
Acquisition Flight Approved by R. Addrow Signature over Phinted Name (End User Representative)	Acquisition Flight dert	fied by Pilot-ir 	- Altonuo II - Altonuo II re over Phinted Name	UDAR Operator POULINE DATINE ALCC Signature over Printed Name	Aircraft Mechanic/ LIDAR Technician アメ系

Figure A-6.6. Flight Log for Mission 23120P

7. Flight Log for 23124PMission

Figure A-6.7. Flight Log for Mission 23124P

Figure A-6.8. Flight Log for Mission 23558P

9. Flight Log for 23562PMission

Al IM Muddel: 105650 3 Mission Name: 4 Type: V Di. E. AKAY 9 Boute: 2 Alroot of Departure (Mipor) Gry/Province): 12 Alroot of A 2 Alroot of Departure (Mipor) Gry/Province): 12 Alroot of A 13 II 15 Total Engine Time: 16 Take off: 13 II 15 Total Engine Time: 16 Take off: 13 II 50.0 Others 0 4 2 A Ancatt Test Plight 0 110 AR System Maintenance Others: 0 Phil-1DAR Admin Activities	FR 5 Alrcraft Type: Cesnna 720611 rrival (Airport, Clty/Province): b(p0L0G 117 Landing: /3// emarks	l6 Aircraft Identification:
2 Auport of Departure (Airport, Gry/Province): 12 Airport of A 16 Diff Dipublic 16 Dipublic 0 17 Dipublic 0 18 Dipublic 0 19 Dipublic 0 10 Dipublic 0 11 Dipublic 0 12 Autor 0 13 Billahla 20.c Others Act Admin Fight 0 10 Differs: 0 Differs: 0 Differs: 0 Differs: 0	rrival (Almort, Chy/Province): D(p0L05 B42 171 and Ing: 131/ B42 emarks	
21 B. 20.c Others	emarks	18 Total Flight Time: $\partial d / \frac{1}{2}$ 1.9
Aircuti Teu Pilgit O IIDAR System Maintenance AAC Admin Filgitt O Aircraft Maintenance Othens: OPini-IIDAR Admin Activities		
(
Acquisition Flight Certified by Generating Total Rest Signature over Printed Name (PAF Appresentative)	LIDAR Operator Microsoft A. PERDANDO Signature over Printed Name	Alrcraft Mechanic/ IIDAR Technicia Signature over Printed Name

Figure A-6.9. Flight Log for Mission 23562P

10. Flight Log for 23574PMission

Figure A-6.10. Flight Log for Mission 23574P

Annex 7. Flight Status Reports

Table A-7.1. Flight Status Report

FLIGHT STATUS REPORT

Zamboanga del Norte

October22-November 31, 2014; February 21-22, 2016; November 21-22, 2016)

FLIGHT NO	AREA	MISSION	OPERATOR	DATE FLOWN	REMARKS
2111P	BLK 69B	1BLK69B295A	G. Sinadjan	Oct. 22, 2014	Surveyed BLK 69B, cloudy
2113P	BLK 69B	1BLK69B296A	I. Roxas	Oct. 23, 2014	Surveyed BLK 69 B, still cloudy
2115P	BLK 69ABD	1BLK6970A296B	G. Sinadjan	Oct. 23, 2014	Surveyed parts of BLK 69A, B, and D
2125P	BLK 69C	1BLK69C299A	I. Roxas	Oct. 26, 2014	Surveyed BLK 69C
2145P	BLK 69CB	1BLk69C304A	J. Alviar	Oct. 31, 2014	Surveyed BLk 69C, gaps in the middle due to clouds and terrain
23120P	BLK 69D	1BLK69D052A	PJ Arceo	Feb. 21, 2016	Encountered lost channel A. Completed BLK69D with voids due to cloud build up
23124P	BLK 69A, 69B	1BLK69AB053A	K Quisado	Feb. 22, 2016	Encountered lost channel A error several times. Surveyed fps over Dipolog, Zamboanga del Norte with voids due to cloud build up throughout the duration of the survey
23558P	DIPOLOG, PARO DAPITAN BLK 69B,69C	1BLK69BC325A	PJ Arceo, G Soriano	Nov. 20, 2016	Completed Dipolog and Paro Dapitan fp with voids due to build up and strong winds
23562P	DIPOLOG, PARO DAPITAN BLK 69B, 69D	1BLK69BD326A	PJ Arceo, JP Alamban	Nov. 21, 2016	Completed BLK69B and surveyed 69D with voids due to cloud build up
23574P	PARO DAPITAN BLK 69A, 69D	1BLK69AD329A	g soriano	Nov. 24, 2016	Surveyed BLK69A and voids over Paro Dapitan fp

SWATH PER FLIGHT MISSION

Flight No. : Area: Mission Name: Parameters:

2111P BLK 69B 1BLK69B295A Altitude: 1000m; Scan Frequency: 30; Scan Angle: 50

Figure A-7.1. Swath for Flight No. 2111P

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

Flight No. :2113PArea:BLK 69ABDMission Name:1BLK69B296AParameters:Altitude: 1000m; Scan Frequency: 30; Scan Angle: 50

Figure A-7.2. Swath for Flight No. 2113P

Flight No. :2115PArea:BLK 69DMission Name:1BLK69DBA296BParameters:Altitude: 1000m; Scan Frequency: 30; Scan Angle: 50

Figure A-7.3. Swath for Flight No. 2115P

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

Flight No. :2125PArea:BLK 69CMission Name:1BLK69C299AParameters:Altitude: 800m; Scan Frequency: 30; Scan Angle: 50

Figure A-7.4. Swath for Flight No. 2125P

Flight No. :2145PArea:BLK 69CBMission Name:1BLK69304AParameters:Altitude: 750m; Scan Frequency: 30; Scan Angle: 50

Figure A-7.5. Swath for Flight No. 2145P

Flight No. :23120PArea:BLK69DMission Name:1BLK69D052AParameters:Altitude: 1000m; Scan Frequency: 30; Scan Angle: 50

Figure A-7.6. Swath for Flight No. 23120P

Flight No. :23124PArea:BLK69 A, BMission Name:1BLK69AB053AParameters:Altitude: 1000m; Scan Frequency: 30; Scan Angle: 50

Figure A-7.7. Swath for Flight No. 23124P

Figure A-7.8. Swath for Flight No. 23558P

Flight No. :23562PArea:DIPOLOG AND PARO DAPITANMission Name:1BLK69BD326AParameters:Altitude: 1000m; Scan Frequency: 30; Scan Angle: 50

Figure A-7.9. Swath for Flight No. 23562P

Flight No. :23574PArea:PARO DAPITANMission Name:1BLK69AD329AParameters:Altitude: 700/1000m; Scan Frequency: 30; Scan Angle: 50

Figure A-7.10. Swath for Flight No. 23574P

Annex 8. Mission Summary Reports

Flight Area	Pagadian
Mission Name	69A
Inclusive Flights	23124P
Range data size	21.1
POS data size	270
Base data size	3.12
Image	n/a
Transfer date	March 10, 2016
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	No
Processing Mode (<=1)	Yes
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	2.6
RMSE for East Position (<4.0 cm)	2.2
RMSE for Down Position (<8.0 cm)	3.9
Boresight correction stdev (<0.001deg)	0.000371
IMU attitude correction stdev (<0.001deg)	0.000999
GPS position stdev (<0.01m)	0.0067
Minimum % overlap (>25)	0.25
Ave point cloud density per sq.m. (>2.0)	5.88
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	170
Maximum Height	621.53 m
Minimum Height	62.16 m
Classification (# of points)	
Ground	171,617,535
Low vegetation	150,341,707
Medium vegetation	241,301,262
High vegetation	720,916,233
Building	12,197,633
Orthophoto	No

Table A-8.1. Mission Summary Report for Mission 69A

Figure A-8.2. Smoothed Performance Metric Parameters

Figure A-8.3. Best Estimated Trajectory

Figure A-8.4. Coverage of LiDAR Data

Figure A-8.5. Image of data overlap

Figure A-8.6. Density map of merged LiDAR data

Figure A-8.7. Elevation difference between flight lines

lusie / 0.2. mission summary report	
Flight Area	Pagadian
Mission Name	69D
Inclusive Flights	23120P
Range data size	25.9
POS data size	298
Base data size	59.6
Image	n/a
Transfer date	March 10, 2016
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	No
Baseline Length (<30km)	No
Processing Mode (<=1)	No
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	4.5
RMSE for East Position (<4.0 cm)	2.6
RMSE for Down Position (<8.0 cm)	6.3
Boresight correction stdev (<0.001deg)	0.000249
IMU attitude correction stdev (<0.001deg)	0.002107
GPS position stdev (<0.01m)	0.0096
Minimum % overlap (>25)	45.89
Ave point cloud density per sq.m. (>2.0)	5.34
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	229
Maximum Height	415.32 m
Minimum Height	66.20 m
Classification (# of points)	
Ground	236,562,708
Low vegetation	178,296,202
Medium vegetation	347,228,341
High vegetation	954,090,523
Building	9,130,143
Orthophoto	No

Table A-8.2. Mission	Summary Repo	rt for Mission 69D
----------------------	--------------	--------------------

Figure A-8.9. Smoothed Performance Metric Parameters

Figure A-8.10. Best Estimated Trajectory

Figure A-8.11. Coverage of LiDAR Data

Figure A-8.12. Image of data overlap

Figure A-8.13. Density map of merged LiDAR data

Figure A-8.14. Elevation difference between flight lines

Flight Area	Dipolog
Mission Name	Blk69B
Inclusive Flights	2111P,2113P,2117P,2145P
Range data size	76.8 GB
POS	747 MB
Image	145.3 GB
Transfer date	November 19, 2014
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	Yes
Processing Mode (<=1)	Yes
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	1.3
RMSE for East Position (<4.0 cm)	1.7
RMSE for Down Position (<8.0 cm)	3.8
Boresight correction stdev (<0.001deg)	0.000230
IMU attitude correction stdev (<0.001deg)	0.001892
GPS position stdev (<0.01m)	0.0055
	-
Minimum % overlap (>25)	45.84%
Ave point cloud density per sq.m. (>2.0)	4.44
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	431
Maximum Height	583.31 m
Minimum Height	64.64 m
Classification (# of points)	
Ground	334,562,024
Low vegetation	335,327,811
Medium vegetation	532,124,060
High vegetation	552,692,726
Building	26,568,620
Orthophoto	Yes

Table A-8.3. Mission Summary Report for Mission Blk69B

Figure A-8.15. Solution Status

Figure A-8.16. Smoothed Performance Metric Parameters

Figure A-8.17. Best Estimated Trajectory

Figure A-8.18.Coverage of LiDAR data

Figure A-8.19. Image of data overlap

Figure A-8.20. Density map of merged LiDAR data

Figure A-8.21.Elevation difference between flight lines

Flight Area	Dipolog
Mission Name	Blk69C
Inclusive Flights	2125P
Range data size	15.4 GB
POS	211 MB
Image	32.0 GB
Transfer date	November 19, 2014
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	Yes
Processing Mode (<=1)	Yes
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	1.14
RMSE for East Position (<4.0 cm)	1.38
RMSE for Down Position (<8.0 cm)	2.8
Boresight correction stdev (<0.001deg)	0.000285
IMU attitude correction stdev (<0.001deg)	0.000756
GPS position stdev (<0.01m)	0.0074
Minimum % overlap (>25)	33.55%
Ave point cloud density per sq.m. (>2.0)	4.74
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	137
Maximum Height	578.40 m
Minimum Height	69.46 m
Classification (# of points)	
Ground	98,140,842
Low vegetation	88,616,617
Medium vegetation	171,027,483
High vegetation	145,166,407
Building	1,961,664
Orthophoto	Yes

Table A-8.4. Mission Summary Report for Mission Blk69C

Figure A-8.22. Solution Status

Figure A-8.23. Smoothed Performance Metric Parameters

Figure A-8.24. Best Estimated Trajectory

Figure A-8.25.Coverage of LiDAR data

Figure A-8.26.Image of data overlap

Figure A-8.27. Density map of merged LiDAR data

Figure A-8.28.Elevation difference between flight lines
Flight Area	Dipolog		
Mission Name	Blk69D		
Inclusive Flights	2113P,2115P		
Range data size	19.4 GB		
POS	216 MB		
Image	36.4 GB		
Transfer date	November 19, 2014		
Solution Status			
Number of Satellites (>6)	Yes		
PDOP (<3)	Yes		
Baseline Length (<30km)	Yes		
Processing Mode (<=1)	Yes		
Smoothed Performance Metrics (in cm)			
RMSE for North Position (<4.0 cm)	1.5		
RMSE for East Position (<4.0 cm)	1.3		
RMSE for Down Position (<8.0 cm)	3.9		
Boresight correction stdev (<0.001deg)	0.000258		
IMU attitude correction stdev (<0.001deg)	0.046864		
GPS position stdev (<0.01m)	0.0133		
Minimum % overlap (>25)	41.81%		
Ave point cloud density per sq.m. (>2.0)	3.39		
Elevation difference between strips (<0.20 m)	Yes		
Number of 1km x 1km blocks	227		
Maximum Height	710.92 m		
Minimum Height	64.75 m		
Classification (# of points)			
Ground	93,600,331		
Low vegetation	96,245,146		
Medium vegetation	182,172,712		
High vegetation	332,993,289		
Building	6,617,954		
Orthophoto	yes		

Table A-8.5. Mission Summary Report for Mission Bl

Figure A-8.29. Solution Status

Figure A-8.30. Smoothed Performance Metric Parameters

Figure A-8.31. Best Estimated Trajectory

Figure A-8.32. Coverage of LiDAR data

Figure A-8.33. Image of data overlap

Figure A-8.34.Density map of merged LiDAR data

Figure A-8.35. Elevation difference between flight lines

Flight Area	Dipolog			
Mission Name	Blk69B_supplement			
Inclusive Flights	23574P			
Range data size	21.7 GB			
POS data size	264 MB			
Base data size	126 MB			
Image	n/a			
Transfer date	December 6, 2016			
Solution Status				
Number of Satellites (>6)	Yes			
PDOP (<3)	Yes			
Baseline Length (<30km)	Yes			
Processing Mode (<=1)	Yes			
Smoothed Performance Metrics (in cm)				
RMSE for North Position (<4.0 cm)	1.038			
RMSE for East Position (<4.0 cm)	1.079			
RMSE for Down Position (<8.0 cm)	1.83			
Boresight correction stdev (<0.001deg)	0.000233			
IMU attitude correction stdev (<0.001deg)	0.000405			
GPS position stdev (<0.01m)	0.001			
Minimum % overlap (>25)	37.16 %			
Ave point cloud density per sq.m. (>2.0)	7.40			
Elevation difference between strips (<0.20	Yes			
m)				
Number of the vither blocks				
Number of 1km x 1km blocks	95			
	513.93 M			
	59.73 m			
Classification (# of points)				
Cround	42.245.295			
	45,245,265			
Medium vegetation	101 022 114			
High vegetation	101,522,114			
	1 821 120			
Orthophoto	1,021,130			
Processed by	INU Engr Sheila-Maye Santillan, Engr Joyollo Anioanotto Canlac			
Minimum % overlap (>25) Ave point cloud density per sq.m. (>2.0) Elevation difference between strips (<0.20 m)	37.16 % 7.40 Yes 95 613.93 m 59.73 m 43,245,285 30,492,688 101,922,114 380,153,983 1,821,130 No Engr. Sheila-Maye Santillan, Engr. Jovelle Anjeanette Canlas			

Table A-8.6. Mission Summary Report for Mission Blk69B_supplement

Figure A-8.36. Solution Status

Figure A-8.37. Smoothed Performance Metric Parameters

Figure A-8.38. Best Estimated Trajectory

Figure A-8.39. Coverage of LiDAR Data

Figure A-8.40. Image of data overlap

Figure A-8.41. Density map of merged LiDAR data

Figure A-8.42. Elevation difference between flight lines

Flight Area	Dipolog			
Mission Name	Bik69B			
Inclusive Flights	23558P			
Range data size	24.8 GB			
POS data size	274 MB			
Base data size	175 MB			
Image	n/a			
Transfer date	December 6, 2016			
Solution Status				
Number of Satellites (>6)	Yes			
PDOP (<3)	Yes			
Baseline Length (<30km)	Yes			
Processing Mode (<=1)	No			
-				
Smoothed Performance Metrics (in cm)				
RMSE for North Position (<4.0 cm)	1.329			
RMSE for East Position (<4.0 cm)	1.723			
RMSE for Down Position (<8.0 cm)	3.136			
Boresight correction stdev (<0.001deg)	0.000167			
IMU attitude correction stdev (<0.001deg)	0.000378			
GPS position stdev (<0.01m)	0.0047			
Minimum % overlap (>25)	49.03 %			
Ave point cloud density per sq.m. (>2.0)	5.73			
Elevation difference between strips (<0.20 m)	Yes			
Number of 1km x 1km blocks	218			
Maximum Height	471.64 m			
Minimum Height	61.43 m			
Classification (# of points)				
Ground	147,409,242			
Low vegetation	138,606,637			
Medium vegetation	306,863,820			
High vegetation	915,242,697			
Building	9,788,405			
Orthophoto	No			
Processed by	Engr. Analyn Naldo, Ma Joanne Balaga			

Table A-8.7. Mission Summary Report for Mission Blk69B

Figure A-8.43. Solution Status

Figure A-8.44. Smoothed Performance Metric Parameters

Figure A-8.45. Best Estimated Trajectory

Figure A-8.46. Coverage of LiDAR Data

Figure A-8.47. Image of data overlap

Figure A-8.48. Density map of merged LiDAR data

Figure A-8.49. Elevation difference between flight lines

Flight Area	Dipolog		
Mission Name	Blk69D		
Inclusive Flights	23562P		
Range data size	29.5 GB		
POS data size	289 MB		
Base data size	165 MB		
Image	n/a		
Transfer date	December 6, 2016		
Solution Status			
Number of Satellites (>6)	Yes		
PDOP (<3)	No		
Baseline Length (<30km)	No		
Processing Mode (<=1)	No		
Smoothed Performance Metrics (in cm)			
RMSE for North Position (<4.0 cm)	2.774		
RMSE for East Position (<4.0 cm)	3.583		
RMSE for Down Position (<8.0 cm)	9.222		
Boresight correction stdev (<0.001deg)	0.000156		
IMU attitude correction stdev (<0.001deg)	0.001637		
GPS position stdev (<0.01m)	0.0147		
Minimum % overlap (>25)	35.05 %		
Ave point cloud density per sq.m. (>2.0)	4.79		
Elevation difference between strips (<0.20 m)	Yes		
Number of 1km x 1km blocks	244		
Maximum Height	576.58 m		
Minimum Height	55.7 m		
Classification (# of points)			
Ground	239,317,811		
Low vegetation	120,242,691		
Medium vegetation	259,977,867		
High vegetation	779,460,724		
Building	10,280,693		
Orthophoto	No		
Processed by	Engr. Kenneth Solidum, Engr. Chelou Prado		

Table A-8.8. Mission Summary Report for Mission Blk69D

Figure A-8.50. Solution Status

Figure A-8.51. Smoothed Performance Metric Parameters

Figure A-8.52. Best Estimated Trajectory

Figure A-8.53. Coverage of LiDAR Data

Figure A-8.54. Image of data overlap

Figure A-8.55. Density map of merged LiDAR data

Figure A-8.56. Elevation difference between flight lines

Flight Area	Dipolog			
Mission Name	Blk69D_supplement			
Inclusive Flights	23574P			
Range data size	21.7 GB			
POS data size	264 MB			
Base data size	126 MB			
Image	n/a			
Transfer date	December 6, 2016			
Solution Status				
Number of Satellites (>6)	Yes			
PDOP (<3)	Yes			
Baseline Length (<30km)	Yes			
Processing Mode (<=1)	Yes			
Smoothed Performance Metrics (in cm)				
RMSE for North Position (<4.0 cm)	0.927			
RMSE for East Position (<4.0 cm)	0.723			
RMSE for Down Position (<8.0 cm)	1.389			
Boresight correction stdev (<0.001deg)	0.000164			
IMU attitude correction stdev (<0.001deg)	0.000238			
GPS position stdev (<0.01m)	0.0009			
Minimum % overlap (>25)	25.26 %			
Ave point cloud density per sq.m. (>2.0)	2.96			
Elevation difference between strips (<0.20 m)	Yes			
Number of 1km x 1km blocks	122			
Maximum Height	578.14 m			
Minimum Height	66.32 m			
Classification (# of points)				
Ground	62,007,878			
Low vegetation	29,234,786			
Medium vegetation	81,573,500			
High vegetation	271,914,940			
Building	2,886,312			
Orthophoto	No			
Processed by	Engr. Sheila-Maye Santillan, Aljon Rie Araneta			

Table A-8.9. Mission Summary Report for Mission Blk69D_supplement

Figure A-8.57. Solution Status

Figure A-8.58. Smoothed Performance Metric Parameters

Figure A-8.59. Best Estimated Trajectory

Figure A-8.60. Coverage of LiDAR Data

Figure A-8.61. Image of data overlap

Figure A-8.62. Density map of merged LiDAR data

Figure A-8.63. Elevation difference between flight lines

Annex 9. Dapitan Model Basin Parameters

Ratio to 0.005 Peak **Threshold Type** Ratio to Peak **Recession Baseflow** Recession Constant 0.20098 0.20098 0.20099 0.20099 0.20099 0.20098 0.20099 0.20099 0.20099 0.20099 0.20099 0.20099 0.20099 0.20099 0.20099 0.20099 0.20098 0.20099 0.20099 0.20098 0.2 **Initial Discharge** 0.91997 0.53311 0.94127 (M3/S) 3.4425 1.3620 2.4406 4.3525 4.8945 1.8275 2.2336 1.3399 3.3259 1.6113 3.3175 2.1872 1.8290 5.0304 5.7574 2.0461 2.0477 0.42882 Initial Type Discharge Coefficient Storage 2.8069 3.2128 3.2470 6.8978 2.0603 12.276 10.741 4.5046 7.8859 4.4457 7.9347 3.3574 6.2349 14.023 5.6644 7.9954 4.3558 2.6646 7.8313 14.457 8.8969 (HR) **Clark Unit Hydrograph** Transform Concentration Time of 2.0639 2.3875 5.0719 1.5149 3.3122 3.2689 5.8343 2.4686 4.5845 4.1650 5.8790 3.2028 1.9593 5.7583 10.630 6.5419 2.3624 9.0265 7.8977 5.7984 10.311 (HR) Impervious 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 (%) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 SCS Curve Number Loss 58.8756 58.8266 58.0979 57.6856 60.0362 62.2692 60.8755 56.6965 57.2467 57.1515 56.4998 56.6293 57.4854 60.0796 54.915 57.5169 Curve Number 60.1223 57.5512 57.2663 56.49 58.1 Abstraction 77.1255 79.2018 79.2333 68.3532 74.1933 76.8258 75.8754 78.7851 75.4587 76.0797 76.7646 75.9816 68.477 66.114 68.2308 71.8542 84.456 Initial 62.332 74.187 78.57 (mm) 72 2 Basi W500 W510 W520 W530 W540 W570 W610 W620 W670 W710 W720 W740 W550 W560 W580 W590 W600 W660 W680 W690 W700 Number

Ratio to
Recession
Initial Type
Coefficient I (HR)
Concentration (HR)
(%)
la
Init

Parameters
Reach
Model
apitan
10. Dã
Annex

Side Slope ----------. -----------37.8665625 38.2196875 38.043125 38.749375 38.39625 38.39625 49.6275 46.2165 41.4095 39.1025 43.813 39.006 45.715 41.803 42.405 32.114 34.902 42.104 43.006 45.813 Width 47.671 35.56 37.69 48.62 Trapezoid Shape Manning's n **Muskingum Cunge Channel Routing** 0.0005 00022603572271566347 1.6086984265801785E-5 0007591661265966557 0002059335349729642 0003161889457559702 .0005875119685189980.0019498 0.0214530 0.0063699 0.0017650 0.0018118 0.0021374 0.0051758 0.0013739 0.0065334 0.0223901 0.0174664 0.0497789 0.0248703 0.0361135 0.0875928 0.0010828 0.0012601 0.11485 Slope Length (m) 1001.4 524.56 1646.8 1126.0 4698.9 4301.7 1836.6 3998.3 9879.5 7343.7 2472.1 2299.2 6780.0 784.26 2312.4 2467.4 282.99 1925.1 1634.1 4950.1 708.41 5850.1 10339 15591 Automatic Fixed Interval **Time Step Method** Numbei Reach R100 R120 R140 R150 R160 R180 R190 R210 R230 R250 R280 R310 R320 R370 R380 R410 R430 R450 R460 R30 R50 R70 R90 R80

Table A-10.1. Dapitan Model Reach Parameters

Annex 11. Dapitan Field Validation Points

Point Number	Validation	Coordinates	Model Var (m)	Validation Points (m)	Error	Event/Date	Rain Return/ Scenario
	Lut	Long				Typhoon	
1	8.541557	123.492311	0.03	0.20	-0.17	Zoraida / Nov. 11. 2013	5 - Year
2	8.637848	123.416679	0.03	0.15	-0.12	Typhoon Zoraida / Nov. 11. 2013	5 - Year
3	8.638057	123.415761	0.03	0.25	-0.22	Typhoon Zoraida / Nov. 11. 2013	5 - Year
4	8.607775	123.420659	0.03	0.60	-0.57	Typhoon Zoraida / Nov. 11. 2013	5 - Year
5	8.624531	123.391932	0.03	0.30	-0.27	Typhoon Zoraida / Nov. 11. 2013	5 - Year
6	8.630296	123.404479	0.03	0.40	-0.37	Typhoon Zoraida / Nov. 11. 2013	5 - Year
7	8.630454	123.404696	0.03	0.15	-0.12	Typhoon Zoraida / Nov. 11. 2013	5 - Year
8	8.639056	123.419692	0.03	0.10	-0.07	Typhoon Zoraida / Nov. 11. 2013	5 - Year
9	8.610377	123.477774	0.03	0.15	-0.12	Typhoon Zoraida / Nov. 11. 2013	5 - Year
10	8.610710	123.476553	0.03	0.20	-0.17	Typhoon Zoraida / Nov. 11. 2013	5 - Year
11	8.611912	123.480602	0.03	0.15	-0.12	Typhoon Zoraida / Nov. 11. 2013	5 - Year
12	8.613095	123.479903	0.03	0.15	-0.12	Typhoon Zoraida / Nov. 11. 2013	5 - Year
13	8.613334	123.480789	0.03	0.10	-0.07	Typhoon Zoraida / Nov. 11. 2013	5 - Year
14	8.613269	123.480170	0.03	0.10	-0.07	Typhoon Zoraida / Nov. 11. 2013	5 - Year
15	8.623994	123.391664	0.03	0.50	-0.47	Typhoon Zoraida / Nov. 11. 2013	5 - Year
16	8.624504	123.393308	0.03	0.40	-0.37	Typhoon Zoraida / Nov. 11. 2013	5 - Year

Table A-11.1 Dapitan Field Validation Points

Point	Validation	Coordinates	Model	Validation	Error	Event/Date	Rain Return /
Number	Lat	Long	Var (m)	Points (m)			Scenario
17						Iyphoon Zoraida / Nov.	
	8.610391	123.478871	0.03	0.30	-0.27	11. 2013	5 - Year
18						Typhoon Zoraida / Nov	
10	8.658156	123.427593	0.03	0.50	-0.47	11. 2013	5 - Year
						Typhoon	
19	8.658102	123.427580	0.03	0.55	-0.52	Zoraida / Nov. 11. 2013	5 - Year
						Typhoon	
20	8 658405	123 427498	0.03	0.50	-0.47	Zoraida / Nov.	5 - Year
	0.050+05	123.427430	0.05	0.50	0.47	Typhoon	J-Tear
21					o 1 -	Zoraida / Nov.	
	8.658467	123.427504	0.03	0.50	-0.47	11. 2013	5 - Year
22						Zoraida / Nov.	
	8.609621	123.478506	0.03	0.20	-0.17	11. 2013	5 - Year
23						Typhoon Zoraida / Nov	
	8.610347	123.478593	0.03	0.15	-0.12	11. 2013	5 - Year
24						Typhoon	
24	8.643386	123.419428	0.03	0.10	-0.07	11. 2013	5 - Year
						Typhoon	
25	8,610540	123,477501	0.03	0.15	-0.12	Zoraida / Nov. 11, 2013	5 - Year
	01010010	1201177001	0.00	0110	0.12	Typhoon	5 1001
26	0 (12220	400 470007	0.02	0.10	0.07	Zoraida / Nov.	- X
	8.613339	123.479927	0.03	0.10	-0.07	11. 2013 Typhoon	5 - Year
27						Zoraida / Nov.	
	8.624588	123.391716	0.03	0.40	-0.37	11. 2013	5 - Year
28						Typhoon Zoraida / Nov.	
	8.612386	123.479201	0.03	0.15	-0.12	11. 2013	5 - Year
20						Typhoon	
29	8.609663	123.479100	0.03	0.24	-0.21	11. 2013	5 - Year
						Typhoon	
30	8.541052	123.494703	0.03	0.30	-0.27	Zoraida / Nov. 11. 2013	5 - Year
						Typhoon	
31	0 621750	172 204020	0.02	0.20	0.27	Zoraida / Nov.	E Voor
	0.024750	123.394038	0.03	0.30	-0.27	Tynhoon	5 - rear
32						Zoraida / Nov.	
	8.636860	123.415176	0.03	0.15	-0.12	11. 2013	5 - Year
33						Typhoon Zoraida / Nov.	
	8.531701	123.448990	0.03	0.14	-0.11	11. 2013	5 - Year

Point	Validation	Coordinates	Model	Validation	Error	Event/Date	Rain Return /
Number	Lat	Long	Var (m)	Points (m)	2.1.01		Scenario
34	8.531665	123.449197	0.03	0.12	-0.09	Typhoon Zoraida / Nov. 11. 2013	5 - Year
35	8.604777	123.404260	0.03	0.20	-0.17	Typhoon Zoraida / Nov. 11. 2013	5 - Year
36	8.625373	123.391228	0.03	0.45	-0.42	Typhoon Zoraida / Nov. 11. 2013	5 - Year
37	8.604777	123.404260	0.03	0.25	-0.22	Typhoon Zoraida / Nov. 11. 2013	5 - Year
38	8.611170	123.477259	0.03	0.20	-0.17	Typhoon Zoraida / Nov. 11. 2013	5 - Year
39	8.625310	123.391276	0.03	0.50	-0.47	Typhoon Zoraida / Nov. 11. 2013	5 - Year
40	8.584699	123.407491	0.03	0.15	-0.12	Typhoon Zoraida / Nov. 11. 2013	5 - Year
41	8.636693	123.415082	0.03	0.15	-0.12	Typhoon Zoraida / Nov. 11. 2013	5 - Year
42	8.646417	123.416878	0.03	0.20	-0.17	Typhoon Zoraida / Nov. 11. 2013	5 - Year
43	8.613580	123.424207	0.03	0.50	-0.47	Typhoon Zoraida / Nov. 11. 2013	5 - Year
44	8.585478	123.409215	0.03	0.25	-0.22	Typhoon Zoraida / Nov. 11. 2013	5 - Year
45	8.602580	123.417872	0.03	0.65	-0.62	Typhoon Zoraida / Nov. 11. 2013	5 - Year
46	8.610796	123.476863	0.03	0.20	-0.17	Typhoon Zoraida / Nov. 11. 2013	5 - Year
47	8.585370	123.408802	0.03	0.10	-0.07	Typhoon Zoraida / Nov. 11. 2013	5 - Year
48	8.604026	123.402323	0.03	0.20	-0.17	Typhoon Zoraida / Nov. 11. 2013	5 - Year
49	8.602575	123.418022	0.03	0.60	-0.57	Typhoon Zoraida / Nov. 11. 2013	5 - Year
50	8.585370	123.408987	0.03	0.10	-0.07	Typhoon Zoraida / Nov. 11. 2013	5 - Year

Point Number	Validation Lat	Coordinates Long	Model Var (m)	Validation Points (m)	Error	Event/Date	Rain Return/ Scenario
51	8.603787	123.419610	0.03	0.55	-0.52	Typhoon Zoraida / Nov. 11. 2013	5 - Year
52	8.612106	123.478770	0.03	0.15	-0.12	Typhoon Zoraida / Nov. 11. 2013	5 - Year
53	8.610435	123.478084	0.03	0.33	-0.30	Typhoon Zoraida / Nov. 11. 2013	5 - Year
54	8.604407	123.404027	0.03	0.15	-0.12	Typhoon Zoraida / Nov. 11. 2013	5 - Year
55	8.645354	123.417383	0.03	0.20	-0.17	Typhoon Zoraida / Nov. 11. 2013	5 - Year
56	8.541943	123.493299	0.03	0.20	-0.17	Typhoon Zoraida / Nov. 11. 2013	5 - Year
57	8.542021	123.493327	0.03	0.20	-0.17	Typhoon Zoraida / Nov. 11. 2013	5 - Year
58	8.611938	123.478838	0.03	0.15	-0.12	Typhoon Zoraida / Nov. 11. 2013	5 - Year
59	8.610758	123.478423	0.03	0.25	-0.22	Typhoon Zoraida / Nov. 11. 2013	5 - Year
60	8.642908	123.419245	0.04	0.20	-0.17	Typhoon Zoraida / Nov. 11. 2013	5 - Year
61	8.624827	123.391532	0.04	0.50	-0.46	Typhoon Zoraida / Nov. 11. 2013	5 - Year
62	8.611563	123.479135	0.03	0.10	-0.07	Typhoon Zoraida / Nov. 11. 2013	5 - Year
63	8.532285	123.446434	0.04	0.15	-0.11	Typhoon Zoraida / Nov. 11. 2013	5 - Year
64	8.607771	123.420574	0.03	0.50	-0.47	Typhoon Zoraida / Nov. 11. 2013	5 - Year
65	8.630506	123.404744	0.03	0.15	-0.12	Typhoon Zoraida / Nov. 11. 2013	5 - Year
66	8.619131	123.386111	0.05	0.10	-0.05	Typhoon Zoraida / Nov. 11. 2013	5 - Year
67	8.611929	123.478677	0.03	0.15	-0.12	Typhoon Zoraida / Nov. 11. 2013	5 - Year

Point	Validation	Coordinates	Model	Validation	Error	Event/Date	Rain Return /
Number	Lat	Long	Var (m)	Points (m)	2		Scenario
68	8.604229	123.403825	0.05	0.25	-0.20	Typhoon Zoraida / Nov. 11. 2013	5 - Year
69	8.541799	123.493168	0.05	0.10	-0.06	Typhoon Zoraida / Nov. 11. 2013	5 - Year
70	8.608256	123.419714	0.05	0.40	-0.35	Typhoon Zoraida / Nov. 11. 2013	5 - Year
71	8.607880	123.420215	0.06	0.40	-0.34	Typhoon Zoraida / Nov. 11. 2013	5 - Year
72	8.541253	123.493682	0.03	0.30	-0.27	Typhoon Zoraida / Nov. 11. 2013	5 - Year
73	8.619228	123.385369	0.07	0.15	-0.08	Typhoon Zoraida / Nov. 11. 2013	5 - Year
74	8.610021	123.478629	0.06	0.10	-0.04	Typhoon Zoraida / Nov. 11. 2013	5 - Year
75	8.639622	123.420262	0.03	0.10	-0.07	Typhoon Zoraida / Nov. 11. 2013	5 - Year
76	8.618731	123.387023	0.06	0.10	-0.04	Typhoon Zoraida / Nov. 11. 2013	5 - Year
77	8.618857	123.386666	0.06	0.15	-0.09	Typhoon Zoraida / Nov. 11. 2013	5 - Year
78	8.610111	123.479062	0.07	0.10	-0.03	Typhoon Zoraida / Nov. 11. 2013	5 - Year
79	8.599537	123.435783	0.03	0.47	-0.44	Typhoon Zoraida / Nov. 11. 2013	5 - Year
80	8.609854	123.478687	0.07	0.22	-0.15	Typhoon Zoraida / Nov. 11. 2013	5 - Year
81	8.618896	123.386965	0.06	0.20	-0.14	Typhoon Zoraida / Nov. 11. 2013	5 - Year
82	8.610137	123.478641	0.08	0.10	-0.03	Typhoon Zoraida / Nov. 11. 2013	5 - Year
83	8.643861	123.415512	0.03	0.20	-0.17	Typhoon Zoraida / Nov. 11. 2013	5 - Year
84	8.614134	123.479009	0.03	0.10	-0.07	Typhoon Zoraida / Nov. 11. 2013	5 - Year

Point	Validation	Coordinates	Model	Validation	Error	Event/Date	Rain Return /
Number	Lat	Long	var (m)	Points (m)		Tunhaan	Scenario
85						Zoraida / Nov.	
	8.532945	123.446874	0.06	0.10	-0.04	11. 2013	5 - Year
86						Typhoon Zoraida / Nov	
	8.618489	123.385888	0.07	0.20	-0.13	11. 2013	5 - Year
87						Typhoon	
	8.618384	123.385793	0.08	0.20	-0.12	11. 2013	5 - Year
88						Typhoon	
	8 528624	123 452542	0.03	0.10	-0.07	Zoraida / Nov. 11 2013	5 - Year
	0.520024	123.432342	0.05	0.10	0.07	Typhoon	5 1001
89	0 500044	422 452460	0.00	0.10	0.07	Zoraida / Nov.	- X
	8.528644	123.452469	0.03	0.10	-0.07	11. 2013	5 - Year
90						Zoraida / Nov.	
	8.528648	123.452509	0.03	0.10	-0.07	11. 2013	5 - Year
91						Typhoon Zoraida / Nov	
91	8.638204	123.416091	0.10	0.20	-0.10	11. 2013	5 - Year
						Typhoon	
92	8.643102	123.419499	0.11	0.15	-0.04	20raida / Nov. 11. 2013	5 - Year
						Typhoon	
93	8 52/170	172 //5152	0.03	0.20	-0.17	Zoraida / Nov.	E Voor
	8.554170	123.445155	0.03	0.20	-0.17	Typhoon	J - Teal
94						Zoraida / Nov.	
	8.611303	123.479888	0.03	0.15	-0.12	11. 2013	5 - Year
95						Zoraida / Nov.	
	8.611696	123.478336	0.03	0.25	-0.22	11. 2013	5 - Year
96						Typhoon Zoraida / Nov	
	8.616455	123.388734	0.03	0.20	-0.17	11. 2013	5 - Year
97						Typhoon	
	8.612617	123.479450	0.03	0.10	-0.07	Zoraida / Nov. 11. 2013	5 - Year
98						Typhoon	
	0 617222	122 /19002	0.15	0.10	0.05	Zoraida / Nov.	E Voor
	0.047555	125.410092	0.15	0.10	0.03	Typhoon	5 - Teal
99						Zoraida / Nov.	
	8.644618	123.420622	0.15	0.20	-0.05	11. 2013	5 - Year
100						Zoraida / Nov.	
	8.645725	123.417571	0.14	0.10	0.04	11. 2013	5 - Year
101						Typhoon Zoraida / Nov	
	8.609660	123.419066	0.07	0.30	-0.23	11. 2013	5 - Year

Point	Validation	Coordinates	Model	Validation	Error	Event/Date	Rain Return /
Number	Lat	Long	Var (m)	Points (m)			Scenario
102	8.541795	123.492933	0.15	0.15	0.00	Typhoon Zoraida / Nov. 11. 2013	5 - Year
103	8.609831	123.478534	0.19	0.14	0.05	Typhoon Zoraida / Nov. 11. 2013	5 - Year
104	8.644429	123.415195	0.06	0.50	-0.44	Typhoon Zoraida / Nov. 11. 2013	5 - Year
105	8.618646	123.386143	0.14	0.15	-0.01	Typhoon Zoraida / Nov. 11. 2013	5 - Year
106	8.541525	123.492666	0.14	0.20	-0.06	Typhoon Zoraida / Nov. 11. 2013	5 - Year
107	8.643387	123.421767	0.21	0.10	0.11	Typhoon Zoraida / Nov. 11. 2013	5 - Year
108	8.541501	123.492511	0.14	0.20	-0.06	Typhoon Zoraida / Nov. 11. 2013	5 - Year
109	8.660265	123.427823	0.06	0.40	-0.34	Typhoon Zoraida / Nov. 11. 2013	5 - Year
110	8.614327	123.479800	0.03	0.45	-0.42	Typhoon Zoraida / Nov. 11. 2013	5 - Year
111	8.613653	123.480987	0.03	0.10	-0.07	Typhoon Zoraida / Nov. 11. 2013	5 - Year
112	8.645304	123.419968	0.10	0.10	0.00	Typhoon Zoraida / Nov. 11. 2013	5 - Year
113	8.616555	123.388800	0.07	0.15	-0.08	Typhoon Zoraida / Nov. 11. 2013	5 - Year
114	8.611202	123.477505	0.03	0.15	-0.12	Typhoon Zoraida / Nov. 11. 2013	5 - Year
115	8.606947	123.401951	0.16	0.10	0.06	Typhoon Zoraida / Nov. 11. 2013	5 - Year
116	8.605848	123.401067	0.13	0.10	0.03	Typhoon Zoraida / Nov. 11. 2013	5 - Year
117	8.640063	123.416516	0.19	0.50	-0.31	Typhoon Zoraida / Nov. 11. 2013	5 - Year
118	8.636907	123.415337	0.06	0.10	-0.04	Typhoon Zoraida / Nov. 11. 2013	5 - Year

Point Number	Validation Lat	Coordinates Long	Model Var (m)	Validation Points (m)	Error	Event/Date	Rain Return/ Scenario
119	8.618210	123.387257	0.25	0.15	0.10	Typhoon Zoraida / Nov. 11. 2013	5 - Year
120	8.606167	123.400934	0.14	0.30	-0.16	Typhoon Zoraida / Nov. 11. 2013	5 - Year
121	8.646209	123.421875	0.21	0.25	-0.04	Typhoon Zoraida / Nov. 11. 2013	5 - Year
122	8.532767	123.446699	0.24	0.10	0.14	Typhoon Zoraida / Nov. 11. 2013	5 - Year
123	8.618801	123.386441	0.35	0.15	0.20	Typhoon Zoraida / Nov. 11. 2013	5 - Year
124	8.605390	123.401387	0.27	0.20	0.07	Typhoon Zoraida / Nov. 11. 2013	5 - Year
125	8.659676	123.427831	0.07	0.40	-0.33	Typhoon Zoraida / Nov. 11. 2013	5 - Year
126	8.605859	123.401265	0.26	0.25	0.01	Typhoon Zoraida / Nov. 11. 2013	5 - Year
127	8.618722	123.388340	0.21	0.10	0.11	Typhoon Zoraida / Nov. 11. 2013	5 - Year
128	8.611143	123.479415	0.03	0.10	-0.07	Typhoon Zoraida / Nov. 11. 2013	5 - Year
129	8.660021	123.428572	0.03	0.40	-0.37	Typhoon Zoraida / Nov. 11. 2013	5 - Year
130	8.605748	123.400970	0.33	0.30	0.03	Typhoon Zoraida / Nov. 11. 2013	5 - Year
131	8.534232	123.445320	0.13	0.20	-0.07	Typhoon Zoraida / Nov. 11. 2013	5 - Year
132	8.534291	123.445207	0.13	0.20	-0.07	Typhoon Zoraida / Nov. 11. 2013	5 - Year
133	8.607590	123.401744	0.46	0.10	0.36	Typhoon Zoraida / Nov. 11. 2013	5 - Year
134	8.618488	123.389958	0.39	0.20	0.19	Typhoon Zoraida / Nov. 11. 2013	5 - Year
135	8.612299	123.478739	0.03	0.20	-0.17	Typhoon Zoraida / Nov. 11. 2013	5 - Year
Point	Validation	Coordinates	Model	Validation	Frror Event/Date		Rain Return/
--------	------------	-------------	---------	------------	------------------	---------------------------------------	--------------
Number	Lat	Long	Var (m)	Points (m)	EITOI	Event/Date	Scenario
136	8.599689	123.435616	0.06	0.40	-0.34	Typhoon Zoraida / Nov. 11. 2013	5 - Year
137	8.624514	123.393076	0.27	0.40	-0.13	Typhoon Zoraida / Nov. 11. 2013	5 - Year
138	8.614725	123.479958	0.09	0.56	-0.47	Typhoon Zoraida / Nov. 11. 2013	5 - Year
139	8.636330	123.415443	0.40	0.20	0.20	Typhoon Zoraida / Nov. 11. 2013	5 - Year
140	8.636330	123.415443	0.40	0.40	0.00	Typhoon Zoraida / Nov. 11. 2013	5 - Year
141	8.534131	123.445256	0.11	0.25	-0.14	Typhoon Zoraida / Nov. 11. 2013	5 - Year
142	8.624514	123.392889	0.30	0.45	-0.15	Typhoon Zoraida / Nov. 11. 2013	5 - Year
143	8.611011	123.479453	0.03	0.20	-0.17	Typhoon Zoraida / Nov. 11. 2013	5 - Year
144	8.618544	123.388833	0.45	0.20	0.25	Typhoon Zoraida / Nov. 11. 2013	5 - Year
145	8.599778	123.435337	0.06	0.50	-0.44	Typhoon Zoraida / Nov. 11. 2013	5 - Year
146	8.599511	123.435796	0.03	0.45	-0.42	Typhoon Zoraida / Nov. 11. 2013	5 - Year
147	8.618478	123.389279	0.67	0.15	0.52	Typhoon Zoraida / Nov. 11. 2013	5 - Year
148	8.613194	123.424060	0.66	0.50	0.16	Typhoon Zoraida / Nov. 11. 2013	5 - Year
149	8.550266	123.424277	0.03	1.15	-1.12	Typhoon Zoraida / Nov. 11. 2013	5 - Year
150	8.618822	123.389265	0.94	0.15	0.79	Typhoon Zoraida / Nov. 11. 2013	5 - Year
151	8.599588	123.435273	0.37	0.60	-0.23	Typhoon Zoraida / Nov. 11. 2013	5 - Year
152	8.599266	123.434698	0.48	0.93	-0.45	Typhoon Zoraida / Nov. 11. 2013	5 - Year

Point	Validation	Coordinates	Model	Validation	Error	Event/Date	Rain Return/
Number	Lat	Long	Var (m)	Points (m)	EIIOI	Event/Date	Scenario
153						Typhoon Zoraida / Nov	
155	8.599350	123.434817	0.51	0.80	-0.29	11. 2013	5 - Year
						Typhoon	
154	8.599513	123.434675	0.51	0.50	0.01	Zoraida / Nov. 11. 2013	5 - Year
						Typhoon	
155	8 5/19559	123 /2/615	0.04	1	-0.96	Zoraida / Nov.	5 - Vear
	0.545555	123.424013	0.04	-	0.50	Typhoon	5 1001
156	0 500550	100 10 1005		0.00	0.00	Zoraida / Nov.	
	8.599550	123.434935	0.64	0.83	-0.20	11. 2013	5 - Year
157						Zoraida / Nov.	
	8.599360	123.434957	0.67	0.50	0.17	11. 2013	5 - Year
158						Typhoon Zoraida / Nov.	
	8.599771	123.434639	0.74	0.42	0.32	11. 2013	5 - Year
150						Typhoon	
129	8.550355	123.424391	0.05	1.10	-1.05	11. 2013	5 - Year
						Typhoon	
160	8.550125	123.425126	0.20	1.10	-0.90	Zoraida / Nov. 11. 2013	5 - Year
						Typhoon	
161	8 550558	173 474778	0.12	0.95	-0.83	Zoraida / Nov.	5 - Year
	0.550550	123.424220	0.12	0.55	0.05	Typhoon	5 1001
162	0 550007	100 101007	0.07	1.51	4 27	Zoraida / Nov.	- X
	8.550337	123.424967	0.27	1.64	-1.37	11. 2013	5 - Year
163						Zoraida / Nov.	
	8.551105	123.424612	0.04	0.85	-0.81	11. 2013	5 - Year
164						Typhoon Zoraida / Nov.	
	8.550652	123.424989	0.33	1.70	-1.37	11. 2013	5 - Year
165						Typhoon	
105	8.584854	123.410102	0.36	0.50	-0.14	11. 2013	5 - Year
						Typhoon	
166	8.584840	123.410003	0.47	0.50	-0.03	Zoraida / Nov. 11. 2013	5 - Year
						Typhoon	
167	8 282036	123 108252	2 07	0.15	1 97	Zoraida / Nov.	5 - Vear
	0.505050	123.700332	2.07	0.15	1.32	Typhoon	J - ICal
168	0.504.000	400 40 - 000	2 0-		a c=	Zoraida / Nov.	
	8.584430	123.40/383	2.87	0.20	2.6/	11. 2013	5 - Year

Annex 12. Educational Institutions affected by flooding in Dapitan Floodplain

ZAMBOANGA DEL NORTE				
DA	PITAN CITY			
Building Name	Barangay	Ra	infall Scena	ario
	Darangay	5-year	25-year	100-year
Antipolo Elementary School	Antipolo	Low	Low	Medium
Day Care Center	Antipolo			Low
Stage	Antipolo	Low	Low	Low
Day Care Center	Ba-Ao			Low
Elem. School	Ba-Ao			
Dapitan City Central School	Bagting	Low	Low	Low
Dapitan City Experimental School	Bagting	Low	Low	Low
Classroom	Banonong			
Stage	Banonong			Low
Barcelona Central School	Barcelona			
Barcelona National High School	Barcelona	Low	Low	Low
Day Care Center	Barcelona			
HE	Barcelona			
School Stage	Barcelona		Low	Low
Supervisors Office	Barcelona			
Brgy. Cawa-cawa Day Care Center	Cawa-Cawa			
La Libertad Elementary School	Dampalan			
Purok 3 Day Care Center	Dampalan		Medium	High
Classroom	Diwa-An			
Day Care Center	Diwa-An			
Classroom	Hilltop			
Day Care Center	Ilaya	High	High	High
HE	Ilaya	Medium	High	High
Ilaya Elem. School	Ilaya	Medium	High	High
Ilaya Elem. SchoolV	Ilaya	Medium	High	High
Ilaya High School	Ilaya	Medium	High	High
Principals Office	Ilaya	Medium	High	High
School CR	Ilaya			
School Stage	Ilaya	Medium	High	High
San Pedro Elementary School	Larayan			
Classroom	Maria Cristina	Low	Medium	Medium
Day Care Center	Maria Cristina	Low	Low	Medium
Classroom	Maria Uray			
CLASSROOM	Maria Uray			
Day Care Center	Maria Uray	High	High	High
Old School Building	Maria Uray		Low	Low
Stage	Maria Uray	Medium	Medium	Medium
Dampalan Elementary School	Masidlakon			

Table A-12.1. Educational Institutions in Dapitan City affected by flooding in Dapitan Floodplain

ZAMBOANGA DEL NORTE						
DA	PITAN CITY					
	D	Ra	Rainfall Scenario			
Building Name	Barangay	5-year	25-year	100-year		
Opao Elementary School	Орао					
Purok 2 Day Care Center	Орао					
Canteen	Oyan		Medium	Medium		
Classroom	Oyan	Medium	Medium	High		
Day Care center	Oyan		Low	Medium		
Dirty Kitchen	Oyan					
School Building	Oyan	Low	Medium	High		
Classroom	Polo					
Principal's Office	Polo					
Stage	Polo					
RMIDCI Elementary	Potol					
Day Care Center	Potungan					
Faculty Room	Potungan					
Potungan Elementary Central School	Potungan					
Potungan National High School	Potungan					
School Canteen	Potungan					
School CR	Potungan					
Stage	Potungan					
San Nicolas Elem School	San Nicolas					
San Nicolas Multi Purpose Building	San Nicolas					
Classroom	San Pedro		Low	Low		
Stage	San Pedro					
Dapitan City Central School	Santa Cruz		Low	Low		
Dapitan City Experimental School	Santa Cruz	Low	Low	Low		
JRMSU Grandstand	Santa Cruz					
JRMSU Main Campus	Santa Cruz					
JRMSU Maritime Building	Santa Cruz	Low	Low	Low		
Classroom	Sulangon					

Table A-12.2. Educational Institutions in La Libertad affected by flooding in Dapitan Floodplain

ZAMBOANGA DEL NORTE				
LA LIBERTAD				
	D	Rainfall Scenario		
Building Name	Barangay	5-year	25-year	100-year
Elementary School	La Union	Low	Low	Low
Elementary School	Mauswagon			

ZAMBOANGA DEL NORTE				
RIZAL				
Duilding Nows	Demonstra	Rainfall Scenario		
Building Name	вагапдау	5-year	25-year	100-year
San Roque Elementary School	San Roque			
Grace Primitive Baptist Church	South Mapang			

Table A-12.3. Educational Institutions in Rizal affected by flooding in Dapitan Floodplain

Table A-12.4. Educational Institutions in Sibutad affected by flooding in Dapitan Floodplain

ZAMBOAN	ZAMBOANGA DEL NORTE				
SI	BUTAD				
Duilding Name	Berengeu	Rainfall Scenario			
Building Name	Багапдау	5-year	25-year	100-year	
Grade 1 Room	Bagacay				
Grade 3 Room	Bagacay				
T.L.E Room	Bagacay				
Calilic Elementary Stage	Calilic				
Calilic Grade 1 Room	Calilic				
Calilic Grade 3 Room	Calilic		Medium	Medium	
Calilic Grade 5 Room	Calilic				
Calilic Princepal's Office	Calilic		Low	Medium	
Elemtary Library	Delapa				
Grade 2 Room	Delapa				
Grade 4 Room	Delapa				
Grade 5 Room	Delapa				
Grade 6 Room	Delapa				
Marapong Daycare Center	Delapa				
Marapong Elementary Guard Houses	Delapa				
Principal's Office Room	Delapa				
Canteen Elem. School	Magsaysay				
Grade 2 Room	Magsaysay				
Grade 5 Room	Magsaysay				
Grade 6 Room	Magsaysay				
Magsaysay Elem. Stage	Magsaysay				
Magsaysay Principal's Office	Magsaysay				
Рауад	Magsaysay				
Staff Office	Magsaysay				
Daycare Center	Marapong	High	High	High	
Grade 1 Room	Marapong				
Grade 5 Room	Marapong				
Oyan Elementary Stage	Marapong				
Princepal's Office	Marapong				
Staff Room	Marapong				

ZAMBOANGA DEL NORTE					
SIE	SIBUTAD				
Duilding Manag	Demonstra	R	ainfall Scen	ario	
Building Name	Barangay	5-year	25-year	100-year	
Grade 1 Room	Minlasag				
Grade 3 Room	Minlasag			Low	
Grade 5 Room	Minlasag		Low	Low	
Minlasag Daycare Center	Minlasag				
Minlasag Principal's Office Room	Minlasag				
Minlasag Stage Elem.	Minlasag				
Waitng Shed 2	Minlasag				
Ba-ao Elementary School	Oyan		Medium	High	
Canteen	Oyan		Medium	High	
Day Care Center	Oyan				
Old School	Oyan				
Calilic Daycare Center	Sibuloc		Low	Medium	
Grade 1 Room	Sibuloc			Low	
Grade 3 Room	Sibuloc				
Grade 5 Room	Sibuloc		Low	Medium	
Covered Stage	Sipaloc				
Grade 1 Room	Sipaloc				
Grade 3 Room	Sipaloc				
Grade 5 Room	Sipaloc				
Sipaloc Library Elem.	Sipaloc				
Sipaloc Principal's Office	Sipaloc				

Annex 13. Health Institutions affected by flooding in Dapitan Floodplain

	ZAMBOANGA DEL NORTE				
	DAPITAN	СІТҮ			
Duilding Norra	Demonstration	Rainfall Scenario			
Building Name	Barangay	5-year	25-year	100-year	
Health Center	Antipolo	Low	Low	Low	
Botique	Bagting				
Pharmacy	Bagting				
Botika Cara	Banonong				
Botique	Banonong	Low	Low	Low	
Birthing home	Barcelona				
Botika Cara	Dawo				
Clinic	Dawo				
Dapitan Drug Store	Dawo				
Public Hospital	Dawo				
Health Center	Diwa-An	Medium	Medium	High	
Health Center	Ilaya	Medium	High	High	
Health Center	Maria Cristina	Medium	Medium	Medium	
Health Center	Oyan				
Clinica Dapitan	Polo				
Pharmacy	Potol				
Barangay Health Center	Potungan	Low	Low	Low	
Health Center	San Pedro				
Botique	Santa Cruz				
City Health Office	Santa Cruz				
Health Center	Sulangon				

Table A-13.1. Health Institutions in Dapitan City affected by flooding in Dapitan Floodplain

Table A-13.2. Health Institutions in Sibutad affected by flooding in Dapitan Floodplain

ZAMBOANGA DEL NORTE					
RIZAL					
Desileline Menne	Damasa	Rainfall Scenario			
Building Name	Barangay	5-year	25-year	100-year	
Heatlh Center	San Roque				

ZAMBOANGA DEL NORTE					
SIBUTAD					
		R	ainfall Scer	nario	
Building Name	Barangay	5-year	25-year	100-year	
Marapong Health Center	Delapa				
Sibutad Hospital	Magsaysay				
Barangay Health Center	Minlasag				
Botika ng Barangay	Oyan				
Health Center	Poblacion				
Barangay Health Center 1	Sipaloc				

Table A-13.3. Health Institutions in Sibutad aff	fected by flooding in Dapitan Floodplain
--	--