HAZARD MAPPING OF THE PHILIPPINES USING LIDAR (PHIL-LIDAR I)

LiDAR Surveys and Flood Mapping of Amburayan River

University of the Philippines Training Center for Applied Geodesy and Photogrammetry University of the Philippines Baguio

April 2017

© University of the Philippines and University of the Philippines Baguio 2017

Published by the UP Training Center for Applied Geodesy and Photogrammetry (TCAGP) College of Engineering University of the Philippines – Diliman Quezon City 1101 PHILIPPINES

This research project is supported by the Department of Science and Technology (DOST) as part of its Grants-in-Aid Program and is to be cited as:

E.C. Paringit and C. Pascua (Eds.). (2017), LiDAR Surveys and Flood Mapping of Amburayan River. Quezon City: University of the Philippines Training Center for Applied Geodesy and Photogrammetry – 194pp

The text of this information may be copied and distributed for research and educational purposes with proper acknowledgement. While every care is taken to ensure the accuracy of this publication, the UP TCAGP disclaims all responsibility and all liability (including without limitation, liability in negligence) and costs which might incur as a result of the materials in this publication being inaccurate or incomplete in any way and for any reason.

For questions/queries regarding this report, contact:

Dr. Chelo Pascua

Project Leader, PHIL-LiDAR 1 Program University of the Philippines Baguio Baguio City, Philippines 2600 pascua.chelo@yahoo.com

Enrico C. Paringit, Dr. Eng.

Program Leader, Phil-LiDAR 1 Program University of the Philippines Diliman Quezon City, Philippines 1101 E-mail: ecparingit@up.edu.ph

National Library of the Philippines ISBN: 978-621-430-084-6

Hazard Mapping of the Philippines Using LiDAR (Phil-LiDAR 1)

TABLE OF CONTENTS

	İX
CHAPTER 1: OVERVIEW OF THE PROGRAM AND AMBURAYAN RIVER	1
1.1 Background of the Phil-LIDAR 1 Program	1
1.2 Overview of the Amburayan River Basin	1
CHAPTER 2: LIDAR DATA ACQUISITION OF THE AMBURAYAN FLOODPLAIN	2
2.1 Flight Plans	2
2.2 Ground Base Stations	3
2.3 Flight Missions	8
2.4 Survey Coverage	9
CHAPTER 3: LIDAR DATA PROCESSING OF THE AMBURAYAN FLOODPLAIN	12
3.1 Overview of the LIDAR Data Pre-Processing	12
3.2 Transmittal of Acquired LiDAR Data	13
3.3 Trajectory Computation	13
3.4 LiDAR Point Cloud Computation	15
3.5 LiDAR Quality Checking	15
3.6 LiDAR Point Cloud Classification and Rasterization	19
3.7 LiDAR Image Processing and Orthophotograph Rectification	21
3.8 DEM Editing and Hydro-Correction	22
3.9 Mosaicking of Blocks	23
3.10 Calibration and Validation of Mosaicked LiDAR DEM	24
3.11 Integration of Bathymetric Data into the LiDAR Digital Terrain Model	27
3.12 Feature Extraction	28
3.12.1 Quality Checking (QC) of Digitized Features' Boundary	29
3.12.2 Height Extraction	29
3.12.3 Feature Attribution	29
3.12.4 Final Quality Checking of Extracted Features	31
CHAPTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE AMBURAYAN RIVER BASIN	32
4.1 Summary of Activities	32
4.2 Control Survey	33
4.3 Baseline Processing	36
4.4 Network Adjustment	36
4.5 Cross-section and Bridge As-Built survey and Water Level Marking	
	38
4.6 Validation Points Acquisition Survey	38 41
4.6 Validation Points Acquisition Survey4.7 River Bathymetric Survey	38 41 43
 4.6 Validation Points Acquisition Survey	38 41 43 . . 46
 4.6 Validation Points Acquisition Survey 4.7 River Bathymetric Survey CHAPTER 5: FLOOD MODELING AND MAPPING	38 41 43 46 46
 4.6 Validation Points Acquisition Survey	38 41 43 46 46 46
 4.6 Validation Points Acquisition Survey	38 41 43 46 46 46
 4.6 Validation Points Acquisition Survey	38 41 43 46 46 46 46 47
 4.6 Validation Points Acquisition Survey	38 41 43 46 46 46 46 47 48
 4.6 Validation Points Acquisition Survey	38 41 43 46 46 46 46 47 48 49
 4.6 Validation Points Acquisition Survey	38 41 43 46 46 46 46 46 47 48 49 52
 4.6 Validation Points Acquisition Survey	38 41 43 46 46 46 46 46 47 48 49 52 53
 4.6 Validation Points Acquisition Survey	38 41 43 46 46 46 46 46 46 47 48 49 52 53 54
 4.6 Validation Points Acquisition Survey	38 41 43 46 46 46 46 46 46 47 48 52 53 54 56
 4.6 Validation Points Acquisition Survey	38 41 43 46 46 46 46 46 46 47 48 52 53 54 56 56
 4.6 Validation Points Acquisition Survey	38 41 43 46 46 46 46 46 46 47 48 49 52 53 54 56 57
 4.6 Validation Points Acquisition Survey	38 41 43 46 46 46 46 46 46 47 48 52 53 54 56 57 58
 4.6 Validation Points Acquisition Survey	38 41 43 46 46 46 46 46 46 47 48 52 53 55 56 57 58 62
 4.6 Validation Points Acquisition Survey	38 41 43 46 46 46 46 46 46 47 48 49 53 53 54 56 57 58 62 114

ANNEXES	118
ANNEX 1. TECHNICAL SPECIFICATION OF THE SENSOR	118
ANNEX 2. NAMRIA CERTIFICATES OF REFERENCE POINTS USED	119
ANNEX 3. BASELINE PROCESSING REPORT	124
ANNEX 4. THE SURVEY TEAM	125
ANNEX 5. DATA TRANSFER SHEET FOR BARORO FLOODPLAIN FLIGHTS	126
ANNEX 6. FLIGHT LOGS	127
ANNEX 7. FLIGHT STATUS REPORT	135
ANNEX 8. MISSION SUMMARY REPORT	144
ANNEX 9. Amburayan Model Basin Parameters	163
ANNEX 10. Amburayan Model Reach Parameters	169
ANNEX 11. Amburayan Field Validation	173
ANNEX 12. Educational Institutions Affected in Amburayan Flood Plain	181
ANNEX 13. Medical Institutions Affected in Amburayan Flood Plain	184

LIST OF FIGURES

Figure 1. Figure 2.	Flight plans and base stations used for Amburayan floodplain a) GPS set-up over LUN-62 as recovered 15 m S from the first access ladder of the river control and about 100 m N from the end, it is also situated 300 m S	3
Figure 3.	of a hanging bridge. b) NAMRIA reference point LUN-62 as recovered by the field team a) GPS set-up over LUN-176 recovered near a corner of a farm dike, about 15 m SE	4
	of the well and about 20 m SW of the nearest house. b) NAMRIA reference point LUN-176 as recovered by the field team.	5
Figure 4.	a) GPS set-up over LUN-3062 recovered at the top of a dike, approximately 100 m north of Philippine Central College of Arts Sciences & Technology and 80 m	
	north of Naguilian emission testing center in Brgy. Natividad, Naguilian, La Union.	-
F ¹ F	b) NAMRIA reference point LUN-3062 as recovered by the field team	6
Figure 5.	a) GPS set-up over LUN-3129 recovered beside the National Road about 50 meters northeast of the nearest house. b) NAMRIA reference point LUN-3129	7
Figure 6	As recovered by the new coverage for Amburayan floodplain	/
Figure 7	Schematic Diagram for Data Pre-Processing Component	12
Figure 8	Smoothed Performance Metric Parameters of Amburavan Flight 1155P	13
Figure 9.	Solution Status Parameters of Amburavan Flight 1155P.	14
Figure 10.	Best Estimated Trajectory for Amburayan floodplain	15
Figure 11.	Figure 11. Boundary of the processed LiDAR data over Amburayan Floodplain.	16
Figure 12.	Image of data overlap for Amburayan floodplain	17
Figure 13.	Density map of merged LiDAR data for Amburayan floodplain	17
Figure 14.	Elevation difference map between flight lines for Amburayan floodplain.	18
Figure 15.	Quality checking for a Amburayan flight 1155P using the Profile Tool of QT Modeler	18
Figure 16.	Tiles for Amburayan floodplain (a) and classification results (b) in TerraScan.	19
Figure 17.	Point cloud before (a) and after (b) classification	20
Figure 18.	The Production of last return DSM (a) and DTM (b), first return DSM (c)	
	and secondary DTM (d) in some portion of Amburayan floodplain.	20
Figure 19.	Amburayan floodplain with available orthophotographs	21
Figure 20. Figure 21.	Sample orthophotograph tiles for Amburayan floodplain Portions in the DTM of Amburayan floodplain – a bridge before (a) and after (b) manual editing; a paddy field before (c) and after (d) manual editing; and a building before (e)	22
	and after (f) manual editing	23
Figure 22.	Map of Processed LiDAR Data for Amburayan Flood Plain	24
Figure 23.	Map of Amburayan Flood Plain with validation survey points in green.	25
Figure 24.	Correlation plot between calibration survey points and LiDAR data	26
Figure 25.	Correlation plot between validation survey points and LiDAR data	27
Figure 26.	Map of Amburayan Flood Plain with bathymetric survey points shown in blue	28
Figure 27.	QC blocks for Amburayan building features.	29
Figure 28.	Extracted features for Amburayan floodplain	31
Figure 29.	Andurdydn River Survey Extent.	32
Figure 21	GNSS Network covering Amburdyan River.	
ligule 51.	at the right intersection of the barangay roads in Brgy General Prim West	
	Municipality of Sudipen, La Union	34
Figure 32	GNSS receiver set up. Trimble [®] SPS 882, at LU-94, located at the approach	
1.6010 021	of Baroro Bridge in Brgy. Nagsimabaanan. Municipality of Bacnotan. La Union	35
Figure 33.	GNSS receiver setup, Trimble [®] SPS 882, at AMB-7, located at the approach	
0	of Alilem Bridge in Brgy. Kiat, Municipality of Alilem, Ilocos Sur.	35
Figure 34.	A) Amburayan Bridge facing downstream, and its B) Cross-section As-built survey.	38
Figure 35.		
Figure 36.	Amburayan Bridge cross-section diagram.	39
Figure 37.	Amburayan Bridge cross-section diagram Amburayan Bridge Planimetric map	39 39
Figure 38	Amburayan Bridge cross-section diagram Amburayan Bridge Planimetric map Bridge as-built form of Amburayan Bridge	39 39 40
inguic 50.	Amburayan Bridge cross-section diagram. Amburayan Bridge Planimetric map. Bridge as-built form of Amburayan Bridge. Water-level markings on the deck of Amburayan Bridge.	39 39 40 41
Figure 39.	Amburayan Bridge cross-section diagram. Amburayan Bridge Planimetric map. Bridge as-built form of Amburayan Bridge. Water-level markings on the deck of Amburayan Bridge. Validation points acquisition survey set up along Amburayan River Basin.	39 39 40 41 41
Figure 39. Figure 40.	Amburayan Bridge cross-section diagram. Amburayan Bridge Planimetric map. Bridge as-built form of Amburayan Bridge. Water-level markings on the deck of Amburayan Bridge. Validation points acquisition survey set up along Amburayan River Basin. Validation point acquisition survey of Amburayan River basin.	39 39 40 41 41 41 42
Figure 39. Figure 40. Figure 41.	Amburayan Bridge cross-section diagram. Amburayan Bridge Planimetric map. Bridge as-built form of Amburayan Bridge. Water-level markings on the deck of Amburayan Bridge. Validation points acquisition survey set up along Amburayan River Basin. Validation point acquisition survey of Amburayan River basin. Bathymetric survey set-up in Amburayan River	39 40 41 41 42 42 43
Figure 30. Figure 39. Figure 40. Figure 41. Figure 42.	Amburayan Bridge cross-section diagram. Amburayan Bridge Planimetric map. Bridge as-built form of Amburayan Bridge. Water-level markings on the deck of Amburayan Bridge. Validation points acquisition survey set up along Amburayan River Basin. Validation point acquisition survey of Amburayan River basin. Bathymetric survey set-up in Amburayan River Bathymetric survey of Amburayan River.	39 40 41 41 42 43 44
Figure 30. Figure 39. Figure 40. Figure 41. Figure 42. Figure 43.	Amburayan Bridge cross-section diagram. Amburayan Bridge Planimetric map. Bridge as-built form of Amburayan Bridge. Water-level markings on the deck of Amburayan Bridge. Validation points acquisition survey set up along Amburayan River Basin. Validation point acquisition survey of Amburayan River basin. Bathymetric survey set-up in Amburayan River Bathymetric survey of Amburayan River. Amburayan Riverbed Profile, upstream part.	39 40 41 41 42 42 43 43 44

Figure 45.	The location map of Amburavan HEC-HMS model used for calibration	.46
Figure 46.	Cross-Section Plot of Amburayan Bridge.	.47
Figure 47.	Rating Curve at Amburavan Bridge, Sudipen, La Union	.47
Figure 48.	Rainfall and outflow data at Amburavan Bridge used for modeling	.48
Figure 49.	Location of Baguio RIDF Station relative to Amburavan River Basin.	.49
Figure 50.	Synthetic storm generated for a 24-hr period rainfall for various return periods	.49
Figure 51.	Soil Map of Amburavan River Basin.	.50
Figure 52.	Land Cover Map of Amburavan River Basin.	.50
Figure 53.	Slope Map of Amburavan River Basin	.51
Figure 54.	Stream Delineation Map of Amburayan River Basin.	.51
Figure 55.	The Amburayan river basin model generated using HEC-HMS	.52
Figure 56.	River cross-section of Amburayan River generated through Arcmap HEC GeoRAS tool	.53
Figure 57.	A screenshot of the river subcatchment with the computational area	
0	to be modeled in FLO-2D Grid Developer System Pro (FLO-2D GDS Pro)	.54
Figure 58.	Outflow Hydrograph of Amburayan produced by the HEC-HMS model compared with	
U	observed outflow.	.55
Figure 59.	Outflow hydrograph at Amburayan Station generated using the Baguio RIDF	
U	simulated in HEC-HMS	.57
Figure 60.	Sample output of Amburayan RAS Model	.58
Figure 61.	100-year Flood Hazard Map for Amburayan Floodplain overlaid on Google Earth imagery	.59
Figure 62.	100-year Flow Depth Map for Amburayan Floodplain overlaid on Google Earth imagery	.59
Figure 63.	25-year Flood Hazard Map for Amburayan Floodplain overlaid on Google Earth imagery	.60
Figure 64.	25-year Flow Depth Map for Amburayan Floodplain overlaid on Google Earth imagery60	
Figure 65.	5-year Flood Hazard Map for Amburayan Floodplain overlaid on Google Earth imagery	.61
Figure 66.	5-year Flood Depth Map for Amburayan Floodplain overlaid on Google Earth imagery	.61
Figure 67.	Affected Areas in Alilem, Ilocos Sur during 5-Year Rainfall Return Period	.62
Figure 68.	Affected Areas in Santa Cruz, Ilocos Sur during 5-Year Rainfall Return Period.	.63
Figure 69.	Affected Areas in Suyo, Ilocos Sur during 5-Year Rainfall Return Period	.64
Figure 70.	Figure 70. Affected Areas in Tagudin, Ilocos Sur during 5-Year Rainfall Return Period	.65
Figure 71.	Affected Areas in Tagudin, Ilocos Sur during 5-Year Rainfall Return Period	.66
Figure 72.	Affected Areas in Tagudin, Ilocos Sur during 5-Year Rainfall Return Period.	.67
Figure 73.	Affected Areas in Tagudin, Ilocos Sur during 5-Year Rainfall Return Period.	.68
Figure 74.	Affected Areas in Tagudin, Ilocos Sur during 5-Year Rainfall Return Period.	.69
Figure 75.	Affected Areas in Balaoan, La Union during 5-Year Rainfall Return Period.	.70
Figure 76.	Affected Areas in Bangar, La Union during 5-Year Rainfall Return Period.	.71
Figure 77.	Affected Areas in Bangar, La Union during 5-Year Rainfall Return Period.	.72
Figure 78.	Affected Areas in Bangar, La Union during 5-Year Rainfall Return Period.	.73
Figure 79.	Affected Areas in Luna, La Union during 5-Year Rainfall Return Period	.74
Figure 80.	Affected Areas in Luna, La Union during 5-Year Rainfall Return Period	.75
Figure 81.	Affected Areas in Santol, La Union during 5-Year Rainfall Return Period.	.76
Figure 82.	Affected Areas in Sudipen, La Union during 5-Year Rainfall Return Period.	.//
Figure 83.	Affected Areas in Sudipen, La Union during 5-Year Rainfall Return Period.	.78
Figure 84.	Affected Areas in Alilem, llocos Sur during 25-Year Rainfall Return Period.	.79
Figure 85.	Affected Areas in Santa Cruz, llocos Sur during 25-Year Rainfall Return Period.	.80
Figure 86.	Affected Areas in Suyo, llocos Sur during 25-Year Rainfall Return Period.	18.
Figure 87.	Affected Areas in Tagudin, flocos Sur during 25-Year Raimall Return Period.	.82
Figure 88.	Affected Areas in Tagudin, flocos Sur during 25-Year Raimall Return Period.	.83
Figure 89.	Affected Areas in Tagudin, flocos Sur during 25-Year Raiffall Return Period.	.84 05
Figure 90.	Affected Areas in Taguain, flocos Sur during 25-Year Raimall Return Period.	.85
Figure 91.	Affected Areas in Palaoan, La Union during 25-Year Painfall Return Period.	.00
Figure 92.	Affected Areas in Dangar La Union during 25-Year Rainfall Return Period	.07
Figure 95.	Affected Areas in Dangar, La Union during 25 Year Dainfall Deturn Deriod	.00
Figure 94.	Affected Areas in Bangar, La Union during 25-Year Rainfall Return Period.	00
Figure 95.	Affected Areas in Luna, La Union during 25 Year Dainfall Return Deriod	.90
Figure 90.	Affected Areas in Luna, La Union during 25-Year Painfall Return Period	.91
Figure 02	Affected Areas in Santol La Union during 25-year Rainfall Return Deriod	<u>عو</u> .
Figure 00	Affected Areas in Sudipen 1a Union during 25-Year Rainfall Return Period	۰.5 ۹ <u>۸</u>
Figure 100	Affected Areas in Sudipen, La Union during 25-Year Rainfall Return Period	95
Figure 101	Affected Areas in Alilem, Ilocos Sur during 100-Year Rainfall Return Period	.96
Figure 102	. Figure 102. Affected Areas in Santa Cruz, Ilocos Sur during 100-Year Rainfall Return Period	.97
Figure 103	. Affected Areas in Suyo, Ilocos Sur during 100-Year Rainfall Return Period.	.98
-		

Figure 104. Affected Areas in Tagudin, Ilocos Sur during 100-Year Rainfall Return Period	99
Figure 105. Affected Areas in Tagudin, Ilocos Sur during 100-Year Rainfall Return Period	100
Figure 106. Affected Areas in Tagudin, Ilocos Sur during 100-Year Rainfall Return Period	101
Figure 107. Affected Areas in Tagudin, Ilocos Sur during 100-Year Rainfall Return Period	102
Figure 108. Affected Areas in Balaoan, La Union during 100-Year Rainfall Return Period	103
Figure 109. Affected Areas in Balaoan, La Union during 100-Year Rainfall Return Period	104
Figure 110. Affected Areas in Bangar, La Union during 100-Year Rainfall Return Period	105
Figure 111. Affected Areas in Bangar, La Union during 100-Year Rainfall Return Period	107
Figure 112. Affected Areas in Bangar, La Union during 100-Year Rainfall Return Period	108
Figure 113. Affected Areas in Luna, La Union during 100-Year Rainfall Return Period.	109
Figure 114. Affected Areas in Luna, La Union during 100-Year Rainfall Return Period.	110
Figure 115. Affected Areas in Santol, La Union during 100-Year Rainfall Return Period	111
Figure 116. Affected Areas in Sudipen, La Union during 100-Year Rainfall Return Period	112
Figure 117. Affected Areas in Sudipen, La Union during 100-Year Rainfall Return Period	113
Figure 118. Flood Validation Points for Amburayan River Basin.	115
Figure 119. Flood Map Depth vs Actual Flood Depth for Amburayan.	115

LIST OF TABLES

Table 1. Table 2.	Flight planning parameters for Pegasus LiDAR System Details of the recovered NAMRIA horizontal control point LUN-62 used as base station for th	2 ne
Table 3.	Details of the recovered NAMRIA horizontal control point LUN-176 used as base station for	4
Table 4.	Details of the recovered NAMRIA horizontal control point LUN-3062 used as base station for the LiDAR acquisition	5 r
Table 5.	Details of the recovered NAMRIA horizontal control point LUN-3129 used as base station for the LiDAR acquisition	r 7
Table 6.	Details of the recovered NAMRIA reference point LU-94 with proces used as base station for the LiDAR acquisition.	r 8
Table 7.	Ground control points used during LiDAR data acquisition.	8
Table 8.	Flight missions for LiDAR data acquisition in Amburavan floodplain.	9
Table 9.	Actual parameters used during LiDAR data acquisition.	9
Table 10.	List of municipalities and cities surveyed during Amburayan floodplain LiDAR survey	.10
Table 11.	Self-Calibration Results values for Amburavan flights.	.15
Table 12.	List of LiDAR blocks for Amburavan floodplain.	.16
Table 13.	Amburavan classification results in TerraScan.	.19
Table 14.	LiDAR blocks with its corresponding area	.22
Table 15.	Shift Values of each LiDAR Block of Amburayan floodplain	.23
Table 16.	Calibration Statistical Measures.	.26
Table 17.	Validation Statistical Measures	.27
Table 18.	Quality Checking Ratings for Amburayan Building Features	.29
Table 19.	Number of Building Features Extracted for Amburayan Floodplain	.30
Table 20.	Total Length of Extracted Roads for Amburayan Floodplain.	.30
Table 21.	Number of Extracted Water Bodies for Amburayan Floodplain	.30
Table 22.	List of Reference and Control Points occupied for Amburayan River Survey	.34
Table 23.	Baseline Processing Summary Report for Amburayan River Survey	.36
Table 24.	Control Point Constraints.	.36
Table 25.	Adjusted Grid Coordinates.	.37
Table 26.	Adjusted Geodetic Coordinates	.37
Table 27.	Reference and control points used and its location	.38
Table 28.	RIDF values for Baguio Rain Gauge computed by PAGASA	.48
Table 29.	Range of Calibrated Values for Amburayan	.55
Table 30.	Summary of the Efficiency Test of Amburayan HMS Model	.56
Table 31.	Peak values of the Amburayan HEC-HMS Model outflow using the Baguio RIDF	.57
Table 32.	Municipalities affected in Amburayan floodplain	.58
Table 33.	Affected Areas in Alilem, Ilocos Sur during 5-Year Rainfall Return Period	.62
Table 34.	Affected Areas in Santa Cruz, Ilocos Sur during 5-Year Rainfall Return Period.	.63
Table 35.	Affected Areas in Suyo, Ilocos Sur during 5-Year Rainfall Return Period	.63
Table 36.	Affected Areas in Tagudin, Ilocos Sur during 5-Year Rainfall Return Period.	.65
Table 37.	Affected Areas in Tagudin, Ilocos Sur during 5-Year Rainfall Return Period.	.66
Table 38.	Affected Areas in Tagudin, Ilocos Sur during 5-Year Rainfall Return Period.	.67
Table 39.	Affected Areas in Tagudin, Ilocos Sur during 5-Year Rainfall Return Period.	.68
Table 40.	Affected Areas in Balaoan, La Union during 5-Year Rainfall Return Period.	.69
Table 41.	Affected Areas in Balaoan, La Union during 5-Year Rainfall Return Period.	.70
Table 42.	Affected Areas in Bangar, La Union during 5-Year Rainfall Return Period.	.71
Table 43.	Affected Areas in Bangar, La Union during 5-Year Rainfall Return Period.	.72
Table 44.	Affected Areas in Bangar, La Union during 5-Year Rainfall Return Period.	.73
Table 45.	Affected Areas in Luna, La Union during 5-Year Rainfall Return Period.	.74
Table 46.	Affected Areas in Luna, La Union during 5-Year Rainfall Return Period	.75
Table 47.	Affected Areas in Santol, La Union during 5-Year Rainfall Return Period.	./5
12016 48.	Affected Areas in Sudipen, La Union during 5-Year Kaintall Keturn Period.	./b
Table 49.	Affected Areas in Sudipen, La Union during 5-Year Rainfall Return Period.	.//
Table 50.	Affected Areas in Annem, nocos Sur during 25-Year Kainfall Keturn Period	./8
	Affected Areas in Suna Llocos Sur during 25-Year Rainfall Return Period	.19
Table 52.	Affected Areas in Tagudin, Jlacas Sur during 25-Year Kalmali Keturn Period.	.ðU
Table 53.	Affected Areas in Tagudin, llocos Sur during 25-Year Rainfall Return Period.	.ŏZ
Table FF	Affected Areas in Tagudin, llocos Sur during 25 Vear Painfall Return Period	ζο. ΩΛ
10016 22.	Anected Areas III Taguulli, notos sul uuting 25-tear Natifidii Kelutti Petiou	.04

Table 56.	Affected Areas in Tagudin, Ilocos Sur during 25-Year Rainfall Return Period	85
Table 57.	Affected Areas in Balaoan, La Union during 25-Year Rainfall Return Period	86
Table 58.	Affected Areas in Balaoan, La Union during 25-Year Rainfall Return Period	87
Table 59.	Affected Areas in Bangar, La Union during 25-Year Rainfall Return Period	88
Table 60.	Affected Areas in Bangar, La Union during 25-Year Rainfall Return Period	89
Table 61.	Affected Areas in Bangar, La Union during 25-Year Rainfall Return Period	90
Table 62.	Affected Areas in Luna, La Union during 25-Year Rainfall Return Period	91
Table 63.	Affected Areas in Luna, La Union during 25-Year Rainfall Return Period	92
Table 64.	Affected Areas in Santol, La Union during 25-Year Rainfall Return Period	92
Table 65.	Affected Areas in Sudipen, La Union during 25-Year Rainfall Return Period	93
Table 66.	Affected Areas in Sudipen, La Union during 25-Year Rainfall Return Period	94
Table 67.	Affected Areas in Alilem, Ilocos Sur during 100-Year Rainfall Return Period	95
Table 68.	Affected Areas in Santa Cruz, Ilocos Sur during 100-Year Rainfall Return Period.	96
Table 69.	Affected Areas in Suyo, Ilocos Sur during 100-Year Rainfall Return Period	97
Table 70.	Affected Areas in Tagudin, Ilocos Sur during 100-Year Rainfall Return Period	99
Table 71.	Affected Areas in Tagudin, Ilocos Sur during 100-Year Rainfall Return Period	
Table 72.	Affected Areas in Tagudin, Ilocos Sur during 100-Year Rainfall Return Period	101
Table 73.	Affected Areas in Tagudin, Ilocos Sur during 100-Year Rainfall Return Period	
Table 74.	Affected Areas in Balaoan, La Union during 100-Year Rainfall Return Period	102
Table 75.	Affected Areas in Balaoan, La Union during 100-Year Rainfall Return Period	
Table 76.	Affected Areas in Bangar, La Union during 100-Year Rainfall Return Period	105
Table 77.	Affected Areas in Bangar, La Union during 100-Year Rainfall Return Period	106
Table 78.	Affected Areas in Bangar, La Union during 100-Year Rainfall Return Period	108
Table 79.	Affected Areas in Luna, La Union during 100-Year Rainfall Return Period	109
Table 80.	Affected Areas in Luna, La Union during 100-Year Rainfall Return Period	110
Table 81.	Affected Areas in Santol, La Union during 100-Year Rainfall Return Period	110
Table 82.	Affected Areas in Sudipen, La Union during 100-Year Rainfall Return Period	111
Table 83.	Affected Areas in Sudipen, La Union during 100-Year Rainfall Return Period	112
Table 84.	Area covered by each warning level with respect to the rainfall scenario	114
Table 85.	Table 85. Actual Flood Depth vs Simulated Flood Depth in Amburayan.	116
Table 86.	Summary of Accuracy Assessment in Amburayan	116

LIST OF ACRONYMS AND ABBREVIATIONS

AAC	Asian Aerospace Corporation
Ab	abutment
ALTM	Airborne LiDAR Terrain Mapper
ARG	automatic rain gauge
AWLS	Automated Water Level Sensor
BA	Bridge Approach
BM	benchmark
CAD	Computer-Aided Design
CN	Curve Number
CSRS	Chief Science Research Specialist
DAC	Data Acquisition Component
DEM	Digital Elevation Model
DENR	Department of Environment and Natural Resources
DOST	Department of Science and Technology
DPPC	Data Pre-Processing Component
DREAM	Disaster Risk and Exposure Assessment for Mitigation [Program]
DRRM	Disaster Risk Reduction and Management
DSM	Digital Surface Model
DTM	Digital Terrain Model
DVBC	Data Validation and Bathymetry Component
FMC	Flood Modeling Component
FOV	Field of View
GiA	Grants-in-Aid
GCP	Ground Control Point
GNSS	Global Navigation Satellite System
GPS	Global Positioning System
H E C - HMS	Hydrologic Engineering Center - Hydrologic Modeling System
HEC-RAS	Hydrologic Engineering Center - River Analysis System
HC	High Chord
IDW	Inverse Distance Weighted [interpolation method]
IMU	Inertial Measurement Unit
kts	knots
LAS	LiDAR Data Exchange File format
LC	Low Chord
LGU	local government unit
Lidar	Light Detection and Ranging
LMS	LiDAR Mapping Suite

m AGL	meters Above Ground Level
MMS	Mobile Mapping Suite
MSL	mean sea level
NAMRIA	National Mapping and Resource Information Authority
NSTC	Northern Subtropical Convergence
PAF	Philippine Air Force
PAGASA	Philippine Atmospheric Geophysical and Astronomical Services Administration
PDOP	Positional Dilution of Precision
РРК	Post-Processed Kinematic [technique]
PRF	Pulse Repetition Frequency
PTM	Philippine Transverse Mercator
QC	Quality Check
QT	Quick Terrain [Modeler]
RA	Research Associate
RIDF	Rainfall-Intensity-Duration-Frequency
RMSE	Root Mean Square Error
SAR	Synthetic Aperture Radar
SCS	Soil Conservation Service
SRTM	Shuttle Radar Topography Mission
SRS	Science Research Specialist
SSG	Special Service Group
ТВС	Thermal Barrier Coatings
UPB	University of the Philippines Baguio
U P - TCAGP	University of the Philippines – Training Center for Applied Geodesy and Photogrammetry
UTM	Universal Transverse Mercator
WGS	World Geodetic System

CHAPTER 1: OVERVIEW OF THE PROGRAM AND AMBURAYAN RIVER

Dr. Chelo Pascua and Enrico C. Paringit, Dr. Eng.

1.1 Background of the Phil-LIDAR 1 Program

The University of the Philippines Training Center for Applied Geodesy and Photogrammetry (UP-TCAGP) launched a research program in 2014 entitled "Nationwide Hazard Mapping using LiDAR" or Phil-LiDAR 1, supported by the Department of Science and Technology (DOST) Grants-in-Aid (GiA) Program. The program was primarily aimed at acquiring a national elevation and resource dataset at sufficient resolution to produce information necessary to support the different phases of disaster management. Particularly, it targeted to operationalize the development of flood hazard models that would produce updated and detailed flood hazard maps for the major river systems in the country.

Also, the program was aimed at producing an up-to-date and detailed national elevation dataset suitable for 1:5,000 scale mapping, with 50 cm and 20 cm horizontal and vertical accuracies, respectively. These accuracies were achieved through the use of the state-of-the-art Light Detection and Ranging (LiDAR) airborne technology procured by the project through DOST. The methods applied in this report are thoroughly described in a separate publication entitled "FLOOD MAPPING OF RIVERS IN THE PHILIPPINES USING AIRBORNE LIDAR: METHODS (Paringit, et. al. 2017) available separately.

The implementing partner university for the Phil-LiDAR 1 Program is the University of the Philippines Baguio (UPB). UPB is in charge of processing LiDAR data and conducting data validation reconnaissance, cross section, bathymetric survey, validation, river flow measurements, flood height and extent data gathering, flood modeling, and flood map generation for the 12 river basins in the Ilocos Region and the Cordillera Administrative Region. The university is located in Baguio City in the province of Benguet.

1.2 Overview of the Amburayan River Basin

Amburayan River Basin covers five (5) municipalities in Benguet, four (4) municipalities in La Union, and five (5) municipalities in Ilocos Sur. The DENR River Basin Control Office identified the basin to have a drainage area of 1,386 km² and an estimated 3,389 million cubic meter (MCM) annual run-off (RBCO, 2015).

Its main stem, Amburayan River, is part of the river systems in Ilocos Region. According to the 2010 national census of NSO, a total of 22,768 people is residing within the immediate vicinity of the river which is distributed among twenty one (21) barangays in the Municipalities of Tagudin and Alilem, in Ilocos Sur; and Municipalities of Bangar and Sudipen, in La Union. Municipalities surrounding the river primarily depends on agriculture (i.e. rice and crop production) as their source of income. Most of the lands are irrigated by the river while certain portions are dependent on rain (https://sites.google.com/site/bluefirr/history/ existing-land-use, 2013). The most recent flood event in the area which even made some road, like Bangar-Luna Road, unpassable was on July, 2015 brought by Typhoon Egay.

LiDAR or Light Detection and Ranging, a remote sensing technology used to examine the earth's surface, is used to create high resolution maps for the purpose of flood hazard mapping. Flood hazard mapping defines those coastal areas which are at risk of flooding under extreme conditions. With the adverse effects of flooding, the government has implemented the Phil-LiDAR1 project to mitigate the impacts of flooding in the country and to provide accurate flood hazard and risk data to guide the community for appropriate actions. Through flood hazard maps, one can easily identify the flood inundation of an area. This project is very beneficial to the community as this will bring knowledge and awareness of the things to do to prepare for disasters like flooding. The flood hazard maps incorporate data for river flows, storm tides, hydrologic and hydraulic analyses and rainfall and topographic surveys. Moreover, through the identification of the areas being flooded, engineers can also compute for the flood flows and design a drainage system to lessen the impact of flooding in the community. This also helps for the economic expansion in an area for locations not prone to flooding, as it will encourage more investors for development projects and businesses in different sectors, including the agricultural and non-agricultural sectors.

CHAPTER 2: LIDAR DATA ACQUISITION OF THE AMBURAYAN FLOODPLAIN

Engr. Louie P. Balicanta, Engr. Joemarie S. Caballero, Ms. Patrizcia Mae P. dela Cruz, Engr. Kristine Ailene B. Borromeo, For. Dona Rina Patricia C. Tajora, Elaine Bennet Salvador, For. Rodel C. Alberto

The methods applied in this chapter were based on the DREAM methods manual (Ang, et. al., 2014) and further enhanced and updated in Paringit, et. al. (2017).

2.1 Flight Plans

Plans were made to acquire LiDAR data within the delineated priority area for Amburayan floodplain in La Union. These missions were planned for sixteen (16) lines and ran for at most four and a half (4.5) hours including take-off, landing and turning time. The flight planning parameters for the LiDAR system is found in Table 1. Figure 1 shows the flight plans and base stations used for Amburayan floodplain.

Block Name	Flying Height (m AGL)	Overlap (%)	Field of View (θ)	Pulse Repetition Frequency (PRF) (kHz)	Scan Frequency (Hz)	Average Speed (kts)	Average Turn Time (Minutes)
10A	1200	30	50	200	30	130	5
10B	1000/1200	30	50	200	30	130	5
10C	1200 / 1500 / 1800	30	50	200	30	130	5
10D	1200 / 1500	30	50	200	30	130	5
10G	1500	30	50	200	30	130	5

Table 1. Flight planning parameters for Pegasus LiDAR System.

Figure 1. Flight plans and base stations used for Amburayan floodplain.

2.2 Ground Base Stations

The project team was able to two (2) NAMRIA control stations (LUN-62 and LUN-176) with second (2nd) order accuracy, two (2) (LUN-3062 and LUN-3129) with fourth (4th) order accuracy and Benchmark (BM LU-94) with first (1st) order accuracy. The certifications for the NAMRIA reference points are found in Annex 2 while the baseline processing report is found in Annex 3. These were used as base stations during flight operations for the entire duration of the survey (February 25 – March 8, 2015). Base stations were observed using dual frequency GPS receivers, TRIMBLE SPS 852 and SPS 985. Flight plans and location of base stations used during the aerial LiDAR acquisition in Amburayan floodplain are shown in Figure 1.

Figure 2 to Figure 5 show the recovered NAMRIA reference points within the area, in addition Table 2 to Table 6 show the details about the following NAMRIA control stations and established points, Table 7 shows the list of all ground control points occupied during the acquisition together with the dates they are utilized during the survey.

Hazard Mapping of the Philippines Using LiDAR (Phil-LiDAR 1)

Figure 2. a) GPS set-up over LUN-62 as recovered 15 m S from the first access ladder of the river control and about 100 m N from the end, it is also situated 300 m S of a hanging bridge. b) NAMRIA reference point LUN-62 as recovered by the field team.

Station Name	LUN-62			
Order of Accuracy	2 nd			
Relative Error (horizontal positioning)	1	L in 50,000		
	Latitude	16° 33' 19.98115" 120° 23'		
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Longitude	28.76004"		
	Ellipsoidal Height	33.18400 m		
Grid Coordinates, Philippine Transverse	Easting	435034.926 m		
Mercator Zone 5 (PTM Zone 5 PRS 92)	Northing	1831016.667 m		
Geographic Coordinates, World Geodetic	Latitude	16° 33′ 14.07106″		
System 1984 Datum	Longitude	120° 23' 33.49149" 69.44500		
(WGS 84)	Ellipsoidal Height	m		
Grid Coordinates, Universal Transverse Mercator Zone 51 North	Easting	221592.72 m		
(UTM 51N WGS 1984)	Northing	1832084.35 m		

Table 2. Details of the recovered NAMRIA horizontal control point LUN-62 used as base station for the LiDAR acquisition.

Figure 3. a) GPS set-up over LUN-176 recovered near a corner of a farm dike, about 15 m SE of the well and about 20 m SW of the nearest house. b) NAMRIA reference point LUN-176 as recovered by the field team.

Station Name	LUN-176		
Order of Accuracy	2nd		
Relative Error (horizontal positioning)	1 in 50,000		
	Latitude	16° 46′ 14.35394″ 120° 24′	
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Longitude	5.41918"	
	Ellipsoidal Height	35.63300 m	
Grid Coordinates, Philippine Transverse	Easting	436193.115 m	
Mercator Zone 3 (PTM Zone 5 PRS 92)	Northing	1854816.574 m	
	Latitude	16° 46' 8.39718"	
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Longitude	120° 24′ 10.13252″	
	Ellipsoidal Height	71.25300 m	
Grid Coordinates, Universal Transverse Mercator Zone 51 North	Easting	222990.04 m	
(UTM 51N WGS 1984)	Northing	1855884.50 m	

Table 3. Details of the recovered NAMRIA horizontal control point LUN-176 used as base station for the LiDAR acquisition.

Figure 4. a) GPS set-up over LUN-3062 recovered at the top of a dike, approximately 100 m north of Philippine Central College of Arts Sciences & Technology and 80 m north of Naguilian emission testing center in Brgy. Natividad, Naguilian, La Union. b) NAMRIA reference point LUN-3062 as recovered by the field team.

Table 4. Details of the recovered NAMRIA horizontal control point LUN-3062 used as base station for the
LiDAR acquisition.

Station Name	LUN-3062		
Order of Accuracy		4 th	
Relative Error (horizontal positioning)	1	L in 10,000	
	Latitude	16° 31′ 55.00993″	
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Longitude	120° 23′ 12.50504″	
	Ellipsoidal Height	25.32100 m	
Grid Coordinates, Philippine Transverse	Easting	434545.028 m	
Mercator Zone 5 (PTM Zone 5 PRS 92)	Northing	1828406.255 m	
Geographic Coordinates, World Geodetic	Latitude	16° 31' 49.10470" 120° 23'	
System 1984 Datum	Longitude	17.23850"	
(WGS 84)	Ellipsoidal Height	61.64400 m	
Grid Coordinates, Universal Transverse Mercator Zone 51 North	Easting	221076.59 m	
(UTM 51N WGS 1984)	Northing	1829477.48 m	

Figure 5. a) GPS set-up over LUN-3129 recovered beside the National Road about 50 meters northeast of the nearest house. b) NAMRIA reference point LUN-3129 as recovered by the field team.

Table 5. Details of the recovered NAMRIA horizontal control point LUN-3129 used as base station for the
LiDAR acquisition.

Station Name	LUN-3129		
Order of Accuracy	4 th		
Relative Error (horizontal positioning)	1	L in 10,000	
	Latitude	16° 31' 55.00993" 120° 23'	
Geographic Coordinates, Philippine	Longitude	12.50504"	
	Ellipsoidal Height	25.32100 m	
Grid Coordinates, Philippine Transverse	Easting	434545.028 m	
Mercator Zone 5 (PTM Zone 5 PRS 92)	Northing	1828406.255 m	
Geographic Coordinates, World Geodetic	Latitude	16° 31' 49.10470" 120° 23'	
System 1984 Datum	Longitude	17.23850"	
(WGS 84)	Ellipsoidal Height	61.64400 m	
Grid Coordinates, Universal Transverse Mercator Zone 51 North	Easting	221076.59 m	
(UTM 51N WGS 1984)	Northing	1829477.48 m	

Table 6. Details of the recovered NAMRIA reference point LU-94 with proces used as base station for the LiDAR acquisition.

Station Name	LU-94		
Order of Accuracy	1 st		
Relative Error (horizontal positioning)	1 in 100,000		
	Latitude	16°42′ 38.64674″	
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Longitude	120°20′35.05091″	
	Ellipsoidal Height	49.582 m	
Grid Coordinates, Philippine Transverse	Easting	21672.143 m	
Mercator Zone 5 (PTM Zone 5 PRS 92)	Northing	1849445.472 m	
Geographic Coordinates, World Geodetic	Latitude	16°42′ 38.64674″	
System 1984 Datum	Longitude	120°20'35.05091"	
(WGS 84)	Ellipsoidal Height	49.582 m	

Table 7. Ground control points used during LiDAR data acquisition.

Date Surveyed	Flight Number	Mission Name	Ground Control Points
February 25, 2014	1151P	1BLK10A056A	LUN-176 and LUN-3129
February 25, 2014	1153P	1BLK10AS056B	LUN-176 and LUN-3129
February 26, 2014	1155P	1BLK10C057A	LUN-176 and LU-94
February 27, 2014	1157P	1BLK10B057B	LUN-176 and LUN-94
March 2, 2014	1171P	1BLK10CDS061A	LUN-62 and LUN-3062
March 3, 2014	1175P	1BLK10BS062A	LUN-176 and LUN-3129
March 3, 2014	1177P	1BLK10CS062B	LUN-176 and LUN-3129
March 8, 2014	1197P	1BLK10GCS067B	LUN-62 and LUN-3062

2.3 Flight Missions

Eight (8) missions were conducted to complete the LiDAR data acquisition in Amburayan Floodplain, for a total of twenty four hours and fifty eight minutes (24+58) of flying time for RP-C9022. All missions were acquired using the Pegasus LiDAR system. Table 8 shows the total area of actual coverage and the corresponding flying hours per mission, while Table 9 presents the actual parameters used during the LiDAR data acquisition.

Date	Flight	Flight	Surveyed	Area Surveyed	Area Surveyed	No. of	Flying Hours	
Surveyed	Number	Plan Area (km²)	Area (km²)	within the Floodplain (km²)	Floodplain (km²)	Images (Frames)	Hr	Min
February 25, 2014	1151P	223.74	284.52	71.7	212.82	NA	3	53
February 25, 2014	1153P	223.74	92.67	30.2	62.47	NA	1	55
February 26, 2014	1155P	298.49	251.57	33.98	217.59	574	3	41
February 27, 2014	1157P	283.36	151.43	39.39	112.04	454	2	29
March 2, 2014	1171P	551.6	201.6	0	201.6	334	3	25
March 3, 2014	1175P	283.36	323.08	79.64	243.44	675	3	35
March 3, 2014	1177P	298.49	276.14	14.32	261.82	501	2	53
March 8, 2014	1197P	434.41	110.17	0	110.17	257	2	59
тот	AL	2597.19	1691.18	269.23	1421.95	2795	24	58

Table 8. Flight missions for LiDAR data acquisition in Amburayan floodplain.

Table 9. Actual parameters used during LiDAR data acquisition.

Flight Number	Flying Height (m AGL)	Overlap (%)	FOV (θ)	PRF (Hz)	Scan Frequency (kHz)	Average Speed (kts)	Average Turn Time (Minutes)
1151P	1200	30	50	200	30	130	5
1153P	1200	30	50	200	30	130	5
1155P	1200	30	50	200	30	130	5
1157P	1200	30	50	200	30	130	5
1171P	1500	30	50	200	30	130	5
1175P	1200	30	50	200	30	130	5
1177P	1800	30	50	200	30	130	5
1197P	1500	30	50	200	30	130	5

2.4 Survey Coverage

Amburayan floodplain is located in the province of La Union and Ilocos Sur with majority of the floodplain situated within the municipalities of Tagudin and Supiden. Municipalities of Santol, San Gabriel, Bacnotan, Suyo, Sudipen, San Fernando City and Balaoan are mostly covered by the survey. The list of municipalities and cities surveyed with at least one (1) square kilometer coverage, is shown in Table 10. The actual coverage of the LiDAR acquisition for Amburayan floodplain is presented in Figure 6.

Hazard Mapping of the Philippines Using LiDAR (Phil-LiDAR 1)

Province	Municipality/City	Area of Municipality/City	Total Area Surveyed	Percentage of Area Surveyed
Ponguot	Sablan	90.22	8.70	10%
benguet	Tuba	322.02	3.32	1%
	Tagudin	54.35	54.35	100%
	Suyo	148.52	77.27	52%
Ilocos Sur	Sugpon	180.28	49.62	28%
	Alilem	132.18	34.23	26%
	Santa Cruz	105.95	25.19	24%
	Bacnotan	80.67	80.67	100%
	Balaoan	60.96	60.96	100%
	Bangar	45.12	45.12	100%
	Luna	50.66	50.65	100%
	Sudipen	75.75	75.55	100%
	Santol	97.97	94.69	97%
Lallaion	San Juan	53.44	35.11	66%
La Union	San Gabriel	154.19	88.91	58%
	San Fernando City	121.05	63.10	52%
	Burgos	51.92	26.28	51%
	Bagulin	77.97	33.35	43%
	Naguilian	86.39	30.77	36%
	Bauang	85.26	7.50	9%
	Aringay	95.65	6.94	7%
	Total	2,170.52	952.28	43.87%

Table 10. List of municipalities and cities surveyed during Amburayan floodplain LiDAR survey.

Figure 6. Actual LiDAR survey coverage for Amburayan floodplain.

CHAPTER 3: LIDAR DATA PROCESSING OF THE AMBURAYAN FLOODPLAIN

Engr. Ma. Rosario Concepcion O. Ang, Engr. John Louie D. Fabila, Engr. Sarah Jane D. Samalburo , Engr. Harmond F. Santos, Jovy Anne S. Narisma, Engr. Ma. Ailyn L. Olanda, Engr. Erica Erin E. Elazegui, Engr. Kenneth A. Solidum, Engr. Jommer M. Medina, Carl Joshua S. Lacsina

The methods applied in this chapter were based on the DREAM methods manual (Ang, et. al., 2014) and further enhanced and updated in Paringit, et. al. (2017).

3.1 Overview of the LIDAR Data Pre-Processing

Figure 7. Schematic Diagram for Data Pre-Processing Component.

The data transmitted by the Data Acquisition Component are checked for completeness based on the list of raw files required to proceed with the pre-processing of the LiDAR data. Upon acceptance of the LiDAR field data, georeferencing of the flight trajectory is done in order to obtain the exact location of the LiDAR sensor when the laser was shot. Point cloud georectification is performed to incorporate correct position and orientation for each point acquired. The georectified LiDAR point clouds are subject for quality checking to ensure that the required accuracies of the program, which are the minimum point density, vertical and horizontal accuracies, are met. The point clouds are then classified into various classes before generating Digital Elevation Models such as Digital Terrain Model and Digital Surface Model.

Using the elevation of points gathered in the field, the LiDAR-derived digital models are calibrated. Portions of the river that are barely penetrated by the LiDAR system are replaced by the actual river geometry measured from the field by the Data Validation and Bathymetry Component. LiDAR acquired temporally are then mosaicked to completely cover the target river systems in the Philippines. Orthorectification of images acquired simultaneously with the LiDAR data is done through the help of the georectified point clouds and the metadata containing the time the image was captured.

These processes are summarized in the flowchart shown in Figure 7.

3.2 Transmittal of Acquired LiDAR Data

Data transfer sheets for all the LiDAR missions for Amburayan floodplain can be found in Annex 5. Data Transfer Sheets. Missions flown during the first survey conducted on February 2014 used the Airborne LiDAR Terrain Mapper (ALTM[™] Optech Inc.) Pegasus system over the province of La Union. The Data Acquisition Component (DAC) transferred a total of 137.58 Gigabytes of Range data, 1.3515 Gigabytes of POS data, 48.91 Megabytes of GPS base station data, and 167.30 Gigabytes of raw image data to the data server on March 17, 2014. The Data Pre-processing Component (DPPC) verified the completeness of the transferred data. The whole dataset for Amburayan was fully transferred on March 17, 2014 as indicated on the Data Transfer Sheets for Amburayan floodplain.

3.3 Trajectory Computation

The *Smoothed Performance Metric* parameters of the computed trajectory for flight 1155P, one of the Amburayan flights, which is the North, East, and Down position RMSE values are shown in Figure 8. The x-axis corresponds to the time of flight, which is measured by the number of seconds from the midnight of the start of the GPS week, which on that week fell on February 23, 2014 00:00 AM. The y-axis is the RMSE value for that particular position.

Figure 8. Smoothed Performance Metric Parameters of Amburayan Flight 1155P.

The time of flight was from 280,850 seconds to 287,000 seconds, which corresponds to morning of February 26, 2014. The initial spike that is seen on the data corresponds to the time that the aircraft was getting into position to start the acquisition, and the POS system starts computing for the position and orientation of the aircraft. Redundant measurements from the POS system quickly minimize the RMSE value of the positions. The periodic increase in RMSE values from an otherwise smoothly curving RMSE values correspond to the turn-around period of the aircraft, when the aircraft makes a turn to start a new flight line. Figure 8 shows that the North position RMSE peaks at 1.66 centimeters, the East position RMSE peaks at 1.65 centimeters, and the Down position RMSE peaks at 3.58 centimeters, which are within the prescribed accuracies described in the methodology.

Figure 9. Solution Status Parameters of Amburayan Flight 1155P.

The Solution Status parameters of flight 1155P, one of the Amburayan flights, which are the number of GPS satellites, Positional Dilution of Precision, and the GPS processing mode used, are shown in Figure 9. The graphs indicate that the number of satellites during the acquisition did not go down below 6. Majority of the time, the number of satellites tracked was between 6 and 9. The PDOP value also did not go above the value of 3, which still indicates optimal GPS geometry. The processing mode stayed at the value of 0 for almost the entire survey time with some peaks up to 1 attributed to the turn performed by the aircraft. The value of 0 corresponds to a Fixed, Narrow-Lane mode, which is the optimum carrier-cycle integer ambiguity resolution technique available for POSPAC MMS. All of the parameters adhered to the accuracy requirements for optimal trajectory solutions, as indicated in the methodology. The computed best estimated trajectory for all Amburayan flights is shown in Figure 10.

Figure 10. Best Estimated Trajectory for Amburayan floodplain.

3.4 LiDAR Point Cloud Computation

The produced LAS data contains 126 flight lines, with each flight line containing two channels, since the Pegasus system contains two channels. The summary of the self-calibration results obtained from LiDAR processing in LiDAR Mapping Suite (LMS) software for all flights over Amburayan floodplain are given in Table 11.

Table 11. Self-Calibration Resul	s values for Am	burayan flights.
----------------------------------	-----------------	------------------

Parameter	Acceptable Value
Boresight Correction stdev (<0.001degrees)	0.000398
IMU Attitude Correction Roll and Pitch Corrections stdev (<0.001degrees)	0.000953
GPS Position Z-correction stdev (<0.01meters)	0.0096

The optimum accuracy is obtained for all Amburayan flights based on the computed standard deviations of the corrections of the orientation parameters. Standard deviation values for individual blocks are available in the Annex 8. Mission Summary Reports.

3.5 LiDAR Quality Checking

The boundary of the processed LiDAR data on top of a SAR Elevation Data over Amburayan Floodplain is shown in Figure 11. The map shows gaps in the LiDAR coverage that are attributed to cloud coverage.

Figure 11. Figure 11. Boundary of the processed LiDAR data over Amburayan Floodplain.

The total area covered by the Amburayan missions is 1,361.84 sq.km that is comprised of eight (8) flight acquisitions grouped and merged into four (4) blocks as shown in Table 12.

LiDAR Blocks	Flight Numbers	Area (sq. km)
LaUnion_Blk10A	1151P	280.58
	1153P	
LaUnion_Blk10B	1157P	379.73
	1175P	
	1155P	
Laurian DK10C	1171P	200.02
	1177P	399.93
	1197P	
LaUnion_Blk10C_additional	1177P	301.60
TOTAL		1,361.84

Table 12. List of LiDAR blocks for Aml	burayan floodplain.
--	---------------------

The overlap data for the merged LiDAR blocks, showing the number of channels that pass through a particular location is shown in Figure 12. Since the Pegasus system employs two channels, we would expect an average value of 2 (blue) for areas where there is limited overlap, and a value of 3 (yellow) or more (red) for areas with three or more overlapping flight lines.

Figure 12. Image of data overlap for Amburayan floodplain.

The overlap statistics per block for the Amburayan floodplain can be found in Annex 8. Mission Summary Reports. It should be noted that one pixel corresponds to 25.0 square meters on the ground. For this area, the minimum and maximum percent overlaps are 35.05% and 64.34% respectively, which passed the 25% requirement.

The density map for the merged LiDAR data, with the red parts showing the portions of the data that satisfy the 2 points per square meter criterion is shown in Figure 13. It was determined that all LiDAR data for Amburayan floodplain satisfy the point density requirement, and the average density for the entire survey area is 3.23 points per square meter.

Figure 13. Density map of merged LiDAR data for Amburayan floodplain.

The elevation difference between overlaps of adjacent flight lines is shown in Figure 14. The default color range is from blue to red, where bright blue areas correspond to portions where elevations of a previous flight line, identified by its acquisition time, are higher by more than 0.20m relative to elevations of its adjacent flight line. Bright red areas indicate portions where elevations of a previous flight line are lower by more than 0.20m relative to elevations of its adjacent flight line. Areas with bright red or bright blue areas of its adjacent flight line. Areas with bright red or bright blue need to be investigated further using Quick Terrain Modeler software.

Figure 14. Elevation difference map between flight lines for Amburayan floodplain.

A screen capture of the processed LAS data from an Amburayan flight 1155P loaded in QT Modeler is shown in Figure 15. The upper left image shows the elevations of the points from two overlapping flight strips traversed by the profile, illustrated by a dashed red line. The x-axis corresponds to the length of the profile. It is evident that there are differences in elevation, but the differences do not exceed the 20-centimeter mark. This profiling was repeated until the quality of the LiDAR data becomes satisfactory. No reprocessing was done for this LiDAR dataset.

Figure 15. Quality checking for a Amburayan flight 1155P using the Profile Tool of QT Modeler.

3.6 LiDAR Point Cloud Classification and Rasterization

Pertinent Class	Total Number of Points
Ground	1,115,450,324
Low Vegetation	988,568,721
Medium Vegetation	1,812,497,388
High Vegetation	2,070,413,150
Building	93,860,270

Table 13. Amburayan classification results in TerraScan.

The tile system that TerraScan employed for the LiDAR data and the final classification image for a block in Amburayan floodplain is shown in Figure 16. A total of 1,714 1km by 1km tiles were produced. The number of points classified to the pertinent categories is illustrated in Table 13. The point cloud has a maximum and minimum height of 1,038.87 meters and 40.04 meters respectively.

Figure 16. Tiles for Amburayan floodplain (a) and classification results (b) in TerraScan.

An isometric view of an area before and after running the classification routines is shown in Figure 17. The ground points are in orange, the vegetation is in different shades of green, and the buildings are in cyan. It can be seen that residential structures adjacent or even below canopy are classified correctly, due to the density of the LiDAR data.

Figure 17. Point cloud before (a) and after (b) classification.

The production of last return (V_ASCII) and the secondary (T_ASCII) DTM, first (S_ASCII) and last (D_ASCII) return DSM of the area in top view display are shown in Figure 18. It shows that DTMs are the representation of the bare earth while on the DSMs, all features are present such as buildings and vegetation.

Figure 18. The Production of last return DSM (a) and DTM (b), first return DSM (c) and secondary DTM (d) in some portion of Amburayan floodplain.

3.7 LiDAR Image Processing and Orthophotograph Rectification

The 1,163 1km by 1km tiles area covered by Amburayan floodplain is shown in Figure 19. After tie point selection to fix photo misalignments, color points were added to smoothen out visual inconsistencies along the seamlines where photos overlap. The Amburayan floodplain has a total of 583.92 sq.km orthophotogaph coverage comprised of 2,451 images. A zoomed in version of sample orthophotographs named in reference to its tile number is shown in Figure 20.

Figure 19. Amburayan floodplain with available orthophotographs.

Figure 20. Sample orthophotograph tiles for Amburayan floodplain.

3.8 DEM Editing and Hydro-Correction

Four (4) mission blocks were processed for Amburayan flood plain. These blocks are composed of La Union blocks with a total area of 1,361.84 square kilometers. Table 14 shows the name and corresponding area of each block in square kilometers.

LiDAR Blocks	Area (sq. km)
LaUnion_Blk10A	280.58
LaUnion_Blk10B	379.73
LaUnion_Blk10C	399.93
LaUnion_Blk10C_additional	301.60
TOTAL	1,361.84

Table 14	Lidar	blocks	with its	corresi	onding	area
TADIC IT.	LIDAK	DIUCKS	WILLI ILS	COLLES	Jonung	arca.

Portions of DTM before and after manual editing are shown in Figure 21. The bridge (Figure 21a) is considered to be an impedance to the flow of water along the river and had to be removed (Figure 21b) in order to hydrologically correct the river. The paddy field (Figure 21c) with a no data area had to be filled to complete the surface (Figure 21d) to allow the correct flow of water. Another example is a building that is still present in the DTM after classification (Figure 21e) and has to be removed through manual editing (Figure 21f).

Figure 21. Portions in the DTM of Amburayan floodplain – a bridge before (a) and after (b) manual editing; a paddy field before (c) and after (d) manual editing; and a building before (e) and after (f) manual editing.

3.9 Mosaicking of Blocks

LaUnion_Blk10A was used as the reference block at the start of mosaicking because it was referred to a base station with an acceptable order of accuracy. Table 15 shows the shift values applied to each LiDAR block during mosaicking.

Mosaicked LiDAR DTM for Amburayan floodplain is shown in Figure 22. It can be seen that the entire Amburayan floodplain is 97.87% covered by LiDAR data.

Mission Blocks	Shift Values (meters)			
	х	у	Z	
LaUnion_Blk10A	0.00	0.00	0.00	
LaUnion_Blk10B	0.00	0.00	0.00	
LaUnion_Blk10C	0.00	0.00	0.00	
LaUnion_Blk10C_additional	0.00	0.00	0.00	

Table 15. Shift Values of each LiDAR Block of Amburayan floodplain.

Figure 22. Map of Processed LiDAR Data for Amburayan Flood Plain.

3.10 Calibration and Validation of Mosaicked LiDAR DEM

The extent of the validation survey done by the Data Validation and Bathymetry Component (DVBC) in Amburayan to collect points with which the LiDAR dataset is validated is shown in Figure 23. A total of 4,957 survey points were used for calibration and validation of Amburayan LiDAR data. Random selection of 80% of the survey points, resulting to 4,957 points, were used for calibration. A good correlation between the uncalibrated mosaicked LiDAR elevation values and the ground survey elevation values is shown in Figure 23. Statistical values were computed from extracted LiDAR values using the selected points to assess the quality of data and obtain the value for vertical adjustment. The computed height difference between the LiDAR DTM and calibration elevation values is 3.22 meters with a standard deviation of 0.09 meters.
Calibration of Amburayan LiDAR data was done by adding the height difference value, 3.22 meters, to Amburayan mosaicked LiDAR data. Table 16 shows the statistical values of the compared elevation values between LiDAR data and calibration data.

Figure 23. Map of Amburayan Flood Plain with validation survey points in green.

Figure 24. Correlation plot between calibration survey points and LiDAR data.

Calibration Statistical Measures	Value (meters)
Height Difference	3.22
Standard Deviation	0.09
Average	-3.21
Minimum	-3.40
Maximum	-3.03

The remaining 20% of the total survey points, resulting to 365 points, were used for the validation of calibrated Amburayan DTM. A good correlation between the calibrated mosaicked LiDAR elevation values and the ground survey elevation, which reflects the quality of the LiDAR DTM is shown in Figure 25. The computed RMSE between the calibrated LiDAR DTM and validation elevation values is 0.17 meters with a standard deviation of 0.06 meters, as shown in Table 17.

Figure 25. Correlation plot between validation survey points and LiDAR data.

Validation Statistical Measures	Value (meters)
RMSE	0.17
Standard Deviation	0.06
Average	0.15
Minimum	0.02
Maximum	0.30

Table 17. Validation Statistical Measure
--

3.11 Integration of Bathymetric Data into the LiDAR Digital Terrain Model

For bathy integration, only centerline data were available for Amburayan with 39,949 bathymetric survey points. The resulting raster surface produced was done by Inverse Distance Weighted (IDW) interpolation method. After burning the bathymetric data to the calibrated DTM, assessment of the interpolated surface is represented by the computed RMSE value of 0.03 meters. The extent of the bathymetric survey done by the Data Validation and Bathymetry Component (DVBC) in Amburayan integrated with the processed LiDAR DEM is shown in Figure 26.

Figure 26. Map of Amburayan Flood Plain with bathymetric survey points shown in blue.

3.12 Feature Extraction

The features salient in flood hazard exposure analysis include buildings, road networks, bridges and water bodies within the floodplain area with 200 m buffer zone. Mosaicked LiDAR DEM with 1 m resolution was used to delineate footprints of building features, which consist of residential buildings, government offices, medical facilities, religious institutions, and commercial establishments, among others. Road networks comprise of main thoroughfares such as highways and municipal and barangay roads essential for routing of disaster response efforts. These features are represented by a network of road centerlines.

3.12.1 Quality Checking (QC) of Digitized Features' Boundary

Amburayan floodplain, including its 200 m buffer, has a total area of 161.15 sq km. For this area, a total of 5.00 sq km, corresponding to a total of 1,950 building features, are considered for QC. Figure 27 shows the QC blocks for Amburayan floodplain.

Figure 27. QC blocks for Amburayan building features.

Quality checking of Amburayan building features resulted in the ratings shown in Table 18.

FLOODPLAIN	COMPLETENESS	CORRECTNESS	QUALITY	REMARKS
Amburayan	99.90	100.00	99.28	PASSED

3.12.2 Height Extraction

Height extraction was done for 20,774 building features in Amburayan floodplain. Of these building features, 719 was filtered out after height extraction, resulting to 20,055 buildings with height attributes. The lowest building height is at 2.00 m, while the highest building is at 11.87 m.

3.12.3 Feature Attribution

Data collected from various sources which includes OpenStreetMap and Google Maps/Earth were used in the attribution of building features. Areas where there is no available data were subjected for field attribution using ESRI's Collector App. The app can be accessed offline and data collected can be synced to ArcGIS Online when WiFi or mobile data is available.

Table 19 summarizes the number of building features per type. On the other hand, Table 20 shows the total length of each road type, while Table 21 shows the number of water features extracted per type.

Facility Type	No. of Features	
Residential	19,509	
School	234	
Market	5	
Agricultural/Agro-Industrial Facilities	16	
Medical Institutions	8	
Barangay Hall	30	
Military Institution	0	
Sports Center/Gymnasium/Covered Court	5	
Telecommunication Facilities	0	
Transport Terminal	1	
Warehouse	0	
Power Plant/Substation	2	
NGO/CSO Offices	1	
Police Station	2	
Water Supply/Sewerage	2	
Religious Institutions	21	
Bank	3	
Factory	0	
Gas Station	13	
Fire Station	2	
Other Government Offices	5	
Other Commercial Establishments	196	
Total	20,055	

Table 19. Number of Building Features Extracted for Amburayan Floodplain.

Table 20. Total Length of Extracted Roads for Amburayan Floodplain.

Floodplain	Barangay Road	City/ Municipal Road	Provincial Road	National Road	Others	Total
Amburayan	12.19	3.81	0	14.70	0.00	30.70

Table 21. Number of Extracted Water Bodies for Amburayan Floodplain.

Eloodalain	Water Body Type					
Floodplain	Rivers/Streams	Lakes/Ponds	Sea	Dam	Fish Pen	Iotai
Amburayan	1	0	0	0	0	1

A total of 3 bridges and culverts over small channels that are part of the river network were also extracted for the floodplain.

3.12.4 Final Quality Checking of Extracted Features

All extracted ground features were completely given the required attributes. All these output features comprise the flood hazard exposure database for the floodplain. This completes the feature extraction phase of the project.

Figure 28 shows the Digital Surface Model (DSM) of Amburayan floodplain overlaid with its ground features.

Figure 28. Extracted features for Amburayan floodplain

CHAPTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE AMBURAYAN RIVER BASIN

Engr. Louie P. Balicanta, Engr. Joemarie S. Caballero, Ms. Patrizcia Mae. P. dela Cruz, Engr. Kristine Ailene B. Borromeo, For. Dona Rina Patricia C. Tajora, Elaine Bennet Salvador, For. Rodel C. Alberto

The methods applied in this chapter were based on the DREAM methods manual (Ang, et. al., 2014) and further enhanced and updated in Paringit, et. al. (2017).

4.1 Summary of Activities

The Data Validation and Bathymetry Component (DVBC) conducted a field survey in Amburayan River on April 28 to May 12, 2016 with the following scope of work: reconnaissance; control survey; cross-section and as-built surveys at Amburayan Bridge; validation points data acquisition of about 44 km for the areas traversing the Amburayan River Basin; and bathymetric survey from Brgy. Namaltugan, Municipality of Sudipen down to Brgy. Pudoc West, Municipality of Tagudin, La Union; and Brgy. Mindoro, Municipality of Bangar, Ilocos Sur, with an estimated length of 18.839 km using Ohmex[™] single beam echo sounder and Trimble[®] SPS 882 GNSS PPK survey technique (Figure 29).

Figure 29. Amburayan River Survey Extent.

4.2 Control Survey

The GNSS network used for Amburayan River Basin is composed of single loop established on May 7, 2016 occupying the following reference points: LUN-71, a second-order GCP, in Brgy. Gen. Prim West, Municipality of Bangar; and LU-94, a first-order BM, in Brgy. Nagsimbaanan, Muncipality of Bacnotan; both in La Union Province.

A NAMRIA established control point namely AMB-1 located at the approach of Alilem Bridge, in Brgy. Kiat, Municipality of Alilem, Ilocos Sur, was also occupied to use as marker.

The summary of reference and control points and its location is summarized in Table 22 while the GNSS network established is illustrated in Figure 30.

Figure 30. GNSS Network covering Amburayan River.

Table 22. List of Reference and Control Points occupied for Amburayan River Survey (Source: NAMRIA; UP-TCAGP)

		Geographic Coordinates (WGS84)					
Control Point	Order of Accuracy	Latitude	Longitude	Ellipsoidal Height (m)	MSL Elevation (m)	Date Established	
LUN-71	2nd order, GCP	16°53'51.58283"N	120°26′32.77383″E	52.356	-	2007	
LU-94	1st order, BM	-	-	46.965	7.349	2010	
AMB-7	Used as Marker	-	-	-	-	2010	

The GNSS set-ups on recovered reference points and established control points in Amburayan River are shown in Figure 31 to Figure 33.

Figure 31. GNSS base set up, Trimble^{*} SPS 852, at LUN-71, situated beside an irrigation canal at the right intersection of the barangay roads in Brgy. General Prim West, Municipality of Sudipen, La Union.

Figure 32. GNSS receiver set up, Trimble[®] SPS 882, at LU-94, located at the approach of Baroro Bridge in Brgy. Nagsimabaanan, Municipality of Bacnotan, La Union.

Figure 33. GNSS receiver setup, Trimble^{*} SPS 882, at AMB-7, located at the approach of Alilem Bridge in Brgy. Kiat, Municipality of Alilem, Ilocos Sur.

4.3 Baseline Processing

GNSS Baselines were processed simultaneously in TBC by observing that all baselines have fixed solutions with horizontal and vertical precisions within +/- 20 cm and +/- 10 cm requirement, respectively. In case where one or more baselines did not meet all of these criteria, masking is performed. Masking is done by removing/masking portions of these baseline data using the same processing software. It is repeatedly processed until all baseline requirements are met. If the reiteration yields out of the required accuracy, resurvey is initiated. Baseline processing result of control points in Amburayan River Basin is summarized in Table 23 generated by TBC software.

Observation	Date of Observation	Solution Type	H.Prec. (Meter)	V.Prec. (Meter)	Geodetic Az.	Ellipsoid Dist. (Meter)
AMB-7 LU-94	5-7-2016	Fixed	0.006	0.021	221°07'26"	28070.731
LUN-71 LU-94	5-7-2016	Fixed	0.007	0.28	207°06'53"	23245.821
LUN-71 AMB-7	5-7-2016	Fixed	0.003	0.011	86°38'26"	7872.535

Table 23. Baseline Processing Summary Report for Amburayan River Survey.

As shown Table 23 a total of three (3) baselines were processed with reference points LUN-71 and LU-94 held fixed for grid and elevation values, respectively. All of them passed the required accuracy.

4.4 Network Adjustment

After the baseline processing procedure, network adjustment is performed using TBC. Looking at the Adjusted Grid Coordinates table of the TBC generated Network Adjustment Report, it is observed that the square root of the sum of the squares of x and y must be less than 20 cm and z less than 10 cm or in equation form:

$$\sqrt{((x_{e})^{2} + (y_{e})^{2})} < 20 cm$$
 and $z_{e} < 10 cm$

Where:

x_is the Easting Error,

y_is the Northing Error, and

z is the Elevation Error

for each control point. See the Network Adjustment Report shown in Table 24 to Table 27 for complete details.

The three (3) control points, LUN-71, LU-94, and AMB-7, were occupied and observed simultaneously to form a GNSS loop. Coordinates of LUN-71 and elevation value of LU-94 were held fixed during the processing of the control points as presented in Table 24 Through these reference points, the coordinates and elevation of the unknown control points will be computed.

Point ID	Туре	East σ (Meter)	North σ (Meter)	Height σ (Meter)	Elevation σ (Meter)
LUN-71	Local	Fixed	Fixed		
LU-94	Grid				Fixed

The list of adjusted grid coordinates, i.e. Northing, Easting, Elevation and computed standard errors of the control points in the network is indicated in Table 25. The fixed control point LUN-71 has no values for grid errors; and LU-94, for elevation error.

Point ID	Easting (Meter)	Easting Error (Meter)	Northing (Meter)	Northing Error (Meter)	Elevation (Meter)	Elevation Error (Meter)	Constraint
LU-71	227541.709	?	1870002.301	?	12.794	0.052	LL
LU-94	216674.512	0.009	1849438.439	0.006	7.349	?	е
AMB-7	235409.911	0.005	1870361.711	0.004	46.253	0.052	

Table 25. Adjusted Grid Coordinates.

With the mentioned equation, for horizontal and for the vertical; the computation for the accuracy are as follows:

a. LUN-71

horizontal accuracy	=	Fixed
vertical accuracy	=	5.20 cm < 10 cm

b. LU-94

horizontal accuracy	=	$\sqrt{((0.90)^2 + (0.60)^2)}$
	=	√ (0.81+ 0.36)
	=	1.08 cm < 20 cm
vertical accuracy	=	Fixed

c. AMB-7

horizontal accuracy	=	$\sqrt{(0.50)^2 + (0.40)^2}$
	=	√ (0.25 + 0.16)
	=	0.64 < 20 cm
vertical accuracy	=	5.2 cm < 10 cm

Following the given formula, the horizontal and vertical accuracy result of the two occupied control points are within the required precision.

Point ID	Latitude	Longitude	Ellipsoidal Height (Meter)	Height Error (Meter)	Constraint
LUN-71	N16°53′51.58283″	E120°26'32.77383"	52.356	0.052	LL
LU-94	N16°42'38.41914"	E120°20'35.13397"	46.965	?	е
AMB-7	N16°54′06.54124″	E120°30'58.32790"	86.879	0.052	

The corresponding geodetic coordinates of the observed points are within the required accuracy as shown in Table 26. Based on the result of the computation, the equation is satisfied; hence, the required accuracy for the program was met.

The summary of reference and control points used is indicated in Table 27.

		Geographi	c Coordinates (WGS	UTI	VI ZONE 51 N		
Control Point	Order of Accuracy	Latitude	Longitude	Ellipsoidal Height (m)	Northing (m)	Easting (m)	BM Ortho (m)
LUN-71	2nd order, GCP	16°53′51.58283″N	120°26′32.77383"E	52.356	1870002.301	227541.709	12.794
LU-94	1st order, BM	16°42′38.4194″N	120°20′35.13397″E	46.965	1849438.439	216674.512	7.349
AMB-7	Used as Marker	16°54'06.54124"N	120°30'58.32790"E	86.879	1870361.711	235409.911	46.253

Table 27. Reference and control points used and its location (Source: NAMRIA, UP-TCAGP)

4.5 Cross-section and Bridge As-Built survey and Water Level Marking

Cross-section and as-built survey were conducted on May 7, 2016 at the downstream side of Amburayan Bridge in Brgy. Ipet, Municipality of Sudipen, La Union using a survey grade GNSS receiver Trimble[®] SPS 882 i PPK survey technique as shown in Figure 34B.

Figure 34. A) Amburayan Bridge facing downstream, and its B) Cross-section As-built survey.

The cross-sectional line of Amburayan Bridge is about 802 m with six hundred and ninety (690) crosssectional points acquried using the control point LUN-71 as the GNSS base station. The cross-section diagram, planimetric map and the bridge data form are shown in Figure 35 to Figure 37, respectively.

Figure 35. Amburayan Bridge cross-section diagram.

Figure 36. Amburayan Bridge Planimetric map.

Bridge Data Form								
Bridge Name: Amburayan Brid	Bridge Name: Amburavan, Bridge					Date: <u>May 7, 2016</u>		
River Name: Amburayan River					Time: <u>11</u>	:20 AM		
Location (Brgy, City, Region): B	rgy, Ipet, M	unicipality o	f Sudip	en.				
Survey Team: Maridel Miras, F	odel Albert	o, Caren Ord	loña					
Flow condition: normal	Flow condition: normal				Condition: f	air		
Latitude: 16°54'35.25986" N				Longitud	le: 120°27'49.73	784" E		
BA1 BA1 BA1 BA2 BA3 BA4 BA3 BA4 BA2 BA3 BA4 BA2 BA3 BA4 BA3 BA3 BA4 BA3 BA3 BA3 BA3 BA3 BA3 BA3 BA3 BA3 BA3								
	÷.							
ADI	\sim		AD2					
Deck (Pie	r ase start your m	easurement from	H m the left	C side of the bank faci	ng upstream)			
Elevation: 27.142 m	Width:	<u>8 m</u>	Span	(BA3-BA2): <u>550.</u>	035 m	lic		
Statio	ı		Hig	h Chord Elevation	n Low Ch	ord Elevation		
1 Not avail	able			Not available	No	t available		
Bridge A	Bridge Approach (Please start your measurement from the left side of the bank facing upstream)							
Station(Distance f	tion(Distance from BA1) Elevation			Station(Dista	ance from BA1)	Elevation		
BA1 0			BA3	668.	668.646 m 27.095			
BA2 118.611	118 611 m 27 142 ;			727.	727.992 m 25.602 m			
		27121211	2					
Abutment: Is the abutment slo	ping? Yes;	lf yes, fill in tł	he follov	ving information:				
	Station (Di	stance from	n BA1)		Elevati	on		
Ab1	Not	t available			Not avail	able		
Ab2	Not	t available			Not avail	able		
Pier (Plea	se start your me	asurement from	the left	side of the bank faci	ng upstream)			
Shape: <u>Ov</u>	al Nun	nber of Piers:	<u>8</u> H	leight of column i	footing: <u>N/A</u>			
Station (D	stance from	n BA1)		Elevation	Pier	Width		
Pier 1 1	79.150 m			28.013 m	Not a	vailable		
Pier 2 2	232.550 m		1	28.539 m	m Not availab			
Pier 3 3	339.915 m			29.123 m	123 m Not av			
Pier 4 3	93.208 m			29.163 m	Not a	vailable		
Pier 5 4	46.980 m			29.072 m	Not a	vailable		
Pier 6 5	00.640 m		1	28.877 m	Not a	vailable		
Pier 7 5	54.109 m			28.500 m	Not a	vailable		
Pier 8 6	Pier 8 606.912 m 27.999 m Not available							

Figure 37. Bridge as-built form of Amburayan Bridge.

Water surface elevation of Amburayan River was determined on May 7, 2016 at 11:20 AM with a value of 11.266 m in MSL as shown in Figure 35. This was translated into marking on the bridge's deck that will serve as reference for flow data gathering and depth gauge deployment of UPB for Amburayan River as shown in Figure 38.

Figure 38. Water-level markings on the deck of Amburayan Bridge.

4.6 Validation Points Acquisition Survey

Validation points acquisition survey was conducted on May 8, 2016 using a survey-grade GNSS Rover receiver, Trimble[®] SPS 882, mounted on the roof of a vehicle as shown in Figure 39. It was secured with a nylon rope to ensure that it was horizontally and vertically balanced. The antenna heights were 2.045 m and 2.268 m and measured from the ground up to the bottom of notch of the GNSS Rover receiver. The PPK technique set to continuous topo mode was utilized in the conduct of the survey.

Figure 39. Validation points acquisition survey set up along Amburayan River Basin.

The survey started from Brgy. Central West in the Municipality of Bangar, going south covering Municipalities of Luna and Balaoan. Then, it went north towards upper barangays of Bangar and Municipalities of Tagudin and ended in Brgy. Urzadan, in Municipality of Suyo, Ilocos Sur. The survey gathered a total of 6,758 points with an approximate length of 44.33 km using LUN-71 as GNSS base stations for the entire extent validation points acquisition survey as illustrated in the map in Figure 40.

Figure 40. Validation point acquisition survey of Amburayan River basin.

4.7 River Bathymetric Survey

Manual bathymetric survey was executed on May 10 and 11, 2016 using Trimble[®] SPS 882 in GNSS PPK survey technique in continuous topo mode as illustrated in Figure 41. The survey started from the upstream in Brgy. Namaltugan, Municipality of Sudipen, with coordinates 16°53>49.49486»N, 120°30>46.72955»E, traversed down by foot and ended in Brgy. Mindoro, Municipality of Bangar, with coordinates 16°54>31.29321»N, 120°25>9.28033»E.

Figure 41. Bathymetric survey set-up in Amburayan River

On June 13, 2016, bathymetric survey was done using Ohmex[™] single beam Echosounder and Trimble[®] SPS 882 in GNSS PPK survey technique in continuous topo mode. The survey started from the end point of manual bathymetry and ended at the mouth of the river in Brgy. Mindoro, Municipality of Bangar, with coordinates 16°55>13.44191»N, 120°24>36.29810»E. The control point LUN-71 was used as the GNSS base station all throughout the entire survey.

The bathymetric survey for Amburayan River gathered a total of 40,825 points covering 18.839 km of the river traversing Municipalities of Tagudin and Alilem in the Provicne of Ilocos Sur; and Municipalities of Bangar and Sudipen in the Province of La Union as shown in Figure 42. A CAD drawing was also produced to illustrate the riverbed profile of Amburayan River. Figure 43. The highest and lowest elevation has a 40-m difference. The highest elevation observed was 35.946 m above MSL located in Brgy. Namaltugan, Municipality of Sudipen while the lowest was -4.621 m below MSL located in Brgy. Maria Cristina West, Municipality of Bangar, both in La Union as shown in Figure 43 and Figure 44. The survey for the remaining 24 km upstream of the river was cut because LiDAR data for its riverbed is already available.

Figure 42. Bathymetric survey of Amburayan River.

Figure 43. Amburayan Riverbed Profile, upstream part.

Figure 44. Amburayan Riverbed Profile, downstream part.

CHAPTER 5: FLOOD MODELING AND MAPPING

Dr. Alfredo Mahar Lagmay, Christopher Uichanco, Sylvia Sueno, Marc Moises, Hale Ines, Miguel del Rosario, Kenneth Punay, Neil Tingin, Hannah Aventurado

The methods applied in this chapter were based on the DREAM methods manual (Ang, et. al., 2014) and further enhanced and updated in Paringit, et. al. (2017).

5.1 Data Used for Hydrologic Modeling

5.1.1 Hydrometry and Rating Curves

Components and data that affect the hydrologic cycle of the river basin were monitored, collected, and analyzed. These include the rainfall, water level, and flow in a certain period of time.

5.1.2 Precipitation

Precipitation data was taken from an automatic rain gauge (ARG) installed by the Department of Science and Technology – Advanced Science and Technology Institute (DOST-ASTI). This rain gauge is the Ana-Ao Bridge ARG (16°52′26.6″ N, 120°32′55.5″ E), located in Alilem, Ilocos Sur, as shown in Figure 45. The precipitation data collection started from October 17, 2015 at 11:00 AM to October 23, 2015 at 12:00 PM with a 10-minute recording interval.

The total precipitation for this event in Sablan ARG was 295 mm. It has a peak rainfall of 7.8 mm. on October 20, 2015 at 1:00 AM. The lag time between the peak rainfall and discharge is 4 hours.

Figure 45. The location map of Amburayan HEC-HMS model used for calibration.

5.1.3 Rating Curves and River Outflow

A rating curve was developed at Amburayan Bridge, Sudipen, La Union (16°54'36" N, 120°27'50.4" E). It gives the relationship between the observed water level from Amburayan Bridge/Brgy. Bio Bridge and outflow of the watershed at this location.

Figure 46. Cross-Section Plot of Amburayan Bridge.

For Amburayan Bridge, the rating curve is expressed as $Q = 0.0411e^{0.6121x}$ as shown in Figure 47.

Figure 47. Rating Curve at Amburayan Bridge, Sudipen, La Union.

The rating curve equation was used to compute for the river outflow at Amburayan Bridge for the calibration of the HEC-HMS model for Amburayan, as shown in Figure 48. The total rainfall for this event is 295 mm and the peak discharge is 1239.85 m³/s at 5:00 AM of October 20, 2015.

Figure 48. Rainfall and outflow data at Amburayan Bridge used for modeling.

5.2 RIDF Station

The Philippine Atmospheric Geophysical and Astronomical Services Administration (PAGASA) computed for Rainfall Intensity Duration Frequency (RIDF) values for the Baguio Rain Gauge. The RIDF rainfall amount for 24 hours was converted to a synthetic storm by interpolating and re-arranging the values in such a way a certain peak value will be attained at a certain time. This station is chosen based on its proximity to the Amburayan watershed. The extreme values for this watershed were computed based on a 59-year record.

COMPUTED EXTREME VALUES (in mm) OF PRECIPITATION									
T (yrs)	10 mins	20 mins	30 mins	1 hr	2 hrs	3 hrs	6 hrs	12 hrs	24 hrs
2	27.4	41.6	51.9	72.5	108	136.3	199.5	258.6	355.1
5	49.3	75.2	94.2	127.7	189.7	235.7	334.8	436.9	563.6
10	63.8	97.5	122.1	164.3	243.8	301.5	424.3	555	701.7
15	72	110	137.9	184.9	274.4	338.6	474.8	621.6	779.6
20	77.7	118.8	149	199.3	295.7	364.6	510.2	668.2	834.1
25	82.1	125.6	157.5	210.5	312.2	384.6	537.5	704.1	876.1
50	95.8	146.4	183.7	244.7	362.9	446.3	621.4	814.8	1005.5
100	109.3	167.1	209.7	278.7	413.2	507.5	704.7	924.7	1134

Table 28. RIDF values for Baguio Rain Gauge computed by PAGASA.

Figure 49. Location of Baguio RIDF Station relative to Amburayan River Basin.

Figure 50. Synthetic storm generated for a 24-hr period rainfall for various return periods.

5.3 HMS Model

The soil shapefile was taken on 2004 from the Bureau of Soils; this is under the Department of Environment and Natural Resources Management (DENR). The land cover shape file is from the National Mapping and Resource information Authority (NAMRIA). The soil and land cover of the Amburayan River Basin are shown in Figures 51 and 52, respectively.

Figure 51. Soil Map of Amburayan River Basin.

Figure 52. Land Cover Map of Amburayan River Basin.

For Amburayan, four soil classes were identified. These are clay, clay loam, silt loam and undifferentiated land. Moreover, seven land cover classes were identified. These are brushlands, built-up areas, cultivated areas, inland water, open areas, open canopy forests, and tree plantations.

Figure 53. Slope Map of Amburayan River Basin

Figure 54. Stream Delineation Map of Amburayan River Basin.

Using the SAR-based DEM, the Amburayan basin was delineated and further subdivided into subbasins. The model consists of 146 sub basins, 146 reaches, and 76 junctions, as shown in Figure 55. The main outlet is 469.

Figure 55. The Amburayan river basin model generated using HEC-HMS

5.4 Cross-section Data

Riverbed cross-sections of the watershed are crucial in the HEC-RAS model setup. The cross-section data for the HEC-RAS model was derived using the LiDAR DEM data. It was defined using the Arc GeoRAS tool and was post-processed in ArcGIS.

Figure 56. River cross-section of Amburayan River generated through Arcmap HEC GeoRAS tool.

5.5 Flo 2D Model

The automated modelling process allows for the creation of a model with boundaries that are almost exactly coincidental with that of the catchment area. As such, they have approximately the same land area and location. The entire area is divided into square grid elements, 10 meter by 10 meter in size. Each element is assigned a unique grid element number which serves as its identifier, then attributed with the parameters required for modelling such as x-and y-coordinate of centroid, names of adjacent grid elements, Manning coefficient of roughness, infiltration, and elevation value. The elements are arranged spatially to form the model, allowing the software to simulate the flow of water across the grid elements and in eight directions (north, south, east, west, northeast, northwest, southeast, southwest).

Based on the elevation and flow direction, it is seen that the water will generally flow from the south of the model to the northwest, following the main channel. As such, boundary elements northwest of the model are assigned as outflow elements.

Figure 57. A screenshot of the river subcatchment with the computational area to be modeled in FLO-2D Grid Developer System Pro (FLO-2D GDS Pro).

The simulation is then run through FLO-2D GDS Pro. This particular model had a computer run time of 44.69 hours. After the simulation, FLO-2D Mapper Pro is used to transform the simulation results into spatial data that shows flood hazard levels, as well as the extent and inundation of the flood. Assigning the appropriate flood depth and velocity values for Low, Medium, and High creates the following food hazard map. Most of the default values given by FLO-2D Mapper Pro are used, except for those in the Low hazard level. For this particular level, the minimum h (Maximum depth) is set at 0.2 m while the minimum vh (Product of maximum velocity (v) times maximum depth (h)) is set at 0 m²/s. The generated hazard maps for Amburayan are in Figures __, __, and __.

The creation of a flood hazard map from the model also automatically creates a flow depth map depicting the maximum amount of inundation for every grid element. The legend used by default in Flo-2D Mapper is not a good representation of the range of flood inundation values, so a different legend is used for the layout. In this particular model, the inundated parts cover a maximum land area of 68,866,656.00 m². The generated flood depth maps for Amburayan are in Figures ___, ___, and ___.

There is a total of 24,676,494.27 m³ of water entering the model, of which 24,507,668.93 m³ is due to rainfall and 168,825.35 m³ is inflow from basins upstream. 6,450,876.00 m³ of this water is lost to infiltration and interception, while 3,622,213.98 m³ is stored by the flood plain. The rest, amounting up to 14,603,410.79 m³, is outflow.

5.6 Results of HMS Calibration

After calibrating the Amburayan HEC-HMS river basin model, its accuracy was measured against the observed values. Figure 58 shows the comparison between the two discharge data.

Figure 58. Outflow Hydrograph of Amburayan produced by the HEC-HMS model compared with observed outflow. Enumerated in Table 29 are the adjusted ranges of values of the parameters used in calibrating the model.

Hydrologic Element	Calculation Type	Method	Parameter	Range of Calibrated Values
	Locs	SCS Curve Number	Initial Abstraction (mm)	1.92 – 206.37
	Loss SCS Curve Number	Curve Number	35 – 44.55	
Docin	Transform Clark Unit Hydrograph		Time of Concentration (hr)	0.0167 - 0.6178
Basin Transform		Storage Coefficient (hr)	0.0167 – 0.63	
	Deceflory	Decession	Recession Constant	0.8
	Basenow Recession	Ratio to Peak	0.2	
Reach	Routing	Muskingum-Cunge	Manning's Coefficient	0.01

Table 29. Range of Calibrated Values for Amburayan.

Initial abstraction defines the amount of precipitation that must fall before surface runoff. The magnitude of the outflow hydrograph increases as initial abstraction decreases. The range of values from 1.92 mm to 206.37 mm means that there is an average initial fraction of the storm depth after which runoff begins.

The curve number is the estimate of the precipitation excess of soil cover, land use, and antecedent moisture. The magnitude of the outflow hydrograph increases as curve number increases. The range of 65 to 90 for curve number is advisable for Philippine watersheds depending on the soil and land cover of the area (M. Horritt, personal communication, 2012). For Amburayan, the basin consists mainly of brushlands and open canopy forests and the soil consists of mostly undifferentiated land and clay.

Time of concentration and storage coefficient are the travel time and index of temporary storage of runoff in a watershed. The range of calibrated values from 0.0167 hours to 0.63 hours determines the reaction time of the model with respect to the rainfall. The peak magnitude of the hydrograph also decreases when these parameters are increased.

Recession constant is the rate at which baseflow recedes between storm events and ratio to peak is the ratio of the baseflow discharge to the peak discharge. Recession constant equal to 0.8 indicate that the basin is unlikely to quickly go back to its original discharge. Ratio to peak of 0.2 indicate a much steeper receding limb of the outflow hydrograph.

Manning's roughness coefficients correspond to the common roughness of Philippine watersheds. Amburayan river basin reaches' Manning's coefficient is 0.01, showing that the catchment is filled smooth surfaces, making runoff flow faster into the streams.

RMSE	179
r ²	0.5907
NSE	0.02
PBIAS	3.5
RSR	0.99

Table 30. Summary of the Efficiency Test of Amburayan HMS Model

The Root Mean Square Error (RMSE) method aggregates the individual differences of these two measurements. It was computed as 179 m³/s.

The Pearson correlation coefficient (r^2) assesses the strength of the linear relationship between the observations and the model. This value being close to 1 corresponds to an almost perfect match of the observed discharge and the resulting discharge from the HEC HMS model. Here, it measured 0.5907.

The Nash-Sutcliffe (E) method was also used to assess the predictive power of the model. Here the optimal value is 1. The model attained an efficiency coefficient of 0.02.

A positive Percent Bias (PBIAS) indicates a model's propensity towards under-prediction. Negative values indicate bias towards over-prediction. Again, the optimal value is 0. In the model, the PBIAS is 3.50.

The Observation Standard Deviation Ratio, RSR, is an error index. A perfect model attains a value of 0 when the error in the units of the valuable a quantified. The model has an RSR value of 0.99.

5.7 Calculated Outflow hydrographs and Discharge Values for different Rainfall Return Periods

5.7.1 Hydrograph using the Rainfall Runoff Model

The summary graph (Figure 59) shows the Amburayan outflow using the Baguio Rainfall Intensity-Duration-Frequency curves (RIDF) in 5 different return periods (5-year, 10-year, 25-year, 50-year, and 100-year rainfall time series) based on the Philippine Atmospheric Geophysical and Astronomical Services Administration (PAGASA) data. The simulation results reveal significant increase in outflow magnitude as the rainfall intensity increases for a range of durations and return periods.

Figure 59. Outflow hydrograph at Amburayan Station generated using the Baguio RIDF simulated in HEC-HMS.

A summary of the total precipitation, peak rainfall, peak outflow and time to peak of the Amburayan discharge using the Baguio Rainfall Intensity-Duration-Frequency curves (RIDF) in five different return periods is shown in Table 31.

RIDF Period	Total Precipitation (mm)	Peak rainfall (mm)	Peak outflow (m³/s)	Time to Peak
5-Year	563.85	49.3	16140.3	1 hour
10-Year	701.7	63.8	29519	40 minutes
25-Year	876.1	82.1	47595.5	40 minutes
50-Year	1005.5	95.8	63059.4	30 minutes
100-Year	1134	109.3	78619.3	30 minutes

Table 31. Peak values of the Amburayan HEC-HMS Model outflow using the Baguio RIDF.

5.8 River Analysis (RAS) Model Simulation

The HEC-RAS Flood Model produced a simulated water level at every cross-section for every time step for every flood simulation created. The resulting model will be used in determining the flooded areas within the model. The simulated model will be an integral part in determining real-time flood inundation extent of the river after it has been automated and uploaded on the DREAM website. For this publication, only a sample output map river was to be shown. The sample generated map of Amburayan River using the calibrated HMS base flow is shown in Figure 60.

Hazard Mapping of the Philippines Using LiDAR (Phil-LiDAR 1)

Figure 60. Sample output of Amburayan RAS Model.

5.9 Flow Depth and Flood Hazard

The resulting hazard and flow depth maps have a 10m resolution. The 5-, 25-, and 100-year rain return scenarios of the Amburayan floodplain are shown in Figures 61 to 66. The floodplain, with an area of 187.2 sq. km., covers 9 municipalities from two provinces. Table 32 shows the percentage of area affected by flooding per municipality.

Province	Municipality	Total Area	Area Flooded	% Flooded	
Ilocos Sur	Alilem	132.18	6.80	5.14%	
Ilocos Sur	Santa Cruz	105.96	0.08	0.07%	
Ilocos Sur	Suyo	148.52	21.33	14.36%	
Ilocos Sur	Tagudin	54.35	52.53	96.66%	
La Union	Balaoan	60.96	10.34	16.96%	
La Union	Bangar	45.12	45.08	99.90%	
La Union	Luna	50.66	8.70	17.17%	
La Union	Santol	97.97	3.53	3.61%	
La Union	Sudipen	75.75	38.21	50.44%	

Table 32. Municipalities affected in Amburayan floodplain.

Figure 61. 100-year Flood Hazard Map for Amburayan Floodplain overlaid on Google Earth imagery

Figure 62. 100-year Flow Depth Map for Amburayan Floodplain overlaid on Google Earth imagery.

Figure 63. 25-year Flood Hazard Map for Amburayan Floodplain overlaid on Google Earth imagery.

Figure 64. 25-year Flow Depth Map for Amburayan Floodplain overlaid on Google Earth imagery

Figure 65. 5-year Flood Hazard Map for Amburayan Floodplain overlaid on Google Earth imagery.

Figure 66. 5-year Flood Depth Map for Amburayan Floodplain overlaid on Google Earth imagery.

5.10 Inventory of Areas Exposed to Flooding

Affected barangays in Amburayan river basin, grouped by municipality, are listed below. For the said basin, two provinces with 9 municipalities consisting of 130 barangays are expected to experience flooding when subjected to 5-yr rainfall return period.

For the 5-year return period, 4.04% of the municipality of Alilem with an area of 132.176 sq. km. will experience flood levels of less than 0.20 meters. 0.12% of the area will experience flood levels of 0.21 to 0.50 meters while 0.06%, 0.03%, 0.05%, and 0.85% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in the table are the affected areas in square kilometers by flood depth per barangay.

Affected Area (sq. km.)	Area of affected barang	ays in Alilem (in sq. km)
by flood depth (in m.)	Dalawa	Kiat
0.03-0.20	5.31	0.03
0.21-0.50	0.16	0.00083
0.51-1.00	0.072	0.0011
1.01-2.00	0.04	0.002
2.01-5.00	0.051	0.0086
> 5.00	0.61	0.52

Table 33. Affected Areas in Alilem, Ilocos Sur during 5-Year Rainfall Return Period.

Figure 67. Affected Areas in Alilem, Ilocos Sur during 5-Year Rainfall Return Period.

For the 5-year return period, 0.07% of the municipality of Santa Cruz with an area of 105.955 sq. km. will experience flood levels of less than 0.20 meters. 0.00% of the area will experience flood levels of 0.21 to 0.50 meters while 0.00% of the area will experience flood depths of 0.51 to 1 meter. Listed in the table are the affected areas in square kilometers by flood depth per barangay.

Affected Area (sq. km.) by	Area of affected barangay in Santa Cruz (in sq. km)
flood depth (in m.)	Gabor Sur
0.03-0.20	0.074
0.21-0.50	0.001
0.51-1.00	0.0003
1.01-2.00	0.0004
2.01-5.00	0.0001
> 5.00	0

Table 34. Affected Areas in Santa Cruz, Ilocos Sur during 5-Year Rainfall Return Period.

Figure 68. Affected Areas in Santa Cruz, Ilocos Sur during 5-Year Rainfall Return Period.

For the 5-year return period, 11.55% of the municipality of Suyo with an area of 148.52 sq. km. will experience flood levels of less than 0.20 meters. 0.33% of the area will experience flood levels of 0.21 to 0.50 meters while 0.19%, 0.15%, 0.18%, and 1.99% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in the table are the affected areas in square kilometers by flood depth per barangay.

Table 35. Affected Areas in Suyo, Ilocos Sur during 5-Year Rainfall Return Period.

Affected Area (sg. km.)	Area o	of affected b	arangays in	Suyo (in sq. km	ı)
by flood depth (in m.)	Baringcucurong	Cabugao	Poblacion	Suyo Proper	Urzadan
0.03-0.20	4.21	8.08	0.89	3.32	0.65
0.21-0.50	0.12	0.24	0.024	0.086	0.018
0.51-1.00	0.062	0.15	0.015	0.046	0.0075
1.01-2.00	0.042	0.13	0.011	0.032	0.0034
2.01-5.00	0.013	0.21	0.012	0.027	0.0013
> 5.00	0	2.81	0.14	0.0047	0

Figure 69. Affected Areas in Suyo, Ilocos Sur during 5-Year Rainfall Return Period.

For the 5-year return period, 49.72% of the municipality of Tagudin with an area of 54.35 sq. km. will experience flood levels of less than 0.20 meters. 6.36% of the area will experience flood levels of 0.21 to 0.50 meters while 5.01%, 11.65%, 15.06%, and 8.91% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in the table are the affected areas in square kilometers by flood depth per barangay.

				Are	a of affecte	d barangays	in Tagudin	(in sq. km)				
Affected Area (sn km)							>	-				
by flood depth (in m.)	Ag- Aguman	Ambalayat	Baracbac	Bario-An	Baritao	Bimmanga	Bio	Bitalag	Borono	Bucao East	Bucao West	Cabaroa
0.03-0.20	0.4	2.87	1.29	0.78	0.0002	0.1	0.27	1.23	0.85	0.43	0.16	0.25
0.21-0.50	0.023	0.24	0.2	0.046	0.0026	0.076	0.0044	0.2	0.28	0.013	0.012	0.011
0.51-1.00	0.0088	0.17	0.05	0.031	0.15	0.18	0.0061	0.054	0.13	0.0079	0.021	0.013
1.01-2.00	0.017	0.36	0.012	0.03	1.02	0.2	0.014	0.016	0.015	0.016	0.27	0.028
2.01-5.00	0.27	2.5	0.0036	0.0041	0.45	0.067	0.032	0.0017	0	0.3	0.34	0.083
> 5.00	0.097	2.47	0	0	0.0038	0	0.37	0	0	0.42	0.033	0.13

Ę

 L

))					
Affected Area (sq. km.)			Area of	affected ba	rangays in	Tagudin (ir	ר sq. km)			
by flood depth (in m.)	Cabugbugan	Cabulanglangan	Dacutan	Dardarat	Del Pilar	Farola	Gabur	Garitan	Jardin	Lacong
0.03-0.20	2.38	1.08	1.06	0.37	0.012	0.31	0.56	1.17	0.0002	0.53
0.21-0.50	0.08	0.067	0.34	0.12	0.011	0.17	0.034	0.062	0.0021	0.016
0.51-1.00	0.043	0.032	0.18	0.084	0.036	0.11	0.012	0.013	0.029	0.0028
1.01-2.00	0.018	0.017	0.13	0.068	0.14	0.0059	0.0094	0.0055	0.12	0.0036
2.01-5.00	0.005	0.0085	0.017	0.0004	0.031	0.001	0.0004	0.0006	0.14	0.0016
> 5.00	0	0.015	0	0	0	0	0	0	0.0037	0

Period.
Return
(R
Rainf
ear]
\geq
Ń
during
Sur
llocos
Fagudin,
'n
Areas i
ffected
7. A
ŝ
le
<u>[</u>]
Г П

				Area of af	fected baranga	ys in Tagudin (i	n sq. km)			
Allected Area (sq. km.) by flood depth (in m.)	Lantag	Las-Ud	Libtong	Lubnac	Magsaysay	Malacañang	Pacac	Pallogan	Pudoc East	Pudoc West
0.03-0.20	0.027	0.0053	0.63	1.31	0.23	0.54	0.0033	4.74	0	0.011
0.21-0.50	0.0074	0.011	0.24	0.27	0.094	0.15	0.013	0.17	0.0005	0.029
0.51-1.00	0.035	0.074	0.2	0.05	0.055	0.017	0.1	0.1	0.046	0.044
1.01-2.00	0.41	0.18	0.044	0.0041	0.007	0.0013	0.64	0.11	0.6	0.48
2.01-5.00	0.35	0.1	0.00015	0	0	0	0.89	0.28	0.34	0.88
> 5.00	0.027	0	0	0	0	0	0	6.0	0.05	0.036

rn Period.
l Retu
Rainfal
Year
during 5
os Sur c
ı, Iloc
Tagudir
Areas in 7
Affected .
Table 38

Affected Area (sq. km.)				Area of aff	ected baran	ıgays in Tagı	udin (in sq.	km)		
by flood depth (in m.)	Pula	Quirino	Ranget	Rizal	Salvacion	San Miguel	Sawat	Tallaoen	Tampugo	Tarangoton
0.03-0.20	0.098	0.075	1.27	0.12	0.12	0.36	0.0051	0.8	0.55	0.022
0.21-0.50	0.0034	0.043	0.063	0.0077	0.0083	0.017	0.013	0.21	0.053	0.044
0.51-1.00	0.0083	0.2	0.019	0.0068	0.042	0.0028	0.089	0.06	0.029	0.18
1.01-2.00	0.014	0.075	0.012	0.0048	0.2	0.00062	0.37	0.0021	0.039	0.62
2.01-5.00	0.13	0.0036	0.0025	0.0042	0.16	0	0.33	0.0002	0.019	0.44
> 5.00	0.27	0.00018	0.0002	0	0.014	0	0	0	0	0

For the 5-year return period, 10.53% of the municipality of Balaoan with an area of 60.96 sq. km. will experience flood levels of less than 0.20 meters. 2.55% of the area will experience flood levels of 0.21 to 0.50 meters while 2.30%, 1.00%, 0.54%, and 0.05% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in the table are the affected areas in square kilometers by flood depth per barangay.

Affected Area (sa. km.)		Area of	affected ba	irangays in	Balaoan (in	sq. km)	
by flood depth (in m.)	Baracbac Este	Baracbac Oeste	Bet-Ang	Bulbulala	Butubut Norte	Butubut Oeste	Calliat
0.03-0.20	0.53	0.83	0.26	0.6	0.59	0.27	0.63
0.21-0.50	0.17	0.17 0.13 0.067 0.012 0.041 0.0043 0.086					
0.51-1.00	0.095	0.043	0.0085	0.0043	0.033	0.00036	0.083
1.01-2.00	0.064	0.012	0.00032	0.0078	0.031	0	0.018
2.01-5.00	0.046	0.052	0.0013	0.0083	0.03	0	0.014
> 5.00	0.000099	0.0035	0.0012	0	0	0	0

Table 40. Affected Areas in Balaoan, La Union during 5-Year Rainfall Return Period.

Figure 74. Affected Areas in Tagudin, Ilocos Sur during 5-Year Rainfall Return Period.

Hazard Mapping of the Philippines Using LiDAR (Phil-LiDAR 1)

Affected Area (sq. km.) by		Area	of affected	barangays	in Balaoan (ir	ı sq. km)		
flood depth (in m.)	Napaset	Pantar Norte	Pantar Sur	Sablut	Sinapangan Norte	Sinapangan Sur	Tallipugo	
0.03-0.20	0.14	4 0.11 0.49 0.21 0.52 1.01 0.23						
0.21-0.50	0.08	0.017	0.067	0.11	0.17	0.059	0.54	
0.51-1.00	0.019	0.0032	0.01	0.034	0.32	0.12	0.63	
1.01-2.00	0	0.0003	0.011	0.0059	0.15	0.049	0.26	
2.01-5.00	0	0	0.0084	0.01	0.015	0.096	0.05	
> 5.00	0	0	0	0.0056	0	0.0073	0.013	

Table 41. Affected Areas in Balaoan, La Union during 5-Year Rainfall Return Period.

Figure 75. Affected Areas in Balaoan, La Union during 5-Year Rainfall Return Period.

For the 5-year return period, 35.58% of the municipality of Bangar with an area of 45.12 sq. km. will experience flood levels of less than 0.20 meters. 8.39% of the area will experience flood levels of 0.21 to 0.50 meters while 10.99%, 17.07%, 25.47%, and 2.49% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in the table are the affected areas in square kilometers by flood depth per barangay.

				0.004	d hotootto t		on and accord	u lumi			
Affected Area (sg.				AIEGO	ו מוופרופת ח	ararigays III I	odingar (iii) u	4. KIII <i>)</i>			
km.) by flood depth (in m.)	Agdeppa	Alzate	Bangaoilan East	Bangaoilan West	Barraca	Cadapli	Caggao	Central East No. 1	Central East No. 2	Central West No. 1	Central West No.
0.03-0.20	0.046	0	0.53	0.14	0.006	0.34	0.0033	0	0	0	0.012
0.21-0.50	0.037	0	0.12	0.067	0.026	0.22	0.012	0	0.00036	0.00027	0.0099
0.51-1.00	0.06	0.0077	0.11	0.1	0.13	0.32	0.073	0.0002	0.0067	0.0066	0.025
1.01-2.00	0.23	0.5	0.34	0.27	0.21	60.0	0.25	0.04	0.027	0.033	0.02
2.01-5.00	2.88	0.83	0.19	0.22	0.33	0.023	0.42	0.0084	0	0.015	0
> 5.00	0	0.096	0.12	0.25	0	0.00073	0.0023	0	0	0	0

Afforted Area				Area	a of affected	harangays in	Bangar (in s	1. km)			
(sq. km.) by flood depth (in m.)	Central West No. 3	Consuegra	General Prim East	General Prim West	General Terrero	Luzong	Luzong Sur	Maria Cristina East	Maria Cristina West	Mindoro	Nagsabarar
0.03-0.20	0	0.01	0.011	0.014	0.0091	3.24	3.05	0.016	0.0077	0.012	0
0.21-0.50	0.0003	0.024	0.015	0.011	0.03	0.33	0.16	0.022	0.032	0.042	0
0.51-1.00	0.00	0.099	0.059	0.061	0.16	0.35	0.097	0.11	0.16	0.1	0.0012
1.01-2.00	0.05	0.25	0.19	0.26	0.071	0.29	0.089	0.2	0.17	0.52	0.054
2.01-5.00	0	0.58	0.16	0.59	0.21	0.066	0.093	0.0038	0.021	1.55	0.33
> 5.00	0	0.099	0.11	0.22	0.041	0.0003	0.0011	0.0047	0.11	0.054	0

Table 43. Affected Areas in Bangar, La Union during 5-Year Rainfall Return Period.

Affected Area (sq. km.)				Area of a	affected ba	ırangays in	Bangar (in	i sq. km)			
by flood depth (in m.)	Paratong No. 3	Paratong No. 4	Paratong Norte	Quintarong	Reyna Regente	Rissing	San Blas	San Cristobal	Sinapangan Norte	Sinapangan Sur	Ubbog
0.03-0.20	0.1	0.15	0.037	0	0.0005	1.02	0.021	2.74	2.36	1.23	0.95
0.21-0.50	0.027	0.016	0.023	0	0.0029	0.54	0.059	0.48	0.37	0.71	0.4
0.51-1.00	0.03	0.0074	0.065	0.0018	0.038	0.76	0.12	0.3	0.23	0.96	0.4
1.01-2.00	0.019	0.037	0.15	0.023	0.21	1.34	0.52	0.14	0.14	0.45	0.52
2.01-5.00	0.15	0.2	0.3	0.27	0.081	0.75	0.91	0.081	0.05	0.18	0.00089
> 5.00	0	0	0	0	0	0.0033	0	0.0016	0.001	0.0075	0

,
ğ
ъ
G
Ц
E
Ξ
ē
R
ЧÏ
Ω,
2
5
сa
Ň
Ń
60
ц,
H
Ę
Ц
10
q
\Box
g
Ļ,
ar
60
ar
Â
Ц
S.
сa
Ĩ,
4
g
Ğ
, e
Ę
4
4
T A
Je
ab
Η

For the 5-year return period, 8.27% of the municipality of Luna with an area of 50.66 sq. km. will experience flood levels of less than 0.20 meters. 1.91% of the area will experience flood levels of 0.21 to 0.50 meters while 1.66%, 2.88%, 2.46%, and 0.02% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in the table are the affected areas in square kilometers by flood depth per barangay.

Affected Area (sg. km.) by		А	rea of aff	ected bara	angays in	Luna (in so	q. km)		
flood depth (in m.)	Barangobong	Cantoria No. 1	Cantoria No. 2	Cantoria No. 3	Cantoria No. 4	Napaset	Oaqui No. 1	Oaqui No. 2	Oaqui No. 3
0.03-0.20	0.3	0.41	0.039	0.23	0.29	0.092	0.5	0.33	0.14
0.21-0.50	0.083	0.038	0.0002	0.01	0.066	0.0077	0.078	0.055	0.022
0.51-1.00	0.012	0.0034	0	0.0001	0.059 0.00096 0.00071 0.0001 (0.052
1.01-2.00	0	0	0	0	0.002	0.00021	0	0	0.013
2.01-5.00	0	0	0	0	0	0.0011	0	0	0
> 5.00	0	0	0	0	0	0.00092	0	0	0

Table 45. Affected Areas in Luna, La Union during 5-Year Rainfall Return Period.

Figure 79. Affected Areas in Luna, La Union during 5-Year Rainfall Return Period.

Affected Area (sg.			Area o	f affected	barangay	s in Luna (in sq. km)		
km.) by flood depth (in m.)	Oaqui No. 4	Rimos No. 1	Rimos No. 2	Rimos No. 3	Rimos No. 4	Rimos No. 5	Rissing	Santo Domingo Norte	Suyo
0.03-0.20	0.1	0.026	0.002	0.16	0.19	0.34	0.38	0.0016	0.66
0.21-0.50	0.06	0.021	0.0029 0.068 0.1 0.098 0.066 0.0001 0.19						0.19
0.51-1.00	0.027	0.065	0.035	0.12	0.14	0.14	0.12	0	0.066
1.01-2.00	0	0.013	0.25	0.26	0.28	0.5	0.14	0	0.000095
2.01-5.00	0	0.0027	0.15	0.28	0.4	0.39	0.02	0	0
> 5.00	0	0	0	0	0	0	0.011	0	0

Table 46. Affected Areas in Luna, La Union during 5-Year Rainfall Return Period.

Figure 80. Affected Areas in Luna, La Union during 5-Year Rainfall Return Period.

For the 5-year return period, 2.82% of the municipality of Santol with an area of 97.97 sq. km. will experience flood levels of less than 0.20 meters. 0.45% of the area will experience flood levels of 0.21 to 0.50 meters while 0.16%, 0.07%, 0.06%, and 0.03% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in the table are the affected areas in square kilometers by flood depth per barangay.

Affected Area (sq. km.)	Area of affected barangay in Santol (in sq. km)
by noou depth (in m.)	Paagan
0.03-0.20	2.76
0.21-0.50	0.44
0.51-1.00	0.16
1.01-2.00	0.071
2.01-5.00	0.06
> 5.00	0.034

Table 47. Affected Areas in Santol, La Union during 5-Year Rainfall Return Period.

Figure 81. Affected Areas in Santol, La Union during 5-Year Rainfall Return Period.

For the 5-year return period, 36.44% of the municipality of Sudipen with an area of 75.745 sq. km. will experience flood levels of less than 0.20 meters. 2.82% of the area will experience flood levels of 0.21 to 0.50 meters while 2.09%, 2.35%, 3.75%, and 3.00% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in the table are the affected areas in square kilometers by flood depth per barangay.

Affected Area (sq.		Area o	f affected	barangays	in Sudipen	(in sq. km)	
km.) by flood depth (in m.)	Bigbiga	Castro	Duplas	llocano	lpet	Namaltugan	Old Central
0.03-0.20	3.79	2.26	0.11	1.81	2.43	0.15	3.7
0.21-0.50	0.49	0.11	0.00056	0.15	0.14	0.002	0.3
0.51-1.00	0.43	0.052	0.0005	0.14	0.14	0.0015	0.19
1.01-2.00	0.16	0.028	0.0004	0.19	0.51	0.0011	0.36
2.01-5.00	0.016	0.012	0.0002	0.29	1.39	0.0032	0.39
> 5.00	0.0003	0.00025	0	0.00036	1.13	0.1	0.61

Table 48. Affected Areas in Sudipen, La Union during 5-Year Rainfall Return Period.

Figure 82. Affected Areas in Sudipen, La Union during 5-Year Rainfall Return Period.

Affected Area		Area of a	ffected baran	gays in Sı	udipen (in s	sq. km)	
(sq. km.) by flood depth (in m.)	Poblacion	San Francisco Norte	San Francisco Sur	San Jose	Sengngat	Turod	Up-Uplas
0.03-0.20	0.83	3.39	2.76	3.55	1.6	1.13	0.089
0.21-0.50	0.072	0.16	0.25	0.18	0.18	0.1	0.0005
0.51-1.00	0.048	0.11	0.19	0.13	0.12	0.034	0.00039
1.01-2.00	0.091	0.1	0.13	0.082	0.11	0.019	0.00066
2.01-5.00	0.52	0.062	0.06	0.062	0.036	0.0024	0.00037
> 5.00	0.42	0.0029	0.0004	0.004	0.00045	0	0.000024

Table 49. Affected Areas in Sudipen, La Union during 5-Year Rainfall Return Period.

Figure 83. Affected Areas in Sudipen, La Union during 5-Year Rainfall Return Period.

For the 25-year return period, 3.85% of the municipality of Alilem with an area of 132.176 sq. km. will experience flood levels of less than 0.20 meters. 0.14% of the area will experience flood levels of 0.21 to 0.50 meters while 0.07%, 0.04%, 0.05%, and 1.00% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in the table are the affected areas in square kilometers by flood depth per barangay.

Affected Area (sq. km.) by flood depth (in m.)	Area of affecte in Alilem (i	ed barangays n sq. km)
	Dalawa	Kiat
0.03-0.20	5.08	0.0036
0.21-0.50	0.19	0.0005
0.51-1.00	0.096	0.0012
1.01-2.00	0.05	0.0015
2.01-5.00	0.058	0.0038
> 5.00	0.77	0.55

Table 50. Affected Areas in Alilem, Ilocos Sur during 25-Year Rainfall Return Period.

Figure 84. Affected Areas in Alilem, Ilocos Sur during 25-Year Rainfall Return Period.

For the 25-year return period, 0.07% of the municipality of Santa Cruz with an area of 105.955 sq. km. will experience flood levels of less than 0.20 meters. 0.00% of the area will experience flood levels of 0.21 to 0.50 meters while 0.00% of the area will experience flood depths of 0.51 to 1 meter. Listed in the table are the affected areas in square kilometers by flood depth per barangay.

Affected Area (sq. km.) by	Area of affected barangay in Santa Cruz (in sq. km)
	Gabor Sur
0.03-0.20	0.074
0.21-0.50	0.00092
0.51-1.00	0.0007
1.01-2.00	0.0005
2.01-5.00	0.0001
> 5.00	0

Table 51. Affected Areas in Santa Cruz, Ilocos Sur during 25-Year Rainfall Return Period.

Figure 85. Affected Areas in Santa Cruz, Ilocos Sur during 25-Year Rainfall Return Period.

For the 25-year return period, 11.12% of the municipality of Suyo with an area of 148.52 sq. km. will experience flood levels of less than 0.20 meters. 0.37% of the area will experience flood levels of 0.21 to 0.50 meters while 0.21%, 0.17%, 0.18%, and 2.32% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in the table are the affected areas in square kilometers by flood depth per barangay

Affected Area (cg. km.) by	Area of a	ffected ba	rangays in S	uyo (in sq. kn	n)
flood depth (in m.)	Baringcucurong	Cabugao	Poblacion	Suyo Proper	Urzadan
0.03-0.20	4.14	7.6	0.86	3.27	0.64
0.21-0.50	0.14	0.26	0.026	0.1	0.023
0.51-1.00	0.079	0.15	0.022	0.055	0.0089
1.01-2.00	0.061	0.13	0.011	0.041	0.0058
2.01-5.00	0.02	0.2	0.014	0.036	0.0014
> 5.00	0	3.27	0.16	0.009	0

Table 52. Affected Areas in Suyo, Ilocos Sur during 25-Year Rainfall Return Period.

Figure 86. Affected Areas in Suyo, Ilocos Sur during 25-Year Rainfall Return Period.

For the 25-year return period, 44.00% of the municipality of Tagudin with an area of 54.35 sq. km. will experience flood levels of less than 0.20 meters. 6.79% of the area will experience flood levels of 0.21 to 0.50 meters while 4.56%, 7.41%, 17.65%, and 16.21% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in the table are the affected areas in square kilometers by flood depth per barangay.

Affacted A and fee time 1 his				Area	of affects	harangays	in Tagudi	din sa k	, m			
Allected Ared (sq. Kill.) by							222		·			
flood depth (in m.)	Ag-Aguman	Ambalayat	Baracbac	Bario-An	Baritao	Bimmanga	Bio	Bitalag	Borono	Bucao East	Bucao West	Cabaro
0.03-0.20	0.26	2.46	1.15	0.75	0	0.035	0.23	1.09	0.68	0.4	0.12	0.12
0.21-0.50	0.025	0.11	0.29	0.059	0	0.053	0.0057	0.28	0.34	0.016	0.013	0.006
0.51-1.00	0.015	0.099	0.088	0.038	0.0002	0.13	0.0036	0.099	0.22	0.009	0.018	0.011
1.01-2.00	0.034	0.21	0.019	0.038	0.31	0.28	0.0085	0.023	0.035	0.018	0.03	0.021
2.01-5.00	0.071	0.75	0.006	0.0096	1.27	0.12	0.021	0.0026	0.0001	0.17	0.53	0.067
> 5.00	0.42	4.96	0.0001	0	0.047	0	0.43	0	0	0.57	0.12	0.29

Table 53. Affected Areas in Tagudin, Ilocos Sur during 25-Year Rainfall Return Period.

I

an

Affected Area (sg. km.)		Area	of affecte	d barangay	/s in Tagud	lin (in sq	. km)			
by flood depth (in m.)	Cabugbugan	Cabulanglangan	Dacutan	Dardarat	Del Pilar	Farola	Gabur	Garitan	Jardin	Lacon
0.03-0.20	2.35	0.97	0.85	0.2	0.00092	0.2	0.54	1.13	0	0.47
0.21-0.50	0.087	0.062	0.38	0.16	0.0076	0.1	0.054	0.095	0	0.02
0.51-1.00	0.053	0.038	0.19	0.13	0.017	0.23	0.01	0.017	0.0019	0.01
1.01-2.00	0.033	0.035	0.25	0.12	0.099	0.059	0.015	0.0082	0.083	0.013
2.01-5.00	0.0073	0.063	0.046	0.031	0.1	0.0033	0.0012	0.001	0.21	0.023
> 5.00	0.0001	0.051	0	0	0	0	0	0	0.0069	0.015

Table 54. Affected Areas in Tagudin, Ilocos Sur during 25-Year Rainfall Return Period.

Figure 88. Affected Areas in Tagudin, Ilocos Sur during 25-Year Rainfall Return Period.

					D	D				
Affected Area				Area	of affected ba	rangays in Tag	udin (in sq.	km)		
(sq. km.) by flood depth (in m.)	Lantag	Las-Ud	Libtong	Lubnac	Magsaysay	Malacañang	Pacac	Pallogan	Pudoc East	Pudoc West
0.03-0.20	0.024	0.0024	0.48	1.17	0.16	0.47	0.0079	4.54	0	0.0058
0.21-0.50	0.002	0.0013	0.19	0.32	0.082	0.2	0.0027	0.19	0	0.0042
0.51-1.00	0.0094	0.012	0.24	0.14	0.075	0.037	0.036	0.11	0	0.042
1.01-2.00	0.13	0.18	0.19	0.0099	0.072	0.0028	0.22	0.087	0.091	0.12
2.01-5.00	0.62	0.18	0.0022	0	0	0	1.39	0.22	0.82	1.2
> 5.00	0.06	0	0	0	0	0	0.0017	1.17	0.12	0.098

				5		0				
Affected Area (sq. km.)				Area of aff	fected bara	ngays in Tagu	din (in sq	. km)		
by flood depth (in m.)	Pula	Quirino	Ranget	Rizal	Salvacion	San Miguel	Sawat	Tallaoen	Tampugo	Tarangotong
0.03-0.20	0.034	0.056	1.21	0.11	0.1	0.35	0	0.67	0.51	0.0092
0.21-0.50	0.0002	0.015	0.11	0.0064	0.0045	0.02	0.0088	0.28	0.065	0.024
0.51-1.00	0.00058	0.059	0.02	0.0056	0.008	0.0061	0.023	0.11	0.044	0.073
1.01-2.00	0.015	0.26	0.018	0.009	0.071	0.001	0.28	0.011	0.038	0.48
2.01-5.00	0.052	0.008	0.0043	0.0099	0.34	0.0001	0.49	0.0002	0.035	0.72
> 5.00	0.43	0.00028	0.0003	0	0.021	0	0	0	0	0

For the 25-year return period, 8.62% of the municipality of Balaoan with an area of 60.96 sq. km. will experience flood levels of less than 0.20 meters. 2.23% of the area will experience flood levels of 0.21 to 0.50 meters while 3.08%, 2.12%, 0.75%, and 0.14% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in the table are the affected areas in square kilometers by flood depth per barangay.

Affected Area		Area	of affected	d barangays	in Balaoan	(in sq. km)	
(sq. km.) by flood depth (in m.)	Baracbac Este	Baracbac Oeste	Bet-Ang	Bulbulala	Butubut Norte	Butubut Oeste	Calliat
0.03-0.20	0.38	0.59	0.15	0.57	0.52	0.26	0.51
0.21-0.50	0.12	0.26	0.12	0.038	0.059	0.0094	0.12
0.51-1.00	0.19	0.13	0.059	0.0051	0.047	0.00062	0.091
1.01-2.00	0.11	0.028	0.00086	0.0082	0.053	0.000007	0.085
2.01-5.00	0.081	0.044	0.0011	0.011	0.042	0	0.019
> 5.00	0.01	0.019	0.0014	0	0	0	0.0001

Table 57. Affected Areas in Balaoan, La Union during 25-Year Rainfall Return Period.

Figure 91. Affected Areas in Balaoan, La Union during 25-Year Rainfall Return Period.

Affected Area		А	rea of affect	ed baranga	ys in Balaoan (i	n sq. km)	
(sq. km.) by flood depth (in m.)	Napaset	Pantar Norte	Pantar Sur	Sablut	Sinapangan Norte	Sinapangan Sur	Tallipugo
0.03-0.20	0.089	0.093	0.44	0.13	0.46	0.98	0.082
0.21-0.50	0.061	0.034	0.1	0.085	0.098	0.054	0.2
0.51-1.00	0.081	0.0045	0.018	0.12	0.25	0.11	0.77
1.01-2.00	0.0086	0.0011	0.015	0.018	0.32	0.065	0.58
2.01-5.00	0	0	0.014	0.01	0.036	0.11	0.087
> 5.00	0	0	0.0023	0.0065	0	0.03	0.015

Table 58. Affected Areas in Balaoan, La Union during 25-Year Rainfall Return Period.

Figure 92. Affected Areas in Balaoan, La Union during 25-Year Rainfall Return Period.

For the 25-year return period, 28.40% of the municipality of Bangar with an area of 45.12 sq. km. will experience flood levels of less than 0.20 meters. 5.54% of the area will experience flood levels of 0.21 to 0.50 meters while 8.30%, 10.82%, 38.81%, and 8.03% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in the table are the affected areas in square kilometers by flood depth per barangay.

					D		C				
Affected Area				Area	of affecte	d baranga	ys in Bang	ar (in sq. km)			
(sq. km.) by flood depth (in m.)	Agdeppa	Alzate	Bangaoilan East	Bangaoilan West	Barraca	Cadapli	Caggao	Central East No. 1	Central East No. 2	Central West No. 1	Central West No. 2
0.03-0.20	0.0032	0	0.47	0.1	0	0.26	0	0	0	0	0.0004
0.21-0.50	0.0034	0	0.083	0.031	0	0.14	0.0002	0	0	0	0.0008
0.51-1.00	0.011	0	0.062	0.051	0.0015	0.31	0.0019	0	0	0	0.0042
1.01-2.00	0.073	0.016	0.11	0.11	0.068	0.25	0.063	0	0.0038	0.00036	0.027
2.01-5.00	1.98	1.15	0.49	0.43	0.61	0.029	0.64	0.049	0.03	0.055	0.034
> 5.00	1.18	0.27	0.19	0.35	0.011	0.0024	0.046	0	0	0	0

Flood	<pre>Depth (m)</pre>	■ 2.01-5.00 ■ 1.01-2.00 ■ 0.51-1.00	0.21-0.50
3.5	2.5	1.5	0.5 Neddepta ^a hirate harte antian West Hartaca dantii katrate antian West Caddantii Caesaa No. ¹ No. ² No. ¹ No. ² Barangays Barangays
	(աղ ․թ	eq Areas (se	Affecte

Figure 93. Affected Areas in Bangar, La Union during 25-Year Rainfall Return Period.

Table 59. Affected Areas in Bangar, La Union during 25-Year Rainfall Return Period.

Affection Auto				Area of affe	ected barar	ngays in Ba	ngar (in sq	l. km)			
Anected Area (sq. km.) by flood depth (in m.)	Central West No. 3	Consuegra	General Prim East	General Prim West	General Terrero	Luzong Norte	Luzong Sur	Maria Cristina East	Maria Cristina West	Mindoro	Nagsabara
0.03-0.20	0	0	0	0	0.0039	2.99	2.77	0	0	0.0002	0
0.21-0.50	0	0.001	0	0	0.0004	0.3	0.23	0.0007	0.0004	0.0098	0
0.51-1.00	0	0.0029	0.0016	0.0071	0.0026	0.32	0.15	0.0066	0.0027	0.051	0
1.01-2.00	0.005	0.12	0.04	0.025	0.15	0.39	0.13	0.054	0.11	0.19	0
2.01-5.00	0.054	0.73	0.36	0.77	0.22	0.27	0.2	0.29	0.26	1.79	0.32
> 5.00	0	0.2	0.15	0.35	0.14	0.0007	0.0097	0.0054	0.13	0.24	0.063

E

				COAV	of affacted	increased	n Doncor	lin ca kml			
				Aled		Darangay		(III sq. KIII)			
araton No. 3	50	Paratong No. 4	Paratong Norte	Quintarong	Reyna Regente	Rissing	San Blas	San Cristobal	Sinapangan Norte	Sinapangan Sur	Ubbog
0.017		0.059	0.01	0	0	0.27	0	2.44	2.13	1.05	0.24
0.02	+	0.037	0.0092	0	0	0.26	0	0.44	0.35	0.39	0.19
0.034	+	0.034	0.029	0	0.0002	0.45	0.0022	0.51	0.35	0.98	0.37
0.08	3	0.039	0.11	0.0029	0.015	0.87	0.037	0.24	0.22	0.82	0.51
0.1		0.23	0.37	0.28	0.32	2.54	1.47	0.11	0.088	0.25	0.96
0.0	5	0.014	0.049	0.0091	0	0.0038	0.12	0.0037	0.0074	0.027	0

Т

Т

For the 25-year return period, 3.79% of the municipality of Luna with an area of 50.66 sq. km. will experience flood levels of less than 0.20 meters. 1.70% of the area will experience flood levels of 0.21 to 0.50 meters while 1.78%, 2.75%, 7.08%, and 0.06% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in the table are the affected areas in square kilometers by flood depth per barangay.

Affected Area		4	rea of affe	ected bara	ngays in Lui	na (in sq. k	(m)		
(sq. km.) by flood depth (in m.)	Barangobong	Cantoria No. 1	Cantoria No. 2	Cantoria No. 3	Cantoria No. 4	Napaset	Oaqui No. 1	Oaqui No. 2	Oaqui No. 3
0.03-0.20	0.049	0.25	0.039	0.22	0.21	0.084	0.32	0.2	0.028
0.21-0.50	0.042	0.089	0.0003	0.018	0.071	0.011	0.16	0.1	0.077
0.51-1.00	0.061	0.078	0	0.0001	0.085	0.0053	0.097	0.077	0.084
1.01-2.00	0.16	0.035	0	0	0.048	0.00059	0.0022	0.0014	0.038
2.01-5.00	0.083	0	0	0	0	0.0012	0	0	0
> 5.00	0	0	0	0	0	0.00092	0	0	0

Table 62. Affected Areas in Luna, La Union during 25-Year Rainfall Return Period.

Figure 96. Affected Areas in Luna, La Union during 25-Year Rainfall Return Period.

Hazard Mapping of the Philippines Using LiDAR (Phil-LiDAR 1)

Affected Area			Area of	affected l	parangays	in Luna (in	n sq. km)		
(sq. km.) by flood depth (in m.)	Oa qui No. 4	Rimos No. 1	Rimos No. 2	Rimos No. 3	Rimos No. 4	Rimos No. 5	Rissing	Santo Domingo Norte	Suyo
0.03-0.20	0.04	0	0	0.0078	0.0026	0.11	0.28	0	0.082
0.21-0.50	0.054	0.000064	0	0.018	0.0059	0.01	0.12	0.00006	0.086
0.51-1.00	0.086	0.0029	0	0.035	0.044	0.022	0.065	0.00012	0.16
1.01-2.00	0.012	0.021	0.0013	0.11	0.17	0.18	0.2	0.0016	0.41
2.01-5.00	0	0.1	0.44	0.71	0.89	1.13	0.062	0	0.17
> 5.00	0	0	0	0	0	0.014	0.013	0	0

Table 63. Affected Areas in Luna, La Union during 25-Year Rainfall Return Period.

Figure 97. Affected Areas in Luna, La Union during 25-Year Rainfall Return Period.

For the 5-year return period, 2.82% of the municipality of Santol with an area of 97.97 sq. km. will experience flood levels of less than 0.20 meters. 0.45% of the area will experience flood levels of 0.21 to 0.50 meters while 0.16%, 0.07%, 0.06%, and 0.03% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in the table are the affected areas in square kilometers by flood depth per barangay.

Affected Area (sq. km.) by flood	Area of affected barangay in Santol (in sq. km)
deptil (in in.)	Paagan
0.03-0.20	2.45
0.21-0.50	0.48
0.51-1.00	0.38
1.01-2.00	0.1
2.01-5.00	0.079
> 5.00	0.042

Table 64. Affected Areas in Santol, La Union during 25-Year Rainfall Return Period.

Figure 98. Affected Areas in Santol, La Union during 25-Year Rainfall Return Period.

For the 25-year return period, 34.47% of the municipality of Sudipen with an area of 75.745 sq. km. will experience flood levels of less than 0.20 meters. 2.69% of the area will experience flood levels of 0.21 to 0.50 meters while 2.28%, 1.86%, 3.85%, and 5.29% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in the table are the affected areas in square kilometers by flood depth per barangay.

Affected Area (sq. km.)	Area of affected barangays in Sudipen (in sq. km)						
by flood depth (in m.)	Bigbiga	Castro	Duplas	Ilocano	Ipet	Namaltugan	Old Central
0.03-0.20	3.58	2.2	0.11	1.59	2.28	0.14	3.4
0.21-0.50	0.4	0.13	0.00056	0.14	0.1	0.001	0.3
0.51-1.00	0.53	0.071	0.0003	0.1	0.096	0.0015	0.16
1.01-2.00	0.33	0.038	0.0004	0.12	0.14	0.0017	0.15
2.01-5.00	0.038	0.021	0.0004	0.33	1.4	0.0039	0.49
> 5.00	0.0005	0.00035	0	0.3	1.71	0.11	1.05

Table 65. Affected Areas in Sudipen, La Union during 25-Year Rainfall Return Period.

Figure 99. Affected Areas in Sudipen, La Union during 25-Year Rainfall Return Period.

Affected Area (sq.		Area of affected barangays in Sudipen (in sq. km)					
km.) by flood depth (in m.)	Poblacion	San Francisco Norte	San Francisco Sur	San Jose	Sengngat	Turod	Up-Uplas
0.03-0.20	0.77	3.29	2.65	3.45	1.47	1.09	0.088
0.21-0.50	0.075	0.17	0.22	0.19	0.2	0.11	0.0006
0.51-1.00	0.058	0.12	0.23	0.15	0.15	0.056	0.00049
1.01-2.00	0.034	0.13	0.19	0.11	0.14	0.027	0.0007
2.01-5.00	0.24	0.11	0.11	0.091	0.077	0.0041	0.00053
> 5.00	0.81	0.01	0.0035	0.012	0.00075	0	0.000024

Table 66. Affected Areas in Sudipen, La Union during 25-Year Rainfall Return Period.

Figure 100. Affected Areas in Sudipen, La Union during 25-Year Rainfall Return Period.

For the 100-year return period, 3.73% of the municipality of Alilem with an area of 132.176 sq. km. will experience flood levels of less than 0.20 meters. 0.16% of the area will experience flood levels of 0.21 to 0.50 meters while 0.08%, 0.04%, 0.05%, and 1.09% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in the table are the affected areas in square kilometers by flood depth per barangay.

Affected Area (sq. km.) by flood depth (in m.)	Area of affected barangays in Alilem (in sq. km)			
	Dalawa	Kiat		
0.03-0.20	4.93	0.00052		
0.21-0.50	0.21	0.00027		
0.51-1.00	0.1	0.0002		
1.01-2.00	0.054	0		
2.01-5.00	0.061	0.00084		
> 5.00	0.88	0.56		

Table 67. Affected Areas in Alilem, Ilocos Sur during 100-Year Rainfall Return Period.

Figure 101. Affected Areas in Alilem, Ilocos Sur during 100-Year Rainfall Return Period.

For the 100-year return period, 0.07% of the municipality of Santa Cruz with an area of 105.955 sq. km. will experience flood levels of less than 0.20 meters. 0.00% of the area will experience flood levels of 0.21 to 0.50 meters while 0.00% of the area will experience flood depths of 0.51 to 1 meter. Listed in the table are the affected areas in square kilometers by flood depth per barangay.

Affected Area (sq. km.) by	Area of affected barangay in Santa Cruz (in sq. km)		
fiood depth (in m.)	Gabor Sur		
0.03-0.20	0.074		
0.21-0.50	0.00082		
0.51-1.00	0.0004		
1.01-2.00	0.001		
2.01-5.00	0.0001		
> 5.00	0		

Table 68. Affected Areas in Santa Cruz, Ilocos Sur during 100-Year Rainfall Return Period.

Figure 102. Figure 102. Affected Areas in Santa Cruz, Ilocos Sur during 100-Year Rainfall Return Period.

For the 100-year return period, 10.85% of the municipality of Suyo with an area of 148.52 sq. km. will experience flood levels of less than 0.20 meters. 0.39% of the area will experience flood levels of 0.21 to 0.50 meters while 0.23%, 0.19%, 0.20%, and 2.51% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in the table are the affected areas in square kilometers by flood depth per barangay.

Affected Area (sq. km.) by	Area of	f affected ba	irangays in Su	ıyo (in sq. km)	
flood depth (in m.)	Baringcucurong	Cabugao	Poblacion	Suyo Proper	Urzadan
0.03-0.20	4.1	7.31	0.84	3.23	0.63
0.21-0.50	0.15	0.26	0.024	0.12	0.024
0.51-1.00	0.09	0.16	0.019	0.061	0.012
1.01-2.00	0.071	0.14	0.014	0.045	0.0065
2.01-5.00	0.025	0.21	0.011	0.043	0.0018
> 5.00	0	3.54	0.17	0.013	0

Table 69. Affected Areas in Suyo, Ilocos Sur during 100-Year Rainfall Return Period.

Figure 103. Affected Areas in Suyo, Ilocos Sur during 100-Year Rainfall Return Period.

For the 100-year return period, 41.15% of the municipality of Tagudin with an area of 54.35 sq. km. will experience flood levels of less than 0.20 meters. 7.24% of the area will experience flood levels of 0.21 to 0.50 meters while 4.83%, 6.04%, 18.88%, and 18.55% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 mAeters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in the table are the affected areas in square kilometers by flood depth per barangay.

)						
Affected Area (sq. km.)				4	Area of affec	ted barangays	in Tagudin	(in sq. km)				
by flood depth (in m.)	Ag-Aguman	Ambalayat	Baracbac	Bario-An	Baritao	Bimmanga	Bio	Bitalag	Borono	Bucao East	Bucao West	Cabaroan
0.03-0.20	0.21	2.34	1.08	0.72	0	0.017	0.21	1	0.58	0.4	0.11	0.087
0.21-0.50	0.028	0.09	0.33	0.071	0	0.037	0.0062	0.33	0.35	0.016	0.0092	0.0049
0.51-1.00	0.016	0.041	0.11	0.044	0.0001	0.1	0.0037	0.13	0.29	0.0087	0.017	0.0069
1.01-2.00	0.027	0.044	0.025	0.041	0.063	0.31	0.0094	0.028	0.06	0.017	0.03	0.017
2.01-5.00	0.086	0.4	0.0067	0.015	1.49	0.16	0.025	0.0035	0.00076	0.14	0.51	0.062
> 5.00	0.46	5.68	0.0001	0	0.074	0	0.44	0	0	0.61	0.15	0.33

Affected Area			Area of aff	ected baran	gays in Tag	udin (in sq	. km)			
(sq. km.) by flood depth (in m.)	Cabugbugan	Cabulanglangan	Dacutan	Dardarat	Del Pilar	Farola	Gabur	Garitan	Jardin	Lacong
0.03-0.20	2.32	0.92	0.71	0.12	0.0001	0.14	0.51	1.1	0	0.44
0.21-0.50	0.096	0.06	0.4	0.16	0.00079	0.091	0.077	0.11	0	0.025
0.51-1.00	0.059	0.048	0.22	0.17	0.013	0.23	0.011	0.022	0.0002	0.012
1.01-2.00	0.04	0.039	0.3	0.15	0.051	0.12	0.017	0.0097	0.053	0.015
2.01-5.00	0.01	0.078	0.093	0.042	0.16	0.0036	0.0018	0.0014	0.24	0.035
> 5.00	0.0001	0.079	0	0	0	0	0	0	0.009	0.025

Table 71. Affected Areas in Tagudin, Ilocos Sur during 100-Year Rainfall Return Period.

Figure 105. Affected Areas in Tagudin, Ilocos Sur during 100-Year Rainfall Return Period.

					D	0				
Affected Area (sq.				Are	ea of affected be	ırangays in Tagud	in (in sq. k	(m)		
km.,) by 11000 deptn (in m.)	Lantag	Las-Ud	Libtong	Lubnac	Magsaysay	Malacañang	Pacac	Pallogan	Pudoc East	Pudoc West
0.03-0.20	0.023	0.0017	0.38	1.07	0.12	0.43	0.0079	4.42	0	0.0056
0.21-0.50	0.00063	0.001	0.21	0.35	0.082	0.22	0.0011	0.19	0	0.0011
0.51-1.00	0.0044	0.0039	0.24	0.2	0.067	0.052	0.025	0.11	0	0.034
1.01-2.00	0.042	0.13	0.28	0.019	0.11	0.0034	0.09	0.1	0.019	0.058
2.01-5.00	0.7	0.24	0.0044	0.0001	0.0073	0	1.53	0.15	0.85	1.23
> 5.00	0.08	0.00003	0	0	0	0	0.0051	1.34	0.16	0.15

Т

Affected Area (sg. km.)				Area o	of affected ba	arangays in Tag	udin (in s	iq. km)		
by flood depth (in m.)	Pula	Quirino	Ranget	Rizal	Salvacion	San Miguel	Sawat	Tallaoen	Tampugo	Tarangotong
0.03-0.20	0.032	0.048	1.18	0.11	0.096	0.35	0	0.6	0.47	0.0064
0.21-0.50	0.0008	0.012	0.13	0.0071	0.0036	0.024	0.0045	0.31	0.081	0.015
0.51-1.00	0.0005	0.029	0.025	0.0035	0.0062	0.0081	0.017	0.14	0.054	0.054
1.01-2.00	0.00043	0.29	0.02	0.013	0.024	0.0013	0.2	0.024	0.042	0.35
2.01-5.00	0.037	0.027	0.0057	0.011	0.39	0.00049	0.59	0.0002	0.042	0.88
> 5.00	0.46	0.00028	0.0003	0	0.027	0	0.0018	0	0	0.0017

Table 73. Affected Areas in Tagudin, Ilocos Sur during 100-Year Rainfall Return Period.

Figure 107. Affected Areas in Tagudin, Ilocos Sur during 100-Year Rainfall Return Period.

For the 100-year return period, 7.58% of the municipality of Balaoan with an area of 60.96 sq. km. will experience flood levels of less than 0.20 meters. 2.14% of the area will experience flood levels of 0.21 to 0.50 meters while 2.97%, 3.07%, 0.99%, and 0.22% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in the table are the affected areas in square kilometers by flood depth per barangay.

Affected Area (sq.		Area of a	ffected ba	irangays in Ba	laoan (in sq. km	i)	
km.) by flood depth (in m.)	Baracbac Este	Baracbac Oeste	Bet- Ang	Bulbulala	Butubut Norte	Butubut Oeste	Calliat
0.03-0.20	0.3	0.47	0.1	0.54	0.49	0.26	0.42
0.21-0.50	0.11	0.24	0.13	0.067	0.061	0.013	0.14
0.51-1.00	0.2	0.24	0.09	0.0071	0.05	0.00062	0.12
1.01-2.00	0.17	0.059	0.007	0.008	0.068	0.00011	0.12
2.01-5.00	0.1	0.043	0.0012	0.012	0.051	0	0.024
> 5.00	0.021	0.023	0.0014	0	0.0007	0	0.00083

Table 74. Affected Areas in Balaoan, La Union during 100-Year Rainfall Return Period.

Figure 108. Affected Areas in Balaoan, La Union during 100-Year Rainfall Return Period.

Affected Area		Area	of affected	l barangays	in Balaoan (in	sq. km)	
(sq. km.) by flood depth (in m.)	Napaset	Pantar Norte	Pantar Sur	Sablut	Sinapangan Norte	Sinapangan Sur	Tallipugo
0.03-0.20	0.073	0.079	0.37	0.093	0.43	0.96	0.033
0.21-0.50	0.046	0.045	0.14	0.069	0.068	0.054	0.12
0.51-1.00	0.087	0.0071	0.047	0.14	0.19	0.09	0.54
1.01-2.00	0.034	0.0018	0.015	0.055	0.4	0.095	0.84
2.01-5.00	0	0	0.016	0.01	0.074	0.095	0.18
> 5.00	0	0	0.003	0.007	0	0.059	0.016

Table 75. Affected Areas in Balaoan, La Union during 100-Year Rainfall Return Period.

Figure 109. Affected Areas in Balaoan, La Union during 100-Year Rainfall Return Period.

For the 100-year return period, 25.91% of the municipality of Bangar with an area of 45.12 sq. km. will experience flood levels of less than 0.20 meters. 4.52% of the area will experience flood levels of 0.21 to 0.50 meters while 7.43%, 9.12%, 36.99%, and 15.99% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in the table are the affected areas in square kilometers by flood depth per barangay.

						•		1			
Affected Area				Area	от аптестео	barangays II	ı Bangar (II	n sq. km)			
(sq. km.) by flood depth (in m.)	Agdeppa	Alzate	Bangaoilan East	Bangaoilan West	Barraca	Cadapli	Caggao	Central East No. 1	Central East No. 2	Central West No. 1	Central We No. 2
0.03-0.20	0.00062	0	0.44	0.089	0	0.23	0	0	0	0	0
0.21-0.50	0.00068	0	0.055	0.022	0	0.11	0	0	0	0	0.0001
0.51-1.00	0.0016	0	0.086	0.048	0	0.27	0.0003	0	0	0	0.0003
1.01-2.00	0.017	0.0002	0.074	0.094	0.005	0.34	0.0065	0	0	0	0.0066
2.01-5.00	1.09	1.05	0.55	0.46	0.59	0.037	0.64	0.049	0.034	0.055	0.06
> 5.00	2.15	0.39	0.2	0.36	0.099	0.0031	0.1	0	0	0.00022	0

Table 76. Affected Areas in Bangar, La Union during 100-Year Rainfall Return Period.

st

Table 77. Affected Areas in Bangar, La Union during 100-Year Rainfall Return Period.

				Area of	f affected bara	angays in Ba	ingar (in s	q. km)			
Cel West	ntral t No. 3	Consuegra	General Prim East	General Prim West	General Terrero	Luzong Norte	Luzong Sur	Maria Cristina East	Maria Cristina West	Mindoro	Nagsabaran
	0	0	0	0	0.0033	2.89	2.6	0	0	0	0
	0	0	0	0	0.0004	0.27	0.23	0	0	0.0005	0
	0	0.0012	0.0001	0.0001	0.0012	0.28	0.17	0.0019	0.00068	0.042	0
	0	0.033	0.018	0.015	0.012	0.31	0.17	0.017	0.03	0.11	0
	0.059	0.77	0.36	0.74	0.34	0.42	0.23	0.33	0.34	1.78	0.15
	0	0.25	0.17	0.4	0.17	0.1	0.093	0.0054	0.13	0.35	0.23

Figure 111. Affected Areas in Bangar, La Union during 100-Year Rainfall Return Period.

Affected Area				Area	of affected b	arangays ir	າ Bangar (in	sq. km)			
(sq. km.) by flood depth (in m.)	Paratong No. 3	Paratong No. 4	Paratong Norte	Quintarong	Reyna Regente	Rissing	San Blas	San Cristobal	Sinapangan Norte	Sinapangan Sur	Ubbog
0.03-0.20	0.0018	0.0069	0.0054	0	0	0.097	0	2.28	1.97	1	0.078
0.21-0.50	0.013	0.045	0.0042	0	0	0.13	0	0.42	0.35	0.29	0.1
0.51-1.00	0.033	0.047	0.018	0	0	0.28	0	0.52	0.42	0.89	0.24
1.01-2.00	0.08	0.054	0.07	0.0001	0.0005	0.67	0.00028	0.37	0.27	0.99	0.35
2.01-5.00	0.094	0.2	0.33	0.22	0.33	2.78	0.65	0.15	0.12	0.31	1.37
> 5.00	0.11	0.057	0.15	0.076	0.0001	0.44	0.97	0.0077	0.014	0.058	0.13

For the 100-year return period, 1.92% of the municipality of Luna with an area of 50.66 sq. km. will experience flood levels of less than 0.20 meters. 1.33% of the area will experience flood levels of 0.21 to 0.50 meters while 1.86%, 2.91%, 7.91%, and 1.22% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in the table are the affected areas in square kilometers by flood depth per barangay.

Affected Area			Area of affe	ected baran	gays in Lun	a (in sq. kn	n)		
(sq. km.) by flood depth (in m.)	Barangobong	Cantoria No. 1	Cantoria No. 2	Cantoria No. 3	Cantoria No. 4	Napaset	Oaqui No. 1	Oaqui No. 2	Oaqui No. 3
0.03-0.20	0	0.13	0.039	0.22	0.16	0.045	0.086	0.085	0.0065
0.21-0.50	0.0009	0.073	0.0003	0.023	0.077	0.042	0.11	0.045	0.03
0.51-1.00	0.034	0.078	0	0.0002	0.083	0.012	0.18	0.15	0.11
1.01-2.00	0.13	0.15	0	0	0.088	0.0018	0.2	0.11	0.081
2.01-5.00	0.23	0.023	0	0	0	0.0012	0.0002	0	0
> 5.00	0	0	0	0	0	0.001	0	0	0

Table 79. Affected Areas in Luna, La Union during 100-Year Rainfall Return Period.

Figure 113. Affected Areas in Luna, La Union during 100-Year Rainfall Return Period.

Hazard Mapping of the Philippines Using LiDAR (Phil-LiDAR 1)

Affected Area			Area o	of affected	barangays in	Luna (in sq.	km)		
(sq. km.) by flood depth (in m.)	Oaqui No. 4	Rimos No. 1	Rimos No. 2	Rimos No. 3	Rimos No. 4	Rimos No. 5	Rissing	Santo Domingo Norte	Suyo
0.03-0.20	0.0053	0	0	0.0012	0.000003	0.065	0.12	0	0.0088
0.21-0.50	0.043	0	0	0.00017	0.00096	0.032	0.18	0	0.018
0.51-1.00	0.1	0	0	0.0044	0.0016	0.016	0.13	0	0.044
1.01-2.00	0.041	0.0044	0	0.062	0.088	0.039	0.18	0.00066	0.3
2.01-5.00	0	0.12	0.36	0.64	0.77	1.21	0.11	0.0011	0.54
> 5.00	0	0.000064	0.084	0.17	0.25	0.1	0.014	0	0

Table 80. Affected Areas in Luna, La Union during 100-Year Rainfall Return Period.

Figure 114. Affected Areas in Luna, La Union during 100-Year Rainfall Return Period.

For the 100-year return period, 2.37% of the municipality of Santol with an area of 97.97 sq. km. will experience flood levels of less than 0.20 meters. 0.42% of the area will experience flood levels of 0.21 to 0.50 meters while 0.53%, 0.15%, 0.09%, and 0.05% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in the table are the affected areas in square kilometers by flood depth per barangay.

Affected Area (sq. km.) by flood depth	Area of affected barangay in Santol (in sq. km)
(in m.)	Paagan
0.03-0.20	2.32
0.21-0.50	0.41
0.51-1.00	0.52
1.01-2.00	0.15
2.01-5.00	0.091
> 5.00	0.047

Table 81. Affected Areas in Santol, La Union during 100-Year Rainfall Return Period.

Figure 115. Affected Areas in Santol, La Union during 100-Year Rainfall Return Period.

For the 100-year return period, 33.36% of the municipality of Sudipen with an area of 75.745 sq. km. will experience flood levels of less than 0.20 meters. 2.56% of the area will experience flood levels of 0.21 to 0.50 meters while 2.27%, 2.03%, 3.22%, and 6.99% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in the table are the affected areas in square kilometers by flood depth per barangay.

Affected Area (sq.	Area of affected barangays in Sudipen (in sq. km)								
km.) by flood depth (in m.)	Bigbiga	Castro	Duplas	llocano	Ipet	Namaltugan	Old Central		
0.03-0.20	3.46	2.16	0.11	1.49	2.2	0.12	3.2		
0.21-0.50	0.4	0.14	0.00062	0.12	0.093	0.0011	0.23		
0.51-1.00	0.5	0.081	0.0004	0.093	0.079	0.002	0.13		
1.01-2.00	0.45	0.046	0.0004	0.1	0.12	0.0021	0.11		
2.01-5.00	0.069	0.028	0.0004	0.18	1.25	0.0053	0.28		
> 5.00	0.0006	0.00075	0	0.59	1.98	0.12	1.6		

Table 82. Affected Areas in Sudipen, La Union during 100-Year Rainfall Return Period.

Figure 116. Affected Areas in Sudipen, La Union during 100-Year Rainfall Return Period.

		Area of affected barangays in Sudipen (in sq. km)						
km.) by flood depth (in m.)	Poblacion	San Francisco Norte	San Francisco Sur	San Jose	Sengngat	Turod	Up-Uplas	
0.03-0.20	0.74	3.24	2.59	3.4	1.4	1.07	0.088	
0.21-0.50	0.075	0.17	0.2	0.2	0.2	0.11	0.0007	
0.51-1.00	0.063	0.13	0.24	0.16	0.16	0.08	0.0003	
1.01-2.00	0.038	0.13	0.21	0.13	0.17	0.03	0.00079	
2.01-5.00	0.099	0.14	0.16	0.11	0.11	0.0058	0.00063	
> 5.00	0.96	0.018	0.0095	0.018	0.0011	0	0.000024	

Table 83. Affected Areas in Sudipen, La Union during 100-Year Rainfall Return Period.

Figure 117. Affected Areas in Sudipen, La Union during 100-Year Rainfall Return Period.

Among the barangays in the municipality of Alilem in Ilocos Sur, Dalawa is projected to have the highest percentage of area that will experience flood levels at 4.72%. Meanwhile, Kiat posted the second highest percentage of area that may be affected by flood depths at 0.43%.

Brgy. Gabor Sur is the only barangay affected in the municipality of Santa Cruz in Ilocos Sur. The barangay is projected to experience flood in 0.07% of the municipality.

Among the barangays in the municipality of Suyo in Ilocos Sur, Cabugao is projected to have the highest percentage of area that will experience flood levels at 7.82%. Meanwhile, Baringcucurong posted the second highest percentage of area that may be affected by flood depths at 2.99%.

Among the barangays in the municipality of Tagudin in Ilocos Sur, Ambalayat is projected to have the highest percentage of area that will experience flood levels at 15.84%. Meanwhile, Pallogan posted the second highest percentage of area that may be affected by flood depths at 11.59%.

Among the barangays in the municipality of Balaoan in La Union, Tallipugo is projected to have the highest percentage of area that will experience flood levels at 2.83%. Meanwhile, Sinapangan Sur posted the second highest percentage of area that may be affected by flood depths at 2.20%.

Among the barangays in the municipality of Bangar in La Union, Rissing is projected to have the highest percentage of area that will experience flood levels at 9.78%. Meanwhile, Luzong Norte posted the second highest percentage of area that may be affected by flood depths at 9.48%.

Among the barangays in the municipality of Luna in La Union, Rimos No. 5 is projected to have the highest percentage of area that will experience flood levels at 2.90%. Meanwhile, Rimos No. 4 posted the second highest percentage of area that may be affected by flood depths at 2.19%.

Brgy. Paagan is the only barangay affected in the municipality of Santol in La Union. The barangay is projected to experience flood in 3.60% of the municipality.

Among the barangays in the municipality of Sudipen in La Union, Ipet is projected to have the highest percentage of area that will experience flood levels at 7.58%. Meanwhile, Old Central posted the second highest percentage of area that may be affected by flood depths at 7.33%.

Moreover, the generated flood hazard maps for the Amburayan Floodplain were used to assess the vulnerability of the educational and medical institutions in the floodplain. Using the flood depth units of PAGASA for hazard maps - "Low", "Medium", and "High" - the affected institutions were given their individual assessment for each Flood Hazard Scenario (5 yr, 25 yr, and 100 yr).

Warning Level	Area Covered in sq. km.					
	5 year	25 year	100 year			
Low	13.01	11.59	10.95			
Medium	21.50	18.49	18.71			
High	46.68	63.52	69.74			
TOTAL	81.19	93.6	99.4			

Table 84. Area covered by each warning level with respect to the rainfall scenario.

Of the 78 identified educational institutions in the Amburayan floodplain, 19 schools were assessed to be highly prone to flooding as they are exposed to the High level flooding for all three rainfall scenarios. 22 other institutions were found to be also susceptible to flooding, experiencing Medium level flooding in the 5-year return period, and High level flooding in the 25- and 100-year rainfall scenarios. See Annex 12 for a detailed enumeration of schools in the Amburayan floodplain.

10 medical institutions were identified in the Amburayan floodplain. Tagudin Medical Diagnostic Center in Brgy. Las-Ud was found to be highly prone to flooding, having High level flooding in all three rainfall scenarios. See Annex 13 for a detailed enumeration of hospitals and clinics in the Amburayan floodplain.

5.11 Flood Validation

In order to check and validate the extent of flooding in different river systems, there is a need to perform validation survey work. Field personnel gather secondary data regarding flood occurrence in the area within the major river system in the Philippines.

From the Flood Depth Maps produced by Phil-LiDAR 1 Program, multiple points representing the different flood depths for different scenarios are identified for validation.

The validation personnel will then go to the specified points identified in a river basin and will gather data regarding the actual flood level in each location. Data gathering can be done through a local DRRM office to obtain maps or situation reports about the past flooding events or interview some residents with knowledge of or have had experienced flooding in a particular area.

After which, the actual data from the field will be compared to the simulated data to assess the accuracy of the Flood Depth Maps produced and to improve on what is needed.

The flood validation survey was conducted in January 2017. The flood validation consists of 326 points randomly selected all over the Amburayan flood plain. It has an RMSE value of 1.38.

Figure 118. Flood Validation Points for Amburayan River Basin.

Figure 119. Flood Map Depth vs Actual Flood Depth for Amburayan.

Hazard Mapping of the Philippines Using LiDAR (Phil-LiDAR 1)

AM	BURAYAN	Modeled Flood Depth (m)						
1	BASIN	0-0.20	0.21-0.50	0.51-1.00	1.01-2.00	2.01-5.00	> 5.00	Total
(c	0-0.20	18	1	2	0	0	0	21
ц ц	0.21-0.50	10	16	27	21	1	1	76
Dept	0.51-1.00	19	14	71	47	2	6	159
od I	1.01-2.00	8	4	18	30	8	2	70
밀	2.01-5.00	0	0	0	0	0	0	0
ctua	> 5.00	0	0	0	0	0	0	0
A A	Total	55	35	118	98	11	9	326

Table 85. Table 85. Actual Flood Depth vs Simulated Flood Depth in Amburayan.

The overall accuracy generated by the flood model is estimated at 41.41%, with 135 points correctly matching the actual flood depths. In addition, there were 125 points estimated one level above and below the correct flood depths while there were 50 points and 16 points estimated two levels above and below, and three or more levels above and below the correct flood depth. A total of 118 points were overestimated while a total of 73 points were underestimated in the modelled flood depths of Amburayan.

	No. of Points	%
Correct	135	41.41
Overestimated	118	36.20
Underestimated	73	22.39
Total	326	100

Table 86. Summary of Accuracy Assessment in Amburayan.

REFERENCES

Ang M.O., Paringit E.C., et al. 2014. *DREAM Data Processing Component Manual*. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Balicanta L.P., Paringit E.C., et al. 2014. *DREAM Data Validation Component Manual*. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Brunner, G. H. 2010a. HEC-RAS River Analysis System Hydraulic Reference Manual. Davis, CA: U.S. Army Corps of Engineers, Institute for Water Resources, Hydrologic Engineering Center.

Lagmay A.F., Paringit E.C., et al. 2014. *DREAM Flood Modeling Component Manual*. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Paringit E.C, Balicanta L.P., Ang, M.O., Sarmiento, C. 2017. *Flood Mapping of Rivers in the Philippines Using Airborne Lidar: Methods*. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Sarmiento C., Paringit E.C., et al. 2014. *DREAM Data Acquisition Component Manual*. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

UP TCAGP 2016, Acceptance and Evaluation of Synthetic Aperture Radar Digital Surface Model (SAR DSM) and Ground Control Points (GCP). Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

ANNEXES

ANNEX 1. TECHNICAL SPECIFICATION OF THE SENSOR

1. Pegasus

Laptop

Control Rack

Parameter	Specification
Operational envelope (1,2,3,4)	150-5000 m AGL, nominal
Laser wavelength	1064 nm
Horizontal accuracy (2)	1/5,500 x altitude, 1σ
Elevation accuracy (2)	< 5-20 cm, 1σ
Effective laser repetition rate	Programmable, 100-500 kHz
Position and orientation system	POS AV ™AP50 (OEM)
Scan width (FOV)	Programmable, 0-75 °
Scan frequency (5)	Programmable, 0-140 Hz (effective)
Sensor scan product	800 maximum
Beam divergence	0.25 mrad (1/e)
Roll compensation	Programmable, ±37° (FOV dependent)
Vertical target separation distance	<0.7 m
Range capture	Up to 4 range measurements, including 1st, 2nd, 3rd, and last returns
Intensity capture	Up to 4 intensity returns for each pulse, including last (12 bit)
Image capture	5 MP interline camera (standard); 60 MP full frame (optional)
Full waveform capture	12-bit Optech IWD-2 Intelligent Waveform Digitizer
Data storage	Removable solid state disk SSD (SATA II)
Power requirements	28 V, 800 W, 30 A
Dimensions and weight	Sensor: 630 x 540 x 450 mm; 65 kg;
	Control rack: 650 x 590 x 490 mm; 46 kg
Operating Temperature	-10°C to +35°C
Relative humidity	0-95% non-condensing

1 Target reflectivity ≥20%

2 Dependent on selected operational parameters using nominal FOV of up to 40° in standard atmospheric conditions with 24-km visibility

3 Angle of incidence $\leq 20^{\circ}$

4 Target size ≥ laser footprint5 Dependent on system configuration

ANNEX 2. NAMRIA CERTIFICATES OF REFERENCE POINTS USED

1. LUN-62

AND	Republic of the Phil Department of Envi NATIONAL MA	ippines ronment and Natural Resources PPING AND RESOURCE INF	ORMATION A	UTHORITY	
					March 04, 2014
		CERTIFICATIO	ON		
o whom it may	concern:		e		
I his is to ce	ertify that according to	the records on file in this of	fice, the requ	ested survey infor	mation is as follows -
		Province: LA UNIO Station Name: LUN-	N 62		
Island: LUZ	ON	Order: 2nd		Barangay: BA	ARAOAS NORTE
Municipality:	NAGUILIAN	PRS92 Coordina	ates		
Latitude: 16	^o 33' 19.98115"	Longitude: 120° 23' 28	8.76004"	Ellipsoidal Hg	t: 33.18400 m.
		WGS84 Coordin	ates		
Latitude: 16	° 33' 14.07106"	Longitude: 120° 23' 3	3.49149"	Ellipsoidal Hg	t: 69.44500 m.
Northina: 18	31016.667 m.	PTM Coordinat Easting: 435034.92	tes 6 m.	Zone: 3	
		UTM Coordina	tes		
Northing: 1	,832,084.35	Easting: 221,592.72	2	Zone: 5'	1
UN-62 rom Naguilian tation is locate lso situated 30 n. x 0.3 m. cen	Town Hall, travel N to d 15 m. S from the fir 0 m. S of a hanging b eent putty, with inscrip	Location Descript Brgy. Baraoas Norte until r st access ladder of the river ridge. Mark is the head of a tions "LUN-62 2007 NAMRI.	tion eaching the r control and a 4 in. copper A''.	ough road and the about 100 m. N fro nail centered and	e river control. om the end. It is embedded in a 0.3
equesting Par upose: DR Number: .N.:	ty: UP-DREAM Reference 8795470 A 2014-451		RI Director,	UEL DM. BELEN, Mapping And Ge	MNSA odesy Branch
	NAMRIA OFFICES:		990	30420141	6 D 9 4 3

2. LUN-176

		March 04, 2014
	CERTIFICATION	
fo whom it may concern:		
This is to certify that according to	o the records on file in this office, the r	requested survey information is as follows -
	Province: LA UNION	
	Station Name: LUN-176	집에 가격을 알았다.
Island: LUZON	Order: 2nd	Barangay: BUNGOL
Municipality: BALAOAN		
	PRS92 Coordinates	Ellipsoidal Mate as cases
Latitude: 16° 46° 14.35394"	Longitude: 120° 24' 5.41918"	Ellipsoidal Hgt. 35.63300 m.
	WGS84 Coordinates	
Latitude: 16º 46' 8.39718"	Longitude: 120° 24' 10.13252"	Ellipsoidal Hgt: 71.25300 m.
	PTM Coordinates	요즘 그 아이는 것 같아.
Northing: 1854816.574 m.	Easting: 436193.115 m.	Zone: 3
	UTM Coordinates	
Northing: 1,855,884.60	Easting: 222,990.04	Zone: 51
	Location Description	
LUN-176 (FNSP-DENR)		
From Candon City, Ilocos Sur, trave eaching Km. Post No. 292 on the le	IS to the province of La Union passing ft side of the highway. Travel more for	g through Balaoan town proper until r about 300 m. until reaching a concrete
From Candon City, Ilocos Sur, trave reaching Km. Post No. 292 on the le waiting shed on the right side of the Fireworks Factory. Beside the concr	I S to the province of La Union passing of side of the highway. Travel more for highway, before reaching a highway c rete shed is a trail, follow this trail until	g through Balaoan town proper until r about 300 m. until reaching a concrete surve and the road leading to Magic Star reaching a house with an artesian well
From Candon City, Ilocos Sur, trave reaching Km. Post No. 292 on the le waiting shed on the right side of the Fireworks Factory. Beside the concr beside a series of Coconut trees. It i m. SW of the nearest house.	I S to the province of La Union passing ft side of the highway. Travel more for highway, before reaching a highway o rete shed is a trail, follow this trail until is located on a corner of a farm dike, a	g through Balaoan town proper until r about 300 m. until reaching a concrete surve and the road leading to Magic Star reaching a house with an artesian well about 15 m. SE of the well and about 20
From Candon City, Ilocos Sur, trave reaching Km. Post No. 292 on the le waiting shed on the right side of the Fireworks Factory. Beside the concr beside a series of Coconut trees. It i m. SW of the nearest house.	I S to the province of La Union passing off side of the highway. Travel more for highway, before reaching a highway of rete shed is a trail, follow this trail until is located on a corner of a farm dike, a nail embedded and centered on a 30 (g through Balaoan town proper until r about 300 m. until reaching a concrete surve and the road leading to Magic Star reaching a house with an artesian well about 15 m. SE of the well and about 20 cm. x 30 cm. concrete monument
From Candon City, Ilocos Sur, trave reaching Km. Post No. 292 on the le waiting shed on the right side of the Fireworks Factory. Beside the concr beside a series of Coconut trees. It is m. SW of the nearest house. Mark is the head of a 3 in. concrete protruding by about 5 cm., with insci	I S to the province of La Union passing ft side of the highway. Travel more for highway, before reaching a highway of rete shed is a trail, follow this trail until is located on a corner of a farm dike, a nail embedded and centered on a 30 of riptions "LUN-176, 2004, PRS-92, FNS	g through Balaoan town proper until r about 300 m. until reaching a concrete surve and the road leading to Magic Star reaching a house with an artesian well about 15 m. SE of the well and about 20 cm. x 30 cm. concrete monument SP-DENR-I".
From Candon City, Ilocos Sur, trave reaching Km. Post No. 292 on the le waiting shed on the right side of the Fireworks Factory. Beside the concr beside a series of Coconut trees. It i m. SW of the nearest house. Mark is the head of a 3 in. concrete protruding by about 5 cm., with insci	I S to the province of La Union passing ft side of the highway. Travel more for highway, before reaching a highway of rete shed is a trail, follow this trail until is located on a corner of a farm dike, a nail embedded and centered on a 30 of riptions "LUN-176, 2004, PRS-92, FNS	g through Balaoan town proper until r about 300 m. until reaching a concrete surve and the road leading to Magic Star reaching a house with an artesian well about 15 m. SE of the well and about 20 cm. x 30 cm. concrete monument SP-DENR-I".
From Candon City, Ilocos Sur, trave reaching Km. Post No. 292 on the le waiting shed on the right side of the Fireworks Factory. Beside the concr peside a series of Coconut trees. It is m. SW of the nearest house. Mark is the head of a 3 in. concrete protruding by about 5 cm., with inscr Requesting Party: UP-DREAM Pupose: Reference	I S to the province of La Union passing ft side of the highway. Travel more for highway, before reaching a highway of rete shed is a trail, follow this trail until is located on a corner of a farm dike, a nail embedded and centered on a 30 of riptions "LUN-176, 2004, PRS-92, FNS	g through Balaoan town proper until r about 300 m. until reaching a concrete surve and the road leading to Magic Star reaching a house with an artesian well about 15 m. SE of the well and about 20 cm. x 30 cm. concrete monument SP-DENR-I".
From Candon City, Ilocos Sur, trave reaching Km. Post No. 292 on the le waiting shed on the right side of the Fireworks Factory. Beside the concr peside a series of Coconut trees. It is m. SW of the nearest house. Mark is the head of a 3 in. concrete protruding by about 5 cm., with insci Requesting Party: UP-DREAM Pupose: Reference DR Number: 8795470 A T N 2014453	I S to the province of La Union passing ft side of the highway. Travel more for highway, before reaching a highway of rete shed is a trail, follow this trail until is located on a corner of a farm dike, a nail embedded and centered on a 30 of riptions "LUN-176, 2004, PRS-92, FNS	g through Balaoan town proper until r about 300 m. until reaching a concrete surve and the road leading to Magic Star reaching a house with an artesian well about 15 m. SE of the well and about 20 cm. x 30 cm. concrete monument SP-DENR-I".
From Candon City, Ilocos Sur, trave reaching Km. Post No. 292 on the le waiting shed on the right side of the Fireworks Factory. Beside the concr beside a series of Coconut trees. It is m. SW of the nearest house. Mark is the head of a 3 in. concrete protruding by about 5 cm., with inscr Requesting Party: UP-DREAM Pupose: Reference OR Number: 8795470 A T.N.: 2014-453	I S to the province of La Union passing ft side of the highway. Travel more for highway, before reaching a highway of rete shed is a trail, follow this trail until is located on a corner of a farm dike, a nail embedded and centered on a 30 of hiptions "LUN-176, 2004, PRS-92, FNS	g through Balaoan town proper until r about 300 m. until reaching a concrete surve and the road leading to Magic Star reaching a house with an artesian well about 15 m. SE of the well and about 20 cm. x 30 cm. concrete monument SP-DENR-I".
From Candon City, Ilocos Sur, trave reaching Km. Post No. 292 on the le waiting shed on the right side of the Fireworks Factory. Beside the concr beside a series of Coconut trees. It is m. SW of the nearest house. Mark is the head of a 3 in. concrete protruding by about 5 cm., with insci Requesting Party: UP-DREAM Pupose: Reference OR Number: 8795470 A T.N.: 2014-453	I S to the province of La Union passing eff side of the highway. Travel more for highway, before reaching a highway of rete shed is a trail, follow this trail until is located on a corner of a farm dike, a nail embedded and centered on a 30 of riptions "LUN-176, 2004, PRS-92, FNS Directions	g through Balaoan town proper until r about 300 m. until reaching a concrete surve and the road leading to Magic Star reaching a house with an artesian well about 15 m. SE of the well and about 20 cm. x 30 cm. concrete monument SP-DENR-I".
From Candon City, Ilocos Sur, trave reaching Km. Post No. 292 on the le waiting shed on the right side of the Fireworks Factory. Beside the concr beside a series of Coconut trees. It is m. SW of the nearest house. Mark is the head of a 3 in. concrete brotruding by about 5 cm., with inscr Requesting Party: UP-DREAM Pupose: Reference DR Number: 8795470 A T.N.: 2014-453	I S to the province of La Union passing ft side of the highway. Travel more for highway, before reaching a highway of rete shed is a trail, follow this trail until is located on a corner of a farm dike, a nail embedded and centered on a 30 of hiptions "LUN-176, 2004, PRS-92, FNS Direct	g through Balaoan town proper until r about 300 m. until reaching a concrete surve and the road leading to Magic Star reaching a house with an artesian well about 15 m. SE of the well and about 20 cm. x 30 cm. concrete monument SP-DENR-I". RUEL DM. BELEN MNSA ctor, Mapping And Geodesy Branch
From Candon City, Ilocos Sur, trave reaching Km. Post No. 292 on the le waiting shed on the right side of the Fireworks Factory. Beside the concr peside a series of Coconut trees. It is m. SW of the nearest house. Mark is the head of a 3 in. concrete protruding by about 5 cm., with inscr Requesting Party: UP-DREAM Pupose: Reference DR Number: 8795470 A T.N.: 2014-453	I S to the province of La Union passing th side of the highway. Travel more for highway, before reaching a highway of rete shed is a trail, follow this trail until is located on a corner of a farm dike, a nail embedded and centered on a 30 of riptions "LUN-176, 2004, PRS-92, FNS Direct	g through Balaoan town proper until r about 300 m. until reaching a concrete surve and the road leading to Magic Star reaching a house with an artesian well about 15 m. SE of the well and about 20 cm. x 30 cm. concrete monument SP-DENR-I". RUEL DM. BELEN, MNSA ctor, Mapping And Geodesy Branch
From Candon City, Ilocos Sur, trave reaching Km. Post No. 292 on the le waiting shed on the right side of the Fireworks Factory. Beside the concr beside a series of Coconut trees. It is m. SW of the nearest house. Mark is the head of a 3 in. concrete brotruding by about 5 cm., with inscr Requesting Party: UP-DREAM Pupose: Reference DR Number: 8795470 A T.N.: 2014-453	I S to the province of La Union passing if side of the highway. Travel more for highway, before reaching a highway of rete shed is a trail, follow this trail until is located on a corner of a farm dike, a nail embedded and centered on a 30 of riptions "LUN-176, 2004, PRS-92, FNS Directions of the state of the state of the state of the state Direction of the state of the s	g through Balaoan town proper until r about 300 m. until reaching a concrete surve and the road leading to Magic Star reaching a house with an artesian well about 15 m. SE of the well and about 20 cm. x 30 cm. concrete monument SP-DENR-I". RUEL DM. BELEN MINSA ctor, Mapping And Geodesy Branch

						March 04, 2014
		CER	TIFICATION			
o whom it may	concern:	the state				
This is to cer	tify that according to	the records on t	ile in this office, the requ	lested survey in	torma	tion is as follows -
		Province	e: LA UNION			
		Station Na	ame: LUN-3062			
Island: LUZC	N	order	. 401	Barangay:	NATI	/IDAD (POB.)
Municipality:	NAGUILIAN	PRS:	92 Coordinates			
Latitude: 164	31' 55.00993"	Longitude:	120° 23' 12.50504"	Ellipsoidal	Hgt:	25.32100 m.
		WGS	84 Coordinates			
Latitude: 164	[,] 31' 49.10470"	Longitude:	120° 23' 17.23850"	Ellipsoidal	Hgt:	61.64400 m.
		PTN	/ Coordinates			
Northing: 18:	28406.255 m.	Easting:	434545.028 m.	Zone:	3	
		UTI	M Coordinates			
Northing: 1,	829,477.48	Easting:	221,076.59	Zone:	51	
	1.511 701 7	Locat	tion Description			
UN-3062						
s located at bara 00 m north of P	angay Natividad, Nag hilippine Central Col	Juilian, La Union lege of Arts Scie	. The station is erected a ince & Technology and 8	t the top of a di 0 m north of Na	ike. It aguilia	n emission
esting center. Aark in the head	of a 3 inches concre	ete nail embedde	ed and centered on a 30	cm x 30 cm x 1	00 cm	n standard P.R.1
opproto monum	ient protibuling by ab	out zo cm, with	the inscription EON-5002	PRO-52 DENI	1110	r 19-1.
concrete monum	C UP-DREAM			1Ann	1	
concrete monum Requesting Part Pupose:	Reference			11 HH	1	
concrete monum Requesting Part Pupose: DR Number:	Reference 8795470 A 2014-455			11 0000	Y	
concrete monum Requesting Part Pupose: DR Number: T.N.:	Reference 8795470 A 2014-455		R	UEL DM. BEL	N, M	NSA Branch
concrete monum Requesting Part Pupose: DR Number: T.N.:	Reference 8795470 A 2014-455		R Director	UEL DM. BELE , Mapping And	EN, M Geode	NSA esy Branch
concrete monum Requesting Part Pupose: DR Number: T.N.:	Reference 8795470 A 2014-455		R Director	UEL DM. BELE	EN, M Geode	NSA esy Branch
concrete monum Requesting Part Pupose: DR Number: T.N.:	Reference 8795470 A 2014-455		R Director	UEC DM. BELL , happing And	EN, M Geode	NSA esy Branch
concrete monum Requesting Part Pupose: DR Number: T.N.:	Reference 8795470 A 2014-455		R Director	UEL DM. BELE	EN, M Geode	NSA esy Branch
concrete monum Requesting Part Pupose: DR Number: T.N.:	Reference 8795470 A 2014-455		R Director	UEL DM. BELL	EN, M Geode	NSA esy Branch
concrete monum Requesting Part Pupose: DR Number: T.N.:	Reference 8795470 A 2014-455		R Director	UEL DM. BELE	EN, M Geode	NSA esy Branch

4. LUN-3129

г

					March 04, 201
		CER	TIEICATION		
a unhana it as an an		UER	THEATION		
This is to certif	ncern: v that according to	the records on f	ile in this office, the reau	ested survey info	ormation is as follows
101-1	,				
		Province Station Name: I	ELA UNION		
		Order	: 4th		
Island: LUZON Municipality: R4					SUNGOL
incluipanty. Dr		PRSS	2 Coordinates		
Latitude: 16° 4	6' 13.75662"	Longitude:	120º 24' 16.12821"	Ellipsoidal H	gt: 37.03000 m.
		WGS	84 Coordinates		
Latitude: 16° 4	6' 7.80013"	Longitude:	120° 24' 20.84154"	Ellipsoidal H	lgt: 72.65800 m.
		PTN	Coordinates		
Northing: 1854	797.26 m.	Easting:	436510.212 m.	Zone: 3	
		UTN	I Coordinates		
Northing: 1,85	5,862.08	Easting:	223,307.10	Zone:	51
d'an da sa		Locat	ion Description		
UN-3129 (BLLM-9	9)				
a a di se angli se angli s	a server as	and warming the	A 1 A 1994 The All States 1994 The All Stat		
The station is locat	ted of National ro	ad about 50 met	ers northeast of the hous	e of Engr. White	ney Valdez.
The station is locat Station mark is the concrete monumer	ted of National ro head of a 3" cond nt protruding about	ad about 50 met crete nail embedo it 20cm, with insc	ers northeast of the hous led and centered on a 30 ription "LUN-3129 (BLLM	se of Engr. Whitr 0cm. x 30cm. x 1 1-9); 2008; DEN	ney Valdez. 100 cm. standard R/LMS I."
The station is locat Station mark is the concrete monumer Requesting Party:	head of National ro head of a 3" cond nt protruding about UP-DREAM	ad about 50 mete crete nail embedo t 20cm. with insc	ers northeast of the hous led and centered on a 30 ription "LUN-3129 (BLLN	se of Engr. Whitr Jom. x 30cm. x 1 4-9); 2008; DEN	ney Valdez. 100 cm. standard R/LMS I."
The station is locat Station mark is the concrete monumer Requesting Party: Pupose: DR Number:	ted of National ro head of a 3" cond nt protruding about UP-DREAM Reference	ad about 50 mete crete nail embedo t 20cm. with insc	ers northeast of the hous led and centered on a 30 ription "LUN-3129 (BLLM	se of Engr. Whit Dom. x 30cm. x 1 A-9); 2008; DEN	ney Valdez. 100 cm. standard R/LMS I."
The station is locat Station mark is the concrete monumer Requesting Party: Pupose: DR Number: T.N.:	ted of National ro head of a 3" cond nt protruding about UP-DREAM Reference 8795470 A 2014-456	ad about 50 mete crete nail embedo ti 20cm. with Insc	ers northeast of the hous led and centered on a 30 ription "LUN-3129 (BLLN	se of Engr. White Dom. x 30cm. x 1 A-9); 2008; DEN	hey Valdez. 100 cm. standard R/LMS I."
The station is locat Station mark is the concrete monumer Requesting Party: Pupose: DR Number: T.N.:	ted of National ro head of a 3" cond nt protruding about UP-DREAM Reference 8795470 A 2014-456	ad about 50 mete crete nail embedo it 20cm. with insc	ers northeast of the hous led and centered on a 30 ription "LUN-3129 (BLLM R	e of Engr. White Jom. x 30cm. x 1 1-9); 2008; DEN UEL DM. BELEI Mannon And C	ney Valdez. 100 cm. standard R/LMS I." N, MNSA
The station is locat Station mark is the concrete monumer Requesting Party: Dupose: DR Number: T.N.:	ted of National ro head of a 3" cond nt protruding about UP-DREAM Reference 8795470 A 2014-456	ad about 50 mete crete nail embedo t 20cm. with insc	ers northeast of the hous ied and centered on a 30 ription "LUN-3129 (BLLM R Director,	e of Engr. White Dom. x 30cm. x 1 1-9); 2008; DEN UEL DM. BELEI Mapping And G	ney Valdez. 100 cm. standard R/LMS I." N, MNSA seodesy Branch
The station is locat Station mark is the concrete monumer Requesting Party: Pupose: DR Number: ".N.:	ted of National ro head of a 3" cond nt protruding about UP-DREAM Reference 8795470 A 2014-456	ad about 50 mete crete nail embedo t 20cm. with insc	ers northeast of the hous led and centered on a 30 ription "LUN-3129 (BLLM R Director,	e of Engr. White Dom. x 30cm. x 1 1-9); 2008; DEN Mapping And G	hey Valdez. 100 cm. standard R/LMS I." N, MNSA seodesy Branch
The station is locat Station mark is the concrete monumer Requesting Party: Pupose: DR Number: T.N.:	ted of National ro head of a 3" cond nt protruding about UP-DREAM Reference 8795470 A 2014-456	ad about 50 mete crete nail embedo it 20cm. with insc	ers northeast of the hous led and centered on a 30 ription "LUN-3129 (BLLM R Director,	ue of Engr. White Dom. x 30cm. x 1 1-9); 2008; DEN UEL DM. BELEI Mapping And G	ney Valdez. 100 cm. standard R/LMS I." N, MNSA seodesy Branch
The station is locat Station mark is the concrete monumer Requesting Party: ² upose: DR Number: T.N.:	ted of National ro head of a 3" cond nt protruding about UP-DREAM Reference 8795470 A 2014-456	ad about 50 mete crete nail embedo it 20cm. with insc	ers northeast of the hous led and centered on a 30 ription "LUN-3129 (BLLM R Director,	uer of Engr. White Dom. x 30cm. x 1 1-9); 2008; DEN UEL DM. BELEI Mapping And G	ney Valdez. 100 cm. standard R/LMS I." N, MNSA seodesy Branch
The station is locat Station mark is the concrete monumer Requesting Party: Pupose: DR Number: T.N.:	ted of National ro head of a 3" cond nt protruding about UP-DREAM Reference 8795470 A 2014-456	ad about 50 mete crete nail embedo t 20cm. with insc	ers northeast of the hous led and centered on a 30 ription "LUN-3129 (BLLM Ri Director,	ue of Engr. White Dom. x 30cm. x 1 14-9); 2008; DEN UEL DM. BELEI Mapping. And G	ney Valdez. 100 cm. standard R/LMS I." N, MNSA seodesy Branch
The station is locat Station mark is the concrete monumer Requesting Party: Pupose: DR Number: T.N.:	ted of National ro head of a 3" cond nt protruding about UP-DREAM Reference 8795470 A 2014-456	ad about 50 mete crete nail embedo t 20cm. with insc	ers northeast of the hous led and centered on a 30 ription "LUN-3129 (BLLM R Director,	ue of Engr. White Dom. x 30cm. x 1 1-9); 2008; DEN UEL DM. BELEI Mapping And G	ney Valdez. 100 cm. standard R/LMS I." N, MNSA Geodesy Branch
The station is locat Station mark is the concrete monumer Requesting Party: ² upose: DR Number: T.N.:	ted of National ro head of a 3" cond nt protruding about UP-DREAM Reference 8795470 A 2014-456	ad about 50 mete crete nail embedo it 20cm. with insc	ers northeast of the hous led and centered on a 30 ription "LUN-3129 (BLLM R Director,	e of Engr. White Dom. x 30cm. x 1 1-9); 2008; DEN UEL DM. BELEI Mapping And G	ney Valdez. 100 cm. standard R/LMS I." N, MNSA seodesy Branch

5. LU-94

ANNEX 3. BASELINE PROCESSING REPORT

From:							
rion.	LUN-176						
Gri	id	Lo	cal				Global
Easting	223129.137 m	Latitude	N16°46'08	8.61931" Latitude			N16°46'08.61931
Northing	1855819.084 m	Longitude	E120°24'10	0.06092"	Longitude		E120°24'10.06092
Elevation	31.168 m	Height	7	70.997 m	Height		70.997 n
To:	LU-94						
Gri	id	Lo	cal				Global
Easting	216672.143 m	Latitude	N16°42'38	8.64674"	Latitude		N16°42'38.64674
Northing	1849445.472 m	Longitude	E120°20'35.05091" Longitude		E120°20'35.05091		
Elevation	9.967 m	Height	4	49.582 m Height		49.582 m	
Vector							
∆Easting	-6456.99	94 m NS Fwd Azimuth			224°37	26" Δ X	4564.890 m
∆Northing	-6373.6	12 m Ellipsoid Dist.			9067.628	3 m ΔY	4806.440 m
∆Elevation	-21.20	01 m ΔHeight			-21.415	ōmΔZ	-6187.390 m
Standard Errors							
Vector errors:							
σ ΔEasting	0.002 m	σ NS fwd Azimuth			0°00'00'' (σΔХ	0.004 m
A Marthing	0.001 m	σ Ellipsoid Dist.			0.002 m	σΔY	0.006 m
o Anorthing							

ANNEX 4. THE SURVEY TEAM

Data Acquisition Component Sub -Team	Designation	Name	Agency / Affiliation
PHIL-LIDAR 1	Program Leader	ENRICO C. PARINGIT, D.ENG	UP-TCAGP
Data Acquisition Component Leader	Data Component Project Leader – I	ENGR. CZAR JAKIRI SARMIENTO	UP-TCAGP
Survey Supervisor	Chief Science Research Specialist (CSRS)	ENGR. CHRISTOPHER CRUZ	UP-TCAGP
	FIELD	D TEAM	
	Senior Science Research Specialist (SSRS)	LOVELY GRACIA ACUNA	UP-TCAGP
LiDAR Operation	Research Associate (RA)	RENAN PUNTO	UP-TCAGP
	RA	FAITH JOY SABLE	UP-TCAGP
Ground Survey, Data Download and Transfer	RA	KENNETH QUISADO	UP-TCAGP
	Airborne Security	SSG. OLIVER SACLOT	PHILIPPINE AIR FORCE (PAF)
LiDAR Operation	Dilot	CAPT. MARK LAWRENCE TANGONAN	ASIAN AEROSPACE CORPORATION (AAC)
		CAPT. NEIL ACHILLES AGAWIN	AAC

ANNEX 5. DATA TRANSFER SHEET FOR BARORO FLOODPLAIN FLIGHTS

	JGHT PLAN SERVER	aal KML	35 NA X:VAirbome_Raw	N/A X:Mirbome_Rawi 153P	44 N/A X:Mithome_Rawl	45 NA X:Mitbome_Raw	29 N/A X:Mithome_Rawk	50 N/A X:Mirbome_Raw	31 N/A X:Mitbome_Rawl	N/A X: Mirbome_Raw	20 N/A X:Mirbome_Raw	45 MA X:Mirbome_Raw	32 N/A X:Mirborne_Raw	50 N/A X:Mithome_Raw	38 N/A X:Withome_Raw	42 N/A X:Mirbome_Raw	N/A X:Mitbome_Raw 179P	34234 N/A X:Nirbome_Raw	N/A X:Valrbome_Raw 185P	N/A X:Mirborne_Raw 187P	N/A X:Vairborne_Raw 189P	N/A X'Airborne_Raw	N/A X:Mitbome_Raw 197P
	DPERATOR LOGS	Act	459B	244B	510B	485B	8698	474B	328B	502B n/a	318B	304B	310B	481B	305B	741B	1KB 38	1KB 42/38/3	1KB n/a	1KB 36	1KB 42	1KB 36	1KB 27
	BASE STATION(S)	BASE STATION(S) Base Info (.bú)	6.5 ^{1KB} 4	1KB 0.51	6.95 148	6.95 TKB	6.55 ^{1KB}	6.55 TKB	6.05 1KB	6.05 1KB	6.64 ^{1KB}	6.64 ^{1KB}	7.08 168	7.08 ^{1KB}	6.74 ^{1KB}	6.74 ^{1KB}	5.86 TKB	5.94 1KB	5.94 1KB	6.62 1KB	6.62 1KB	From Ilocos 1KB	1.44MB 1KB
EET	RANGE DIGITIZER		19.8 N/A	8.02 N/A	26.4 N/A	17.4 N/A	27.9 N/A	15.6 N/A	31.7 N/A	16.7 N/A	8.66 N/A	19.1 N/A	17 N/A	14.5 N/A	29.5 N/A	11.3 N/A	34.5 NIA	22.5GB NIA	11.7GB NIA	24.4GB NIA	19.7GB NIA	10.2GB NIA	8.16GB N/A
Mar 17, 2014	NISSION .		N/A	N/A	B 289KB	B 229KB	148KB	B 186KB	B 416KB	B 208KB	B 145KB	B 224KB	170KB	B 169KB	B 341KB	254KB	361KB	304KB	142KB	302KB	332KB	130KB	131KB
	POS		A/N 8M63	LSMB N/A	20MB 33.1G	25.6G	21MB 4.7GB	52MB 22.3G	16MB 53.2G	43MB 25.6G	70MB 17.5G	33MB 28.6G	06MB 21GB	16MB 20.3G	14MB 43.1G	57MB 30GB	SOMB 39.3GB	D6MB 36.6GB	51MB 16.4GE	12MB 36.3GE	51MB 37.7GE	10MB 16.1GB	12MB 14.5GB
	rocs		12.3MB 22	3.57MB 84	11MB 22	6.62MB 12	11.4MB 22	7.08MB 15	12MB 2	7.12MB 1-	7.42MB 1	7.17MB 1:	9.73MB 2	5.95MB 1	11.8MB 2	8.31MB 1	14MB 26	10.3MB 21	5.86MB 11	11MB 2	8.08MB	4.91MB 1	4.95MB
	AWLAS	KML (swath)	NA	¥	NA	M	NA	NA	NA	NA	NA	¥¥	Y	NA	MA	NA	MA	MA	NA	NA	NA	NA	NA
	~	Output	3.03GB	836MB	2.64G8	1.85GB	2.76GB	1.28GB	3.42GB	1.41GB	831MB	2.05GB	1.72GB	1.52GB	3.14GB	1.18GB	3.54GB	1.5GB	1.18GB	2.34GB	2.06GB	915MB	714MB
	SENSOR		PEGASUS	PEGASUS	PEGASUS	PEGASUS	PEGASUS	PEGASUS	PEGASUS	PEGASUS	PEGASUS	PEGASUS	PEGASUS	PEGASUS	PEGASUS	PEGASUS	PEGASUS	PEGASUS	PEGASUS	PEGASUS	PEGASUS	A PEGASUS	B PEGASUS
	MISSION NAME		1BLK10A056A	1BLK10AS056B	1BLK10C057A	1BLK10B057B	1BLK10GD058A	18LK10DS058B	1BLK10F059A	18LK10E0598	1BLK10H060A	1BLK10ES060B	1BLK10CDS061A	1BLK10DS061B	1BLK10BS062A	1BLK10CS062B	1BLK27B063A	1BLK12AC064A	1BLK10D064B	1BLK12DS065A	1BLK12CS065B	1BLK27ABS067/	1BLK10CGS067
	FLIGHT	ż	4 1161P	1153P	4 1155P	4 1157P	4 1159P	1161P	14 1163P	14 1165P	1167P	14 1169P	1171P	1173P	14 1175P	14 1177P	1179P	1183P	1185P	1187P	1189P	1195P	1197P
	DATE		2/25/201	2/25/201	2/26/201	2/26/201	102/22/2	2/27/201	2/28/201	2/28/201	3/1/201	3/1/201	3/2/201	3/2/201	3/3/20	3/3/20	Mar 4, 2014	Var 5, 2014	Mar 5, 2014	Mar 6, 2014	Mar 6, 2014	Mar 8, 2014	Mar 8, 2014

1. Flight Log for 1151P Mission

Flight Log No.: 1	310C :101P		.e:			, jê	
	o Aliciali I de Unito		18 Total Flight Tim 3 + 4			idar Operator <u>tee of the tran</u> Binature over Printed Na	RFAN
	S AIRCRAFT LYPE: CESTINAL 200H	(Airport, City/Province): ป คพออ	17 Landing:			and by Generation	C
:	4 IVPE: VER	12 Airport of Arrival	16 Take off:			Pilot-in-Commi 74. C	
	9 Route: L. Wisson	Airport, City/Province):	15 Total Engine Time:			on Flight Certified by Control Cont 20. Cont	
		Airport of Departure (Off: Jaras 1315 B	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		Acquisiti Acquisiti Stendur (PAF Res	
ta Acquisition Flight Log	W. Thurston & Co-Pilot	** ## 6. 25, 2014 12	ne On: og 11. 0 14 Engine	arks: successpure pri	blems and Solutions:	Acquisition Flight Approved by day	

gozz						
Flight 6 Aircraft Identification:		18 Total Flight Time: 1 + 45			Jdar Operator	REAM
、 5 Aircraft Type: CesnnaT206H	Airport, Gty/Province):	17 Landing:			nd Diffed Name	
ண்டை 4 Type: VFR	12 Airport of Arrival (16 Take off:			Pilgetir Confima M.C. Topolo Signature over A	ż
3 Mission Name: I Budy	9 Route: LA MILTON	15 Total Engine Time:			ion Flight Certified by	
2 ALTM Model: PE&	12 Airport of Departure (477 C++1		Acquisit	
A Data Acquisition Flight Log iDAR Operator: 후. 오저대도	Date: N. Tarver Nav. 8 Co-Pl	Engine On: 4411 / 14 Eng Weather	Remarks: Success Fur-	I Problems and Solutions:	Acquisition Flight Approved by 4 A A Aut A Signature over Printed Name (End User Representative)	
	A Data Acquisition Flight Log . الله المعلم الم A Data Acquisition Flight Log No.: الله المعلم ال	A Data Acquisition Flight Log Flight Log	A bata Acquisition Flight Log Plight Lig Plight Lig	Flight Log No.: 1K Idea Acquisition Flight Log DAR Operator: £. SAGE 2 ALTM Model: PE4 3 Mission Name: 1 BuctoAcd/L8 4 Type: VFR S Aircraft Identification: 19-22 JOR Operator: £. SAGE 2 ALTM Model: PE4 3 Mission Name: 1 BuctoAcd/L8 4 Type: VFR 5 Aircraft Identification: 9-22 Job: A. Towenowa 8 Co-Pilot: A: Preserva 9 Route: L4 L4 12 Airport of Trivial (Triport, GTy/Province): 12 Airport of Trivial (Triport, GTy/Province): 12 Airport of Trivial (Triport, GTy/Province): 13 Total Elight Time: 14 Engine Off: 14 Engine Off: 17 Handing: L4 14 Engine: 11 + 43 Remarks: Successful 14 Engine Off: 15 Total Engine Time: 16 Take off: 17 Landing: L4 14 + 43 Mainter Successful 14 + 43 Mainter Aurento Mainter Mainter Successful 14 + 43 Mainter Mainter Mainter Mainter	I Data Acquistion Flight Log I Data Acquistion Flight Log I Data Plant Log <li< td=""><td>Alteration flight og Iden Acquisition flight og Iden Acquisition flight og Iden Acquisition flight og Alteration Iden Acquisition flight og Iden Acquisition flight og Iden Acquisition flight og Bits: Iden Acquisition Iden Acquisition Iden Acquisition Iden Acquisition Bits: Iden Acquisition Iden Acquisition Iden Acquisition Iden Acquisition Bits: Iden Acquisition Iden Acquisition Iden Acquisition Iden Acquisition Bits: Iden Acquisition Iden Acquisition Iden Acquisition Iden Acquisition Bits: Iden Acquisition Iden Acquisition Iden Acquisition Iden Acquisition Bits: Iden Acquisition Iden Acquisition Iden Acquisition Iden Acquisition Bits: Iden Acquisition Iden Acquisition Iden Acquisition Iden Acquisition Bits: Iden Acquisition Iden Acquisition Iden Acquisition Iden Acquisition Accuisition Iden Acquisition Iden Acquisition Iden Acquisition Iden Acquisition Accuisition Iden Acquisition Iden Acquisition Iden Acquisition Iden Acquisition Acquisition Iden Acquisition Iden Acquisition Iden Acquisition Iden Acquisition <t< td=""></t<></td></li<>	Alteration flight og Iden Acquisition flight og Iden Acquisition flight og Iden Acquisition flight og Alteration Iden Acquisition flight og Iden Acquisition flight og Iden Acquisition flight og Bits: Iden Acquisition Iden Acquisition Iden Acquisition Iden Acquisition Bits: Iden Acquisition Iden Acquisition Iden Acquisition Iden Acquisition Bits: Iden Acquisition Iden Acquisition Iden Acquisition Iden Acquisition Bits: Iden Acquisition Iden Acquisition Iden Acquisition Iden Acquisition Bits: Iden Acquisition Iden Acquisition Iden Acquisition Iden Acquisition Bits: Iden Acquisition Iden Acquisition Iden Acquisition Iden Acquisition Bits: Iden Acquisition Iden Acquisition Iden Acquisition Iden Acquisition Bits: Iden Acquisition Iden Acquisition Iden Acquisition Iden Acquisition Accuisition Iden Acquisition Iden Acquisition Iden Acquisition Iden Acquisition Accuisition Iden Acquisition Iden Acquisition Iden Acquisition Iden Acquisition Acquisition Iden Acquisition Iden Acquisition Iden Acquisition Iden Acquisition <t< td=""></t<>

Log No.: 1	12206	1											(
Flight	6 Aircraft Identification:		2	18 Total Flight Time: 2-+ 1-9							Lidar Operator	Signature over Printed Name	\rightarrow	REAM
	aft Type: CesnnaT206H		Gity/Province):	ding:								Э		
	I Type: VFR 5 Aircr		port of Arrival (Airport, ር ስሜ ምሮንሌላ	ie off: 17 Lan							Pilot-in-Commapd	M. L. The A		
	1BULLINBOTA	Solves	лсе): 12 Аіл J	ime: 16 Tak	-			- 5 4 -				1		
	3 Mission Name:	9 Route: しみ	(Airport, City/Provir wee, Lot undien	15 Total Engine T	-						sition Flight Certified by	Lend Control Control Control Control Control Control Control Name Representative)		
	2 ALTM Model: PEG	-Pilot: N. Arawin	12 Airport of Departure	ngine Off: 1 602		ור ברופאנג					by Acqui	Signal There		
a Acquisition Flight Log	Operator: #. SMBLE	M. Thrumanna 8 CO	+ + + + + - + - + - + + + + + + + + + +	ne On: 14 E	ther	arks: SULLESSEN			blems and Solutions:		Acquisition Flight Approved t	432		

it Log No.:	1: 9022						
Fligh	6 Aircraft Identification		18 Total Flight Time: 3 + P3			idar Operator Add April 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	REAM
	5 Aircraft Type: CesnnaT206H	(Airport, City/Province):	17 Landing:			Printed Name	
	COLOCIA 4 Type: VFR	12 Airport of Arrival (16 Take off:			Pilotin-Confina M. I. Mezz	ċ
	3 Mission Name: 1 Bukto	Airport, City/Province):	15 Total Engine Time: ま さる ら			ion Flight Certified by	presentative)
	ALTM Model: Perc	Airport of Departure (A	e Off: 12.47	Filterit		Acquisiti	(PAF Reg
a Acquisition Flight Log	Coperator: P. , 1 wate 2 M. Tanban Marine 10 Co. Dilo	1 Mars. 2, 2014 I	ne On: 0512- 14 Engin	arks: Juccosspruc	blems and Solutions:	Acquisition Flight Approved by U-TA-J-C-LOVEL T LOVEL T ACANAR Signature over Printed Name	(End User Representative)

5. Flight Log for 1171P Mission

Tight Loss Bight constrained Bight constrained Bight constrained Bight constrained 	Flight Log K. rums 2 ALTM 4 Contribut 8 Co-Pilot: 1					
Activity and Social Califier 	New NHU 8 CO-Pilot: 1	Model: PEE 3N	Aission Name: 18.400850	X2A 4 TVDe: VFR	S Aircraft Tyne: Cesnna1206H	Flight Log 6 Aircraft Identification:
e. s. parve 24 Inport of Automotion (and provid Charlen Willipmende) 24 Inport of Automotion (and provid Charlen Willipmende) 24 Inport of Automotion (and provid Charlen Willipmende) s 34 Engine Off. 35 Total Engine Off. 35 Total Engine Off. 37 Tage s 44 Engine Off. 35 Total Engine Off. 37 Tage 35 Total Engine Off. 37 Tage structure 5.1 55 Total Engine Off. 15 Total Engine Off. 17 Landing: 17 Landing: 17 Landing: structure 5.1 15 Total Engine Off. 15 Total Engine Off. 15 Total Engine Off. 15 Total Engine structure 5.1 10.1 10.1 10.1 10.1 10.1 structure Automotion Matchen Matchen Matchen Matchen dividions: Automotion Matchen Matchen Matchen Matchen Automotion Matchen Matchen Matchen Matchen Matchen Automotion Matchen Matchen Matchen Matchen Matchen		2. PONGWINES 9R	toute:			
3 Leferre Off. 12 Total Engine Off. 12 Landing: 13 Total Engine Off. 13 Total Engine Off. 3 + 2C 3 + 2C 13 Total Engine Off. 13 Total Engine Off. 13 Total Engine Off. 13 Total Engine Off. 5 + 2C 5 + 2C 10 Total Engine Off. 10 Local Engine Time: 13 Total Engine Off. 13 Total Engine Off. 13 Total Engine Off. 5 + 2C 10 Local Engine Time: 10 Local Engine Time: 10 Local Engine Time: 13 Total Engine Control 10 Total Engine Control 10 Local Engine Time: 11 Local Engine: 10 Local Engine Time: 10 Local Engine Time: 10 Local Engine Time: 10 Local Engine Time: 12 Local Engine Time: 10 Local Engine Time: 10 Local Engine Time: 10 Local Engine Time: 10 Local Engine Time: 13 Local Engine Time: 10 Local Engine Time: 10 Local Engine Time: 10 Local Engine Time: 10 Local Engine Time: 13 Local Engine Time: 10 Local Engine Time: 10 Local Engine Time: 10 Local Engine Time: 10 Local Engine Time: 13 Local Engine Time: 10 Local Engine Time: 10 Local Engine Time: 10 Local Engine Time: 10 Local Engine Time:	e. 3, 2614 12 Airpo	ort of Departure (Airp	oort, Gty/Province):	12 Airport of Arrival (A	Airport, City/Province):	
Subclearer Furthern Subclearer Furthern Iduitons: Iduitons: Iduitons:	14 Engine Off:	15 15	Total Engine Time: 3 ナ 3 C	16 Take off:	17 Landing:	18 Total Flight Time: ま ナ び
Success the Least and Lines: And Approved by Relation Fight Cartined by Relation Fight Cartined by Relation Fight Cartined Name And Approved by Relation Fight Cartined Name And Approved by Relation Fight Cartined Name Support Cartined Name Suppor						
Flight Aproved by Acquisition Flight Certified by Flior in command A - Long Acquisition Flight Certified by Plot-in command A - Long Arguistion Flight Certified by Plot-in command A - Long Arguistion Flight Certified by Plot-in command A - Long Arguistion Flight Certified by Plot-in command A - Long Arguistion Command Arguistion Certified by Ver Finted Name Signature over Frinted Name Signature over Frinted Name Signature over Frinted Name Signature over Frinted Name Signature over Frinted Name OR F Representative) Disaster Risk and Exposure Assessment for Mitigation Mitigation	solutions:					
Flight Approved by Aquisition Flight Certified by Pilot-in-Command Lidar Operator A A A A A A A A A A A A D A A A D A A A D A A A D A A A D A A A D B A A D B B A Disaster Risk and Exposure Assessment for Mitgation A						
Disaster Risk and Exposure Assessment for Mitigation	an Filipht Approved by	Acquisition F And Active Signature ov PAF Represe	Flight Certified by	Pilot-in-Comman W. L - 175 Signature over P	A	Lidar Operator Lidar Operator Signature over Printed Name
				Disa	Let Risk and Exposure Asse	D R E A M

IDAR Operator: ル. Puw To ZALTM Model: PEEr 3 Mission Name: Ilot: M. Thru envirol8 Co-Pilot: B. Powdew intega Route: Date: Mark - S, zeoty 12 Airport of Departure (Airport, City/Province): 12 Air Engine On: 14 Engine Off: C. Micow Engine On: 2 + 59 Weather Micciow Cucc55 Full	4 Type: VFR 5 Aircraft Type: Cesnna T206	
ilot: Λ την επληλ 8 Co-Pilot: [3. Βαλωωλος Route: Date: Μ. Δ. Δ Δ, - 2ω14 12 Airport of Departure (Airport, City/Province): 12 Air Engine On: 14 Engine Off: 15 Total Engine Time: 16 Ta Weather 2 + 5% Remarks: MISC 10. Δυρού Δουλομού Δουλομού Δια το		1 6 Aircraft Identification: PP - C902
Mark S. 2014 Lengine Off: Lengine Time: 16 Tal Engine On: 14 Engine Off: 15 Total Engine Time: 16 Tal Weather 2 + 59 2 + 59 IRemarks: MISCIPN Success Full	irport of Arrival (Airport, City/Province):	
Engine On: 14 Engine OII: 14 Engine OII: 2 + 59 2 - 20 - 2 + 59 - 20 - 2 + 59 - 20 - 2 + 59 - 20 - 20 - 20 - 20 - 20 - 20 - 20 - 2	the off. 17 Landing:	18 Total Flight Time:
Nemarks: MISCION SuccESTAL		
DRemarks: MISSION CUCCESSFUL		
21 Problems and Solutions:		
Acquisition Flight Approved by Acquisition Flight Certified by Testine al Ivie Signature over Printed Name (End User Representative) (PAF Representative)	Pilot-in-Coparfand Mi L. Jan-Kaushw Signature over Printed Name	Lidar Operator

ANNEX 7. FLIGHT STATUS REPORT

La Union (February 25 to March 8, 2014)					
FLIGHT NO	AREA	MISSION	OPERATOR	DATE FLOWN	REMARKS
1151P	BLOCK 10A	1BLK10A056A	R. PUNTO	February 25, 2014	Finish the survey with voids due to eye safety, laser sets off; renamed from 1149P
1153P	BLOCK 10A	1BLK10AS056B	F. SABLE	February 25, 2014	Survey voids of Block10A and 1 line Blk10B; renamed from 1151P
1155P	BLOCK 10C	1BLK10C057A	R. PUNTO	February 26, 2014	Survey Block 10C with data voids due to eye safety, laser sets off; renamed from 1153P
1157P	BLOCK 10B	1BLK10B057B	F. SABLE	PEGASUS	February 26, 2014
1171P	BLOCK 10D & BLOCK 10C	1BLK10CDS061A	R. PUNTO	March 2, 2014	Supplementary flight to cover voids for Block10D & Block10C; renamed from 1169P
1175P	BLOCK 10B	1BLK10BS062A	R. PUNTO	March 3, 2014	Supplementary flight to complete Block 10B; renamed from 1173P
1177P	BLOCK 10C	1BLK10CS062B	F. SABLE	March 3, 2014	Supplementary flight to cover voids in Block 10C; renamed from 1175P
1197P	BLOCK 10G,10C	1BLK10GCS067B	R.PUNTO	March 8, 2014	Mission Complete

LAS BOUNDARIES PER FLIGHT

Flight No. :	1151P
Area:	BLK 10A
Mission Name:	1BLK10A056A
Parameters:	Altitude: 1200m; Scan Frequency: 30Hz;
Scan Angle:	25deg; Overlap: 30%

Flight No. :1153PArea:BLK 10AMission Name:1BLK10BAS056BParameters:Altitude: 1200m; Scan Frequency: 30Hz;Scan Angle:25deg; Overlap: 30%

Flight No. :	1155P
Area:	BLK 10C
Mission Name:	1BLK10C057A
Parameters:	Altitude: 1200 m; Scan Frequency: 30Hz;
Scan Angle:	25deg; Overlap: 30%

LAS

Flight No. :	1157P
Area:	BLK 10B
Mission Name:	1BLK10B057B
Parameters:	Altitude: 1000m; Scan Frequency: 30Hz;
Scan Angle:	25 degrees; Overlap: 30%

Flight No. :	1171P
Area:	BLK 10C and BLK 10D
Mission Name:	1BLK10CDS061A
Parameters:	Altitude: 1500m; Scan Frequency: 30Hz;
Scan Angle:	25 deg; Overlap: 30%

Flight No. :	1175P
Area:	BLK 10B
Mission Name:	1BLK10BS062A
Parameters:	Altitude: 1200m; Scan Frequency: 30Hz;
Scan Angle:	25 deg; Overlap: 30%

Flight No. :	1177P
Area:	BLK 10C
Mission Name:	1BLK10CS062B
Parameters:	Altitude: 1800m; Scan Frequency: 30Hz;
Scan Angle:	25 deg; Overlap: 30%

Flight No. :1197PArea:BLK 10G and 10CMission Name:1BLK10GCS067BParameters:Altitude: 1500m; Scan Frequency: 30Hz;Scan Angle:25 deg; Overlap: 30%

ANNEX 8. MISSION SUMMARY REPORT

Flight Area	La Union
Mission Name	Blk10A
Inclusive Flights	1151P
Range data size	19.8 GB
POS	229 MB
Image	n/a
Transfer date	February 25, 2014
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	No
Processing Mode (<=1)	No
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	3.6
RMSE for East Position (<4.0 cm)	2.6
RMSE for Down Position (<8.0 cm)	8.3
Boresight correction stdev (<0.001deg)	0.000566
IMU attitude correction stdev (<0.001deg)	0.004107
GPS position stdev (<0.01m)	0.0104
Minimum % overlap (>25)	64.34%
Ave point cloud density per sq.m. (>2.0)	2.59
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	363
Maximum Height	872.34
Minimum Height	40.04
Classification (# of points)	
Ground	251,566,818
Low vegetation	258,692,292
Medium vegetation	271,117,698
High vegetation	270,170,604
Building	19,016,823
Ŭ	
Orthophoto	Yes
Processed by	Engr. Carlyn Ann Ibañez, Ma. Celina Rosete, Engr. Roa Shalemar Redo

Figure 1.1.1 Solution Status

Figure 1.1.2 Smoothed Performance Metric Parameter

Figure 1.1.3 Best Estimated Trajectory

Figure 1.1.4 Coverage of LIDAR data

Figure 1.1.5 Image of Data Overlap

Figure 1.1.6 Density map of merged LIDAR data

Figure 1.1.7 Elevation difference between flight lines

Flight Area	La Union
Mission Name	Blk10B
Inclusive Flights	1153P, 1157P, 1175P
Range data size	54.92 GB
POS	114MB
Image	68.7 GB
Transfer date	March 03, 2014
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	No
Processing Mode (<=1)	Yes
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	1.66
RMSE for East Position (<4.0 cm)	1.65
RMSE for Down Position (<8.0 cm)	3.58
Boresight correction stdev (<0.001deg)	0.00027
IMU attitude correction stdev (<0.001deg)	0.0028
GPS position stdev (<0.01m)	0.0065
Minimum % overlap (>25)	61.20%
Ave point cloud density per sq.m. (>2.0)	4.15
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	455
Maximum Height	967.51
Minimum Height	42.13
Classification (# of points)	
Ground	384,680,895
Low vegetation	361,413,391
Medium vegetation	639,589,607
High vegetation	674,742,918
Building	37,030,506
Orthophoto	Yes
Processed by:	Engr. Jennifer Saguran, Engr. Charmaine Cruz, Jovy Narisma

Figure 1.2.1 Solution Status

Figure 1.2.2 Smoothed Performance Metric Parameter

Figure 1.2.3 Best Estimated Trajectory

Figure 1.2.4 Coverage of LIDAR data

Figure 1.2.5 Image of Data Overlap

Figure 1.2.6 Density map of merged LIDAR data

Figure 1.2.7 Elevation difference between flight lines

Flight Area	La Union
Mission Name	Blk10C
Inclusive Flights	1155P, 1171P, 1177P, 1197P
Range data size	62.86 GB
POS	695 MB
Image	98.6 GB
Transfer date	March 08, 2014
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	No
Processing Mode (<=1)	No
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	3.62
RMSE for East Position (<4.0 cm)	4.3
RMSE for Down Position (<8.0 cm)	6.55
Boresight correction stdev (<0.001deg)	0.000398
IMU attitude correction stdev (<0.001deg)	0.017218
GPS position stdev (<0.01m)	0.0267
Minimum % overlap (>25)	35.05%

Ave point cloud density per sq.m. (>2.0)	3.75
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	505
Maximum Height	1038.87
Minimum Height	45.5
Classification (# of points)	
Ground	270,659,389
Low vegetation	232,081,137
Medium vegetation	638,506,120
High vegetation	737,644,888
Building	23,046,935
Orthophoto	Yes
Processed by	Engr. Kenneth Solidum, Engr. Melanie Hingpit, Engr. Jeffrey Delica

Figure 1.3.1 Solution Status

Figure 1.3.2 Smoothed Performance Metric Parameters

Figure 1.3.3 Best Estimated Trajectory

Figure 1.3.4 Coverage of LIDAR data

Figure 1.3.5 Image of Data Overlap

Figure 1.3.6 Density map of merged LIDAR data

Figure 1.3.7 Elevation difference between flight lines

Flight Area	La Union
Mission Name	Blk10C_additional
Inclusive Flights	1177P
Range data size	11.3 GB
POS	157 MB
Image	30 GB
Transfer date	March 08, 2014
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	No
Baseline Length (<30km)	No
Processing Mode (<=1)	Yes
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	1.24
RMSE for East Position (<4.0 cm)	1.48
RMSE for Down Position (<8.0 cm)	2.74
Boresight correction stdev (<0.001deg)	0.000398
IMU attitude correction stdev (<0.001deg)	0.022977
GPS position stdev (<0.01m)	0.007
Minimum % overlap (>25)	52.15%
Ave point cloud density per sq.m. (>2.0)	2.44
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	391
Maximum Height	1,038.57
Minimum Height	42.19
Classification (# of points)	
Ground	208,543,222
Low vegetation	136,381,901
Medium vegetation	263,283,963
High vegetation	387,854,740
Building	14,766,006
Orthophoto	
Processed by	Engr. Kenneth Solidum, Engr. Edgardo Gubatanga, Jr., Engr. Ma. Ailyn Olanda

Figure 1.4.1 Solution Status

Figure 1.4.2 Smoothed Performance Metric Parameter

Figure 1.4.3 Best Estimated Trajectory

Figure 1.4.4 Coverage of LIDAR data

Figure 1.4.5 Image of Data Overlap

Figure 1.4.6 Density map of merged LIDAR data

Figure 1.4.7 Elevation difference between flight lines

	SCS C	urve Numbe	r Loss	Clark (Hydrograph	Jnit Transform		Rece	ssion Baseflov	2	
Basin Number	Initial Abstraction (mm)	Curve Number	Impervious (%)	Time of Concentration (HR)	Storage Coefficient (HR)	Initial Type	Initial Discharge (cms)	Recession Constant	Threshold Type	Ratio to Peak
W1400	145.2105	35	0	0.175416	0.178925	Discharge	0.21901	0.8	Ratio to Peak	0.2
W1410	189.45	35	0	0.468216	0.47758	Discharge	0.75077	0.8	Ratio to Peak	0.2
W1420	131.145	35	0	0.120424	0.12283	Discharge	0.21641	0.8	Ratio to Peak	0.2
W1430	159.675	35	0	0.249248	0.25423	Discharge	0.70211	0.8	Ratio to Peak	0.2
W1440	149.7435	35	0	0.185864	0.18958	Discharge	0.40411	0.8	Ratio to Peak	0.2
W1460	181.53	35	0	0.255368	0.050525	Discharge	0.60937	0.8	Ratio to Peak	0.2
W1470	121.0365	35	0	0.128528	0.26048	Discharge	0.14073	0.8	Ratio to Peak	0.2
W1480	60.7575	37.53041	0	0.0464224	0.131095	Discharge	0.036043	0.8	Ratio to Peak	0.2
W1490	174.975	35	0	0.29668	0.0473505	Discharge	0.92712	0.8	Ratio to Peak	0.2
W1500	122.616	35	0	0.193816	0.302615	Discharge	0.27353	0.8	Ratio to Peak	0.2
W1510	128.475	35	0	0.229792	0.197695	Discharge	0.4682	0.8	Ratio to Peak	0.2
W1520	203.34	35	0	0.25612	0.23439	Discharge	0.49437	0.8	Ratio to Peak	0.2
W1530	62.7585	37.23341	0	0.511952	0.26124	Discharge	0.98201	0.8	Ratio to Peak	0.2
W1540	206.37	35	0	0.0535328	0.5222	Discharge	0.007471	0.8	Ratio to Peak	0.2
W1550	196.05	35	0	0.172144	0.054605	Discharge	0.24253	0.8	Ratio to Peak	0.2
W1560	206.37	35	0	0.159752	0.175585	Discharge	0.18913	0.8	Ratio to Peak	0.2
W1570	205.425	35	0	0.137104	0.16295	Discharge	0.19846	0.8	Ratio to Peak	0.2
W1580	199.5	35	0	0.119808	0.13985	Discharge	0.096873	0.8	Ratio to Peak	0.2
W1590	206.37	35	0	0.103832	0.122205	Discharge	0.074213	0.8	Ratio to Peak	0.2
W1600	181.695	35	0	0.158272	0.105905	Discharge	0.28178	0.8	Ratio to Peak	0.2
W1610	55.818	38.28281	0	0.141288	0.16144	Discharge	0.30624	0.8	Ratio to Peak	0.2
W1620	36.8295	41.48051	0	0.09168	0.144115	Discharge	0.14414	0.8	Ratio to Peak	0.2
W1640	20.4945	44.55	0	0.091504	0.09351	Discharge	0.062584	0.8	Ratio to Peak	0.2

ANNEX 9. Amburayan Model Basin Parameters

: 	scs c	urve Numbe	r Loss	Clark (Hydrograph	Unit Transform		Rece	ssion Baseflov	M	
Number	Initial Abstraction (mm)	Curve Number	Impervious (%)	Time of Concentration (HR)	Storage Coefficient (HR)	Initial Type	Initial Discharge (cms)	Recession Constant	Threshold Type	Ratio to Peak
W1650	31.1805	42.53783	0	0.114464	0.3673	Discharge	0.19144	0.8	Ratio to Peak	0.2
W1660	44.3835	40.14648	0	0.143184	0.093335	Discharge	0.17988	0.8	Ratio to Peak	0.2
W1670	70.224	36.16767	0	0.12328	0.116755	Discharge	0.24725	0.8	Ratio to Peak	0.2
W1680	190.11	35	0	0.136616	0.14605	Discharge	0.27399	0.8	Ratio to Peak	0.2
W1690	157.32	35	0	0.154976	0.125745	Discharge	0.3302	0.8	Ratio to Peak	0.2
W1700	195.645	35	0	0.143088	0.13935	Discharge	0.16644	0.8	Ratio to Peak	0.2
W1710	163.68	35	0	0.139576	0.15807	Discharge	0.37248	0.8	Ratio to Peak	0.2
W1720	196.185	35	0	0.144176	0.14595	Discharge	0.22329	0.8	Ratio to Peak	0.2
W1730	192.42	35	0	0.157392	0.14237	Discharge	0.18774	0.8	Ratio to Peak	0.2
W1740	159.96	35	0	0.11984	0.147065	Discharge	0.082986	0.8	Ratio to Peak	0.2
W1750	77.721	35.15639	0	0.14224	0.160535	Discharge	0.18396	0.8	Ratio to Peak	0.2
W1760	76.635	35.29944	0	0.266896	0.122235	Discharge	0.65001	0.8	Ratio to Peak	0.2
W1780	178.59	35	0	0.158832	0.14509	Discharge	0.25949	0.8	Ratio to Peak	0.2
W1790	195.795	35	0	0.10696	0.272235	Discharge	0.17533	0.8	Ratio to Peak	0.2
W1800	203.025	35	0	0.21152	0.251555	Discharge	0.29727	0.8	Ratio to Peak	0.2
W1810	167.94	35	0	0.145544	0.162005	Discharge	0.27463	0.8	Ratio to Peak	0.2
W1820	180.21	35	0	0.154136	0.1091	Discharge	0.080037	0.8	Ratio to Peak	0.2
W1830	200.235	35	0	0.098584	0.21575	Discharge	0.062172	0.8	Ratio to Peak	0.2
W1840	185.52	35	0	0.084936	0.148455	Discharge	0.081862	0.8	Ratio to Peak	0.2
W1850	157.41	35	0	0.101744	0.157215	Discharge	0.1649	0.8	Ratio to Peak	0.2
W1860	163.905	35	0	0.359576	0.100555	Discharge	1.1879	0.8	Ratio to Peak	0.2
W1870	183.96	35	0	0.24172	0.086635	Discharge	0.41651	0.8	Ratio to Peak	0.2
W1880	138.7305	35	0	0.176064	0.10378	Discharge	0.63299	0.8	Ratio to Peak	0.2
W1890	200.01	35	0	0.278984	0.36677	Discharge	0.26768	0.8	Ratio to Peak	0.2
W1900	1.9242	44.55	0	0.01667	0.24655	Discharge	0.000708	0.8	Ratio to Peak	0.2

SCS Curve Nun	q	er Loss	Clark I Hydrograph	Unit Transform		Rece	ssion Baseflo	M	
al Curve Impervious Con tion Number (%) Con	Impervious Con (%)	Con	Time of Icentration (HR)	Storage Coefficient (HR)	Initial Type	Initial Discharge (cms)	Recession Constant	Threshold Type	Ratio to Peak
35 0 0.617	0 0.617	0.617	744	0.179585	Discharge	0.81924	0.8	Ratio to Peak	0.2
35 0 0.2513	0 0.2513	0.2513	84	0.28456	Discharge	0.29119	0.8	Ratio to Peak	0.2
35 0 0.2070	0.2070	0.2070	56	0.01667	Discharge	0.16352	0.8	Ratio to Peak	0.2
35 0.4226	0.4226	0.4226	56	0.6301	Discharge	0.90777	0.8	Ratio to Peak	0.2
35 0 0.1232	0 0.1232	0.1232	16	0.256415	Discharge	0.20145	0.8	Ratio to Peak	0.2
35.68851 0 0.1015	0 0.1015	0.1015	528	0.211195	Discharge	0.37756	0.8	Ratio to Peak	0.2
35 0 0.133	0 0.133	0.1333	312	0.43111	Discharge	0.15457	0.8	Ratio to Peak	0.2
38.33181 0 0.0421	0.0421	0.0421	.2	0.12568	Discharge	0.061558	0.8	Ratio to Peak	0.2
35 0 0.0885	0.0885	0.0885	12	0.103555	Discharge	0.0738	0.8	Ratio to Peak	0.2
5 35 0 0.0907	060.0	0.0907	'6	0.135975	Discharge	0.11854	0.8	Ratio to Peak	0.2
35 0 0.2099	0.2099	0.2099	04	0.042962	Discharge	0.34107	0.8	Ratio to Peak	0.2
35 0 0.1480	0.1480	0.1480	J 8	0.155795	Discharge	0.24315	0.8	Ratio to Peak	0.2
35 0 0.1640	0.1640	0.1640	72	0.09028	Discharge	0.27658	0.8	Ratio to Peak	0.2
35 0 0.1962	0 0.1962	0.1962	96	0.09257	Discharge	0.23516	0.8	Ratio to Peak	0.2
35 0 0.1833	0 0.1833	0.1833	2	0.214105	Discharge	0.21916	0.8	Ratio to Peak	0.2
35 0 0.1201	0 0.1201	0.1201	28	0.15097	Discharge	0.077848	0.8	Ratio to Peak	0.2
5 35 0 0.0878	0 0.0878	0.0878	24	0.16735	Discharge	0.054899	0.8	Ratio to Peak	0.2
35 0 0.2105	0 0.2105	0.2105	68	0.20022	Discharge	0.25917	0.8	Ratio to Peak	0.2
35 0 0.1515	0 0.1515	0.1515	36	0.186985	Discharge	0.25105	0.8	Ratio to Peak	0.2
35 0 0.1572	0 0.1572	0.1572	18	0.12253	Discharge	0.25574	0.8	Ratio to Peak	0.2
35 0 0.1307	0.1307	0.1307	36	0.08958	Discharge	0.29562	0.8	Ratio to Peak	0.2
35 0 0.1215	0 0.1215	0.1215	44	0.214785	Discharge	0.22031	0.8	Ratio to Peak	0.2
35 0 0.1663	0 0.1663	0.1663	52	0.15457	Discharge	0.24289	0.8	Ratio to Peak	0.2
35 0 0.1637	0 0.1637	0.1637	04	0.16039	Discharge	0.24433	0.8	Ratio to Peak	0.2
5 35 0 0.075	0 0.075	0.0753	2816	0.133355	Discharge	0.039807	0.8	Ratio to Peak	0.2

	scs c	urve Numbe	r Loss	Clark L Hydrograph	Jnit Transform		Rece	ssion Baseflov	N	
Basin Number	Initial Abstraction (mm)	Curve Number	Impervious (%)	Time of Concentration (HR)	Storage Coefficient (HR)	Initial Type	Initial Discharge (cms)	Recession Constant	Threshold Type	Ratio to Peak
W2170	121.0575	35	0	0.182464	0.123975	Discharge	0.39586	0.8	Ratio to Peak	0.2
W2180	110.0895	35	0	0.122688	0.16968	Discharge	0.193	0.8	Ratio to Peak	0.2
W2190	206.37	35	0	0.186048	0.16698	Discharge	0.19729	0.8	Ratio to Peak	0.2
W2200	206.37	35	0	0.177288	0.076785	Discharge	0.17251	0.8	Ratio to Peak	0.2
W2210	194.175	35	0	0.190576	0.186115	Discharge	0.18432	0.8	Ratio to Peak	0.2
W2220	198.915	35	0	0.161104	0.125145	Discharge	0.25119	0.8	Ratio to Peak	0.2
W2230	115.5585	35	0	0.16932	0.18977	Discharge	0.38234	0.8	Ratio to Peak	0.2
W2240	134.2935	35	0	0.185416	0.18083	Discharge	0.38338	0.8	Ratio to Peak	0.2
W2250	193.86	35	0	0.2206	0.19439	Discharge	0.15404	0.8	Ratio to Peak	0.2
W2260	157.545	35	0	0.168936	0.164325	Discharge	0.36663	0.8	Ratio to Peak	0.2
W2270	195.225	35	0	0.20984	0.17271	Discharge	0.4963	0.8	Ratio to Peak	0.2
W2280	128.3865	35	0	0.105488	0.189125	Discharge	0.1036	0.8	Ratio to Peak	0.2
W2290	199.26	35	0	0.199928	0.225015	Discharge	0.39382	0.8	Ratio to Peak	0.2
W2300	121.893	35	0	0.0580928	0.172315	Discharge	0.028529	0.8	Ratio to Peak	0.2
W2310	121.7955	35	0	0.17256	0.21404	Discharge	0.45615	0.8	Ratio to Peak	0.2
W2320	187.2	35	0	0.258016	0.1076	Discharge	0.61798	0.8	Ratio to Peak	0.2
W2330	175.395	35	0	0.187488	0.203925	Discharge	0.3514	0.8	Ratio to Peak	0.2
W2340	161.265	35	0	0.229952	0.059255	Discharge	0.22788	0.8	Ratio to Peak	0.2
W2350	125.3625	35	0	0.0547856	0.17601	Discharge	0.020945	0.8	Ratio to Peak	0.2
W2360	137.928	35	0	0.107608	0.263175	Discharge	0.17431	0.8	Ratio to Peak	0.2
W2370	206.265	35	0	0.128856	0.19124	Discharge	0.14032	0.8	Ratio to Peak	0.2
W2380	161.4	35	0	0.265608	0.23455	Discharge	0.81297	0.8	Ratio to Peak	0.2
W2390	168.69	35	0	0.255448	0.05588	Discharge	0.6341	0.8	Ratio to Peak	0.2
W2400	105.6105	35	0	0.213272	0.109765	Discharge	0.4442	0.8	Ratio to Peak	0.2
W2410	100.6815	35	0	0.147768	0.131435	Discharge	0.21574	0.8	Ratio to Peak	0.2

	•																									
	Ratio tu Peak	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
~	Threshold Type	Ratio to Peak																								
ssion Baseflov	Recession Constant	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8
Rece	Initial Discharge (cms)	0.41146	0.25788	0.22254	0.025794	0.48385	0.16523	0.25811	0.22283	0.004561	0.082405	0.53223	0.003703	0.16342	0.22698	0.25356	0.23376	0.197926	0.48885	0.17691	0.27794	0.057159	0.83831	0.23987	0.016845	0.45176
	Initial Type	Discharge																								
Jnit Fransform	Storage Coefficient (HR)	0.27092	0.26056	0.217535	0.15072	0.229385	0.094075	0.14923	0.055175	0.19908	0.129395	0.15088	0.15803	0.281285	0.053315	0.10068	0.22558	0.0431235	0.147175	0.100765	0.18712	0.18474	0.145505	0.238975	0.304615	0.144025
Clark L Hydrograph 1	Time of Concentration (HR)	0.224888	0.092232	0.146304	0.0540952	0.195176	0.126856	0.14792	0.154928	0.052268	0.098704	0.221152	0.0422776	0.144288	0.098792	0.183448	0.18112	0.142648	0.234288	0.1412	0.216168	0.099568	0.195688	0.183088	0.050388	0.199184
r Loss	Impervious (%)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
urve Numbei	Curve Number	35	35.50041	35	35	35	35	35	35	35	35	35	35	35	35	35	35	35	35	35	35	35	35	35	35	35
SCS CI	Initial Abstraction (mm)	182.76	75.1215	181.905	197.115	192.6	127.548	151.035	166.35	206.37	177.375	128.985	176.595	145.0635	112.3635	181.77	131.574	191.805	172.05	108.552	167.385	127.0005	110.19	156.06	127.0005	131.736
	basin Number	W2420	W2430	W2440	W2450	W2460	W2470	W2480	W2490	W2510	W2520	W2530	W2540	W2550	W2560	W2570	W2580	W2590	W2600	W2620	W2630	W2640	W2650	W2660	W2670	W2680

	reshold Ratio to Type Peak		to Peak 0.2	to Peak 0.2 to Peak 0.2	to Peak 0.2 to Peak 0.2 to Peak 0.2	to Peak 0.2 to Peak 0.2 to Peak 0.2 to Peak 0.2	to Peak 0.2 to Peak 0.2 to Peak 0.2 to Peak 0.2 to Peak 0.2	to Peak 0.2 to Peak 0.2 to Peak 0.2 to Peak 0.2 to Peak 0.2 to Peak 0.2	to Peak 0.2 to Peak 0.2 to Peak 0.2 to Peak 0.2 to Peak 0.2 to Peak 0.2 to Peak 0.2	to Peak 0.2 to Peak 0.2	to Peak 0.2 to Peak 0.2	to Peak 0.2 to Peak 0.2	to Peak 0.2 to Peak 0.2	to Peak 0.2 to Peak 0.2	to Peak0.2to Peak0.2	to Peak0.2to Peak0.2	to Peak0.2to Peak0.2	to Peak0.2to Peak0.2	to Peak0.2to Peak0.2 <tr< th=""><th>to Peak0.2to Peak0.2<tr< th=""></tr<></th></tr<></th></tr<></th></tr<></th></tr<></th></tr<>	to Peak0.2to Peak0.2 <tr< th=""><th>to Peak0.2to Peak0.2<tr< th=""><th>to Peak0.2to Peak0.2<tr< th=""><th>to Peak0.2to Peak0.2<tr< th=""><th>to Peak0.2to Peak0.2<tr< th=""></tr<></th></tr<></th></tr<></th></tr<></th></tr<>	to Peak0.2to Peak0.2 <tr< th=""><th>to Peak0.2to Peak0.2<tr< th=""><th>to Peak0.2to Peak0.2<tr< th=""><th>to Peak0.2to Peak0.2<tr< th=""></tr<></th></tr<></th></tr<></th></tr<>	to Peak0.2to Peak0.2 <tr< th=""><th>to Peak0.2to Peak0.2<tr< th=""><th>to Peak0.2to Peak0.2<tr< th=""></tr<></th></tr<></th></tr<>	to Peak0.2to Peak0.2 <tr< th=""><th>to Peak0.2to Peak0.2<tr< th=""></tr<></th></tr<>	to Peak0.2to Peak0.2 <tr< th=""></tr<>
	cession Thresho nstant Type	Ratio to De	וזמווס ויס י כי	Ratio to Pe	Ratio to Pe Ratio to Pe	Ratio to Pe. Ratio to Pe. Ratio to Pe	Ratio to Pe. Ratio to Pe. Ratio to Pe Ratio to Pe	Ratio to Pei Ratio to Pei Ratio to Pei Ratio to Pe Ratio to Pe	Ratio to Pei Ratio to Pei Ratio to Pe Ratio to Pe Ratio to Pe Ratio to Pe	Ratio to Pei Ratio to Pei Ratio to Pe Ratio to Pe Ratio to Pe Ratio to Pe Ratio to Pe	Ratio to Pei Ratio to Pei Ratio to Pei Ratio to Pe Ratio to Pe Ratio to Pe Ratio to Pe Ratio to Pe Ratio to Pe	Ratio to Pee Ratio to Pee Ratio to Pee Ratio to Pee Ratio to Pe Ratio to Pe Ratio to Pe Ratio to Pe Ratio to Pe	Ratio to Pei Ratio to Pei Ratio to Pei Ratio to Pei Ratio to Pe Ratio to Pe Ratio to Pe Ratio to Pe Ratio to Pe Ratio to Pe Ratio to Pe	Ratio to Pee Ratio to Pee	Ratio to Pei Ratio to Pei Ratio to Pei Ratio to Pei Ratio to Pe Ratio to Pe	Ratio to Pee Ratio to Pee	Ratio to Per Ratio to Per Ratio to Per Ratio to Per Ratio to Pe Ratio to Pe	Ratio to Pei Ratio	Ratio to Per Ratio to Per Ratio to Per Ratio to Per Ratio to Per Ratio to Pe Ratio to Pe	Ratio to Pee Ratio to Pee	Ratio to Per Ratio to Per Ratio to Per Ratio to Per Ratio to Per Ratio to Per Ratio to Pe Ratio to Pe	Ratio to Pee Ratio to Pe Ratio to Pe	Ratio to Per Ratio to Pe Ratio to Pe	Ratio to Pei Ratio
	nitial Recess arge (cms) Const	71 0.8		391 0.8	391 0.8 17 0.8	391 0.8 17 0.8 31 0.8	391 0.8 17 0.8 81 0.8 11 0.8	391 0.8 17 0.8 81 0.8 11 0.8 11 0.8	391 0.8 17 0.8 31 0.8 11 0.8 11 0.8 521 0.8	391 0.8 17 0.8 81 0.8 11 0.8 11 0.8 521 0.8 86 0.8	391 0.8 17 0.8 31 0.8 11 0.8 12 0.8 521 0.8 56 0.8 79 0.8	991 0.8 17 0.8 81 0.8 81 0.8 11 0.8 521 0.8 56 0.8 79 0.8 55 0.8	391 0.8 17 0.8 31 0.8 11 0.8 11 0.8 521 0.8 66 0.8 79 0.8 99 0.8	391 0.8 17 0.8 81 0.8 11 0.8 11 0.8 521 0.8 66 0.8 79 0.8 99 0.8 579 0.8	391 0.8 17 0.8 31 0.8 11 0.8 11 0.8 521 0.8 66 0.8 79 0.8 99 0.8 579 0.8 17 0.8	991 0.8 17 0.8 81 0.8 81 0.8 11 0.8 12 0.8 13 0.8 14 0.8 15 0.8 99 0.8 929 0.8 17 0.8 17 0.8 17 0.8 17 0.8 17 0.8 17 0.8 17 0.8	391 0.8 17 0.8 81 0.8 81 0.8 11 0.8 521 0.8 66 0.8 79 0.8 79 0.8 79 0.8 79 0.8 79 0.8 79 0.8 79 0.8 79 0.8 79 0.8 79 0.8 79 0.8 79 0.8 70 0.8 71 0.8 74 0.8	391 0.8 17 0.8 81 0.8 11 0.8 12 0.8 13 0.8 14 0.8 15 0.8 99 0.8 99 0.8 17 0.8 18 0.8 19 0.8 10 0.8 10 0.8 11 0.8 12 0.8 13 0.8 14 0.8 15 0.8 16 0.8 17 0.8 18 0.8 19 0.8 10 0.8	391 0.8 17 0.8 81 0.8 11 0.8 11 0.8 521 0.8 66 0.8 79 0.8 79 0.8 79 0.8 79 0.8 79 0.8 79 0.8 79 0.8 79 0.8 79 0.8 79 0.8 79 0.8 79 0.8 79 0.8 79 0.8 70 0.8 73 0.8 83 0.8	991 0.8 17 0.8 81 0.8 11 0.8 12 0.8 11 0.8 12 0.8 13 0.8 14 0.8 15 0.8 99 0.8 99 0.8 17 0.8 17 0.8 17 0.8 17 0.8 17 0.8 17 0.8 18 0.8 19 0.8 10 0.8 10 0.8 10 0.8 10 0.8 10 0.8 10 0.8 10 0.8 10 0.8 10 0.8 10 0.8 10 0.8	391 0.8 17 0.8 81 0.8 11 0.8 11 0.8 521 0.8 66 0.8 79 0.8 79 0.8 79 0.8 79 0.8 79 0.8 79 0.8 79 0.8 79 0.8 79 0.8 79 0.8 79 0.8 79 0.8 79 0.8 70 0.8 71 0.8 73 0.8 83 0.8 83 0.8 83 0.8 83 0.8 83 0.8	391 0.8 17 0.8 81 0.8 11 0.8 12 0.8 11 0.8 12 0.8 11 0.8 12 0.8 11 0.8 12 0.8 13 0.8 14 0.8 15 0.8 16 0.8 17 0.8 17 0.8 17 0.8 17 0.8 17 0.8 17 0.8 10 0.8 10 0.8 10 0.8 10 0.8 10 0.8 10 0.8 10 0.8 10 0.8 10 0.8 10 0.8 10 0.8 10 0.8 10 0.8	991 0.8 17 0.8 81 0.8 81 0.8 81 0.8 81 0.8 81 0.8 81 0.8 81 0.8 82 0.8 86 0.8 86 0.8 99 0.8 99 0.8 99 0.8 99 0.8 85 0.8 85 0.8 83 0.8 83 0.8 99 0.8 91 0.8 92 0.8 93 0.8 93 0.8 93 0.8 93 0.8 93 0.8 93 0.8 93 0.8 93 0.8 93 0.8	91 0.8 17 0.8 81 0.8 11 0.8 11 0.8 11 0.8 11 0.8 12 0.8 99 0.8 99 0.8 99 0.8 99 0.8 99 0.8 91 0.8 92 0.8 93 <
Type Discharge		rge 0.48071	rge 0.010891		rge 0.17247	rge 0.17247 rge 0.51031	rge 0.17247 rge 0.51031 rge 0.12941	rge 0.17247 rge 0.51031 rge 0.12941 rge 0.54411	rge 0.17247 rge 0.51031 rge 0.12941 rge 0.54411 rge 0.067521	rge 0.17247 rge 0.51031 rge 0.12941 rge 0.54411 rge 0.067521 rge 0.36536	rge 0.17247 rge 0.51031 rge 0.12941 rge 0.54411 rge 0.067521 rge 0.35779 rge 0.35779	rge 0.17247 rge 0.51031 rge 0.12941 rge 0.54411 rge 0.067521 rge 0.36536 rge 0.35779 rge 0.33725	rge 0.17247 rge 0.51031 rge 0.12941 rge 0.54411 rge 0.067521 rge 0.35779 rge 0.35779 rge 0.53725 rge 0.53725	rge 0.17247 rge 0.51031 rge 0.12941 rge 0.54411 rge 0.067521 rge 0.36536 rge 0.35779 rge 0.35779 rge 0.095999 rge 0.029679	rge 0.17247 rge 0.51031 rge 0.54411 rge 0.54411 rge 0.67521 rge 0.35779 rge 0.35779 rge 0.35779 rge 0.35779 rge 0.35779	rge 0.17247 rge 0.51031 rge 0.12941 rge 0.54411 rge 0.35779 rge 0.35779 rge 0.35779 rge 0.35779 rge 0.35779 rge 0.35779 rge 0.33779	rge 0.17247 rge 0.51031 rge 0.54411 rge 0.54411 rge 0.54521 rge 0.35779 rge 0.35779 rge 0.35779 rge 0.35779 rge 0.35779 rge 0.35779 rge 0.35779	rge 0.17247 rge 0.51031 rge 0.54411 rge 0.54411 rge 0.35779 rge 0.35779 rge 0.35779 rge 0.35779 rge 0.35779 rge 0.35779 rge 0.35779 rge 0.33753 rge 0.33753 rge 0.33753 rge 0.33463	rge 0.17247 rge 0.51031 rge 0.54411 rge 0.54411 rge 0.54536 rge 0.35779 rge 0.35779 rge 0.35779 rge 0.35779 rge 0.35779 rge 0.35779 rge 0.33763 rge 0.095999 rge 0.095999 rge 0.11854 rge 0.11854	rge 0.17247 rge 0.51031 rge 0.54411 rge 0.54411 rge 0.35779 rge 0.35779 rge 0.35779 rge 0.35779 rge 0.35779 rge 0.35779 rge 0.35779 rge 0.33735 rge 0.33735 rge 0.33735 rge 0.33735 rge 0.17833 rge 0.17833	rge 0.17247 rge 0.51031 rge 0.54411 rge 0.54411 rge 0.54521 rge 0.35779 rge 0.11854 rge 0.11854 rge 0.17833 rge 0.16569	rge 0.17247 rge 0.51031 rge 0.54411 rge 0.54411 rge 0.54536 rge 0.35779 rge 0.35779 rge 0.35779 rge 0.35779 rge 0.35779 rge 0.35779 rge 0.35779 rge 0.35779 rge 0.35779 rge 0.5376 rge 0.17833 rge 0.17833 rge 0.17833 rge 0.17833	rge 0.17247 rge 0.51031 rge 0.54411 rge 0.54411 rge 0.54536 rge 0.35779 rge 0.35779 rge 0.35779 rge 0.35779 rge 0.35779 rge 0.35779 rge 0.35779 rge 0.35324 rge 0.11854 rge 0.11854 rge 0.11854 rge 0.17833 rge 0.16569 rge 0.16569	rge 0.17247 rge 0.51031 rge 0.54411 rge 0.54411 rge 0.54536 rge 0.35779 rge 0.35779 rge 0.35779 rge 0.35779 rge 0.35779 rge 0.35779 rge 0.35779 rge 0.35779 rge 0.35779 rge 0.17833 rge 0.17833 rge 0.17833 rge 0.16569 rge 0.32973 rge 0.13697
ge ient Initial Ty _l ()	_	Discharge	Discharge	5 Discharge		Discharge	Discharge Discharge	Discharge Discharge Discharge	Discharge Discharge Discharge Discharge	Discharge Discharge Discharge Discharge	Discharge Discharge Discharge Discharge Discharge	DischargeDischargeDischargeDischargeDischargeDischargeDischargeDischargeDischargeDischargeDischargeDischargeDischargeDischargeDischargeDischarge	Discharge Discharge Discharge Discharge Discharge Discharge Discharge	Discharge	Discharge	DischargeDisch	DischargeDisch	DischargeDisch	DischargeDisch	DischargeDisch	DischargeDisch	DischargeDisch	DischargeDisch	DischargeDisch
on Coefficient (HR) 0.22049	0.22049		0.101555	0.199605		0.18675	0.18675 0.051395	0.186/5 0.051395 0.20317	0.18675 0.051395 0.20317 0.229475	0.18675 0.051395 0.20317 0.229475 0.0420175	0.186/5 0.051395 0.20317 0.229475 0.0420175 0.116795	0.186/5 0.051395 0.20317 0.229475 0.229475 0.229475 0.229475 0.236975 0.386905	0.186/5 0.051395 0.20317 0.229475 0.229475 0.229475 0.229475 0.2386905 0.116795 0.386905 0.114955	0.186/5 0.051395 0.20317 0.229475 0.229475 0.229475 0.229475 0.116795 0.386905 0.386905 0.114955 0.19924	0.186/5 0.051395 0.20317 0.229475 0.229475 0.229475 0.239475 0.239475 0.116795 0.116795 0.386905 0.114955 0.19924 0.0080005	0.186/5 0.051395 0.20317 0.229475 0.229475 0.229475 0.229475 0.16795 0.14575 0.14955 0.19924 0.19924 0.080005 0.171015	0.186/5 0.051395 0.20317 0.20317 0.229475 0.229475 0.2386905 0.116795 0.116795 0.116795 0.114955 0.114955 0.114955 0.119924 0.19924 0.19924 0.171015 0.201825	0.186/5 0.051395 0.20317 0.20317 0.229475 0.229475 0.229475 0.16795 0.16795 0.114955 0.114955 0.114955 0.114955 0.19924 0.171015 0.171015 0.201825 0.201825	0.186/5 0.051395 0.20317 0.20317 0.239475 0.239475 0.239475 0.239475 0.116795 0.116795 0.116795 0.114955 0.114955 0.114955 0.114955 0.114955 0.114955 0.114955 0.114955 0.1171015 0.17203 0.17203	0.186/5 0.051395 0.20317 0.20317 0.229475 0.229475 0.229475 0.0420175 0.116795 0.116795 0.114955 0.114955 0.114955 0.114955 0.114955 0.1171015 0.17223 0.17223 0.172695 0.150535	0.1366/5 0.051395 0.20317 0.20317 0.203175 0.239475 0.239475 0.0420175 0.116795 0.116795 0.116795 0.114955 0.114955 0.114955 0.114955 0.114955 0.114955 0.114955 0.117055 0.127695 0.127695 0.127695 0.127695 0.127695	0.136/5 0.051395 0.20317 0.20317 0.239475 0.229475 0.2386905 0.116795 0.116795 0.114955 0.114955 0.114955 0.114955 0.114955 0.114955 0.114955 0.117015 0.17223 0.17223 0.17223 0.172695 0.127695 0.127695 0.127695 0.127695 0.127695 0.127695 0.127695	0.1366/5 0.051395 0.051395 0.20317 0.20317 0.20317 0.20317 0.20317 0.20317 0.20317 0.20317 0.20317 0.20317 0.116795 0.116795 0.114955 0.114955 0.114955 0.114955 0.114955 0.114955 0.114955 0.114955 0.114955 0.114955 0.114955 0.1124655 0.127695 0.127695 0.127695 0.127695 0.127695 0.127695 0.127695 0.127695 0.137745 0.137745	0.136/5 0.051395 0.051395 0.20317 0.20317 0.20317 0.20317 0.20317 0.20317 0.20317 0.20317 0.20317 0.20317 0.20317 0.20317 0.116795 0.116795 0.114955 0.114955 0.114955 0.114955 0.114955 0.114955 0.114955 0.114955 0.114955 0.114955 0.114955 0.114955 0.114955 0.114955 0.114955 0.117523 0.127695 0.13272 0.137745 0.176725 0.176725
Concentration (HR) 0.224976	0.224976	0 011026	00001140.0	0.114504	0.37932		0.112696	0.112696 0.195336	0.112696 0.195336 0.0784384	0.112696 0.195336 0.0784384 0.197872	0.112696 0.195336 0.0784384 0.197872 0.168856	0.112696 0.195336 0.0784384 0.197872 0.168856 0.360096	0.112696 0.195336 0.0784384 0.197872 0.168856 0.168856 0.360096 0.125192	0.112696 0.195336 0.0784384 0.0784384 0.197872 0.197872 0.197872 0.197872 0.197872 0.168856 0.360096 0.360096 0.125192	0.112696 0.195336 0.0784384 0.197872 0.168856 0.168856 0.168856 0.168856 0.125192 0.125192 0.147584	0.112696 0.195336 0.0784384 0.0784384 0.197872 0.188856 0.168856 0.168856 0.168856 0.15192 0.147584 0.0495344 0.246624	0.112696 0.195336 0.0784384 0.197872 0.168856 0.168856 0.360096 0.360096 0.360096 0.125192 0.125192 0.147584 0.147584 0.122224	0.112696 0.195336 0.0784384 0.197872 0.168856 0.168856 0.168856 0.168856 0.155192 0.125192 0.145584 0.246624 0.246624 0.122224	0.112696 0.195336 0.0784384 0.197872 0.168856 0.168856 0.168856 0.168856 0.168856 0.168856 0.168856 0.17584 0.147584 0.147584 0.147584 0.122224 0.122224 0.152744	0.112696 0.195336 0.0784384 0.0784384 0.168856 0.168856 0.168856 0.168856 0.168856 0.155192 0.125192 0.147584 0.147584 0.147584 0.147584 0.122224 0.152744 0.152748 0.152748	0.112696 0.195336 0.0784384 0.0784384 0.168856 0.168856 0.168856 0.168856 0.168856 0.168856 0.168856 0.147584 0.147584 0.147584 0.125244 0.12224 0.12224 0.152748 0.13012 0.135048	0.112696 0.195336 0.0784384 0.197872 0.168856 0.168856 0.168856 0.168856 0.155192 0.125192 0.147584 0.147584 0.147584 0.147584 0.147584 0.122224 0.122224 0.135048 0.135048 0.238648	0.112696 0.195336 0.195336 0.197872 0.197872 0.168856 0.168856 0.168856 0.168856 0.168856 0.147584 0.147584 0.147584 0.147584 0.147584 0.12224 0.122224 0.122224 0.122224 0.135048 0.135048 0.135048 0.13356 0.173256	0.112696 0.195336 0.195336 0.197872 0.168856 0.168856 0.168856 0.168856 0.168856 0.168856 0.155192 0.147584 0.147584 0.147584 0.147584 0.147584 0.122224 0.122224 0.122224 0.125768 0.135048 0.135048 0.135068 0.173256 0.173256
Impervious (%) 0 0	0	0		0	0	0		0	000															
Curve Number 35	35		35	35	35	L	55	35	35	35 35 35 35	35 35 35 35 35 35	35 35 35 35 35 44.52525	35 35 35 35 35 44.52525 41.58495	35 35 35 35 35 35 44.52525 41.58495 36.135	35 35 35 35 35 35 44.52525 41.58495 36.135 36.41814	35 35 35 35 35 35 44.52525 44.52525 41.58495 36.135 36.135 36.41814 35	55 35 35 35 35 35 35 35 35 35 35 35 35 35 36.41814 35 35 35	35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 36.135 36.41814 35 35 35 36.41813 35 35 35 35	35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 36.41814 35 35 36.45873 37 38 35 35 35 35 35	35 35 35 35 35 35 35 35 35 35 35 35 35 35 36.135 36.41814 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35	55 35 35 35 35 35 35 35 35 35 35 35 35 35 35 36.135 36.41814 35 36.41814 35 36.43573 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35	35 35 35 35 35 35 35 35 35 35 35 35 35 35 36.41814 35	55 35 35 35 35 35 35 35 35 35 35 35 35 35 36.135 36.135 36.41814 35	35 35 35 35 35 35 35 35 35 35 35 35 35 35 36.41814 35
Abstraction (mm) 159.48	159.48		130.0965	117.5055	176.265		112.614	112.614 105.8085	112.614 105.8085 127.0005	112.614 105.8085 127.0005 120.825	112.614 105.8085 127.0005 120.825 84.453	112.614 105.8085 127.0005 120.825 84.453 21.2835	112.614 105.8085 127.0005 120.825 84.453 21.2835 36.258	112.614 105.8085 127.0005 120.825 84.453 21.2835 21.2835 36.258 70.4595	112.614 105.8085 127.0005 120.825 84.453 21.2835 36.258 36.258 70.4595 68.43	112.614 105.8085 127.0005 120.825 84.453 21.2835 21.2835 36.258 70.4595 68.43 183.915	112.614 105.8085 127.0005 120.825 84.453 36.258 36.258 70.4595 68.43 183.915 181.215	112.614 105.8085 127.0005 120.825 84.453 84.453 21.2835 21.2835 36.258 70.4595 68.43 183.915 183.915 183.215 68.1435	112.614 105.8085 127.0005 120.825 84.453 21.2835 36.258 70.4595 68.43 181.215 181.215 68.1435 68.1435 101.9325	112.614 105.8085 127.0005 120.825 84.453 21.2835 36.258 36.258 70.4595 68.43 181.215 68.1435 68.1435 68.1435 101.9325 132.9945	112.614 105.8085 127.0005 120.825 84.453 21.2835 36.258 21.2835 36.258 36.258 70.4595 68.43 121.2835 181.215 68.135 181.215 68.1435 101.9325 101.9325 101.9325 159.225	112.614 105.8085 127.0005 120.825 84.453 21.2835 21.2835 36.258 36.258 70.4595 68.43 181.215 68.1435 181.215 68.1435 181.215 68.1435 1101.9325 132.9945 132.9945 132.9945 132.9945 132.9945	112.614 105.8085 127.0005 120.825 84.453 21.2835 36.258 36.258 70.4595 68.43 181.215 68.135 181.215 68.1435 68.1435 181.215 68.1435 101.9325 1101.9325 1170.925 159253	112.614 105.8085 127.0005 120.825 84.453 21.2835 36.258 36.258 70.4595 68.43 181.215 68.1435 68.1435 181.215 68.1435 181.215 68.1435 181.215 181.215 132.9945 132.9945 132.9945 170.925 205.53 140.4645
Number		W2690	W2700	W2710	W2720		W2/30	W2/30 W2740	W2740 W2740 W2750	W2/30 W2740 W2750 W2770	W2/30 W2740 W2750 W2770 W2780	W2/30 W2740 W2750 W2770 W2780 W2800	W2/30 W2740 W2750 W2770 W2780 W2780 W2800 W2810	W2730 W2750 W2770 W2780 W2780 W2780 W2780 W2800 W2810	W2730 W2750 W2750 W2770 W2780 W2780 W2800 W2810 W2850 W2850	W2730 W2750 W2750 W2780 W2780 W2780 W2810 W2810 W2850 W2850 W2850 W2850	W2730 W2750 W2750 W2770 W2780 W2780 W2780 W2780 W2800 W2800 W2850 W2860 W2860 W2860	W2750 W2750 W2750 W2780 W2780 W2810 W2810 W2850 W2850 W2850 W2850 W2850 W2850 W2850 W2850 W2850 W2850	W2730 W2750 W2750 W2770 W2780 W2780 W2780 W2860 W2860 W2860 W2860 W2900 W2900 W2900 W2960	W2750 W2750 W2750 W2780 W2780 W2850 W2850 W2850 W2850 W2850 W2850 W2850 W2850 W2850 W2850 W2850 W2910 W2910 W2950 W2950	W2750 W2750 W2750 W2770 W2780 W2780 W2810 W2810 W2850 W2860 W2860 W2860 W2860 W2860 W2860 W2900 W2950 W2950 W2950 W2950 W2950 W2950 W2950	W2750 W2750 W2750 W2780 W2780 W2850 W2850 W2850 W2850 W2850 W2850 W2850 W2910 W2910 W2910 W2950 W2950 W2950 W2950 W2950 W2950 W2950 W2950 W2950 W2950 W2950	W2750 W2750 W2750 W2770 W2780 W2810 W2810 W2850 W2860 W2860 W2860 W2910 W2910 W2950 W2950 W2950 W2950 W2950 W2950 W2950 W2950 W2950 W2950 W2950 W2950 W2950 W2950	W2750 W2750 W2750 W2780 W2860 W2850 W2850 W2850 W2850 W2850 W2850 W2850 W2910 W2910 W2950 W2750 W200 W200 W200 W200 W200
Poach		Mus	kingum Cun	ge Channel Ro	uting																			
--------	-----------------------------	---------------	------------	---------------	-----------	-------	---------------																	
Number	Time Step Method	Length (m)	Slope	Manning's n	Shape	Width	Side Slope																	
R100	Automatic Fixed Interval	3752.9	0.009565	0.01	Trapezoid	154	1																	
R1000	Automatic Fixed Interval	6251.3	0.010653	0.01	Trapezoid	74	1																	
R1050	Automatic Fixed Interval	926.69	0.10019	0.01	Trapezoid	57	1																	
R1070	Automatic Fixed Interval	5226.5	0.028836	0.01	Trapezoid	63.2	1																	
R1090	Automatic Fixed Interval	141.42	0.043036	0.01	Trapezoid	66.1	1																	
R1100	Automatic Fixed Interval	3886.9	0.10888	0.01	Trapezoid	22.3	1																	
R1120	Automatic Fixed Interval	490.71	0.12969	0.01	Trapezoid	38.9	1																	
R1150	Automatic Fixed Interval	2238.7	0.038125	0.01	Trapezoid	149.6	1																	
R1160	Automatic Fixed Interval	1478.8	0.11765	0.01	Trapezoid	44	1																	
R1180	Automatic Fixed Interval	4566.8	0.026731	0.01	Trapezoid	73.4	1																	
R1190	Automatic Fixed Interval	1730.4	0.000847	0.01	Trapezoid	116	1																	
R120	Automatic Fixed Interval	6604.7	0.022949	0.01	Trapezoid	77.5	1																	
R1200	Automatic Fixed Interval	8720.2	0.082154	0.01	Trapezoid	42	1																	
R1220	Automatic Fixed Interval	3781	0.017205	0.01	Trapezoid	47	1																	
R1240	Automatic Fixed Interval	1877.5	0.030195	0.01	Trapezoid	104	1																	
R1250	Automatic Fixed Interval	661.13	0.00821	0.01	Trapezoid	80.1	1																	
R1260	Automatic Fixed Interval	5543	0.020216	0.01	Trapezoid	84.9	1																	
R1270	Automatic Fixed Interval	1766.8	0.078122	0.01	Trapezoid	46.4	1																	
R1280	Automatic Fixed Interval	577.7	0.055509	0.01	Trapezoid	45.8	1																	
R130	Automatic Fixed Interval	576.27	0.004327	0.01	Trapezoid	48.3	1																	
R1310	Automatic Fixed Interval	5804.8	0.05243	0.01	Trapezoid	31	1																	
R1320	Automatic Fixed Interval	4480.9	0.035483	0.01	Trapezoid	36.3	1																	
R1340	Automatic Fixed Interval	1909.1	0.013661	0.01	Trapezoid	59.5	1																	
R1360	Automatic Fixed Interval	1140.1	0.10994	0.01	Trapezoid	57.9	1																	

ANNEX 10. Amburayan Model Reach Parameters

Reach		Mus	kingum Cun	ge Channel Ro	uting		
Number	Time Step Method	Length (m)	Slope	Manning's n	Shape	Width	Side Slope
R1390	Automatic Fixed Interval	3530.2	0.035615	0.01	Trapezoid	56.3	1
R160	Automatic Fixed Interval	2891.6	0.041836	0.01	Trapezoid	46.2	1
R180	Automatic Fixed Interval	1779.9	0.066692	0.01	Trapezoid	43.6	1
R200	Automatic Fixed Interval	14008	0.002722	0.01	Trapezoid	203	1
R210	Automatic Fixed Interval	1453.3	0.016089	0.01	Trapezoid	241	1
R230	Automatic Fixed Interval	2678.9	0.001831	0.01	Trapezoid	277	1
R240	Automatic Fixed Interval	2108.9	0.078148	0.01	Trapezoid	33.5	1
R270	Automatic Fixed Interval	7579.2	0.001116	0.01	Trapezoid	33.6	1
R2820	Automatic Fixed Interval	945.27	0.004573	0.01	Trapezoid	536	1
R290	Automatic Fixed Interval	4999.4	0.001155	0.01	Trapezoid	503	1
R2920	Automatic Fixed Interval	2376.6	0.014524	0.01	Trapezoid	99.1	1
R2970	Automatic Fixed Interval	1718.5	0.046537	0.01	Trapezoid	34.5	1
R30	Automatic Fixed Interval	9072.8	0.031174	0.01	Trapezoid	47.9	1
R340	Automatic Fixed Interval	1210.5	0.002243	0.01	Trapezoid	116	1
R350	Automatic Fixed Interval	4796.5	0.006886	0.01	Trapezoid	172	1
R360	Automatic Fixed Interval	3219.3	0.043524	0.01	Trapezoid	31.9	1
R370	Automatic Fixed Interval	3151.6	0.00566	0.01	Trapezoid	45.9	1
R400	Automatic Fixed Interval	2432.4	0.003747	0.01	Trapezoid	97	1
R410	Automatic Fixed Interval	1812.5	0.088375	0.01	Trapezoid	63.3	1
R430	Automatic Fixed Interval	4081.6	0.046845	0.01	Trapezoid	52.6	1
R440	Automatic Fixed Interval	3285.3	0.056017	0.01	Trapezoid	44.8	1
R450	Automatic Fixed Interval	1828.9	0.014747	0.01	Trapezoid	75.7	1
R460	Automatic Fixed Interval	7378.5	0.006027	0.01	Trapezoid	496	1
R470	Automatic Fixed Interval	134.85	0.089839	0.01	Trapezoid	95	1

Reach		Mus	kingum Cun	ge Channel Ro	uting		
Number	Time Step Method	Length (m)	Slope	Manning's n	Shape	Width	Side Slope
R490	Automatic Fixed Interval	5041.1	0.017517	0.01	Trapezoid	52	1
R550	Automatic Fixed Interval	11044	0.060988	0.01	Trapezoid	62.9	1
R560	Automatic Fixed Interval	1927.8	0.063262	0.01	Trapezoid	37.4	1
R570	Automatic Fixed Interval	1408.1	0.082319	0.01	Trapezoid	26.2	1
R580	Automatic Fixed Interval	2888.7	0.06452	0.01	Trapezoid	25	1
R590	Automatic Fixed Interval	1223.3	0.11626	0.01	Trapezoid	62	1
R60	Automatic Fixed Interval	6111.9	0.026709	0.01	Trapezoid	75.5	1
R600	Automatic Fixed Interval	11359	0.003518	0.01	Trapezoid	567	1
R620	Automatic Fixed Interval	1646.8	0.039633	0.01	Trapezoid	63.5	1
R660	Automatic Fixed Interval	1584.7	0.003457	0.01	Trapezoid	279	1
R690	Automatic Fixed Interval	3151.3	0.087182	0.01	Trapezoid	49.4	1
R70	Automatic Fixed Interval	389.71	0.021723	0.01	Trapezoid	25.5	1
R700	Automatic Fixed Interval	3672.5	0.094099	0.01	Trapezoid	49.1	1
R710	Automatic Fixed Interval	4146.2	0.00642	0.01	Trapezoid	29	1
R730	Automatic Fixed Interval	1369.8	0.034996	0.01	Trapezoid	33.6	1
R770	Automatic Fixed Interval	15836	0.013927	0.01	Trapezoid	35	1
R80	Automatic Fixed Interval	1033.8	0.002352	0.01	Trapezoid	119	1
R800	Automatic Fixed Interval	4266.3	0.009474	0.01	Trapezoid	195	1
R820	Automatic Fixed Interval	2186.8	0.019012	0.01	Trapezoid	174	1
R860	Automatic Fixed Interval	2528.9	0.055025	0.01	Trapezoid	28.9	1
R870	Automatic Fixed Interval	2480.1	0.005941	0.01	Trapezoid	115	1
R90	Automatic Fixed Interval	3030.9	0.019747	0.01	Trapezoid	74.8	1
R910	Automatic Fixed Interval	1210.5	0.007436	0.01	Trapezoid	50.8	1
R920	Automatic Fixed Interval	382.84	0.083881	0.01	Trapezoid	31	1

Reach		Muskingum Cunge Channel Routing										
Number	Time Step Method	Length (m)	Slope	Manning's n	Shape	Width	Side Slope					
R930	Automatic Fixed Interval	5119.8	0.039925	0.01	Trapezoid	96.2	1					
R950	Automatic Fixed Interval	1963.8	0.089898	0.01	Trapezoid	48.4	1					
R970	Automatic Fixed Interval	2698.9	0.040062	0.01	Trapezoid	45	1					
R990	Automatic Fixed Interval	5730.6	0.024823	0.01	Trapezoid	56.1	1					

Validation Coordinates Model Point Validation Error Rain Return/ **Event/Date** Number Points (m) Scenario Var (m) (m) Lat Lon 0.005 1 16.893575 120.420878 1.150 1.219 Nina/ September 19-23, 2008 5-Year 16.895093 120.452601 0.530 0.457 0.005 5-Year 2 Egay/ July 4-8, 2015 3 16.892631 120.424425 1.090 0.305 0.617 Pepeng/ October 2-5, 2009 5-Year 4 16.892631 120.424425 1.090 0.457 0.400 Egay/ July 4-8, 2015 5-Year 5 16.893586 120.426728 1.480 1.219 0.068 Nina/ September 19-23, 2008 5-Year 6 120.426728 0.758 Mario/ September 18-22, 2014 16.893586 1.480 0.610 5-Year 7 16.893586 120.426728 1.480 0.914 0.320 Mario/ September 18-22, 2014 5-Year 8 16.893586 120.426728 1.480 0.457 1.046 Egay/ July 4-8, 2015 5-Year 9 120.426728 0.320 16.893586 1.480 0.914 Pepeng/ October 2-5, 2009 5-Year 10 16.893586 120.426728 1.480 1.067 0.171 Pepeng/ October 2-5, 2009 5-Year 11 16.897627 120.428236 0.570 1.219 0.421 Nina/ September 19-23, 2008 5-Year 0.070 12 16.897627 120.428236 0.570 0.305 Mario/ September 18-22, 2014 5-Year 13 16.895093 120.452601 0.530 0.914 0.148 Nina/ September 19-23, 2008 5-Year 0.570 0.457 0.013 14 16.897627 120.428236 Egay/ July 4-8, 2015 5-Year 15 16.897627 120.428236 0.570 0.914 0.119 Pepeng/ October 2-5, 2009 5-Year 16 16.897627 120.428236 0.570 1.219 0.421 Pepeng/ October 2-5, 2009 5-Year 0.580 1.219 0.409 17 120.428458 5-Year 16.898351 Nina/ September 19-23, 2008 18 16.898351 120.428458 0.380 0.305 0.006 Nina/ September 19-23, 2008 5-Year 19 16.898351 120.428458 0.380 0.457 0.006 Nina/ September 19-23, 2008 5-Year 20 16.898351 0.380 0.914 0.286 120.428458 Nina/ September 19-23, 2008 5-Year 21 16.898351 120.428458 0.380 1.219 0.704 Nina/ September 19-23, 2008 5-Year 22 16.898832 120.518801 0.760 0.305 0.207 Ineng/ August 20-23, 2015 5-Year 0.760 0.023 23 16.898832 120.518801 0.610 Mario/ September 18-22, 2014 5-Year 24 16.895093 120.452601 0.530 1.067 0.288 Pepeng/October 2-5, 2009 5-Year 25 16.920643 120.521431 8.650 0.305 69.642 Ineng/ August 20-23, 2015 5-Year 26 16.920643 120.521431 8.650 0.610 64.648 Ineng/ August 20-23, 2015 5-Year 27 16.895837 120.442921 1.700 1.219 0.231 Nina/ September 19-23, 2008 5-Year 28 16.895837 120.442921 1.700 0.610 1.189 Mario/ September 18-22, 2014 5-Year 29 120.442921 1.700 0.914 0.617 Mario/ September 18-22, 2014 5-Year 16.895837 30 16.895837 120.442921 1.700 0.457 1.545 Egay/ July 4-8, 2015 5-Year 31 16.895837 120.442921 1.700 0.914 0.617 Pepeng/ October 2-5, 2009 5-Year 1.067 120.442921 1.700 0.401 32 16.895837 Pepeng/ October 2-5, 2009 5-Year 33 16.898843 120.439051 0.850 1.219 0.136 Nina/ September 19-23, 2008 5-Year 34 16.898843 0.850 0.058 120.439051 0.610 Mario/ September 18-22, 2014 5-Year 35 16.899237 120.446788 1.600 1.219 0.145 5-Year Nina/ September 19-23, 2008 16.898843 120.439051 0.850 0.914 0.004 Mario/ September 18-22, 2014 36 5-Year 37 16.898843 120.439051 0.850 0.457 0.154 Egay/ July 4-8, 2015 5-Year 16.898843 0.850 0.914 0.004 Pepeng/ October 2-5, 2009 38 120.439051 5-Year 39 16.898843 120.439051 0.136 Pepeng/ October 2-5, 2009 0.850 1.219 5-Year 40 0.010 16.898871 120.440447 1.320 1.219 Nina/ September 19-23, 2008 5-Year 41 1.320 0.610 0.505 16.898871 120.440447 Nina/ September 19-23, 2008 5-Year 42 120.440447 1.320 16.898871 0.610 0.505 Nina/ September 19-23, 2008 5-Year 43 0.744 16.898871 120.440447 1.320 0.457 Nina/ September 19-23, 2008 5-Year 44 0.165 16.898871 120.440447 1.320 0.914 Nina/ September 19-23, 2008 5-Year 45 16.898871 120.440447 1.320 1.219 0.010 Nina/ September 19-23, 2008 5-Year

ANNEX 11. Amburayan Field Validation

Point	Validation	Coordinates	Model	Validation	Error	5 /5	Rain Return/
Number	Lat	Lon	Var (m)	Points (m)	(m)	Event/Date	Scenario
46	16.899237	120.446788	1.600	0.610	0.981	Mario/ September 18-22, 2014	5-Year
47	16.898942	120.424179	0.820	1.219	0.159	Nina/ September 19-23, 2008	5-Year
48	16.898942	120.424179	0.770	0.610	0.026	Mario/ September 18-22, 2014	5-Year
49	16.898942	120.424179	0.770	0.914	0.021	Mario/ September 18-22, 2014	5-Year
50	16.898942	120.424179	0.770	0.457	0.098	Egay/ July 4-8, 2015	5-Year
51	16.898942	120.424179	0.770	0.914	0.021	Mario/ September 18-22, 2014	5-Year
52	16.898942	120.424179	0.770	1.219	0.202	Pepeng/October 2-5, 2009	5-Year
53	16.899989	120.48293	2.560	1.219	1.798	Karen/ August 18-21, 2008	5-Year
54	16.900876	120.489089	1.150	1.219	0.005	Karen/ August 18-21, 2008	5-Year
55	16.901246	120.490163	0.950	1.219	0.072	Karen/ August 18-21, 2008	5-Year
56	16.904236	120.465557	0.970	1.067	0.009	Karen/ August 18-21, 2008	5-Year
57	16.899237	120.446788	1.600	0.914	0.470	Mario/ September 18-22, 2014	5-Year
58	16.906496	120.467662	0.620	1.219	0.359	Karen/ August 18-21, 2008	5-Year
59	16.908756	120.467249	6.420	1.219	27.048	Karen/ August 18-21, 2008	5-Year
60	16.909055	120.468199	7.810	1.219	43.439	Karen/ August 18-21, 2008	5-Year
61	16.909488	120.470683	0.770	0.610	0.026	Nina/ September 19-23, 2008	5-Year
62	16.869987	120.44427	0.420	0.914	0.244	Nina/ September 19-23, 2008	5-Year
63	16.869987	120.44427	0.420	0.610	0.036	Mario/ September 18-22, 2014	5-Year
64	16.869987	120.44427	0.420	0.914	0.244	Mario/ September 18-22, 2014	5-Year
65	16.869987	120.44427	0.420	0.457	0.001	Egay/ July 4-8, 2015	5-Year
66	16.869987	120.44427	0.420	0.914	0.244	Pepeng/ October 2-5, 2009	5-Year
67	16.869987	120.44427	0.420	0.610	0.036	Pepeng/October 2-5, 2009	5-Year
68	16.899237	120.446788	1.600	0.457	1.306	Egay/ July 4-8, 2015	5-Year
69	16.867537	120.434189	0.030	0.152	0.015	Nina/ September 19-23, 2008	5-Year
70	16.867537	120.434189	0.030	0.610	0.336	Nina/ September 19-23, 2008	5-Year
71	16.867537	120.434189	0.030	0.914	0.78	Mario/ September 18-22, 2014	5-Year
72	16.867537	120.434189	0.030	0.457	0.182	Nina/ September 19-23, 2008	5-Year
73	16.867537	120.434189	0.030	0.152	0.015	Nina/ September 19-23, 2008	5-Year
74	16.867537	120.434189	0.030	0.152	0.015	Nina/ September 19-23, 2008	5-Year
75	16.867722	120.434966	0.030	0.152	0.015	Pepeng/ October 2-5, 2009	5-Year
76	16.867722	120.434966	0.030	0.610	0.336	Mario/ September 18-22, 2014	5-Year
77	16.867722	120.434966	0.030	0.914	0.782	Pepeng/ October 2-5, 2009	5-Year
78	16.867722	120.434966	0.030	0.457	0.182	Egay/ July 4-8, 2015	5-Year
79	16.899237	120.446788	1.600	0.914	0.470	Pepeng/ October 2-5, 2009	5-Year
80	16.867722	120.434966	0.030	0.152	0.015	Nina/ September 19-23, 2008	5-Year
81	16.867722	120.434966	0.030	0.152	0.015	Pepeng/ October 2-5, 2009	5-Year
82	16.896398	120.429418	0.870	0.914	0.002	Nina/ September 19-23, 2008	5-Year
83	16.896398	120.429418	0.870	0.610	0.068	Mario/ September 18-22, 2014	5-Year
84	16.896398	120.429418	0.870	0.914	0.002	Nina/ September 19-23, 2008	5-Year
85	16.896398	120.429418	0.870	0.457	0.170	Nina/ September 19-23, 2008	5-Year
86	16.896398	120.429418	0.870	0.914	0.002	Mario/ September 18-22, 2014	5-Year
87	16.896398	120.429418	0.870	0.610	0.068	Nina/ September 19-23, 2008	5-Year
88	16.89757	120.432534	1.090	0.914	0.031	Mario/ September 18-22, 2014	5-Year
89	16.89757	120.432534	1.090	0.610	0.231	Mario/ September 18-22, 2014	5-Year
90	16.899237	120.446788	1.600	1.219	0.145	Pepeng/ October 2-5, 2009	5-Year
91	16.89757	120.432534	1.090	0.914	0.031	Mario/ September 18-22, 2014	5-Year

Point	Validation	Coordinates	Model	Validation	Error	Event/Data	Rain Return/
Number	Lat	Lon	Var (m)	Points (m)	(m)	Event/Date	Scenario
92	16.89757	120.432534	1.090	0.457	0.400	Pepeng/ October 2-5, 2009	5-Year
93	16.89757	120.432534	1.090	0.914	0.031	Pepeng/ October 2-5, 2009	5-Year
94	16.89757	120.432534	1.090	0.610	0.231	Pepeng/October 2-5, 2009	5-Year
95	16.898415	120.434443	0.760	0.914	0.024	Nina/ September 19-23, 2008	5-Year
96	16.898415	120.434443	0.760	0.610	0.023	Ineng/ August 20-23, 2015	5-Year
97	16.898415	120.434443	0.760	0.914	0.024	Mario/ September 18-22, 2014	5-Year
98	16.898415	120.434443	0.760	0.457	0.092	Egay/ July 4-8, 2015	5-Year
99	16.898415	120.434443	0.760	0.914	0.024	Pepeng/ October 2-5, 2009	5-Year
100	16.898415	120.434443	0.760	0.610	0.023	Pepeng/October 2-5, 2009	5-Year
101	16.899269	120.447494	1.560	1.219	0.116	Pepeng/October 2-5, 2009	5-Year
102	16.90968	120.407828	0.480	1.219	0.546	Nina/ September 19-23, 2008	5-Year
103	16.90968	120.407828	0.080	0.305	0.051	Mario/ September 18-22, 2014	5-Year
104	16.90968	120.407828	0.080	0.457	0.142	Egay/ July 4-8, 2015	5-Year
105	16.90968	120.407828	0.080	0.914	0.696	Pepeng/ October 2-5, 2009	5-Year
106	16.90968	120.407828	0.080	1.219	1.298	Pepeng/ October 2-5, 2009	5-Year
107	16.910373	120.414275	0.830	1.219	0.151	Nina/ September 19-23, 2008	5-Year
108	16.910373	120.414275	0.830	0.610	0.049	Mario/ September 18-22, 2014	5-Year
109	16.910373	120.414275	0.830	0.914	0.007	Mario/ September 18-22, 2014	5-Year
110	16.910373	120.414275	0.830	0.457	0.139	Egay/ July 4-8, 2015	5-Year
111	16.910373	120.414275	0.830	0.914	0.007	Pepeng/ October 2-5, 2009	5-Year
112	16.893575	120.420878	0.080	0.610	0.280	Mario/ September 18-22, 2014	5-Year
113	16.899269	120.447494	1.560	0.610	0.903	Pepeng/ October 2-5, 2009	5-Year
114	16.910373	120.414275	0.830	1.219	0.151	Pepeng/October 2-5, 2009	5-Year
115	16.901836	120.492391	1.460	1.219	0.058	Karen/ August 18-21, 2008	5-Year
116	16.902175	120.493459	2.020	1.219	0.641	Karen/ August 18-21, 2008	5-Year
117	16.931918	120.427812	1.980	0.305	2.806	Ineng/ August 20-23, 2015	5-Year
118	16.931918	120.427812	1.980	0.610	1.878	Ineng/ August 20-23, 2015	5-Year
119	16.889875	120.405845	0.520	0.457	0.004	Nina/ September 19-23, 2008	5-Year
120	16.889875	120.405845	0.520	0.610	0.008	Mario/ September 18-22, 2014	5-Year
121	16.889875	120.405845	0.520	0.914	0.156	Mario/ September 18-22, 2014	5-Year
122	16.889875	120.405845	0.520	0.457	0.004	Egay/ July 4-8, 2015	5-Year
123	16.889875	120.405845	0.520	0.305	0.046	Pepeng/ October 2-5, 2009	5-Year
124	16.899269	120.447494	1.560	0.914	0.417	Pepeng/ October 2-5, 2009	5-Year
125	16.889875	120.405845	0.520	0.457	0.004	Pepeng/ October 2-5, 2009	5-Year
126	16.887014	120.40401	0.180	1.219	1.080	Nina/ September 19-23, 2008	5-Year
127	16.887014	120.40401	0.180	0.610	0.185	Mario/ September 18-22, 2014	5-Year
128	16.887014	120.40401	0.180	0.914	0.539	Mario/ September 18-22, 2014	5-Year
129	16.887014	120.40401	0.180	0.457	0.077	Egay/ July 4-8, 2015	5-Year
130	16.887014	120.40401	0.180	0.914	0.539	Pepeng/ October 2-5, 2009	5-Year
131	16.887014	120.40401	0.180	1.067	0.786	Pepeng/ October 2-5, 2009	5-Year
132	16.896332	120.406088	0.930	1.219	0.084	Nina/ September 19-23, 2008	5-Year
133	16.896332	120.406088	0.930	0.610	0.103	Mario/ September 18-22, 2014	5-Year
134	16.896332	120.406088	0.930	0.914	0.000	Mario/ September 18-22, 2014	5-Year
135	16.899269	120.447494	1.560	0.457	1.216	Pepeng/ October 2-5, 2009	5-Year
136	16.896332	120.406088	0.930	0.457	0.224	Egay/ July 4-8, 2015	5-Year
137	16.896332	120.406088	0.930	0.914	0.000	Pepeng/ October 2-5, 2009	5-Year

Point	Validation	Coordinates	Model	Validation	Error	Event/Data	Rain Return/
Number	Lat	Lon	Var (m)	Points (m)	(m)	Event/Date	Scenario
138	16.896332	120.406088	0.930	1.067	0.019	Pepeng/ October 2-5, 2009	5-Year
139	16.899376	120.45478	0.030	0.152	0.015	Nina/ September 19-23, 2008	5-Year
140	16.901267	120.459437	2.110	1.219	0.794	Karen/ August 18-21, 2008	5-Year
141	16.901747	120.454949	3.480	1.219	5.111	Karen/ August 18-21, 2008	5-Year
142	16.901832	120.456147	3.590	1.219	5.621	Karen/ August 18-21, 2008	5-Year
143	16.902068	120.455896	3.480	1.219	5.111	Karen/ August 18-21, 2008	5-Year
144	16.907492	120.460997	4.770	1.219	12.608	Karen/ August 18-21, 2008	5-Year
145	16.919428	120.429971	1.560	0.305	1.576	Ineng/ August 20-23, 2015	5-Year
146	16.899269	120.447494	1.560	0.914	0.417	Pepeng/ October 2-5, 2009	5-Year
147	16.919428	120.429971	1.560	0.610	0.903	Ineng/ August 20-23, 2015	5-Year
148	16.923927	120.422571	1.300	0.305	0.990	Ineng/ August 20-23, 2015	5-Year
149	16.923927	120.422571	1.300	0.610	0.477	Ineng/ August 20-23, 2015	5-Year
150	16.890579	120.430873	1.960	1.219	0.549	Nina/ September 19-23, 2008	5-Year
151	16.890579	120.430873	1.960	0.610	1.824	Mario/ September 18-22, 2014	5-Year
152	16.890579	120.430873	1.960	0.914	1.093	Mario/ September 18-22, 2014	5-Year
153	16.890579	120.430873	1.960	0.457	2.258	Egay/ July 4-8, 2015	5-Year
154	16.890579	120.430873	1.960	0.914	1.093	Pepeng/ October 2-5, 2009	5-Year
155	16.890579	120.430873	1.960	1.067	0.798	Pepeng/ October 2-5, 2009	5-Year
156	16.86819	120.390192	0.030	1.219	1.414	Mario/ September 18-22, 2014	5-Year
157	16.899269	120.447494	1.560	1.219	0.116	Nina/ September 19-23, 2008	5-Year
158	16.871183	120.392293	0.420	1.219	0.639	Mario/ September 18-22, 2014	5-Year
159	16.874163	120.395259	1.170	1.219	0.002	Mario/ September 18-22, 2014	5-Year
160	16.876445	120.396851	1.550	1.219	0.109	Mario/ September 18-22, 2014	5-Year
161	16.848025	120.422403	0.030	1.067	1.075	Mario/ September 18-22, 2014	5-Year
162	16.858217	120.423129	0.360	0.457	0.009	Nina/ September 19-23, 2008	5-Year
163	16.858217	120.423129	0.360	0.610	0.062	Nina/ September 19-23, 2008	5-Year
164	16.858217	120.423129	0.360	0.914	0.307	Nina/ September 19-23, 2008	5-Year
165	16.858217	120.423129	0.360	0.457	0.009	Nina/ September 19-23, 2008	5-Year
166	16.858217	120.423129	0.360	0.914	0.307	Nina/ September 19-23, 2008	5-Year
167	16.858217	120.423129	0.360	0.457	0.009	Nina/ September 19-23, 2008	5-Year
168	16.929667	120.435171	0.590	0.305	0.081	Ineng/ August 20-23, 2015	5-Year
169	16.863028	120.422294	1.360	1.219	0.020	Nina/ September 19-23, 2008	5-Year
170	16.863028	120.422294	1.360	0.610	0.563	Mario/ September 18-22, 2014	5-Year
171	16.863028	120.422294	1.360	0.914	0.199	Mario/ September 18-22, 2014	5-Year
172	16.863028	120.422294	1.360	0.457	0.815	Egay/ July 4-8, 2015	5-Year
173	16.863028	120.422294	1.360	0.914	0.199	Pepeng/ October 2-5, 2009	5-Year
174	16.863028	120.422294	1.360	1.067	0.086	Pepeng/ October 2-5, 2009	5-Year
175	16.880408	120.424228	2.580	1.219	1.852	Nina/ September 19-23, 2008	5-Year
176	16.880408	120.424228	0.240	0.305	0.004	Mario/ September 18-22, 2014	5-Year
177	16.880408	120.424228	0.240	0.457	0.047	Nina/ September 19-23, 2008	5-Year
178	16.880408	120.424228	0.240	0.914	0.455	Nina/ September 19-23, 2008	5-Year
179	16.929667	120.435171	0.590	0.610	0.000	Ineng/ August 20-23, 2015	5-Year
180	16.880408	120.424228	0.240	1.219	0.959	Pepeng/ October 2-5, 2009	5-Year
181	16.878232	120.453925	0.030	0.152	0.015	Karen/ August 18-21, 2008	5-Year
182	16.878232	120.453925	0.870	0.610	0.068	Nina/ September 19-23, 2008	5-Year
183	16.878232	120.453925	0.870	0.914	0.002	Nina/ September 19-23, 2008	5-Year

Point	Validation	Coordinates	Model	Validation	Error	Event /Dete	Rain Return/
Number	Lat	Lon	Var (m)	Points (m)	(m)	Event/Date	Scenario
184	16.878232	120.453925	0.870	0.457	0.170	Egay/ July 4-8, 2015	5-Year
185	16.878232	120.453925	0.870	0.152	0.515	Pepeng/ October 2-5, 2009	5-Year
186	16.878232	120.453925	0.870	0.152	0.515	Pepeng/ October 2-5, 2009	5-Year
187	16.881894	120.453837	0.080	0.457	0.142	Egay/ July 4-8, 2015	5-Year
188	16.881894	120.453837	0.630	0.610	0.000	Nina/ September 19-23, 2008	5-Year
189	16.881894	120.453837	0.630	0.914	0.081	Nina/ September 19-23, 2008	5-Year
190	16.894826	120.421115	0.030	1.219	1.414	Nina/ September 19-23, 2008	5-Year
191	16.881894	120.453837	0.630	0.457	0.030	Nina/ September 19-23, 2008	5-Year
192	16.881894	120.453837	0.630	0.305	0.106	Nina/ September 19-23, 2008	5-Year
193	16.881894	120.453837	0.630	0.457	0.030	Nina/ September 19-23, 2008	5-Year
194	16.82707	120.457052	0.030	0.152	0.015	Karen/ August 18-21, 2008	5-Year
195	16.833544	120.458516	0.030	0.152	0.015	Karen/ August 18-21, 2008	5-Year
196	16.939081	120.432689	1.070	0.305	0.586	Ineng/ August 20-23, 2015	5-Year
197	16.939081	120.432689	1.070	0.610	0.212	Ineng/ August 20-23, 2015	5-Year
198	16.879281	120.473799	0.030	0.152	0.015	Karen/ August 18-21, 2008	5-Year
199	16.880076	120.473558	0.030	0.305	0.076	Karen/ August 18-21, 2008	5-Year
200	16.853102	120.441135	0.240	0.457	0.047	Egay/ July 4-8, 2015	5-Year
201	16.894826	120.421115	0.030	0.610	0.336	Mario/ September 18-22, 2014	5-Year
202	16.853102	120.441135	0.240	0.610	0.137	Nina/ September 19-23, 2008	5-Year
203	16.853102	120.441135	0.240	0.914	0.455	Pepeng/ October 2-5, 2009	5-Year
204	16.853102	120.441135	0.240	0.457	0.047	Nina/ September 19-23, 2008	5-Year
205	16.853102	120.441135	0.240	0.305	0.004	Nina/ September 19-23, 2008	5-Year
206	16.853102	120.441135	0.240	0.457	0.047	Nina/ September 19-23, 2008	5-Year
207	16.857433	120.438893	0.380	0.457	0.006	Nina/ September 19-23, 2008	5-Year
208	16.857433	120.438893	0.380	0.610	0.053	Nina/ September 19-23, 2008	5-Year
209	16.857433	120.438893	0.380	0.914	0.286	Nina/ September 19-23, 2008	5-Year
210	16.857433	120.438893	0.380	0.457	0.006	Nina/ September 19-23, 2008	5-Year
211	16.857433	120.438893	0.380	0.305	0.006	Nina/ September 19-23, 2008	5-Year
212	16.894826	120.421115	0.030	0.914	0.782	Mario/ September 18-22, 2014	5-Year
213	16.857433	120.438893	0.380	0.457	0.006	Nina/ September 19-23, 2008	5-Year
214	16.837908	120.439136	0.870	0.914	0.002	Nina/ September 19-23, 2008	5-Year
215	16.837908	120.439136	0.870	0.610	0.068	Nina/ September 19-23, 2008	5-Year
216	16.837908	120.439136	0.870	0.914	0.002	Nina/ September 19-23, 2008	5-Year
217	16.837908	120.439136	0.870	0.457	0.170	Nina/ September 19-23, 2008	5-Year
218	16.837908	120.439136	0.870	0.914	0.002	Nina/ September 19-23, 2008	5-Year
219	16.837908	120.439136	0.870	0.610	0.068	Nina/ September 19-23, 2008	5-Year
220	16.843079	120.444522	0.530	0.914	0.148	Pepeng/ October 2-5, 2009	5-Year
221	16.843079	120.444522	0.530	0.610	0.006	Nina/ September 19-23, 2008	5-Year
222	16.843079	120.444522	0.530	0.914	0.148	Nina/ September 19-23, 2008	5-Year
223	16.893575	120.420878	0.080	0.914	0.696	Mario/ September 18-22, 2014	5-Year
224	16.894826	120.421115	0.030	0.457	0.182	Egay/ July 4-8, 2015	5-Year
225	16.843079	120.444522	0.530	0.457	0.005	Egay/ July 4-8, 2015	5-Year
226	16.843079	120.444522	0.530	0.914	0.148	Pepeng/ October 2-5, 2009	5-Year
227	16.843079	120.444522	0.530	0.610	0.006	Pepeng/ October 2-5, 2009	5-Year
228	16.849698	120.438357	0.630	0.914	0.081	Nina/ September 19-23, 2008	5-Year
229	16.849698	120.438357	0.630	0.610	0.000	Nina/ September 19-23, 2008	5-Year

Point	Validation	Coordinates	Model	Validation	Error	5 /5	Rain Return/
Number	Lat	Lon	Var (m)	Points (m)	(m)	Event/Date	Scenario
230	16.849698	120.438357	0.630	0.914	0.081	Nina/ September 19-23, 2008	5-Year
231	16.849698	120.438357	0.630	0.457	0.030	Nina/ September 19-23, 2008	5-Year
232	16.849698	120.438357	0.630	0.914	0.081	Nina/ September 19-23, 2008	5-Year
233	16.849698	120.438357	0.630	0.610	0.000	Nina/ September 19-23, 2008	5-Year
234	16.881002	120.42945	0.770	0.914	0.021	Nina/ September 19-23, 2008	5-Year
235	16.894826	120.421115	0.030	0.914	0.782	Nina/ September 19-23, 2008	5-Year
236	16.881002	120.42945	0.770	0.610	0.026	Nina/ September 19-23, 2008	5-Year
237	16.881002	120.42945	0.770	0.914	0.021	Nina/ September 19-23, 2008	5-Year
238	16.881002	120.42945	0.770	0.457	0.098	Nina/ September 19-23, 2008	5-Year
239	16.881002	120.42945	0.770	0.914	0.021	Pepeng/October 2-5, 2009	5-Year
240	16.881002	120.42945	0.770	0.610	0.026	Nina/ September 19-23, 2008	5-Year
241	16.882439	120.43447	0.080	0.152	0.005	Nina/ September 19-23, 2008	5-Year
242	16.882439	120.43447	0.080	0.610	0.280	Mario/ September 18-22, 2014	5-Year
243	16.882439	120.43447	0.080	0.914	0.696	Pepeng/October 2-5, 2009	5-Year
244	16.882439	120.43447	0.080	0.152	0.005	Egay/ July 4-8, 2015	5-Year
245	16.882439	120.43447	0.080	0.152	0.005	Pepeng/October 2-5, 2009	5-Year
246	16.894826	120.421115	0.030	1.219	1.414	Pepeng/October 2-5, 2009	5-Year
247	16.882439	120.43447	0.080	0.152	0.005	Pepeng/October 2-5, 2009	5-Year
248	16.889187	120.441924	0.770	0.914	0.021	Pepeng/October 2-5, 2009	5-Year
249	16.889187	120.441924	0.770	0.610	0.026	Nina/ September 19-23, 2008	5-Year
250	16.889187	120.441924	0.770	0.914	0.021	Nina/ September 19-23, 2008	5-Year
251	16.889187	120.441924	0.770	0.457	0.098	Nina/ September 19-23, 2008	5-Year
252	16.889187	120.441924	0.770	0.914	0.021	Nina/ September 19-23, 2008	5-Year
253	16.889187	120.441924	0.770	0.610	0.026	Karen/ August 18-21, 2008	5-Year
254	16.896562	120.417319	1.790	1.219	0.326	Nina/ September 19-23, 2008	5-Year
255	16.896562	120.417319	1.790	0.610	1.393	Mario/ September 18-22, 2014	5-Year
256	16.896562	120.417319	1.790	0.914	0.767	Mario/ September 18-22, 2014	5-Year
257	16.896562	120.417319	1.790	0.457	1.776	Egay/ July 4-8, 2015	5-Year
258	16.896562	120.417319	1.790	0.914	0.767	Pepeng/October 2-5, 2009	5-Year
259	16.896562	120.417319	1.790	1.067	0.523	Pepeng/ October 2-5, 2009	5-Year
260	16.81824	120.455085	0.060	0.914	0.730	Mario/ September 18-22, 2014	5-Year
261	16.893575	120.420878	0.080	0.457	0.142	Nina/ September 19-23, 2008	5-Year
262	16.824661	120.452799	0.770	1.067	0.088	Pepeng/October 2-5, 2009	5-Year
263	16.824807	120.456978	0.780	0.914	0.018	Karen/ August 18-21, 2008	5-Year
264	16.954716	120.488059	1.000	0.305	0.483	Mario/ September 18-22, 2014	5-Year
265	16.954716	120.488059	1.000	0.610	0.152	Mario/ September 18-22, 2014	5-Year
266	16.954716	120.488059	1.000	0.914	0.007	Mario/ September 18-22, 2014	5-Year
267	16.955932	120.488397	8.530	0.914	57.997	Mario/ September 18-22, 2014	5-Year
268	16.956386	120.489377	9.720	0.610	82.999	Mario/ September 18-22, 2014	5-Year
269	16.956386	120.489377	9.720	0.914	77.539	Mario/ September 18-22, 2014	5-Year
270	16.957308	120.487473	3.020	0.305	7.372	Mario/ September 18-22, 2014	5-Year
271	16.957308	120.487473	3.020	0.610	5.810	Mario/ September 18-22, 2014	5-Year
272	16.893575	120.420878	0.080	0.914	0.696	Mario/ September 18-22, 2014	5-Year
273	16.957308	120.487473	3.020	0.914	4.434	Mario/ September 18-22, 2014	5-Year
274	16.957957	120.487837	5.720	0.610	26.116	Mario/ September 18-22, 2014	5-Year
275	16.957957	120.487837	5.720	0.914	23.094	Mario/ September 18-22, 2014	5-Year

Point	Validation	Coordinates	Model	Validation	Error		Rain Return/
Number	Lat	Lon	Var (m)	Points (m)	(m)	Event/Date	Scenario
276	16.883609	120.463374	0.270	0.152	0.014	Karen/ August 18-21, 2008	5-Year
277	16.886231	120.453846	0.060	0.152	0.009	Nina/ September 19-23, 2008	5-Year
278	16.886231	120.453846	0.060	0.610	0.302	Mario/ September 18-22, 2014	5-Year
279	16.886231	120.453846	0.060	0.914	0.730	Karen/ August 18-21, 2008	5-Year
280	16.886231	120.453846	0.060	0.457	0.158	Egay/ July 4-8, 2015	5-Year
281	16.886231	120.453846	0.060	0.152	0.009	Pepeng/ October 2-5, 2009	5-Year
282	16.886231	120.453846	0.060	0.152	0.009	Pepeng/ October 2-5, 2009	5-Year
283	16.893575	120.420878	0.080	1.219	1.298	Pepeng/ October 2-5, 2009	5-Year
284	16.886664	120.448777	0.530	0.914	0.148	Mario/ September 18-22, 2014	5-Year
285	16.886664	120.448777	0.530	0.610	0.006	Mario/ September 18-22, 2014	5-Year
286	16.886664	120.448777	0.530	0.914	0.148	Mario/ September 18-22, 2014	5-Year
287	16.886664	120.448777	0.530	0.457	0.005	Nina/ September 19-23, 2008	5-Year
288	16.886664	120.448777	0.530	0.914	0.148	Nina/ September 19-23, 2008	5-Year
289	16.886664	120.448777	0.530	0.610	0.006	Nina/ September 19-23, 2008	5-Year
290	16.900465	120.41898	1.400	1.219	0.033	Nina/ September 19-23, 2008	5-Year
291	16.900465	120.41898	1.400	0.610	0.625	Mario/ September 18-22, 2014	5-Year
292	16.900465	120.41898	1.400	0.914	0.236	Mario/ September 18-22, 2014	5-Year
293	16.900465	120.41898	1.400	0.457	0.889	Egay/ July 4-8, 2015	5-Year
294	16.895093	120.452601	0.620	1.219	0.359	Nina/ September 19-23, 2008	5-Year
295	16.900465	120.41898	1.400	0.914	0.236	Pepeng/ October 2-5, 2009	5-Year
296	16.900465	120.41898	1.400	1.219	0.033	Pepeng/ October 2-5, 2009	5-Year
297	16.901592	120.416845	1.560	1.219	0.116	Pepeng/ October 2-5, 2009	5-Year
298	16.901592	120.416845	0.770	0.610	0.026	Mario/ September 18-22, 2014	5-Year
299	16.901592	120.416845	0.770	0.914	0.021	Nina/ September 19-23, 2008	5-Year
300	16.901592	120.416845	0.770	0.457	0.098	Egay/ July 4-8, 2015	5-Year
301	16.901592	120.416845	0.770	0.914	0.021	Nina/ September 19-23, 2008	5-Year
302	16.901592	120.416845	0.770	1.067	0.088	Karen/ August 18-21, 2008	5-Year
303	16.890264	120.425839	1.680	1.219	0.212	Nina/ September 19-23, 2008	5-Year
304	16.890264	120.425839	1.680	0.610	1.146	Mario/ September 18-22, 2014	5-Year
305	16.895093	120.452601	0.530	0.610	0.006	Mario/ September 18-22, 2014	5-Year
306	16.890264	120.425839	1.680	0.914	0.586	Mario/ September 18-22, 2014	5-Year
307	16.890264	120.425839	1.680	0.457	1.495	Egay/ July 4-8, 2015	5-Year
308	16.890264	120.425839	1.680	0.914	0.586	Pepeng/ October 2-5, 2009	5-Year
309	16.890264	120.425839	1.680	1.067	0.376	Pepeng/ October 2-5, 2009	5-Year
310	16.891806	120.42668	1.230	1.219	0.000	Nina/ September 19-23, 2008	5-Year
311	16.891806	120.42668	1.230	0.610	0.385	Mario/ September 18-22, 2014	5-Year
312	16.891806	120.42668	1.230	0.914	0.100	Mario/ September 18-22, 2014	5-Year
313	16.891806	120.42668	1.230	0.457	0.597	Egay/ July 4-8, 2015	5-Year
314	16.891806	120.42668	1.230	0.914	0.100	Pepeng/ October 2-5, 2009	5-Year
315	16.891806	120.42668	1.230	1.067	0.027	Pepeng/ October 2-5, 2009	5-Year
316	16.895093	120.452601	0.530	0.914	0.148	Nina/ September 19-23, 2008	5-Year
317	16.890983	120.423678	1.690	1.219	0.222	Nina/ September 19-23, 2008	5-Year
318	16.890983	120.423678	1.690	0.610	1.167	Mario/ September 18-22, 2014	5-Year
319	16.890983	120.423678	1.690	0.914	0.602	Mario/ September 18-22, 2014	5-Year
320	16.890983	120.423678	1.690	0.457	1.520	Egay/ July 4-8, 2015	5-Year
321	16.890983	120.423678	1.690	0.914	0.602	Pepeng/ October 2-5, 2009	5-Year

Hazard Mapping of the Philippines Using LiDAR (Phil-LiDAR 1)

Point	Validation	Coordinates	Model	Model Validation Error		Event/Dete	Rain Return/
Number	Lat	Lon	Var (m)	Points (m)	(m)	Event/Date	Scenario
322	16.890983	120.423678	1.690	1.067	0.388	Pepeng/ October 2-5, 2009	5-Year
323	16.892631	120.424425	1.090	0.305	0.617	Nina/ September 19-23, 2008	5-Year
324	16.892631	120.424425	1.090	0.610	0.231	Mario/ September 18-22, 2014	5-Year
325	16.892631	120.424425	1.090	0.914	0.031	Nina/ September 19-23, 2008	5-Year
326	16.892631	120.424425	1.090	0.457	0.400	Egay/ July 4-8, 2015	5-Year

RMSE 1.37709

ANNEX 12. Educational Institutions Affected in Amburayan Flood Plain

	Ilocos Sur			
	Alilem			
Duilding Name	Derengeu	R	ainfall Scenar	io
	Barangay	5-year	25-year	100-year
ALILEM CENTRAL SCHOOL	Alilem Daya			
ALILEM NHS (ALILEM DAYA HS)	Alilem Daya			
DALAWA ELEMENTARY SCHOOL	Dalawa	High	High	High
PALASIPAS ES	Dalawa			
AGUIWAS PS	Kiat			
GUILONG PS	Kiat	High	High	High
KIAT ES	Kiat			
	Tagudin			
Building Name	Barangay	R	ainfall Scenar	io
	Darangay	5-year	25-year	100-year
AG-AGUMAN ELEM. SCHOOL	Ag-Aguman			
AMBALAYAT HIGH SCHOOL	Ambalayat	High	High	High
AMBALAYAT IS	Ambalayat	High	High	High
BARACBAC COMM. SCH.	Ambalayat	Medium	High	High
OLD SUDIPEN NHS	Ambalayat	High	High	High
DACUTAN DAY CARE CENTER	Bimmanga	Medium	High	High
DAY CARE CENTER	Bimmanga	Medium	Medium	Medium
TALLAOEN ELEMENTARY SCHOOL	Bimmanga		Low	Low
BIO ES	Cabaroan			
CABULANGLANGAN ES	Cabulanglangan		High	High
TALLAOEN ELEMENTARY SCHOOL	Dardarat		Low	Low
AIRTOP COMPUTER SCHOOL	Del Pilar	Medium	Medium	High
SAN PEDRO COMMUNITY SCHOOL	Farola	Low	Medium	Medium
CAMPUS MATE GEN. MERCHANDISE	Las-Ud	Medium	Medium	High
ILOCOS SUR POLYTHECNIC STATE COLLEGE	Las-Ud	Medium	Medium	High
ISPSC	Las-Ud	Medium	High	High
TAGUDIN NHS	Las-Ud	Medium	High	High
TNHS	Las-Ud	Medium	High	High
PALLOGAN ES	Pallogan	Low	Medium	High
PUDOC EAST ELEMENTARY SCHOOL	Pudoc East	High	High	High
PUDOC WEST INTEGRATED SCHOOL	Pudoc West	High	High	High
ADVENTIST SCHOOL	Quirino			
MAGSAYSAY DAY CARE CENTER	Quirino	High	High	High
SAINT AUGUSTINE SCHOOL	Quirino	Medium	Medium	High
ST. AUGUSTINE CHURCH	Quirino	Medium	Medium	Medium
ST. AUGUSTINE SCHOOL	Quirino	Medium	Medium	High
TAGUDIN CENTRAL SCHOOL	Quirino		Low	Medium

TAGUDIN ELEMENTARY SCHOOL	Quirino			
UCCP CHRIST-GIFTED ACADEMY INC.	Quirino	Low	Medium	Medium
UCCP CHRIST-GIFTED INC.	Quirino	Medium	Medium	Medium
SAN MIGUEL ES	Salvacion	Medium	High	High

La Union						
Bangar						
Duilding Nome	Puilding Name Parangay		Rainfall Scenario			
	Darangay	5-year	25-year	100-year		
DO	Agdeppa	Medium	High	High		
BANGAOILAN ES	Bangaoilan West	High	High	High		
BANGAR CES	Barraca	Medium	High	High		
BANGAR ELEMENTARY SCHOOL	Barraca	Medium	High	High		
CAGGAO ES	Barraca	Medium	High	High		
DAYCARE CENTER	Barraca	High	High	High		
TER-CON ELEMENTARY SCHOOL	Barraca	Medium	High	High		
CADAPLI ELEMENTARY SCHOOL	Cadapli	Medium	Medium	Medium		
DONA F. LACSAMANA VDA DE ORTEGA MNHS - CASA CRISTO ANNEX	Cadapli	Medium	Medium	Medium		
SENG-NGAT ELEMENTARY SCHOOL	Cadapli					
CAGGAO ES	Caggao	High	High	High		
	Central West		High	High		
ST. CHRISTOPHER ACADEMY	No. 2	Medium				
	Central West	Medium	High	High		
RUSES	No. 3					
PUDOC ES	Consuegra	High	High	High		
GENERAL PRIM ELEMENTARY SCHOOL	General Prim West	Low	High	High		
DAY CARE CENTER	General Terrero	Medium	High	High		
TER-CON ELEMENTARY SCHOOL	General Terrero	Medium	High	High		
ALJAY'S STORE0	Maria Cristina West	Medium	High	High		
GEN. PRIM DAY CARE CENTER	Maria Cristina West	Medium	High	High		
MARIA CRISTINA ELEMENTARY SCHOOL	Maria Cristina West	Medium	High	High		
REGIONAL SCIENCE HS, LA UNION	Maria Cristina West	Medium	High	High		
MINDORO INTEGRATED SCHOOL	Mindoro	High	High	High		
AG-NA ELEM.SCHOOL	Nagsabaran	High	High	High		
PARATONG ES	Paratong No. 3	High	High	High		
PARATONG DAY CARE	Paratong No. 4		Medium	Medium		
PARATONG ES	Paratong Norte	Medium	High	High		
MA. CRISTINA ES	Reyna Regente	Medium	High	High		
RUS ES	Reyna Regente	Medium	High	High		

DO	San Blas	High	High	High
SENG-NGAT ELEMENTARY SCHOOL	San Cristobal		Low	Low
	Sudipen			
	Deveneeu	Rainfall Scenario		
Building Name	Barangay	5-year	25-year	100-year
DUPLAS ES	Duplas			
MALICLICO ES	Duplas			
OLD SUDIPEN ES	Ilocano	High	High	High
OLD SUDIPEN NHS	Ilocano	High	High	High
SUDIPEN VOC'L SCH.	Ipet		Low	High
SUDIPEN CENTRAL SCHOOL	Poblacion	High	High	High
CASTRO ES	Sengngat	Low	Low	Low
SENGNGAT ES	Sengngat	Low	Low	Medium
PORPORIKET ES	Up-Uplas			
UP-UPLAS ES	Up-Uplas			

ANNEX 13. Medical Institutions Affected in Amburayan Flood Plain

llocos Sur				
Tagudin				
Building Name	Barangay	Rainfall Scenario		
		5-year	25-year	100-year
TALLAOEN HEALTH CENTER	Bimmanga	Low	Low	Medium
TALLAOEN HEALTH CENTER	Dardarat	Low	Low	Medium
ST. THERESE CHILDREN'S CLINIC	Las-Ud	Medium	Medium	Medium
TAGUDIN MEDICAL DIAGNOSTIC CENTER	Las-Ud	High	High	High
ATIGA MATERNITY AND DIAGNOSTIC CENTER	Quirino		Low	Medium
DENTAL CLINIC	Quirino	Medium	Medium	High
ST. THERESE CHILDREN'S CLINIC	Quirino	Medium	Medium	High
GRANADA OPTICAL CLINIC	Rizal			

La Union				
Bangar				
Building Name	Barangay	Rainfall Scenario		
		5-year	25-year	100-year
ARTINEZ STORE	Central West No. 2	Medium	High	High
RURAL HEALTH UNIT	Maria Cristina West	Low	Medium	High