HAZARD MAPPING OF THE PHILIPPINES USING LIDAR (PHIL-LIDAR I)

LiDAR Surveys and Flood Mapping of Bansud River

University of the Philippines Training Center for Applied Geodesy and Photogrammetry University of the Philippines Los Baños (UPLB)

APRIL 2017

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

© University of the Philippines Diliman and University of the Philippines Los Baños 2017

Published by the UP Training Center for Applied Geodesy and Photogrammetry (TCAGP) College of Engineering University of the Philippines – Diliman Quezon City 1101 PHILIPPINES

This research project is supported by the Department of Science and Technology (DOST) as part of its Grants-in-Aid (GIA) Program and is to be cited as:

E.C. Paringit and E.R. Abucay (eds.) (2017), LiDAR Surveys and Flood Mapping of Bansud River, Quezon City: University of the Philippines Training Center for Applied Geodesy and Photogrammetry – 183pp

The text of this information may be copied and distributed for research and educational purposes with proper acknowledgement. While every care is taken to ensure the accuracy of this publication, the UP TCAGP disclaims all responsibility and all liability (including without limitation, liability in negligence) and costs which might incur as a result of the materials in this publication being inaccurate or incomplete in any way and for any reason.

For questions/queries regarding this report, contact:

Asst. Prof. Edwin R. Abucay

Project Leader, Phil-LiDAR 1 Program University of the Philippines, Los Banos Los Banos, Philippines 4031 E-mail: erabucay@up.edu.ph

Enrico C. Paringit, Dr. Eng.

Program Leader, Phil-LiDAR 1 Program University of the Philippines Diliman Quezon City, Philippines 1101 E-mail: ecparingit@up.edu.ph

National Library of the Philippines ISBN: 978-621-430-125-6

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

TABLE OF CONTENTS

LIST OF TABLES	v
LIST OF FIGURES	vii
LIST OF ACRONYMS AND ABBREVIATIONS	ix
CHAPTER 1: OVERVIEW OF THE PROGRAM AND BANSUD RIVER	1
1.1 Background of the Phil-LIDAR 1 Program	1
1.2 Overview of the Bansud River Basin	1
CHAPTER 2: LIDAR DATA ACQUISITION OF THE BANSUD FLOODPLAIN	3
2.1 Flight Plans	3
2.2 Ground Base Stations	6
2.3 Flight Missions	11
2.4 Survey Coverage	12
CHAPTER 3: LIDAR DATA PROCESSING OF THE BANSUD FLOODPLAIN	14
3.1 Overview of the LIDAR Data Pre-Processing	14
3.2 Transmittal of Acquired LiDAR Data	15
3 3 Trajectory Computation	15
3.4 LiDAR Point Cloud Computation	18
2.5 LiDAR Point Cloud Computation	10
2.6 LiDAR Quality Clecking	19 20
2.7 LiDAR Point Cloud Classification and Orthophotograph Destification	25 25
3.7 LIDAR Image Processing and Orthopholograph Reclinication	25
3.8 DEIVI EURING dhu Hyuro-Correction	27
3.9 MOSAICKING OT BIOCKS	29
3.10 Calibration and Validation of Mosaicked LiDAR DEM.	31
3.11 Integration of Bathymetric Data into the LiDAR Digital Terrain Model	34
3.12 Feature Extraction	36
3.12.1 Quality Checking (QC) of Digitized Features' Boundary	36
3.12.2 Height Extraction	36
3.12.3 Feature Attribution	36
3.12.4 Final Quality Checking of Extracted Features	38
CHAPTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE BANSUD RIVER BASIN	39
4.1 Summary of Activities	39
4.2 Control Survey	41
4.2 Control Survey 4.3 Baseline Processing	41 45
4.2 Control Survey 4.3 Baseline Processing 4.4 Network Adjustment	41 45 46
 4.2 Control Survey 4.3 Baseline Processing 4.4 Network Adjustment 4.5 Cross-section and Bridge As-Built survey and Water Level Marking 	41 45 46 48
 4.2 Control Survey 4.3 Baseline Processing 4.4 Network Adjustment 4.5 Cross-section and Bridge As-Built survey and Water Level Marking 4.6 Validation Points Acquisition Survey 	41 45 46 48 52
 4.2 Control Survey 4.3 Baseline Processing 4.4 Network Adjustment 4.5 Cross-section and Bridge As-Built survey and Water Level Marking 4.6 Validation Points Acquisition Survey 4.7 River Bathymetric Survey 	41 45 46 48 52 55
 4.2 Control Survey	41 45 46 48 52 55 58
 4.2 Control Survey	41 45 46 48 52 55 58 58
 4.2 Control Survey	41 45 46 48 52 55 58 58 58
 4.2 Control Survey	41 45 46 48 52 55 58 58 58 58
 4.2 Control Survey	41 45 46 48 52 55 58 58 58 58
 4.2 Control Survey	41 45 46 52 55 55 58 58 58 58 59 61
 4.2 Control Survey	41 45 46 48 52 55 58 58 58 58 59 61
 4.2 Control Survey	41 45 46 48 52 55 58 58 58 58 59 61 63
 4.2 Control Survey	41 45 46 52 55 55 58 58 58 59 61 63 67 68
 4.2 Control Survey	41 45 46 52 55 58 58 58 58 59 61 63 67 68
 4.2 Control Survey	41 45 46 48 52 55 58 58 58 58 59 61 63 67 68 69
 4.2 Control Survey	41 45 46 48 52 55 58 58 58 58 58 61 63 67 68 69
 4.2 Control Survey	41 45 46 48 52 55 58 58 58 58 58 61 63 67 68 69 70
 4.2 Control Survey. 4.3 Baseline Processing. 4.4 Network Adjustment. 4.5 Cross-section and Bridge As-Built survey and Water Level Marking. 4.6 Validation Points Acquisition Survey. 4.7 River Bathymetric Survey. 4.7 River Bathymetric Survey. CHAPTER 5: FLOOD MODELING AND MAPPING 5.1 Data Used for Hydrologic Modeling. 5.1.1 Hydrometry and Rating Curves. 5.1.2 Precipitation. 5.1.3 Rating Curves and River Outflow 5.2 RIDF Station. 5.3 HMS Model 5.4 Cross-section Data 5.5 Flo 2D Model. 5.6 Results of HMS Calibration. 5.7 Calculated Outflow hydrographys and Discharge Values for different Rainfall Return Periods 5.7.1 Hydrograph using the Rainfall Runoff Model. 	41 45 46 48 52 55 58 58 58 58 58 61 63 63 63 69 70 70
 4.2 Control Survey	41 45 46 48 52 55 58 58 58 58 58 61 63 67 68 69 70 70 71
 4.2 Control Survey 4.3 Baseline Processing 4.4 Network Adjustment	41 45 46 48 52 55 58 58 58 58 58 61 63 67 68 69 70 70 71 74
 4.2 Control Survey	41 45 46 48 52 55 58 58 58 58 59 61 63 67 68 69 70 71 74 74
 4.2 Control Survey. 4.3 Baseline Processing. 4.4 Network Adjustment. 4.5 Cross-section and Bridge As-Built survey and Water Level Marking. 4.6 Validation Points Acquisition Survey. 4.7 River Bathymetric Survey. CHAPTER 5: FLOOD MODELING AND MAPPING 5.1 Data Used for Hydrologic Modeling. 5.1.1 Hydrometry and Rating Curves. 5.1.2 Precipitation. 5.1.3 Rating Curves and River Outflow 5.2 RIDF Station. 5.3 HMS Model. 5.4 Cross-section Data 5.5 Flo 2D Model. 5.6 Results of HMS Calibration. 5.7 Calculated Outflow hydrographys and Discharge Values for different Rainfall Return Periods. 5.7.1 Hydrograph using the Rainfall Runoff Model. 5.7.2 Discharge Data Using Dr. Horritt's Recommended Hydrologic Method. 5.8 River Analysis (RAS) Model Simulation 5.9 Flow Depth and Flood Hazard. 5.10 Inventory of Areas Exposed to Flooding 	41 45 46 48 52 55 58 58 58 58 59 61 63 67 63 69 70 70 71 74 74 74
 4.2 Control Survey. 4.3 Baseline Processing	41 45 46 48 52 55 58 58 58 58 59 61 63 67 63 67 68 70 71 74 74 74 81 81
 4.2 Control Survey	41 45 46 48 52 55 58 58 58 58 58 61 63 67 63 67 68 69 70 70 71 74 74 81 89 89
 4.2 Control Survey	41 45 46 48 52 55 58 58 58 58 58 59 61 63 63 67 63 63 69 70 70 71 74 74 81 89 92 93
 4.2 Control Survey. 4.3 Baseline Processing. 4.4 Network Adjustment. 4.5 Cross-section and Bridge As-Built survey and Water Level Marking. 4.6 Validation Points Acquisition Survey. 4.7 River Bathymetric Survey. CHAPTER 5: FLOOD MODELING AND MAPPING 5.1 Data Used for Hydrologic Modeling. 5.1.1 Hydrometry and Rating Curves. 5.1.2 Precipitation. 5.1.3 Rating Curves and River Outflow 5.2 RIDF Station. 5.3 HMS Model. 5.4 Cross-section Data 5.5 Flo 2D Model. 5.6 Results of HMS Calibration. 5.7 Calculated Outflow hydrographys and Discharge Values for different Rainfall Return Periods. 5.7.1 Hydrograph using the Rainfall Runoff Model. 5.7.2 Discharge Data Using Dr. Horritt's Recommended Hydrologic Method. 5.8 River Analysis (RAS) Model Simulation 5.9 Flow Depth and Flood Hazard. 5.10 Inventory of Areas Exposed to Flooding 5.11 Flood Validation REFERENCES Annex 1. Technical Specifications of the LiDAR Sensors used in the Bansud Floodplain Survey. 	41 45 46 48 52 55 58 58 58 58 58 58 58 61 63 63 63 63 63 63 70 70 71 74 74 81 89 93
 4.2 Control Survey. 4.3 Baseline Processing. 4.4 Network Adjustment. 4.5 Cross-section and Bridge As-Built survey and Water Level Marking. 4.6 Validation Points Acquisition Survey. 4.7 River Bathymetric Survey. CHAPTER 5: FLOOD MODELING AND MAPPING 5.1 Data Used for Hydrologic Modeling. 5.1.1 Hydrometry and Rating Curves. 5.1.2 Precipitation. 5.1.3 Rating Curves and River Outflow 5.2 RIDF Station. 5.3 HMS Model 5.4 Cross-section Data 5.5 Flo 2D Model. 5.6 Results of HMS Calibration. 5.7 Calculated Outflow hydrographys and Discharge Values for different Rainfall Return Periods. 5.7.1 Hydrograph using the Rainfall Runoff Model. 5.8 River Analysis (RAS) Model Simulation . 5.9 Flow Depth and Flood Hazard. 5.10 Inventory of Areas Exposed to Flooding . 5.11 Flood Validation REFERENCES Annex 1. Technical Specifications of the LiDAR Sensors used in the Bansud Floodplain Survey. 	41 45 46 48 52 55 58 58 58 58 58 58 61 63 61 63 63 67 68 70 70 71 74 74 74 81 89 93 93 96
 4.2 Control Survey	41 45 46 48 52 55 58 58 58 58 58 58 61 63 61 63 67 68 69 70 70 71 74 74 81 89 93 93 96 99

Annex 5. Data Transfer Sheet for Bansud Floodplain	108
Annex 6. Flight logs for the flight missions	112
Annex 7. Flight Status Reports	120
Annex 8. Mission Summary Reports	129
Annex 9. Bansud Model Basin Parameters	169
Annex 10. Bansud Model Reach Parameters	171
Annex 11. Bansud Field Validation Points	172
Annex 12. Phil-LiDAR 1 UPLB Team Composition	175

LIST OF TABLES

Table 1. Flight planning parameters for Aquarius LiDAR system.	3
Table 2. Flight planning parameters for Gemini LiDAR system.	4
Table 3. Details of the recovered NAMRIA horizontal control point MRE-54 used as base	
station for the LiDAR Acquisition.	7
Table 4. Details of the recovered NAMRIA horizontal control point MRE-4563 used as base	•
station for the LIDAR Acquisition.	8
Table 5. Details of the recovered NAMIRIA norizontal control point MIRE-11 used as base	0
Station for the LiDAR Acquisition	9
station for the LiDAR Acquisition	٥
Table 7 Details of the recovered NAMRIA borizontal control point MRE-56 used as base	9
station for the LiDAR Acquisition	9
Table 8. Details of the recovered established horizontal control point MRE-56A used as base	
station for the LiDAR Acquisition.	. 10
Table 9. Ground control points used during the LiDAR data acquisition.	. 10
Table 10. Flight missions for LiDAR data acquisition in Bansud floodplain	. 11
Table 11. Actual parameters used during LiDAR data acquisition.	. 11
Table 12. List of municipalities and cities surveyed during Bansud floodplain LiDAR survey.	. 12
Table 13. Self-calibration Results values for Bansud flights.	. 18
Table 14. List of LiDAR blocks for the Bansud floodplain	. 19
Table 15. Bansud classification results in TerraScan.	. 23
Table 16. LiDAR blocks with its corresponding areas	. 27
Table 17. Shift values of each LiDAR block of Bansud Floodplain	. 29
Table 18. Calibration Statistical Measures	. 33
Table 19. Validation Statistical Measures	. 34
Table 20. Details of the quality checking ratings for the building features extracted for the	
Bansud River Basin	. 36
Table 21. Building features extracted for Bansud Floodplain.	. 37
Table 22. Total length of extracted roads for Bansud Floodplain.	. 37
Table 23. Number of extracted water bodies for Bansud Floodplain.	. 37
Table 24. List of reference and control points used during the survey in Bansud River (Source:	
	.41
Table 25. The Baseline processing report for the Bansud River GNSS static observation survey	. 45
Table 26. Constraints applied to the adjustment of the control points.	. 46
Table 27. Adjusted grid coordinates for the control points used in the Bansud River flood	16
pidin Survey Table 28 Adjusted geodetic coordinates for control points used in the Bansud Biver Flood Plain	40
validation	17
Table 29 The reference and control points utilized in the Bansud River Static Survey with their	
corresponding locations (Source: NAMRIA_LIP-TCAGP)	47
Table 30. RIDE values for the Romblon Rain Gauge, as computed by PAGASA.	. 61
Table 31. Range of calibrated values for the Bansud River Basin.	. 70
Table 32. Summary of the Efficiency Test of the Bansud HMS Model	. 71
Table 33. The peak values of the Bansud HEC-HMS Model outflow using the Maasin RIDF.	. 72
Table 34. Summary of Bansud river (1) discharge generated in HEC-HMS	. 73
Table 35. Summary of Bansud river (2) discharge generated in HEC-HMS	. 73
Table 36. Summary of Bansud river (3) discharge generated in HEC-HMS	. 73
Table 37. Validation of river discharge estimates.	. 73
Table 38. Municipalities affected in Bansud floodplain	. 74
Table 39. Affected areas in Bansud, Oriental Mindoro during a 5-Year Rainfall Return Period	. 81
Table 40. Affected areas in Gloria, Oriental Mindoro during a 5-Year Rainfall Return Period	. 82
Table 41. Affected areas in Bansud, Oriental Mindoro during a 25-Year Rainfall Return Period	. 84
Table 42. Affected areas in Gloria, Oriental Mindoro during a 25-Year Rainfall Return Period	. 85
Table 43. Affected areas in Bansud, Oriental Mindoro during a 100-Year Rainfall Return Period	. 87
Table 44. Affected areas in Gloria, Oriental Mindoro during a 100-Year Rainfall Return Period	. 88
Table 45. Actual Flood Depth versus Simulated Flood Depth at different levels in the Bansud	
River Basin	. 91
Table 46. Summary of the Accuracy Assessment in the Bansud River Basin Survey	. 91

LIST OF FIGURES

Figure 1. Map of Bansud River Basin (in brown).	2
Figure 2. Flight plans and base stations used for Bansud floodplain	5
Figure 3 GPS set-up over MRE-54 (a) inside the compound of the barangay hall of Maliangcog	
municipality of Pinamalayan. Oriental Mindoro: and NAMRIA reference point MRE-54 (b) as	
recovered by the field team	7
Figure 4. GPS set-up over MPE-4562 (a) just outside the compound of the barangay hall of Bray	/
Degale gale municipality of Dinamelayan, Oriental Minderey and NAMPIA reference point	
Pagaia-gaia, municipality of Philamalayan, Oriental Minuoro, and NAMINA reference point	0
IVIRE-4503 (D) as recovered by the held team	0
Figure 5. Actual LIDAR survey coverage for Bansud Hoodplain.	. 13
Figure 6. Schematic diagram for the data pre-processing.	. 15
Figure 7. Smoothed Performance Metric Parameters of a Bansud Flight 1070A.	. 16
Figure 8. Solution Status Parameters of Bansud Flight 10/0A	.1/
Figure 9. Best Estimated Trajectory of the LiDAR missions conducted over the Bansud Floodplain	. 18
Figure 10. Boundaries of the processed LiDAR data over the Bansud Floodplain	. 19
Figure 11. Image of data overlap for Bansud floodplain	. 20
Figure 12. Pulse density map of the merged LiDAR data for Bansud floodplain	. 21
Figure 13. Elevation difference Map between flight lines for the Bansud Floodplain Survey	. 22
Figure 14. Quality checking for Bansud flight 1070A using the Profile Tool of QT Modeler	. 23
Figure 15. Tiles for Bansud floodplain (a) and classification results (b) in TerraScan	. 24
Figure 16. Point cloud before (a) and after (b) classification	. 24
Figure 17. The production of last return DSM (a) and DTM (b), first return DSM (c) and	
secondary DTM (d) in some portion of Bansud floodplain.	. 25
Figure 18. Bansud floodplain with available orthophotographs	. 26
Figure 19. Sample orthophotograph tiles for Bansud floodplain.	. 26
Figure 20. Portions in the DTM of the Bansud Floodplain – a bridge before (a) and after	
(b) manual editing; and a mountain ridge before (c) and after (d) data retrieval	. 28
Figure 21. Map of processed LiDAR data for the Bansud Floodplain.	. 30
Figure 22. Map of Bansud Floodplain with validation survey points in green	. 32
Figure 23. Correlation plot between calibration survey points and LiDAR data	. 33
Figure 24. Correlation plot between the validation survey points and the LiDAR data	. 34
Figure 25. Map of Bansud floodplain with bathymetric survey points in blue	. 35
Figure 26. Blocks (in blue) of Bansud building features that was subjected to OC.	. 36
Figure 27. Extracted features of the Bansud Floodplain.	.38
Figure 28. Bansud River Survey Extent.	. 40
Figure 29. GNSS network of Bansud River field survey.	. 42
Figure 30. GPS setup of Trimble [®] SPS 882 at MRF-32, located at the Municipal Park of Victoria.	
in Brgy. Poblacion 1. Oriental Mindoro.	. 43
Figure 31, GPS setup of Trimble [®] SPS 852 at MOR-10, located in the approach of the Cawacat	
Bridge in Bry Campasaan Municipality of Bulalacao Oriental Mindoro	43
Figure 32 GPS setup of Trimble [®] SPS 985 at MRE-4650 an LMS control point located at the	. 15
approach of Bansud Bridge in Brgy Pagasa Municipality of Bansud Oriental Mindoro	ΔΔ
Figure 33 GPS setup of Trimble [®] SPS 852 at ORM-1 located on Subaan Bridge Broy Subaan	
Municipality of Socorro, Oriental Mindoro	лл
Figure 34 GPS setup of Trimble® SPS 985 at SLIB-1 an established control point located at	
Maramot Residence in Broy Subaan, Municipality of Socorro, Oriental Mindoro	15
Figure 35 Cross-section survey for Bansud Bridge Bray Pagasa Oriental Mindoro	.4J /12
Figure 36 Location map of the Bansud Bridge Crocs Section	. 4 0 //0
Figure 37. The Bansud Bridge cross-section survey drawn to scale	50
Figure 29. The Dansud Bridge as built survey data	. JU
Figure 30. Mater level markings on the post of Pancud Pridge	. 51
Figure 39. Water level markings on the post of bansud bruge	. JZ
Figure 40. GNSS Receiver THILDIE SPS 882 Histalieu olf a vehicle for Ground Valuation Survey	. 33 EA
Figure 41. The extent of the bathymotric curvey at Pancud Piver: unstream (a) and downstream (b)	. 54
Figure 42. Set up of the Dancud Piver Pathymetry Curvey.	
Figure 45. The Extent of the Dahsud River Dathymetry Survey.	. 50
Figure 44. THE Datisuu Riverbeu Flutile	. 3/
Figure 45. Location interpolit of Denous Prides	. 59
Figure 40. CLOSS-SECTION FIOL OF BAIISUG BRIDGE	. 00
Figure 47. The falling curve at Ballsuu Bridge	. 00
Figure 40. Relation of Domblon DIDE Station relative to Densud Diver Desire	. 01
FIGURE 49. LOCATION OF KOMPTON KIDE STATION FEATIVE TO BANSUG KIVEE BASIN	. 02
rigure 50. Synthetic storm generated for a 24-hr period rainfail for various return periods	. 02

Figure 51. Soil Map of Bansud River Basin	3
Figure 52. Land Cover Map of Bansud River Basin	1
Figure 53. Slope Map of the Bansud River Basin	5
Figure 54. Stream Delineation Map of Bansud River Basin	5
Figure 55. Bansud river basin model generated in HEC-HMS	7
Figure 56. River cross-section of the Bansud River through the ArcMap HEC GeoRas tool	7
Figure 57. A screenshot of the river sub-catchment with the computational area to be modeled	
in FLO-2D Grid Developer System Pro (FLO-2D GDS Pro)68	3
Figure 58. Outflow Hydrograph of Bansud produced by the HEC-HMS model compared with	
observed outflow	9
Figure 59. The Outflow hydrograph at the Bansud Station, generated using the Romblon RIDF	
simulated in HEC-HMS	1
Figure 60. Basud river (1) generated discharge using 5-, 25-, and 100-year Romblon	_
rainfall intensity-duration-frequency (RIDF) in HEC-HMS.	2
Figure 61. Basud river (2) generated discharge using 5-, 25-, and 100-year Rombion	_
rainfall intensity-duration-frequency (RIDF) in HEC-HMS.	2
Figure 62. Basud river (3) generated discharge using 5-, 25-, and 100-year Rombion	~
raintali intensity-duration-trequency (RIDF) in HEC-HMS.	3
Figure 63. Sample output map of the Bansud KAS Model.	₽. _
Figure 64. A 100-year Flood Hazard Map for Bansud Floodplain overlaid on Google Earth Imagery75	2
Figure 65. A 100-year Flow Depth Map for Bansud Floodplain overlaid on Google Earth imagery	с 7
Figure 67. A 25-year Flow Donth Man for Pansud Floodplain overlaid on Google Earth imagery.	/
Figure 67. A 23-year Flood Hazard Map for Bansud Floodplain overlaid on Google Earth imagery	о 0
Figure 60. A 5-year Flood Depth Map for Bansud Floodplain Overlaid on Google Earth imagery	י ר
Figure 70. Affected areas in Bansud. Oriental Mindoro during a 5-Year Rainfall Return Period	ר כ
Figure 71 Affected areas in Gloria Oriental Mindoro during a 5-Year Rainfall Return Period	2
Figure 72 Affected areas in Bansud, Oriental Mindoro during a 25-Year Rainfall Return Period	Ś
Figure 73. Affected areas in Gloria. Oriental Mindoro during a 25-Year Rainfall Return Period.	6
Figure 74. Affected areas in Bansud. Oriental Mindoro during a 100-Year Rainfall Return Period	8
Figure 75. Affected areas in Gloria. Oriental Mindoro during a 100-Year Rainfall Return Period	9
Figure 76. Validation Points for a 25-year Flood Depth Map of the Bansud Floodplain	C
Figure 77. Flood depth map vs actual flood depth	C

LIST OF ACRONYMS AND ABBREVIATIONS

AAC	Asian Aerospace Corporation		
Ab	abutment		
ALTM	Airborne LiDAR Terrain Mapper		
ARG	automatic rain gauge		
AWLS	Automated Water Level Sensor		
BA	Bridge Approach		
BM	benchmark		
CAD	Computer-Aided Design		
CN	Curve Number		
CSRS	Chief Science Research Specialist		
DAC	Data Acquisition Component		
DEM	Digital Elevation Model		
DENR	Department of Environment and Natural Resources		
DOST	Department of Science and Technology		
DPPC	Data Pre-Processing Component		
DREAM	Disaster Risk and Exposure Assessment for Mitigation [Program]		
DRRM	Disaster Risk Reduction and Management		
DSM	Digital Surface Model		
DTM	Digital Terrain Model		
DVBC	Data Validation and Bathymetry Component		
FMC	Flood Modeling Component		
FOV	Field of View		
GiA	Grants-in-Aid		
GCP	Ground Control Point		
GNSS	Global Navigation Satellite System		
GPS	Global Positioning System		
HEC-HMS	Hydrologic Engineering Center - Hydrologic Modeling System		
HEC-RAS	Hydrologic Engineering Center - River Analysis System		
HC	High Chord		
IDW	Inverse Distance Weighted [interpolation method]		
IMU	Inertial Measurement Unit		
kts	knots		
LAS	LiDAR Data Exchange File format		
LC	Low Chord		
LGU	local government unit		
Lidar	Light Detection and Ranging		
LMS	LiDAR Mapping Suite		
m AGL	meters Above Ground Level		

MMS	Mobile Mapping Suite		
MSL	mean sea level		
NAMRIA	National Mapping and Resource Information Authority		
NSTC	Northern Subtropical Convergence		
PAF	Philippine Air Force		
PAGASA	Philippine Atmospheric Geophysical and Astronomical Services Administration		
PDOP	Positional Dilution of Precision		
РРК	Post-Processed Kinematic [technique]		
PRF	Pulse Repetition Frequency		
PTM	Philippine Transverse Mercator		
QC	Quality Check		
QT	Quick Terrain [Modeler]		
RA	Research Associate		
RIDF	Rainfall-Intensity-Duration- Frequency		
RMSE	Root Mean Square Error		
SAR	Synthetic Aperture Radar		
SCS	Soil Conservation Service		
SRTM	Shuttle Radar Topography Mission		
SRS	Science Research Specialist		
SSG	Special Service Group		
ТВС	Thermal Barrier Coatings		
UPLB	University of the Philippines Los Baños		
UP-TCAGP	University of the Philippines – Training Center for Applied Geodesy and Photogrammetry		
UTM	Universal Transverse Mercator		
WGS	World Geodetic System		

CHAPTER 1: OVERVIEW OF THE PROGRAM AND BANSUD RIVER

Enrico C. Paringit, Dr. Eng., Asst. Prof. Edwin Abucay, and Ms. Miyah D. Queliste

1.1 Background of the Phil-LIDAR 1 Program

The University of the Philippines Training Center for Applied Geodesy and Photogrammetry (UP-TCAGP) launched a research program entitled "Nationwide Hazard Mapping using LiDAR in 2014" or Phil-LiDAR 1, supported by the Department of Science and Technology (DOST) Grants-in-Aid (GiA) Program. The program was primarily aimed at acquiring a national elevation and resource dataset at sufficient resolution to produce information necessary to support the different phases of disaster management. Particularly, it targeted to operationalize the development of flood hazard models that would produce updated and detailed flood hazard maps for the major river systems in the country.

Also, the program was aimed at producing an up-to-date and detailed national elevation dataset suitable for 1:5,000 scale mapping, with 50 cm and 20 cm horizontal and vertical accuracies, respectively. These accuracies were achieved through the use of the state-of-the-art Light Detection and Ranging (LiDAR) airborne technology procured by the project through DOST. The methods applied in this report are thoroughly described in a separate publication entitled "FLOOD MAPPING OF RIVERS IN THE PHILIPPINES USING AIRBORNE LIDAR: METHODS (Paringit, et. al. 2017) available separately.

The implementing partner university for the Phil-LiDAR 1 Program is the University of the Philippines Los Banos (UPLB). UPLB is in charge of processing LiDAR data and conducting data validation reconnaissance, cross section, bathymetric survey, validation, river flow measurements, flood height and extent data gathering, flood modeling, and flood map generation for the 45 river basins in the MIMAROPA Region. The university is located at Los Baños, Laguna.

1.2 Overview of the Bansud River Basin

Bansud River Basin is a 8,470-hectare watershed located in Oriental Mindoro. It covers the barangays of Manguyang and Conrazon in Gloria municipality; Pag-asa, Poblacion, Alcadesma, Proper Bansud, Proper Tiguisan, Salcedo, Rosacara, Manihala, Malo, Tawas, Bato, and Sumagui in Bansud; and, Banus, Sigange, Carmundo, Libertad and Labasan in Bongabong. The basin area has seven geological classifications with Upper-Miocene-Pliocene rocks as the most dominant type while the remaining include Cretaceous-Paleogene and Oligocene-Miocene. In terms of topography, the river basin has 0-50% slope and elevation between 0-250 meters above mean sea level. Sandy clay loam, loam and clay loam are the types of soil that can be found in the area. Three land cover types dominant the river basin including cultivated land (perennial crops), open forests and grasslands.

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

Figure 1. Map of Bansud River Basin (in brown).

Climate Type I and III prevails in MIMAROPA and Laguna based on the Modified Corona Classification of climate. Type I has two pronounced seasons, dry from November to April, and wet the rest of the year with maximum rain period from June to September. On the other hand, Type III has no very pronounced maximum rain period and with short dry season lasting only from one to three months, during the period from December to February or from March to May.

Bansud River passes through Manguyan and Conrazon in Gloria; Pagasa, Poblacion, Alcadesma, Proper Bansud, Proper Tiguisan, Salcedo, Rosacara, Manihala, Malo, Tawas, Bato and Sumagui in Bansud; and, Banus, Sigange, Carmundo, Libertad and Labasan in Bongabong. The 2010 NSO Census of Population and Housing records showed that, Banus in Gloria; Poblacion in Bansud and Labasan in Bongabong are the most populated barangays located within the river basin.

According to the Mines and Geosciences Bureau, barangays Manguyang and Banus of Gloria; Rosacara, Manihala and Malo of Bansud; and, Tawas and Sigange of Bongabong have high risks to landslide the remaining barangays within the river basin have low risks. The field surveys conducted by the PHIL-LiDAR 1 validation team, showed that there were seven notable weather disturbance that caused flooding in 2006 (Caloy), 2008 (Frank), 2012 (Ofel), 2013 (Yolanda), 2015 (Nona), and 2016 (Lando).

CHAPTER 2: LIDAR DATA ACQUISITION OF THE BANSUD FLOODPLAIN

Engr. Louie P. Balicanta, Engr. Christopher Cruz, Lovely Gracia Acuña, Engr. Gerome Hipolito, Engr. Iro Niel D. Roxas, and Mr. Merlin A. Fernando

The methods applied in this chapter were based on the DREAM methods manual (Ang, et. al., 2014) and further enhanced and updated in Paringit, et. al. (2017).

2.1 Flight Plans

To initiate the LiDAR acquisition survey of the Bansud floodplain, the Data Acquisition Component (DAC) created flight plans within the delineated priority area for Bansud Floodplain in Oriental Mindoro. These flight missions were planned for 21 lines and ran for at most four and a half hours (4.5) including take-off, landing and turning time using two sensors – the Aquarius and Gemini (see Annex 1 for sensor specifications). The flight planning parameters for the LiDAR systems are outlined in Table 1 and Table 2. Figure 2, on the other hand, shows the flight plan and base stations for Bansud floodplain survey.

Block Name	Flying Height (m AGL)	Overlap (%)	Field of View (θ)	Pulse Repetition Frequency (PRF) (kHz)	Scan Fre- quency (Hz)	Average Speed (kts)	Average Turn Time (Minutes)
BLK28A	600	30	36	50	45	130	5
BLK28B	600	30	36	50	45	130	5
BLK28C	600	30	36	50	45	130	5
BLK28D	600	30	36	50	45	130	5
BLK28E	600	30	36	50	45	130	5
BLK28F	600	30	36	50	45	130	5
BLK28G	600	30	36	50	45	130	5
BLK 28H	600	30	36	50	45	130	5
BLK28I	600, 1000	30	36	50	45	130	5
BLK28J	600	30	36	50	45	130	5

Table 1. Flight planning parameters for Aquarius LiDAR system.

Block Name	Flying Height (m AGL)	Overlap (%)	Field of View (θ)	Pulse Repetition Frequency (PRF) (kHz)	Scan Fre- quency (Hz)	Average Speed (kts)	Average Turn Time (Minutes)
BLK28E	1200	30	30	100	50	130	5
BLK28F	1000	30	40	100	50	130	5
BLK28H	1200	30	30	100	50	130	5
BLK28I	1200	30	30	100	50	130	5

Table 2. Flight planning parameters for Gemini LiDAR system.

Figure 2. Flight plans and base stations used for Bansud floodplain.

2.2 Ground Base Stations

The project team was able to recover four (4) NAMRIA ground control points: MRE-54 and MRE-56 which are of second (2nd) order accuracy, MRE-11 which is of third (3rd) order accuracy, and MRE-4563 which is of fourth (4th) order accuracy. The project team also established two (2) ground control points, MRE-11A and MRE 56A.

The certification for the NAMRIA reference points and benchmarks are found in Annex 2 while the baseline processing reports for the established control points are found in Annex 3. These were used as base stations during flight operations for the entire duration of the survey from February 3-12, 2014; October 23-26, 2015. Base stations were observed using dual frequency GPS receivers, TRIMBLE SPS 852 and TRIM-BLE SPS 985. Flight plans and location of base stations used during the aerial LiDAR acquisition in Bansud floodplain are shown in Figure 2.

The succeeding sections depict the sets of reference points, control stations and established points, and the ground control points for the entire Bansud Floodplain LiDAR Survey. Figure 3 and Figure 4 show the recovered NAMRIA reference points within the area of the floodplain, while Table 3 to Table 8 show the details about the following NAMRIA control stations and established points. Table 9, on the other hand, shows the list of all ground control points occupied during the acquisition together with the corresponding dates of utilization.

(a)

Figure 3. GPS set-up over MRE-54 (a) inside the compound of the barangay hall of Maliangcog, municipality of Pinamalayan, Oriental Mindoro; and NAMRIA reference point MRE-54 (b) as recovered by the field team.

Table 3. Details of the recovered NAMRIA horizontal control point MRE-54 used as base station for the LiDAR Acquisition.

Station Name	MRE-54			
Order of Accuracy	2 nd			
Relative Error (horizontal positioning)	1:50,000			
	Latitude	12°59'12.43671'' North		
Geographic Coordinates, Philippine Reference	Longitude	121°24'46.52637'' East		
	Ellipsoidal Height	42.40800 meters		
Grid Coordinates, Philippine Transverse Merca-	Easting	544797.009 meters		
tor Zone 3 (PTM Zone 3 PRS 92)	Northing	1436124.562 meters		
	Latitude	12°59'7.43505'' North		
Geographic Coordinates World Geodetic Sys- tem 1984 Datum (WGS 84)	Longitude	122°41'8.09853'' East		
	Ellipsoidal Height	91.39500 meters		
Grid Coordinates, Universal Transverse Merca-	Easting	327864.09 meters		
tor Zone 51 North (UTM 51N PRS 1992)	Northing	1436121.49 meters		

(a)

Figure 4. GPS set-up over MRE-4563 (a) just outside the compound of the barangay hall of Brgy. Pagalagala, municipality of Pinamalayan, Oriental Mindoro; and NAMRIA reference point MRE-4563 (b) as recovered by the field team.

Table 4. Details of the recovered NAMRIA horizontal control point MRE-4563 used as base station for the LiDAR Acquisition.

Station Name	MRE-4563		
Order of Accuracy	2 nd		
Relative Error (horizontal positioning)	1:50,000		
	Latitude	13°00'53.01692'' North	
Grid Coordinates, World Geodetic System 1984	Longitude	121°24'51.45337'' East	
	Ellipsoidal Height	73.715m meters	
Grid Coordinates, Universal Transverse Merca- tor Zone 51 North (UTM 51N PRS 1992)	Easting	328034.015 meters	
	Northing	1439300.319 meters	

Table 5. Details of the recovered NAMRIA horizontal control point MRE-11 used as base station for theLiDAR Acquisition.

Station Name	MRE-11			
Order of Accuracy	3 rd			
Relative Error (horizontal positioning)		1:20,000		
	Latitude	12°44'50.41380'' North		
Geographic Coordinates, Philippine Reference	Longitude	121°29'7.80130'' East		
	Ellipsoidal Height	5.11500 meters		
Grid Coordinates, Philippine Transverse Merca-	Easting	552720.766 meters		
tor Zone 3 (PTM Zone 3 PRS 92)	Northing	1409650.153 meters		
	Latitude	12°44'45.47630'' North		
Geographic Coordinates, World Geodetic Sys-	Longitude	121°29'12.85191'' East		
	Ellipsoidal Height	54.91100 meters		
Grid Coordinates, Universal Transverse Merca-	Easting	335581.55 meters		
tor Zone 51 North (UTM 51N PRS 1992)	Northing	1409587.05 meters		

Table 6. Details of the recovered established horizontal control point MRE-11A used as base station for the LiDAR Acquisition.

Station Name	MRE-11A		
Order of Accuracy	3 rd		
Relative Error (horizontal positioning)		1:20,000	
	Latitude	12°44'45.50783'' North	
Grid Coordinates, World Geodetic System 1984 Datum (WGS 84)	Longitude	121°29'29.79714'' East	
	Ellipsoidal Height	55.558 meters	
Grid Coordinates, Universal Transverse Merca-	Easting	338880.152 meters	
tor Zone 51 North (UTM 51N PRS 1992)	Northing	1409583.946 meters	

Table 7. Details of the recovered NAMRIA horizontal control point MRE-56 used as base station for the LiDAR Acquisition.

Station Name		MRE-56
Order of Accuracy		2 nd
Relative Error (horizontal positioning)		1:50,000
	Latitude	12°31'25.76362'' North
Geographic Coordinates, Philippine Reference	Longitude	121°26'25.21109'' East
01 1992 Datam (113 92)	Ellipsoidal Height	7.87000 meters
Grid Coordinates, Philippine Transverse Merca-	Easting	547,857.861 meters
tor Zone 3 (PTM Zone 3 PRS 92)	Northing	1,384,916.657 meters
	Latitude	12°31'20.87629'' North
Geographic Coordinates, World Geodetic Sys- tem 1984 Datum (WGS 84)	Longitude	121°26'30.28143'' East
tem 1984 Datum (WG3 84)	Ellipsoidal Height	58.13600 meters
Grid Coordinates, Universal Transverse Merca-	Easting	330,530.08 meters
tor Zone 51 North (UTM 51N PRS 1992)	Northing	1,384,892.31 meters

Table 8. Details of the recovered established horizontal control point MRE-56A used as base station for the LiDAR Acquisition.

Station Name		MRE-56A	
Order of Accuracy	2 nd		
Relative Error (horizontal positioning)	1:50,000		
Grid Coordinates, World Geodetic System 1984 Datum (WGS 84)	Latitude	12°31'20.59653'' North	
	Longitude	121°26'30.40791'' East	
	Ellipsoidal Height	57.601 meters	
Grid Coordinates, Universal Transverse Mer-	Easting	330,688.179 meters	
cator Zone 51 North (UTM 51N PRS 1992)	Northing	1,384,818.639 meters	

Table 9. Ground control points used during the LiDAR data acquisition.

Date Surveyed	Flight Number	Mission Name	Ground Control Points
3-Feb-14	1056A	3BLK28C034A	MRE-54
5-feb-14	1066A	3BLK28DS036A	MRE-54, MRE-4563
6-Feb-14	1070A	3BLK28DSE037A	MRE-54, MRE-4563
12-Feb-14	1092A	3BLK28ABES043A	MRE-54, MRE-4563
23-Oct-15	8302G	2BLK28ASEHI296A	MRE-54, MRE-11
24-Oct-15	8304G	2BLK28FHS297A	MRE-54, MRE-11
25-Oct-15	8306G	2CALIBBLK28FSGS298A	MRE-11, MRE11A
26-oct-15	8308G	2BLK28J299A	MRE-56,MRE-56A

2.3 Flight Missions

A total of eight (8) missions were conducted to complete the LiDAR Data Acquisition in Bansud Floodplain, for a total of thirty hours and thirty-nine minutes (30+39) of flying time for RP-C9122 and RP-C9322 (See Annex 6). All missions were acquired using the Aquarius and Gemini LiDAR system. As shown below, the total area of actual coverage per mission and the corresponding flying hours are depicted in Table 10, while the actual parameters used during the LiDAR data acquisition are presented in Table 11.

Date Sur-	Flight	Flight	Surveyed	Area Sur- veyed	Area Sur- veyed	No. of	Fly Ho	/ing ours
veyed	Number	Plan Area (km²)	Area (km ²)	within the Floodplain (km²)	Outside the Floodplain (km²)	Images (Frames)	Hr	Min
3-Feb-14	1056A	153.08	89.97	3.56	86.41	1111	3	41
5-Feb-14	1066A	132.98	95.19	11.56	83.63	1088	3	35
6-Feb-14	1070A	243.37	134.14	21.28	112.86	1517	4	29
12-Feb-14	1092A	314.3	99.90	7.50	92.4	1176	4	5
23-Oct-15	8302G	434.44	117.20	5.23	111.97	443	3	47
24-Oct-15	8304G	220.17	110.37	0.51	109.86	368	3	30
25-Oct-15	8306G	112.27	70.58	4.31	66.27	N/A	3	41
26-Oct-15	8308G	99.08	103.41	4.23	99.18	N/A	3	51
тот	AL	1709.59	820.76	58.18	762.58	5703	30	39

Table 10. Flight missions for LiDAR data acquisition in Bansud floodplain.

Table 11. Actual parameters used during LiDAR data acquisition.

Flight Number	Flying Height (AGL) (m)	Overlap (%)	Field of View	PRF (kHz)	Scan Frequen- cy (Hz)	Average Speed (Kts)	Average Turn Time (Min- utes)
1056A	600	30	36	50	40	130	5
1066A	600	30	36	50	40	115	5
1070A	600	30	36	50	40	130	5
1092A	600	30	36	50	40	130	5
8302G	1200, 800	30	30,40	100	50	130	5
8304G	1200, 900	35	30, 36	100	50	130	5
8306G	1200, 900	35	30, 40	100	50	130	5
8308G	1100	35	36	100	50	120	5

2.4 Survey Coverage

This certain LiDAR acquisition survey covered the Bansud floodplain (See Annex 7). It is situated within the municipality of Bansud, Oriental Mindoro. The list of municipalities and cities surveyed with at least one (1) square kilometer coverage, is shown in Table 12. Figure 5, on the other hand, shows the actual coverage of the LiDAR acquisition for the Bansud floodplain.

Province	Municipality/City	Area of Municipality/ City (km ²)	Total Area Sur- veyed (km²)	Percentage of Area Surveyed
	Bansud	197.00	90.95	46%
	Bongabong	493.74	114.20	23%
	Bulalacao	365.58	83.73	23%
	Gloria	327.28	132.19	40%
	Mansalay	477.24	34.36	7%
Oriental Mindoro	Naujan	431.57	3.69	1%
	Pinamalayan	206.87	55.33	27%
	Pola	127.04	38.21	30%
	Roxas	90.14	9.17	10%
	Socorro	206.05	63.49	31%
	Victoria	216.22	8.86	4%
	TOTAL	3138.73	634.18	20.20%

Table 12. List of municipalities and cities surveyed during Bansud floodplain LiDA	R survey.
--	-----------

Figure 5. Actual LiDAR survey coverage for Bansud floodplain.

CHAPTER 3: LIDAR DATA PROCESSING OF THE BANSUD FLOODPLAIN

Engr. Ma. Rosario Concepcion O. Ang, Engr. John Louie D. Fabila, Engr. Sarah Jane D. Samalburo , Engr. Harmond F. Santos , Engr. Angelo Carlo B. Bongat , Engr. Ma. Ailyn L. Olanda, Engr. Antonio B. Chua Jr., Marie Denise V. Bueno , Engr. Regis R. Guhiting, Engr. Merven Matthew D. Natino, Gillian Katherine L. Inciong, Gemmalyn E. Magnaye, Leendel Jane D. Punzalan, Sarah Joy A. Acepcion, Ivan Marc H. Escamos, Allen Roy C. Roberto, and Jan Martin C. Magcale

The methods applied in this chapter were based on the DREAM methods manual (Ang, et. al., 2014) and further enhanced and updated in Paringit, et. al. (2017).

3.1 Overview of the LIDAR Data Pre-Processing

The data transmitted by the Data Acquisition Component are checked for completeness based on the list of raw files required to proceed with the pre-processing of the LiDAR data. Upon acceptance of the LiDAR field data, georeferencing of the flight trajectory is done in order to obtain the exact location of the LiDAR sensor when the laser was shot. Point cloud georectification is performed to incorporate correct position and orientation for each point acquired. The georectified LiDAR point clouds are subject for quality checking to ensure that the required accuracies of the program, which are the minimum point density, vertical and horizontal accuracies, are met. The point clouds are then classified into various classes before generating Digital Elevation Models such as Digital Terrain Model and Digital Surface Model

Using the elevation of points gathered in the field, the LiDAR-derived digital models are calibrated. Portions of the river that are barely penetrated by the LiDAR system are replaced by the actual river geometry measured from the field by the Data Validation and Bathymetry Component. LiDAR acquired temporally are then mosaicked to completely cover the target river systems in the Philippines. Orthorectification of images acquired simultaneously with the LiDAR data is done through the help of the georectified point clouds and the metadata containing the time the image was captured.

These processes are summarized in the flowchart shown in Figure 6.

Figure 6. Schematic diagram for the data pre-processing.

3.2 Transmittal of Acquired LiDAR Data

Data transfer sheets for all the LiDAR missions for Bansud floodplain can be found in Annex 5. Missions flown over Bansud, Oriental Mindoro during the first survey conducted on February 2014 used the Airborne LiDAR Terrain Mapper (ALTM[™] Optech Inc.) Aquarius system while missions acquired during the second survey on October 2015 were flown using the Gemini system.

The Data Acquisition Component (DAC) transferred a total of 105.90 Gigabytes of Range data, 1.82 Gigabytes of POS data, 88.18 Megabytes of GPS base station data, and 331.8 Gigabytes of raw image data to the data server on February 21, 2014 for the first survey and October 10, 2015 for the second survey. The Data Pre-processing Component (DPPC) verified the completeness of the transferred data. The whole dataset for Bansud was fully transferred on October 10, 2015, as indicated on the Data Transfer Sheets for Bansud floodplain.

3.3 Trajectory Computation

The Smoothed Performance Metrics of the computed trajectory for flight 1070A, one of the Bansud flights, which is the North, East, and Down position RMSE values are shown in Figure 7. The x-axis corresponds to the time of flight, which is measured by the number of seconds from the midnight of the start of the GPS week, which on that week fell on February 6, 2014 00:00AM. The y-axis is the RMSE value for that particular position.

Figure 7. Smoothed Performance Metrics of a Bansud Flight 1070A.

The time of flight was from 365,000 seconds to 377,500 seconds, which corresponds to afternoon of February 6, 2014. The initial spike that is seen on the data corresponds to the time that the aircraft was getting into position to start the acquisition, and the POS system starts computing for the position and orientation of the aircraft.

Redundant measurements from the POS system quickly minimized the RMSE value of the positions. The periodic increase in RMSE values from an otherwise smoothly curving RMSE values correspond to the turn-around period of the aircraft, when the aircraft makes a turn to start a new flight line. Figure 8 shows that the North position RMSE peaks at 1.70 centimeters, the East position RMSE peaks at 1.95 centimeters, and the Down position RMSE peaks at 3.80 centimeters, which are within the prescribed accuracies described in the methodology.

Figure 8. Solution Status Parameters of Bansud Flight 1070A

The Solution Status parameters of flight 1070A, one of the Bansud flights, which are the number of GPS satellites, Positional Dilution of Precision (PDOP), and the GPS processing mode used, are shown in Figure 8. The graphs indicate that the number of satellites during the acquisition did not go down to 5. Majority of the time, the number of satellites tracked was between 5 and 9. The PDOP value also did not go above the value of 3, which indicates optimal GPS geometry. The processing mode stayed at the value of 0 for majority of the survey with some peaks up to 1 attributed to the turns performed by the aircraft. The value of 0 corresponds to a Fixed, Narrow-Lane mode, which is the optimum carrier-cycle integer ambiguity resolution technique available for POSPAC MMS. All of the parameters adhered to the accuracy requirements for optimal trajectory solutions, as indicated in the methodology. The computed best estimated trajectory for all Bansud flights is shown in Figure 9.

Figure 9. Best Estimated Trajectory of the LiDAR missions conducted over the Bansud Floodplain.

3.4 LiDAR Point Cloud Computation

The produced LAS contains 140 flight lines, with each flight line containing one channel, since the Aquarius and Gemini system both contain one channel only. The summary of the self-calibration results obtained from LiDAR processing in LiDAR Mapping Suite (LMS) software for all flights over the Bansud floodplain are given in Table 13.

Parameter	Acceptable Value	Computed Value
Boresight Correction stdev)	<0.001degrees	0.000346
IMU Attitude Correction Roll and Pitch Corrections stdev)	<0.001degrees	0.000905
GPS Position Z-correction stdev)	<0.01meters	0.0087

Table 13. Self-calibration Results values for Bansud flights.

The optimum accuracy were obtained for all Bansud flights based on the computed standard deviations of the orientation parameters. The standard deviation values for individual blocks are available in the Mission Summary Reports in Annex 8.

3.5 LiDAR Quality Checking

The boundary of the processed LiDAR data on top of the SAR Elevation Data over the Bansud Floodplain is shown in Figure 10. The map shows gaps in the LiDAR coverage that are attributed to cloud coverage.

Figure 10. Boundaries of the processed LiDAR data over the Bansud Floodplain.

The total area covered by the Bansud missions is 494.87 square kilometers (sq. kms.) that is comprised of nine (9) flight acquisitions grouped and merged into seven (7) blocks as shown in Table 14.

LiDAR Blocks	Flight Numbers	Area (sq. km.)	
OrientalMindoro_Blk28C	1056A	29.34	
OrientalMindoro_Blk28C_supplement	1056A	87.46	
OrientalMindoro_Blk28D_supplement	1066A	89.76	
OrientalMindoro_Blk28E	1070A	125.45	
OrientalMindoro_Blk28E_supplement	1092A	29.61	
OrientalMindoro_reflights_Blk28C	8302G	49.04	
Oviente Mindere, veflichte, DU-205	8306G	20.02	
Orientalivindoro_rellights_Bik28E	8308G	30.83	
Orientell Aindore, reflichte, DU/2011, europlaneert	8304G	F2 20	
	8306G	55.38	
	TOTAL	494.87 sq. km.	

Table 14. List of LiDAR blocks for the Bansud floodplain.

The overlap data for the merged LiDAR blocks, showing the number of channels that pass through a particular location is shown in Figure 11. Since the Aquarius and Gemini system both employ one channel, we would expect an average value of 1 (blue) for areas where there is limited overlap, and a value of 2 (yellow) or more (red) for areas with three or more overlapping flight lines.

Figure 11. Image of data overlap for Bansud floodplain.

The overlap statistics per block for the Bansud floodplain can be found in the Mission Summary Reports (Annex 8). One pixel corresponds to 25.0 square meters on the ground. For this area, the minimum and maximum percent overlaps are 25.89% and 65.39% respectively, which passed the 25% requirement.

The pulse density map for the merged LiDAR data, with the red parts showing the portions of the data that satisfy the two (2) points per square meter criterion is shown in Figure 12. It was determined that all LiDAR data for the Bansud floodplain satisfy the point density requirement, and the average density for the entire survey area is 3.64 points per square meter.

Figure 12. Pulse density map of the merged LiDAR data for Bansud floodplain.

The elevation difference between overlaps of adjacent flight lines is shown in . The default color range is from blue to red, where bright blue areas correspond to portions where elevations of a previous flight line, identified by its acquisition time, are higher by more than 0.20m relative to elevations of its adjacent flight line. Bright red areas indicate portions where elevations of a previous flight line are lower by more than 0.20m relative to elevations of its adjacent flight line. Areas with bright red or bright blue need to be investigated further using Quick Terrain Modeler software.

Figure 13. Elevation difference Map between flight lines for the Bansud Floodplain Survey

A screen capture of the processed LAS data from a Bansud flight 1070A loaded in QT Modeler is shown in Figure 14. The upper left image shows the elevations of the points from two overlapping flight strips traversed by the profile, illustrated by a dashed red line. The x-axis corresponds to the length of the profile. It is evident that there are differences in elevation, but the differences do not exceed the 20-centimeter mark. This profiling was repeated until the quality of the LiDAR data becomes satisfactory. No reprocessing was done for this LiDAR dataset.

Figure 14. Quality checking for Bansud flight 1070A using the Profile Tool of QT Modeler

3.6 LiDAR Point Cloud Classification and Rasterization

Pertinent Class	Total Number of Points
Ground	302,650,127
Low Vegetation	333,953,871
Medium Vegetation	403,701,743
High Vegetation	558,457,257
Building	16,210,324

Table 15. Bansud classification results in TerraScan.

The tile system that TerraScan employed for the LiDAR data and the final classification image for a block in Bansud floodplain is shown in Figure 15. A total of 900 1km by 1km tiles were produced. The number of points classified to the pertinent categories is illustrated in Table 15. The point cloud has a maximum and minimum height of 437.09 meters and 48.61 meters, respectively.

Figure 15. Tiles for Bansud floodplain (a) and classification results (b) in TerraScan.

An isometric view of an area before and after running the classification routines is shown in Figure 16. The ground points are in orange, while the vegetation is in different shades of green, and the buildings are in cyan. It can be seen that residential structures adjacent or even below the canopy are classified correctly, due to the density of the LiDAR data.

Figure 16. Point cloud before (a) and after (b) classification.

The production of the last return (V_ASCII) and the secondary (T_ASCII) DTM, first (S_ASCII) and last (D_ASCII) return DSM of the area in top view display are show in Figure 17. It shows that DTMs are the representation of the bare earth, while on the DSMs, all features are present, such as buildings and vegetation.

Figure 17. The production of last return DSM (a) and DTM (b), first return DSM (c) and secondary DTM (d) in some portion of Bansud floodplain.

3.7 LiDAR Image Processing and Orthophotograph Rectification

The 499 1km by 1km tiles area covered by Bansud floodplain is shown in Figure 18. After tie point selection to fix photo misalignments, color points were added to smoothen out visual inconsistencies along the seamlines where photos overlap. The Bansud floodplain has a total of 270.55 sq.km orthophotogaph coverage comprised of 2,583 images. A zoomed in version of sample orthophotographs named in reference to its tile number is shown in Figure 19.

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

Figure 18. Bansud floodplain with available orthophotographs.

Figure 19. Sample orthophotograph tiles for Bansud floodplain.
3.8 DEM Editing and Hydro-Correction

Seven (7) mission blocks were processed for Bansud flood plain. These blocks are composed of OrientalMindoro and OrientalMindoro_reflights blocks with a total area of 494.87 square kilometers. Table 16 shows the name and corresponding area of each block in square kilometers.

LiDAR Blocks	Area (sq. km.)
OrientalMindoro_Blk28C	29.34
OrientalMindoro_Blk28C_supplement	87.46
OrientalMindoro_Blk28D_supplement	89.76
OrientalMindoro_Blk28E	125.45
OrientalMindoro_Blk28E_supplement	29.61
OrientalMindoro_reflights_Blk28C	49.04
OrientalMindoro_reflights_Blk28E	30.83
OrientalMindoro_reflights_Blk28H_supplement	53.38
TOTAL	494.87

Table 16. LiDAR blocks with its corresponding areas	with its corresponding areas.
---	-------------------------------

Figure 20 shows portions of a DTM before and after manual editing. As evident in the figure, a bridge (Figure 20a) has obstructed the flow of water along the river. To correct the river hydrologically, it was removed through manual editing (Figure 20b). The mountain ridge (Figure 20c) has been misclassified. Object retrieval was performed to retain the correct terrain (Figure 20d).

Figure 20. Portions in the DTM of the Bansud Floodplain – a bridge before (a) and after (b) manual editing; and a mountain ridge before (c) and after (d) data retrieval.

3.9 Mosaicking of Blocks

OrientalMindoro_Blk29N was used as the reference block at the start of mosaicking because it was referred to a base station with an acceptable order of accuracy. Table 17 shows the shift values applied to each LiDAR block during mosaicking.

Mosaicked LiDAR DTM for Bansud floodplain is shown in Figure 21. It can be seen that the entire Bansud floodplain is 99.8% covered by LiDAR data.

Mission Plasks		Shift Values (meters)		
	x	У	Z	
OrientalMindoro_Blk28C	0.00	0.00	0.68	
OrientalMindoro_Blk28C_supplement	-0.17	0.00	0.68	
OrientalMindoro_Blk28D_supplement	0.00	0.00	0.92	
OrientalMindoro_Blk28E	0.00	0.00	0.69	
OrientalMindoro_Blk28E_supplement	0.00	0.00	0.78	
OrientalMindoro_reflights_Blk28C	0.00	0.00	0.20	
OrientalMindoro_reflights_Blk28E	0.00	0.00	-0.14	
OrientalMindoro_reflights_Blk28H_supplement	0.00	0.00	49.56	

Figure 21. Map of processed LiDAR data for the Bansud Floodplain.

3.10 Calibration and Validation of Mosaicked LiDAR DEM

The extent of the validation survey done by the Data Validation and Bathymetry Component (DVBC) in Bansud to collect points with which the LiDAR dataset is validated is shown in Figure 22. A total of 19,114 survey points were gathered for all the flood plains within Oriental Mindoro wherein the Bansud flood-plain is located. Random selection of 80% of the survey points, resulting to 15,291 points, were used for calibration.

A good correlation between the uncalibrated mosaicked LiDAR elevation values and the ground survey elevation values is shown in Figure 23. Statistical values were computed from extracted LiDAR values using the selected points to assess the quality of data and obtain the value for vertical adjustment. The computed height difference between the LiDAR DTM and calibration elevation values is 2.60 meters with a standard deviation of 0.17 meters. Calibration of Bansud LiDAR data was done by subtracting the height difference value, 2.60 meters, to Bansud mosaicked LiDAR data. Table 18 shows the statistical values of the compared elevation values between LiDAR data and calibration data.

Figure 22. Map of Bansud Floodplain with validation survey points in green.

Figure 23. Correlation plot between calibration survey points and LiDAR data.

Calibration Statistical Measures	Value (meters)
Height Difference	2.60
Standard Deviation	0.17
Average	-2.59
Minimum	-3.03
Maximum	-1.70

Table 18. Calibration Statistical Measures	Table 18.	Calibration	Statistical	Measures
--	-----------	-------------	-------------	----------

The remaining 20% of the total survey points were intersected to the flood plain, resulting to 69 points. These were used for the validation of calibrated Bansud DTM. A good correlation between the calibrated mosaicked LiDAR elevation values and the ground survey elevation, which reflects the quality of the LiDAR DTM is shown in Figure 24. The computed RMSE between the calibrated LiDAR DTM and validation elevation values is 0.11 meters with a standard deviation of 0.08 meters, as shown in Table 19.

Figure 24. Correlation plot between the validation survey points and the LiDAR data.

Validation Statistical Measures	Value (meters)
RMSE	0.11
Standard Deviation	0.08
Average	-0.07
Minimum	-0.24
Maximum	0.04

	Table 19.	Validation	Statistical	Measures
--	-----------	------------	-------------	----------

3.11 Integration of Bathymetric Data into the LiDAR Digital Terrain Model

For bathy integration, only centerline data was available for Bansud with 180 bathymetric survey points. The resulting raster surface produced was done by Inverse Distance Weighted (IDW) interpolation method. After burning the bathymetric data to the calibrated DTM, assessment of the interpolated surface is represented by the computed RMSE value of 0.05 meters. The extent of the bathymetric survey done by the Data Validation and Bathymetry Component (DVBC) in Bansud integrated with the processed LiDAR DEM is shown in Figure 25.

Figure 25. Map of Bansud floodplain with bathymetric survey points in blue.

3.12 Feature Extraction

The features salient in flood hazard exposure analysis include buildings, road networks, bridges, and water bodies within the floodplain area with a 200-meter buffer zone. Mosaicked LiDAR DEMs with a 1-m resolution were used to delineate footprints of building features, which comprised of residential buildings, government offices, medical facilities, religious institutions, and commercial establishments, among others. Road networks comprise of main thoroughfares such as highways and municipal and barangay roads essential for the routing of disaster response efforts. These features are represented by network of road centerlines.

3.12.1 Quality Checking (QC) of Digitized Features' Boundary

Bansud floodplain, including its 200 m buffer, has a total area of 776.76 sq km. For this area, a total of 24.0 sq km, corresponding to a total of 5,893 building features, are considered for QC. Figure 26 shows the QC blocks for Bansud floodplain.

Figure 26. Blocks (in blue) of Bansud building features that was subjected to QC.

Quality checking of Bansud building features resulted in the ratings shown in Table 20.

Table 20. Details of the quality checking ratings for the building features extracted for the Bansud River

D	•
Rac	nır
רחנו	

FLOODPLAIN	COMPLETENESS	CORRECTNESS	QUALITY	REMARKS
Bansud	99.44	99.98	97.30	PASSED

3.12.2 Height Extraction

Height extraction was done for 51,234 building features in Bansud floodplain. Of these building features, 843 were filtered out after height extraction, resulting to 50,391 buildings with height attributes. The lowest building height is at 2.00 meters, while the highest building is at 14.87 meters.

3.12.3 Feature Attribution

Data collected from various sources which includes OpenStreetMap and Google Maps/Earth were used in

the attribution of building features. Areas where there is no available data were subjected for field attribution using ESRI's Collector App. The app can be accessed offline and data collected can be synced to ArcGIS Online when WiFi or mobile data is available.

Table 21 summarizes the number of building features per type. On the other hand, Table 22 shows the total length of each road type, while Table 23 shows the number of water features extracted per type.

Facility Type	No. of Features
Residential	49,140
School	749
Market	37
Agricultural/Agro-Industrial Facilities	4
Medical Institutions	38
Barangay Hall	6
Military Institution	0
Sports Center/Gymnasium/Covered Court	11
Telecommunication Facilities	2
Transport Terminal	16
Warehouse	3
Power Plant/Substation	0
NGO/CSO Offices	1
Police Station	3
Water Supply/Sewerage	0
Religious Institutions	56
Bank	10
Factory	32
Gas Station	23
Fire Station	2
Other Government Offices	51
Other Commercial Establishments	207
Total	50,391

Table 21. Building features extracted for Bansud	Floodplain.
--	-------------

Table 22. Total length of extracted roads for Bansud Floodplain.

Road Network Length (km)						
Floodplain	Barangay Road	City/Municipal Road	Provincial Road	National Road	Others	Total
Bansud	382.5	225.68	12.17	100.03	0.00	720.38

Table 23. Number of extracted water bodies for Bansud Floodplain.

	Water Body Type					
Floodplain	Rivers/ Streams	Lakes/Ponds	Sea	Dam	Fish Pen	Total
Bansud	147	164	0	0	0	311

A total of 25 bridges and culverts over small channels that are part of the river network were also extracted for the floodplain.

3.12.4 Final Quality Checking of Extracted Features

All extracted ground features were completely given the required attributes. All these output features comprise the flood hazard exposure database for the floodplain. This completes the feature extraction phase of the project.

Figure 27 shows the completed Digital Surface Model (DSM) of the Bansud floodplain overlaid with its ground features.

Figure 27. Extracted features of the Bansud Floodplain.

CHAPTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE BANSUD RIVER BASIN

Engr. Louie P. Balicanta, Engr. Joemarie S. Caballero, Ms. Patrizcia Mae. P. dela Cruz, Engr. Dexter T. Lozano For. Dona Rina Patricia C. Tajora, Elaine Bennet Salvador, and For. Rodel C. Alberto

The methods applied in this chapter were based on the DREAM methods manual (Ang, et. al., 2014) and further enhanced and updated in Paringit, et. al. (2017).

4.1 Summary of Activities

The Data Validation and Bathymetry Component (DVBC) conducted a field survey in Bansud River on May 30 to June 11, 2014. Generally, the scope of work was comprised of (i) initial reconnaissance; (ii) control point survey for the establishment of a control point at the approach of Subaan Bridge occupied as a base station for GNSS surveys; (iii) the cross section survey and bridge as-built survey, and water level marking in the Mean Sea Level (MSL) of the Bansud Bridge; (iv) validation points acquisition; and (v) manual bathymetric survey from the upstream from Brgy. Pag-asa down to Bansud Proper with an approximate length of 7.2 km. A follow up survey commenced on October 27 to November 3, 2014 with the following activities: courtesy call with LGU of Bansud and UPLB; and bridge asbuilt and water level marking of Bansud Bridge with coordinates Lat 12d51'17.70562" N and Long 121d27'28.70961" E; and LiDAR acquired validation survey with an estimated distance of 19.76 km. Figure 28 illustrates the extent of the entire survey in Bansud River.

Figure 28. Bansud River Survey Extent.

4.2 Control Survey

The GNSS network utilized for the Bansud River Basin is composed of two (2) loops established on May 30 and May 31, 2014, which occupied the following reference point: MRE-32, a second-order GCP fixed from the previous field survey in Mindoro Oriental for Mag Asawang Tubig river.

A GNSS network was established for previous PHIL-LiDAR fieldwork in Mindoro on February 28 – March 11, 2013 occupying MR-178, a first-order BM located at the approach of Panggalaan Bridge in Brgy. Bucayao, Calapan City, Oriental Mindoro; and MRE-32, a second order GCP in Brgy. Poblacion 1, Mun. of Victoria, Oriental Mindoro.

Three (3) control points were established in the area namely: MOR-10, located at the approach of Cawacat Bridge in Brgy. Campaasan, Municipality of Bulalacao; ORM-1, located in Subaan Bridge in Barangay Subaan, Municipality of Socorro; and SUB-01, located within the Maramot Residence in Brgy. Subaan, Municipality of Socorro. An LMS-established control point namely MRE-4650, located at Bansud Bridge, Brgy. Pagasa, Municipality of Bansud, Oriental Mindoro was also occupied to use as marker in the survey.

Table 24 depicts the summary of reference and control points utilized, with their corresponding locations while the GNSS network established is illustrated in Figure 29.

Table 24. List of reference and control points used during the survey in Bansud River (Source: NAMRIA, UP-TCAGP).

		Geographic Coordinates (WGS 84)						
Control Point	Order of Accuracy	Latitude	Longitude	Ellipsoidal Height (m)	MSL Eleva- tion (m)	Date of Es- tablishment		
MRE-32	2nd order, GCP	13°10'23.79251"	121°16′43.46244″	65.638	17.175	2007		
MOR- 10	UP Estab- lished	-	-	-	-	5-31-2014		
MRE- 4650	Used as marker	-		-	-	2011		
ORM-1	UP Estab- lished	-	-	-	-	5-31-2014		
SUB-01	UP Estab- lished	-	-	-	-	5-31-2014		

Figure 29. GNSS network of Bansud River field survey.

Figure 30 to Figure 34 depict the setup of the GNSS on recovered reference points and established control points in the Bansud River.

Figure 30. GPS setup of Trimble[®] SPS 882 at MRE-32, located at the Municipal Park of Victoria, in Brgy. Poblacion 1, Oriental Mindoro.

Figure 31. GPS setup of Trimble[®] SPS 852 at MOR-10, located in the approach of the Cawacat Bridge, in Bry. Campasaan, Municipality of Bulalacao, Oriental Mindoro.

Figure 32. GPS setup of Trimble[®] SPS 985 at MRE-4650, an LMS control point located at the approach of Bansud Bridge, in Brgy. Pagasa, Municipality of Bansud, Oriental Mindoro.

Figure 33. GPS setup of Trimble[®] SPS 852 at ORM-1, located on Subaan Bridge, Brgy. Subaan, Municipality of Socorro, Oriental Mindoro.

Figure 34. GPS setup of Trimble[®] SPS 985 at SUB-1, an established control point located at Maramot Residence in Brgy. Subaan, Municipality of Socorro, Oriental Mindoro.

4.3 Baseline Processing

The GNSS Baselines were processed simultaneously in TBC by observing that all baselines have fixed solutions with horizontal and vertical precisions within +/- 20 cm and +/- 10 cm requirement respectively. In cases where one or more baselines did not meet all of these criteria, masking was performed. Masking is the removal or covering of portions of the baseline data using the same processing software. The data is then repeatedly processed until all baseline requirements are met. If the reiteration yields out of the required accuracy, a resurvey is initiated. Table 25 presents the baseline processing results of control points in the Bansud River Basin, as generated by the TBC software.

Observation	Date of Ob- servation	Solution Type	H.Prec (Meter)	V.Prec. (Meter)	Geodetic Az.	Ellipsoid Dist. (Meter)
ORM-1 SUB-01	05-30-2014	Fixed	0.004	0.006	301°40'27"	1466.251
SUB-01 MRE-32	05-30-2014	Fixed	0.010	0.031	318°11′52″	15342.18
SUB-01MOR-10	05-31-2014	Fixed	0.014	0.044	182°47'52"	80162.62
SUB-01 MRE-4650	05-31-2014	Fixed	0.006	0.038	158°49'08"	25506.78
ORM-1 MRE 32	05-30-2014	Fixed	0.01	0.032	319°54'33"	13942.72
MOR-10MRE 4650	05-31-2014	Fixed	0.012	0.051	13°07'21"	57794.34

Table 25. The Baseline processing report for the Bansud River GNSS static observation survey.

As shown in Table 25, a total of six (6) baselines were processed; it is apparent that all baselines passed the required accuracy.

4.4 Network Adjustment

After the baseline processing procedure, the network adjustment is performed using the TBC software. Looking at the Adjusted Grid Coordinates table of the TBC-generated Network Adjustment Report, it is observed that the square root of the sum of the squares of x and y must be less than 20 cm and z less than 10 cm for each control point; or in equation form:

 $\sqrt{((x_e)^2 + (y_e)^2)}$ <20cm and $z_e < 10 \ cm$

where:

 x_e is the Easting Error, y_e is the Northing Error, and z_e is the Elevation Error

For complete details, see the Network Adjustment Report shown in Table 26 to Table 29.

The five (5) control points, MRE-32, ORM-1, MOR-10, MRE-4650 and SUB-01 were occupied and observed simultaneously to form a GNSS loop. Coordinates and elevation values of MRE-32 were held fixed during the processing of the control points as presented in Table 26. Through these reference points, the coordinates and elevation of the unknown control points will be computed.

Table 26. Constraints applied to the adjustment of the control points.

Point ID	Туре	East σ (Meter)	North σ (Meter)	Height σ (Meter)	Elevation σ (Meter)		
MRE-32	Grid	Fixed	Fixed	Fixed	Fixed		
Fixed = 0.000001(Meter)							

Likewise, the list of adjusted grid coordinates, i.e. Northing, Easting, Elevation and computed standard errors of the control points in the network is indicated in Table 27.

Table 27 Adjusted suid secondinates for the second points used in the l	
Table 77. Adjusted grid coordinates for the control boints used in the i	
Table 27. Majastea gria coordinates for the control points asea in the	

Point ID	Easting (Meter)	Easting Error (Meter)	Northing (Meter)	Northing Error (Meter)	Elevation (Meter)	Elevation Error (Meter)	Constraint
MOR-10	319188.891	0.010	1365393.240	0.010	6.868	0.052	
MRE-32	313449.201	?	1456936.499	?	17.175	?	ENe
MRE-4650	332665.789	0.008	1421592.819	0.006	14.627	0.049	
ORM-1	322358.982	0.007	1446211.774	0.003	30.565	0.028	
SUB-01	323601.847	0.007	1445433.872	0.003	25.687	0.028	

The results of the computation for accuracy are as follows:

a.	MRE-32 Horizontal accuracy Vertical accuracy	= =	Fixed Fixed
b.	MOR-10	=	√ ((1.0) ² + (1.0) ²
	Horizontal accuracy	=	√(1.0 + 1.0)
	Vertical accuracy	= =	1.1 cm < 20 cm 1.4 cm< 10 cm
c.	MRE-4650	=	√ ((0.8) ² + (0.6) ²
	Horizontal accuracy	=	√(0.64 + 0.36)

	=	1.0 cm < 20 cm
Vertical accuracy	=	4.9 cm < 10 cm

d. **ORM-1**

Horizontal accuracy Vertical accuracy	= = =	√ ((0.7) ² + (0.3) ² √(0.49 + 0.90) 1.2 cm < 20 cm 2.8 cm < 10 cm
e. SUB-01 Horizontal accuracy Vertical accuracy	= = =	√ ((0.7) ² + (0.3) ² √(0.49 + 0.90) 1.2 cm < 20 cm 2.8 cm < 10 cm

Following the given formula, the horizontal and vertical accuracy result of the five (5) occupied control points are within the required precision.

Table 28. Adjusted geodetic coordinates for control points used in the Bansud River Flood Plain validation.

Point ID	Latitude	Longitude	Ellipsoid Height (Meter)	Height Error (Meter)	Constraint
MOR-10	N12°20'46.18547"	E121°20'13.54772"	58.186	0.052	
MRE-32	N13°10'23.79251"	E121°16′43.46244″	65.368	?	ENe
MRE-4650	N12°51′17.70515″	E121°27′28.71020″	64.693	0.049	
ORM-1	N13°04'36.74731"	E121°21′41.63863"	79.500	0.028	
SUB-01	N13°04'11.69491"	E121°22'23.06063"	74.676	0.028	

The corresponding geodetic coordinates of the observed points are within the required accuracy as shown in Table 28. Based on the results of the computation, the accuracy conditions are satisfied; hence, the required accuracy for the program was met. The computed coordinates of the reference and control points utilized in the Bansud River GNSS Static Survey are seen in Table 29.

Table 29. The reference and control points utilized in the Bansud River Static Survey, with their corresponding locations (Source: NAMRIA, UP-TCAGP)

Con- trol Point	Order	Geographic Coordinates (WGS 84)			UTM ZONE 51 N			
	of Accu- racy	Latitude	Longitude	Ell Height (m)	Northing (m)	Easting (m)	BM Ortho (m)	
MRE- 32	2 nd order, GCP	13°10'23.79251"	121°16′43.46244″	65.368	1456936.499	313449.201	17.175	
MOR- 10	UP Estab- lished	12°20'46.18547"	121°20′13.54772″	58.186	1365393.240	319188.891	6.868	
MRE- 4650	Used as marker	12°51′17.70515″	121°27'28.71020"	64.693	1421592.819	332665.789	14.627	

ORM- 1	UP Estab- lished	13°04'36.74731"	121°21′41.63863″	79.500	1446211.774	322358.982	30.565
SUB- 01	UP Estab- lished	13°04'11.69491"	121°22′23.06063″	74.676	1445433.872	323601.847	25.687

4.5 Cross-section and Bridge As-Built survey and Water Level Marking

The GNSS receiver Trimble[®] SPS 882 in PPK survey technique was applied to acquire the cross section of the river (Figure 35) on May 31, 2014 along the downstream side of Bansud Bridge in Barangay Pag-asa, Oriental Mindoro using MRE-465 as a base station. Bridge as-built features determination was performed on October 30, 2014 to get the distance of piers and abutments from the bridge approach. The bridge deck was measured using GNSS receiver Trimble[®] SPS 882 to get the high cord and meter tapes to get its low cord elevation.

Figure 35. Cross-section survey for Bansud Bridge, Brgy. Pagasa, Oriental Mindoro.

The length of the cross-sectional line surveyed at Bansud Bridge is about 132.85 m with 25 cross-sectional points.. The location map, cross-section diagram, and the accomplished bridge data form are shown in Figure 36 to Figure 38. Water surface elevation of Bansud River was not determined during the survey on October 30, 2015 because the river is already silted which made it too shallow or dry during dry season.

Figure 36. Location map of the Bansud Bridge Cross Section.

				Bridge D	ata For	n				
BANSUD BRIDGE						Date: October 30, 2014				
River Name: BANSUD RIVER					Time:4:05 PM					
.oca	ation (B	rgy, Ci	ty, Region):Brgy. Pobla	cion, Munic	ipality o	f Bansud, Orier	ntal Mir	ndoro		
Sur	vey Tea	m:	Team Bernard							
lov	v condit	tion:	low normal	high		Weather O	Conditio	on: (fai	ir) rainy	
ati	tude: _	1	2d51'17.70562"N	L	ongitud	e: <u>121d2</u>	7'28.70	961"E		
BA1	BA2			0	BA3	BA4 B/ Al	egend: A = Bridge b = Abutm	Approach P = ent D =	Pier LC = Low Cl = Deck HC = High C	
		Ab1	P		Ab2 н			11		
			Deals (b)							
lev	ation	1	4.7532 m Width:	asurement from 8.886	m m	Ge of the bank facin Span (BA	g downst 3-BA2):	ream)		
			Station		Hig	h Chord Elevatio	n	Low Chord Elevation		
+						16.883		15.2958		
+										
+										
+										
			Bridge Approach (Please s	tart your measuren	nent from the	left side of the bank faci	ng downstre	eam)		
[Station(Distance from BA1) Elevation				n Station(Distance from BA1) Elevatio				
	BA1	BA1 0		13.624 m	m BA3 1		49.1084 14.		14.655 m	
	BA2		73.34018	14.747 m	BA4	1 214.8332			13.815 m	
Abutment: Is the abutment sloping? Yes No; If yes, fill in the following information:										
			Station (Di	Station (Distance from BA1) Elevation			
	Ał	b1	7	8.83028	11.296 m			m		
	Ab2 145.0054				12.488 m				m	
Pier (Please start your measurement from the left side of the bank facing downstream)										
	Shape: _	Cylind	drical Number of Piers			Height of co	olumn fo	ooting:		
Station (Distance from BA1)					L 1	Elevation		Pier Width		
Pier 1			76.16856			14.723 m				
Pier 2			90.1124			L4.783 m				
Pier 3			104.2335			14.781 m				
Pier 4			118.1511			14.765 m				
Pier 5			132.2078			14.784 m	_			
				146.0386						

Figure 38. The Bansud Bridge as-built survey data.

For the purpose of flow data gathering and depth gauge deployment of the accompanying SUC, water level value was translated onto marking on one of the bridge's pier using a Digital Level as shown in Figure 36. This was translated into marking on the bridge's pier using the same technique as shown in Figure 39

Figure 39. Water level markings on the post of Bansud Bridge.

4.6 Validation Points Acquisition Survey

The validation points acquisition survey was conducted by DVBC on November 3, 2014 using a survey-grade GNSS Rover receiver, Trimble[®] SPS 882, mounted on a pole which was attached on the side of a vehicle as shown in Figure 40. It was secured with cable ties to ensure that it was horizontally and vertically balanced. The antenna height was 1.498 m from the ground up to the bottom of the notch of the GNSS Rover receiver.

Figure 40. GNSS Receiver Trimble[®] SPS 882 installed on a vehicle for Ground Validation Survey.

The survey started from Municipality of Mansalay to the Municipality of Gloria, covering an approximate distance of 19.76 km. The survey was conducted using Post Process Kinematic technique on a continuous topography mode. The survey gathered a total of 2019 points using MRE-4650 as GNSS base station for the entire extent validation points acquisition survey as illustrated in the map in Figure 41.

Figure 41. The extent of the LiDAR ground validation survey (in red) for Bansud River Basin.

4.7 River Bathymetric Survey

A bathymetric survey was performed on June 7, 2014 using Trimble[®] SPS 882 in GNSS RTK technique, as illustrated in Figure 42. The survey started from Bansud Bridge in Brgy. Pagasa, Municipality of Basud with coordinates 12°51'17.70562" 121°27'28.70961", traversed down by foot and ended at the mouth of the river in Brgy. Proper Bansud, also in Municipality of Bansud with coordinates 12°51'02.45153" 121°29'40.60157". The control point MRE-4650 was used as the GNSS base station all throughout the survey.

Figure 42. Set up of the bathymetric survey at Bansud River: upstream (a) and downstream (b).

The bathymetric line surveyed has an approximate length of 10.18 km with a total of 3,658 bathymetric points acquired covering at least three (3) barangay boundaries: Brgy. Poblacion, Pag-asa and Bansud Proper, Municipality of Bansud, Oriental Mindoro as shown in Figure 43.

To further illustrate this, a CAD drawing of the riverbed profile of the Bansud River was produced. As seen in Figure 44, an elevation drop of 6.0 m was observed within the approximate distance of 7.2 km. The highest value observed was 4.447 m in MSL located at the upstream part of the river in Brgy. Pag-asa, while the lowest value observed was -1.429 m below MSL located in Brgy. Bansud Proper, both in Municipality of Bansud.

Figure 43. The extent of the Bansud River Bathymetry Survey.

CHAPTER 5: FLOOD MODELING AND MAPPING

Dr. Alfredo Mahar Lagmay, Christopher Uichanco, Sylvia Sueno, Marc Moises, Hale Ines, Miguel del Rosario, Kenneth Punay, Neil Tingin, Khristoffer Quinton, John Alvin B. Reyes, Alfi Lorenz B. Cura, Angelica T. Magpantay, Maria Michaela A. Gonzales Paulo Joshua U. Quilao, Jayson L. Arizapa, and Kevin M. Manalo

The methods applied in this chapter were based on the DREAM methods manual (Ang, et. al., 2014) and further enhanced and updated in Paringit, et. al. (2017).

5.1 Data Used for Hydrologic Modeling

5.1.1 Hydrometry and Rating Curves

All data that affect the hydrologic cycle of the Bansud River Basin were monitored, collected, and analyzed. Rainfall, water level, and flow in a certain period of time, which may affect the hydrologic cycle of the Bansud River Basin were monitored, collected, and analyzed.

5.1.2 Precipitation

Precipitation data was taken from HOBO rain gauges installed by DVBC-UPLB on a significantly high point in the basin area. The location of the rain gauges is illustrated in Figure 45.

The total precipitation for this event was 106 mm. It has a peak rainfall of 48.0 mm on November 9, 2015 at 1:00 pm. The lag time between the peak rainfall and discharge is 3 hours and 55 minutes.

Figure 45. Location Map of the Bansud HEC-HMS model used for calibration.

5.1.3 Rating Curves and River Outflow

A rating curve was computed at Bansud Bridge, Oriental Mindoro (12.854606° N, 121.458303°E) using Manning's Bankfull Method to establish the relationship between the observed water levels (H) from Bansud Bridge and the outflow (Q) of the watershed at this location.

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

Figure 46. Cross-Section Plot of Bansud Bridge.

For Bansud Bridge, the rating curve is expressed as $Q = 5E-09e^{2.1145x}$ as shown in Figure 47.

Figure 47. The rating curve at Bansud Bridge.

For the calibration of the HEC-HMS model, however, this rating curve equation was not used to compute the river outflow at Bansud Bridge. Instead, flow velocity readings using Acoustic Doppler Current Profiler (ADCP) and water level change data using water level logger were used for the calibration of the HEC-HMS model shown in Figure 48. The peak discharge is 414.680 cu.m/s on November 9, 2015 at 4:55 PM.

Figure 48. Rainfall and outflow data at Bansud Bridge, which was used for modeling.

5.2 RIDF Station

PAGASA computed the Rainfall Intensity Duration Frequency (RIDF) values for the Romblon Rain Gauge (Table 30). The RIDF rainfall amount for 24 hours was converted into a synthetic storm by interpolating and re-arranging the values in such a way that certain peak values will be attained at a certain time (Figure 48). This station was selected based on its proximity to the Bansud watershed. The extreme values for this watershed were computed based on a 48-year record.

COMPUTED EXTREME VALUES (in mm) OF PRECIPITATION										
T (yrs)	10 mins	20 mins	30 mins	1 hr	2 hrs	3 hrs	6 hrs	12 hrs	24 hrs	
2	18.2	27	33.5	44.3	59.5	70.4	89.5	107	119.8	
5	26	37.7	46.5	60.7	82.2	97.6	125.5	152.9	171.6	
10	31.1	44.8	55	71.5	97.3	115.7	149.3	183.4	205.9	
15	34	48.8	59.9	77.7	105.8	125.8	162.8	200.5	225.2	
20	36	51.6	63.3	82	111.8	133	172.2	212.6	238.8	
25	37.6	53.8	65.9	85.3	116.4	138.4	179.4	221.8	249.2	
50	42.4	60.4	74	95.4	130.5	155.3	201.8	250.3	281.4	
100	47.2	67	81.9	105.5	144.5	172.1	223.9	278.6	313.3	

Table 30. RIDF values for the Romblon Rain Gauge, as computed by PAGASA.

Figure 49. Location of Romblon RIDF Station relative to Bansud River Basin.

Figure 50. Synthetic storm generated for a 24-hr period rainfall for various return periods.
5.3 HMS Model

The soil dataset was generated before 2004 from the Bureau of Soils under the Department of Environment and Natural Resources Management. The land cover dataset is from the National Mapping and Resource information Authority (NAMRIA). The soil and land cover of the Bansud River Basin are shown in Figure 51 and Figure 52, respectively.

Figure 51. Soil Map of Bansud River Basin.

Figure 52. Land Cover Map of Bansud River Basin.

Figure 53. Slope Map of the Bansud River Basin.

Figure 54. Stream Delineation Map of Bansud River Basin

Using the SAR-based DEM, the Bansud basin was delineated and further subdivided into subbasins. The model consists of 32 sub basins, 16 reaches, and 16 junctions as shown in Figure 55 (See Annex 10). The main outlet is at 108. The basins were identified based on soil and land cover characteristics of the area. Precipitation was taken from rain gauges set up by the Data Validation team of UPLB (DVC-UPLB) on strategic points within the river basin. Finally, it was calibrated using the flow data collected from the Bansud Bridge.

Figure 55. Bansud river basin model generated in HEC-HMS.

5.4 Cross-section Data

The riverbed cross-sections of the watershed were necessary in the HEC-RAS model setup. The cross-section data for the HEC-RAS model was derived from the LiDAR DEM data, which was defined using the Arc GeoRAS tool and was post-processed in ArcGIS (Figure 56).

Figure 56. River cross-section of the Bansud River through the ArcMap HEC GeoRas tool.

5.5 Flo 2D Model

The automated modelling process allows for the creation of a model with boundaries that are almost exactly coincidental with that of the catchment area. As such, they have approximately the same land area and location. The entire area is divided into square grid elements, 10 meter by 10 meter in size. Each element is assigned a unique grid element number which serves as its identifier, then attributed with the parameters required for modelling such as x-and y-coordinate of centroid, names of adjacent grid elements, Manning coefficient of roughness, infiltration, and elevation value. The elements are arranged spatially to form the model, allowing the software to simulate the flow of water across the grid elements and in eight directions (north, south, east, west, northeast, northwest, southeast, southwest).

Based on the elevation and flow direction, it is seen that the water will generally flow from the south of the model to the north, following the main channel. As such, boundary elements in those particular regions of the model are assigned as inflow and outflow elements respectively.

Figure 57. A screenshot of the river sub-catchment with the computational area to be modeled in FLO-2D Grid Developer System Pro (FLO-2D GDS Pro).

The simulation is then run through FLO-2D GDS Pro. This particular model had a computer run time of 100.06329 hours. After the simulation, FLO-2D Mapper Pro is used to transform the simulation results into spatial data that shows flood hazard levels, as well as the extent and inundation of the flood. Assigning the appropriate flood depth and velocity values for Low, Medium, and High creates the following food hazard map. Most of the default values given by FLO-2D Mapper Pro are used, except for those in the Low hazard level. For this particular level, the minimum h (Maximum depth) is set at 0.2 m while the minimum vh (Product of maximum velocity (v) times maximum depth (h)) is set at 0 m²/s. The generated hazard maps for Bansud are in Figure 62, 64, and 66.

The creation of a flood hazard map from the model also automatically creates a flow depth map depicting the maximum amount of inundation for every grid element. The legend used by default in Flo-2D Mapper is not a good representation of the range of flood inundation values, so a different legend is used for the layout. In this particular model, the inundated parts cover a maximum land area of 63 792 800.00 m². The generated flood depth maps for Bansud are in Figure 63, 65, and 67.

There is a total of 465 228 177.98 m³ of water entering the model. Of this amount, 25 253 779.51 m³ is due to rainfall while 439 974 398.47 m³ is inflow from other areas outside the model. 11 329 565.00 m³ of this water is lost to infiltration and interception, while 24 641 579.81 m³ is stored by the flood plain. The rest, amounting up to 429 257 024.59 m³, is outflow.

5.6 Results of HMS Calibration

After calibrating the Bansud HEC-HMS river basin model (See Annex 9), its accuracy was measured against the observed values. Figure 58 shows the comparison between the two discharge data.

Figure 58. Outflow Hydrograph of Bansud produced by the HEC-HMS model compared with observed outflow.

Table 31 shows the adjusted ranges of values of the parameters used in calibrating the model.

Hydrolog- ic Element	Calculation Type	Method	Parameter	Range of Calibrat- ed Values
	Loca	SCS Curve number	Initial Abstraction (mm)	1 - 11
	LOSS	SCS Curve number	Curve Number	56 - 99
Dacia	Transform	Clark Unit Undragraph	Time of Concentration (hr)	0.2 - 4
Basin	Transform	Clark Unit Hydrograph	Storage Coefficient (hr)	0.6 - 11
	Deceflour	Decession	Recession Constant	0.2 - 1
	Basenow	Recession	Ratio to Peak	0.2 - 0.7
Reach	Routing	Muskingum-Cunge	Manning's Coefficient	0.04 – 0.5

Table 31.	Range of	calibrated	values fo	r the	Bansud	River	Basin.
10010 011	nunge of	cumbratea	values lo	i the	Dunisuu	I W CI	Dusin.

Initial abstraction defines the amount of precipitation that must fall before surface runoff. The magnitude of the outflow hydrograph increases as initial abstraction decreases. The range of values from 1 to 11 mm means that there is a minimal amount of infiltration or rainfall interception by vegetation.

Curve number is the estimate of the precipitation excess of soil cover, land use, and antecedent moisture. The magnitude of the outflow hydrograph increases as curve number increases. The range of 56 to 99 for curve number is advisable for Philippine watersheds depending on the soil and land cover of the area (M. Horritt, personal communication, 2012).

Time of concentration and storage coefficient are the travel time and index of temporary storage of runoff in a watershed. The range of calibrated values from 0.2 hours to 11 hours determines the reaction time of the model with respect to the rainfall. The peak magnitude of the hydrograph also decreases when these parameters are increased.

Recession constant is the rate at which baseflow recedes between storm events and ratio to peak is the ratio of the baseflow discharge to the peak discharge. Recession constant of 0.2 to 1 and ratio to peak of 0.04 to 0.5 indicates a diverse characteristic per subbasin.

Manning's roughness coefficient of 0.04 to 5 is relatively average to high compared to the common roughness of watersheds (Brunner, 2010).

Accuracy measure	Value
RMSE	3.793
r ²	0.763
NSE	0.989
PBIAS	-92.007
RSR	0.105

	Table 32. Summary	y of the Efficiency	V Test of the	Bansud HMS	Model
--	-------------------	---------------------	---------------	------------	-------

The Root Mean Square Error (RMSE) method aggregates the individual differences of these two measurements. It was identified at 3.793 (m3/s).

The Pearson correlation coefficient (r^2) assesses the strength of the linear relationship between the observations and the model. This value being close to 1 corresponds to an almost perfect match of the observed discharge and the resulting discharge from the HEC HMS model. Here, it measured 0.763.

The Nash-Sutcliffe (E) method was also used to assess the predictive power of the model. Here the optimal value is 1. The model attained an efficiency coefficient of 0.989.

A positive Percent Bias (PBIAS) indicates a model's propensity towards under-prediction. Negative values indicate bias towards over-prediction. Again, the optimal value is 0. In the model, the PBIAS is -92.007.

The Observation Standard Deviation Ratio, RSR, is an error index. A perfect model attains a value of 0 when the error in the units of the valuable a quantified. The model has an RSR value of 0.105.

5.7 Calculated Outflow hydrographys and Discharge Values for different Rainfall Return Periods

5.7.1 Hydrograph using the Rainfall Runoff Model

The summary graph (Figure 59) shows the Bansud outflow using the Romblon Rainfall Intensity-Duration-Frequency curves (RIDF) in 5 different return periods (5-year, 10-year, 25-year, 50-year, and 100-year rainfall time series) based on the Philippine Atmospheric Geophysical and Astronomical Services Administration (PAG-ASA) data. The simulation results show increasing outflow magnitude as the rainfall intensity increases for a range of durations and return periods.

A summary of the total precipitation, peak rainfall, peak outflow and time to peak of the Bansud discharge using the Romblon Rainfall Intensity-Duration-Frequency curves (RIDF) in five different return periods is shown in Table 33.

RIDF Period	Total Precipita- tion (mm)	Peak rainfall (mm)	Peak outflow (m ³/s)	Time to Peak
5-yr	171.60	26	469.357	15 hours 40 minutes
10-yr	205.90	31.1	577.386	15 hours 30 minutes
25-yr	249.20	37.6	713.340	15 hours 30 minutes
50-yr	281.40	42.4	815.763	15 hours 20 minutes
100-yr	313.30	47.2	918.448	15 hours 20 minutes

Table 33. The peak values of the Bansud HEC-HMS Model outflow using the Maasin RIDF.

5.7.2 Discharge Data Using Dr. Horritt's Recommended Hydrologic Method.

The river discharge values for the three rivers entering the floodplain are shown in Figure 60 to Figure 62 and the peak values are summarized in Table 34 To Table 36.

Figure 60. Bansud river (1) generated discharge using 5-, 25-, and 100-year Romblon rainfall intensityduration-frequency (RIDF) in HEC-HMS.

Figure 61. Bansud river (2) generated discharge using 5-, 25-, and 100-year Romblon rainfall intensityduration-frequency (RIDF) in HEC-HMS.

Figure 62. Bansud river (3) generated discharge using 5-, 25-, and 100-year Romblon rainfall intensityduration-frequency (RIDF) in HEC-HMS

RIDF Period	Peak discharge (cms)	Time-to-peak
100-Year	696.0	12 hours, 40 minutes
25-Year	525.2	12 hours, 40 minutes
5-Year	317.9	12 hours, 40 minutes

Table 34. Summary of Bansud river (1) discharge generated in HEC-HMS

Table 35. Summary of Bansud river (1) discharge generated in HEC-HMS

RIDF Period	Peak discharge (cms)	Time-to-peak
100-Year	701.5	12 hours
25-Year	526.2	12 hours
5-Year	314.6	12 hours

Table 36. Summary of Bansud river (1) discharge generated in HEC-HMS

RIDF Period	Peak discharge (cms)	Time-to-peak
100-Year	827.4	12 hours, 20 minutes
25-Year	626.3	12 hours, 20 minutes
5-Year	381.6	12 hours, 20 minutes

The comparison of the discharge results using Dr. Horritt's recommended hydrological method against the bankful and specific discharge estimates is shown in Table 37.

Discharge				VALI	DATION
Point	Q _{MED(SCS)} , cms	Q _{BANKFUL} , cms	Q _{MED(SPEC)} , cms	Bankful Dis- charge	Specific Dis- charge
Bansud (1)	279.752	199.436	304.698	Pass	Pass
Bansud (2)	276.848	409.365	196.601	Pass	Pass
Bansud (3)	335.808	487.239	294.873	Pass	Pass

Table 37. Validation of river discharge estimates.

All three values from the HEC-HMS river discharge estimates were able to satisfy the conditions for validation using the bankful and specific discharge methods. The calculated values are based on theory but are supported using other discharge computation methods so they were good to use flood modeling. These values will need further investigation for the purpose of validation. It is therefore recommended to obtain actual values of the river discharges for higher-accuracy modeling.

5.8 River Analysis (RAS) Model Simulation

The HEC-RAS Flood Model produced a simulated water level at every cross-section for every time step for every flood simulation created. The resulting model will be used in determining the flooded areas within the model. The simulated model will be an integral part in determining real-time flood inundation extent of the river after it has been automated and uploaded on the DREAM website. For this publication, only a sample output map river was to be shown. Figure 63 shows a generated sample map of the Bansud River using the calibrated HMS base flow.

Figure 63. Sample output map of the Bansud RAS Model.

5.9 Flow Depth and Flood Hazard

The resulting hazard and flow depth maps have a 10m resolution. Figure 64 to Figure 69 show the 5-, 25-, and 100-year rain return scenarios of the Bansud floodplain. The floodplain, with an area of 43.67 sq. km., covers two municipalities, namely Bansud and Gloria. Table 38 shows the percentage of area affected by flooding per municipality.

Province	Municipality	Total Area	Area Flooded	% Flooded
Oriental Mindoro	Bansud	197	41.02	20.82
Oriental Mindoro	Gloria	327.28	2.58	0.79

77

Figure 67. A 25-year Flow Depth Map for Bansud Floodplain overlaid on Google Earth imagery.

79

Listed below are the affected barangays in the Bansud River Basin, grouped accordingly by municipality. For the said basin, two (2) municipalities consisting of 10 barangays are expected to experience flooding when subjected to a 5-year rainfall return period. For the 5-year return period, 8.15% of the municipality of Bansud with an area of 345.37 sq. km. will experience flood levels of less 0.20 meters. 1.67% of the area will experience flood levels of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Table 39 depicts areas affected in Bansud in square kilometres by flood depth per barangay. Annex 12 and Annex 13 show the educational and health institutions exposed to flooding, respectively.

Affected area			Area of affe	scted barange	ıys in Bansud	(in sq. km.)		
(sq. km.) by flood depth (in m.)	Alcadesma	Conrazon	Pag-Asa	Poblacion	Proper Bansud	Proper Tiguisan	Rosacara	Salcedo
0.03-0.20	2.05	13.91	1.86	0.8	2.39	2.05	4.42	0.68
0.21-0.50	1.25	1.45	0.64	0.31	1.24	0.43	0.3	0.15
0.51-1.00	0.85	1.25	0.3	0.41	0.99	0.21	0.16	0.071
1.01-2.00	0.33	0.84	0.21	0.1	0.21	0.05	0.068	0.037
2.01-5.00	0.01	0.64	0.18	0.023	0.13	0.0002	0.011	0
> 5.00	0	0.096	0.01	0.0042	0	0	0	0

Table 39. Affected areas in Bansud, Oriental Mindoro during a 5-Year Rainfall Return Period.

Figure 70. Affected areas in Bansud, Oriental Mindoro during a 5-Year Rainfall Return Period.

For the municipality of Gloria, with an area of 256.1 sq. km., 0.8% will experience flood levels of less 0.20 meters. 0.09% of the area will experience flood levels of 0.21 to 0.50 meters while 0.08%, 0.03%, and 0.0004% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, and 2.01 to 5 meters, respectively. Table 40 depicts the areas affected in Gloria, Oriental Mindoro in square kilometers by flood depth per barangay.

Affected area (sq. km.) by	Area of affected barangays in Gloria (in sq. km.)			
flood depth (in m.)	Agsalin	Manguyang		
0.03-0.20	0.0053	2.04		
0.21-0.50	0.0034	0.24		
0.51-1.00	0.0054	0.21		
1.01-2.00	0.0054	0.071		
2.01-5.00	0.00027	0.0002		
> 5.00	0	0		

Table 40. Affected areas in Gloria, Oriental Mindoro during a 5-Year Rainfall Return Period.

Figure 71. Affected areas in Gloria, Oriental Mindoro during a 5-Year Rainfall Return Period.

For the 25-year return period, 6.83% of the municipality of Bansud with an area of 345.37 sq. km. will experience flood levels of less 0.20 meters. 1.67% of the area will experience flood levels of 0.21 to 0.50 meters while 1.9%, 1.04%, 0.4%, and 0.07% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Table 41 depicts areas affected in Bansud in square kilometres by flood depth per barangay.

Table 41. Affected areas in Bansud, Oriental Mindoro during a 25-Year Rainfall Return Period.

Affected area			Area of affe	ected baranga	ys in Bansud	(in sq. km.)		
(sq. km.) by flood depth (in m.)	Alcadesma	Conrazon	Pag-Asa	Poblacion	Proper Bansud	Proper Tiguisan	Rosacara	Salcedo
0.03-0.20	1.07	12.58	1.4	0.38	1.63	1.68	4.28	0.57
0.21-0.50	0.83	1.55	0.85	0.34	1.16	0.55	0.32	0.15
0.51-1.00	1.76	1.5	0.42	0.63	1.51	0.37	0.22	0.15
1.01-2.00	0.8	1.41	0.3	0.26	0.53	0.14	0.095	0.066
2.01-5.00	0.033	0.94	0.21	0.031	0.15	0.0008	0.03	0.004
> 5.00	0	0.22	0.016	0.0068	0.0002	0	0	0

Figure 72. Affected areas in Bansud, Oriental Mindoro during a 25-Year Rainfall Return Period.

For the municipality of Gloria, with an area of 256.1 sq. km., 0.75% will experience flood levels of less 0.20 meters. 0.1% of the area will experience flood levels of 0.21 to 0.50 meters while 0.1%, 0.06%, and 0.002% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, and 2.01 to 5 meters, respectively. Table 42 depicts the areas affected in Gloria, Oriental Mindoro in square kilometers by flood depth per barangay.

Affected area (sq. km.) by	Area of affected baranga	ys in Gloria (in sq. km.)
flood depth (in m.)	Agsalin	Manguyang
0.03-0.20	0.0029	1.93
0.21-0.50	0.003	0.24
0.51-1.00	0.0053	0.24
1.01-2.00	0.0074	0.14
2.01-5.00	0.001	0.0036
> 5.00	0	0

Table 42. Affected areas in Gloria, Oriental Mindoro during a 25-Year Rainfall Return Period.

Figure 73. Affected areas in Gloria, Oriental Mindoro during a 25-Year Rainfall Return Period.

For the 100-year return period, 6.24% of the municipality of Bansud with an area of 345.37 sq. km. will experience flood levels of less 0.20 meters. 1.54% of the area will experience flood levels of 0.21 to 0.50 meters while 1.96%, 1.56%, 0.52%, and 0.07% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Table 43 depicts areas affected in Bansud in square kilometres by flood depth per barangay.

2
.9
5
ď
~
=
Ξ
æ
Ř
=
എ
Ę
. <u></u>
č
5
ਯ
୍କ
1
2
2
σ
<u>6</u>
1
ન
ĕ
2
ō
σ
3
2
a
÷
5
.≝
ົດ
<u> </u>
ວັ
S
F
ä
2
·=
S
8
2
σ
D
Ę
U.
Ð
Ť
4
÷.
4
۵,
Ē
at
F

Ta	ble 43. Affect	ed areas in Ba	ansud, Orient	al Mindoro du	uring a 100-Ye	ear Rainfall Re	eturn Period.	
			Area or arre	screa paranga	ys in bansud	(III sq. km.)		
(sq. km.) by flood depth (in m.)	Alcadesma	Conrazon	Pag-Asa	Poblacion	Proper Bansud	Proper Tiguisan	Rosacara	Salcedo
0.03-0.20	0.81	11.87	1.25	0.14	1.35	1.4	4.19	0.53
0.21-0.50	0.55	1.48	0.85	0.28	1.06	0.64	0.34	0.14
0.51-1.00	1.58	1.57	0.52	0.64	1.57	0.48	0.26	0.17
1.01-2.00	1.46	1.79	0.32	0.54	0.84	0.23	0.12	0.091
2.01-5.00	0.081	1.2	0.24	0.041	0.17	0.0037	0.044	0.012
> 5.00	0	0.22	0.016	0.0068	0.0002	0	0	0

Figure 74. Affected areas in Bansud, Oriental Mindoro during a 100-Year Rainfall Return Period.

For the municipality of Gloria, with an area of 256.1 sq. km., 0.72% will experience flood levels of less 0.20 meters. 0.1% of the area will experience flood levels of 0.21 to 0.50 meters while 0.1%, 0.09%, and 0.004% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, and 2.01 to 5 meters, respectively. Table 44 depicts the areas affected in Gloria, Oriental Mindoro in square kilometers by flood depth per barangay.

Affected area (sq. km.) by	Area of affected barangays in Gloria (in sq. km.)				
flood depth (in m.)	Agsalin	Manguyang			
0.03-0.20	0.00089	1.8			
0.21-0.50	0.0036	0.26			
0.51-1.00	0.0048	0.24			
1.01-2.00	0.0088	0.21			
2.01-5.00	0.0016	0.0098			
> 5.00	0	0			

Table 44. Affected areas in Gloria, Oriental Mindoro during a 100-Year Rainfall Return Period.

Figure 75. Affected areas in Gloria, Oriental Mindoro during a 100-Year Rainfall Return Period.

Among the barangays in the municipality of Bansud, Conrazon is projected to have the highest percentage of area that will experience flood levels at 5.27%. Meanwhile, Proper Bansud posted the second highest percentage of area that may be affected by flood depths at 1.44%.

Among the barangays in the municipality of Gloria, Manguyang is projected to have the highest percentage of area that will experience flood levels at 1%. Meanwhile, Agsalin posted the second highest percentage of area that may be affected by flood depths at 0.01%.

5.11 Flood Validation

In order to check and validate the extent of flooding in different river systems, there is a need to perform validation survey work. Field personnel gathered secondary data regarding flood occurrence in the area within the major river system in the Philippines.

From the flood depth maps produced by Phil-LiDAR 1 Program, multiple points representing the different flood depths for different scenarios were identified for validation.

The validation personnel went to the specified points identified in a river basin and gathered data regarding the actual flood level in each location. Data gathering was done through a local DRRM office to obtain maps or situation reports about the past flooding events and interview some residents with knowledge of or have had experienced flooding in a particular area.

The actual data from the field were compared to the simulated data to assess the accuracy of the Flood Depth Maps produced and to improve on the results of the flood map. The points in the flood map versus its corresponding validation depths are shown in Figure 76.

The flood validation consists of 82 points randomly selected all over the Bansud floodplain. Comparing it with the flood depth map of the nearest storm event, the map has an RMSE value of 0.62m. Table 43 shows a contingency matrix of the comparison. The validation points are found in Annex 11.

Figure 76. Validation Points for a 25-year Flood Depth Map of the Bansud Floodplain.

Figure 77. Flood depth map vs actual flood depth.

Actual Flood Depth	Modeled Flood Depth (m)						
(m)	0-0.20	0.21-0.50	0.51-1.00	1.01-2.00	2.01-5.00	> 5.00	Total
0-0.20	14	5	11	1	1	0	32
0.21-0.50	8	3	1	2	2	0	16
0.51-1.00	4	8	16	2	0	0	30
1.01-2.00	2	1	0	0	1	0	4
2.01-5.00	0	0	0	0	0	0	0
> 5.00	0	0	0	0	0	0	0
Total	28	17	28	5	4	0	82

Table 45. Actual Flood Depth versus Simulated Flood Depth at different levels in the Bansud River Basin.

On the whole, the overall accuracy generated by the flood model is estimated at 40.24% with 33 points correctly matching the actual flood depths. In addition, there were 17 points estimated one level above and below the correct flood depths while there were 18 points and 6 points estimated two levels above and below, and three or more levels above and below the correct flood. A total of 4 points were overestimated while a total of 23 points were underestimated in the modelled flood depths of Bansud.

Table 46 depicts the summary of the Accuracy Assessment in the Bansud River Basin Flood Depth Map.

	No. of Points	%
Correct	33	40.24
Overestimated	26	31.71
Underestimated	23	28.05
Total	82	100.00

Table 46. Summary of the Accuracy Assessment in the Bansud River Basin Survey.

REFERENCES

Ang M.O., Paringit E.C., et al. 2014. *DREAM Data Processing Component Manual*. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Balicanta L.P., Paringit E.C., et al. 2014. *DREAM Data Validation Component Manual*. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Brunner, G. H. 2010a. HEC-RAS River Analysis System Hydraulic Reference Manual. Davis, CA: U.S. Army Corps of Engineers, Institute for Water Resources, Hydrologic Engineering Center.

Lagmay A.F., Paringit E.C., et al. 2014. *DREAM Flood Modeling Component Manual*. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Paringit E.C, Balicanta L.P., Ang, M.O., Sarmiento, C. 2017. *Flood Mapping of Rivers in the Philippines Using Airborne Lidar: Methods*. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Sarmiento C., Paringit E.C., et al. 2014. *DREAM Data Acquisition Component Manual*. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

UP TCAGP 2016, Acceptance and Evaluation of Synthetic Aperture Radar Digital Surface Model (SAR DSM) and Ground Control Points (GCP). Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

ANNEXES

Annex 1. Technical Specifications of the LiDAR Sensors used in the Bansud Floodplain Survey

1. GEMINI SENSOR

Control Rack

Laptop

	Figure	A-1.1	Gemini	Sensor
--	--------	-------	--------	--------

Table A-1.1 Parameters and Specifications of Gemini	Sensor
---	--------

Parameter	Specification
Operational envelope (1,2,3,4)	150-4000 m AGL, nominal
Laser wavelength	1064 nm
Horizontal accuracy (2)	1/5,500 x altitude, (m AGL)
Elevation accuracy (2)	<5-35 cm, 1 σ
Effective laser repetition rate	Programmable, 33-167 kHz
Position and orientation system	POS AV™ AP50 (OEM); 220-channel dual frequency GPS/GNSS/Galileo/L- Band receiver
Scan width (WOV)	Programmable, 0-50°
Scan frequency (5)	Programmable, 0-70 Hz (effective)
Sensor scan product	1000 maximum
Beam divergence	Dual divergence: 0.25 mrad (1/e) and 0.8 mrad (1/e), nominal
Roll compensation	Programmable, ±5° (FOV dependent)
Range capture	Up to 4 range measurements, including 1st, 2nd, 3rd, and last returns
Intensity capture	Up to 4 intensity returns for each pulse, including last (12 bit)
Video Camera	Internal video camera (NTSC or PAL)
Image capture	Compatible with full Optech camera line (optional)
Full waveform capture	12-bit Optech IWD-2 Intelligent Waveform Digitizer (optional)

Data storage	Removable solid state disk SSD (SATA II)
Power requirements	28 V; 900 W;35 A(peak)
Dimensions and weight	Sensor: 260 mm (w) x 190 mm (l) x 570 mm (h); 23 kg Control rack: 650 mm (w) x 590 mm (l) x 530 mm (h); 53 kg
Operating temperature	-10°C to +35°C (with insulating jacket)
Relative humidity	0-95% no-condensing

2. AQUARIUS SENSOR

Figure A-1.2 Aquarius Sensor

Parameter	Specification
Operational altitude	300-600 m AGL
Laser pulse repetition rate	33, 50. 70 kHz
Scan rate	0-70 Hz
Scan half-angle	0 to ± 25 °
Laser footprint on water surface	30-60 cm
Depth range	0 to > 10 m (for k < 0.1/m)
Topographic mode	
Operational altitude	300-2500
Range Capture	Up to 4 range measurements, including 1st, 2nd, 3rd, and last returns
Intensity capture	12-bit dynamic measurement range
Position and orientation system	POS AVTM 510 (OEM) includes embedded 72-channel GNSS receiver (GPS and GLONASS)
Data Storage	Ruggedized removable SSD hard disk (SATA III)
Power	28 V, 900 W, 35 A
Image capture	5 MP interline camera (standard); 60 MP full frame (optional)
Full waveform capture	12-bit Optech IWD-2 Intelligent Waveform Digitizer (optional)
Dimensions and weight	Sensor:250 x 430 x 320 mm; 30 kg; Control rack: 591 x 485 x 578 mm; 53 kg
Operating temperature	0-35°C
Relative humidity	0-95% no-condensing

Annex 2. NAMRIA certification of reference points used in the LiDAR survey

1. MRE-54

Figure A-2.1. MRE-54

NATIONAL MA	PPING AND RES		UTHORITY	
				February 04, 201
	CER	TIFICATION		
whom it may concern:				
This is to certify that according to	the records on t	file in this office the requ	ested survey info	ormation is as follows
the solution of the solution o				5111610116 85 1010WS
	Province: OR	IENTAL MINDORO		
	Station N	lame: MRE-54		
	Order: 2nd		Perenacy MALIANCOOC	
cland: LUZON			Doropoor N	
sland: LUZON Municipality: PINAMALAYAN			Barangay: N	IALIANGCOG
sland: LUZON Municipality: PINAMALAYAN	PRS	92 Coordinates	Barangay: N	IALIANGCOG
Island: LUZON Municipality: PINAMALAYAN _atitude: 12° 59' 12.43671"	PRS: Longitude:	92 Coordinates 121º 24' 46.52637''	Barangay: N Ellipsoidal H	gt: 42.40800 m.
sland: LUZON Municipality: PINAMALAYAN _atitude: 12º 59' 12.43671"	PRS: Longitude: WGS	92 Coordinates 121º 24' 46.52637'' 84 Coordinates	Barangay: N Ellipsoidal H	gt: 42.40800 m.
sland: LUZON Municipality: PINAMALAYAN .atitude: 12º 59' 12.43671" .atitude: 12º 59' 7.43505"	PRS: Longitude: WGS Longitude:	92 Coordinates 121º 24' 46.52637'' 84 Coordinates 121º 24' 51.55668''	Barangay: № Ellipsoidal H Ellipsoidal H	gt: 42.40800 m.
sland: LUZON Municipality: PINAMALAYAN Latitude: 12º 59' 12.43671" Latitude: 12º 59' 7.43505"	PRS: Longitude: WGS Longitude:	92 Coordinates 121º 24' 46.52637'' 84 Coordinates 121º 24' 51.55668'' 4 Coordinates	Barangay: N Ellipsoidal H Ellipsoidal H	gt: 42.40800 m. gt: 91.39500 m.
sland: LUZON Municipality: PINAMALAYAN .atitude: 12° 59' 12.43671" .atitude: 12° 59' 7.43505" Northing: 1436124.562 m.	PRS: Longitude: WGS Longitude: PTM Easting:	92 Coordinates 121° 24' 46.52637'' 84 Coordinates 121° 24' 51.55668'' // Coordinates 544797.009 m.	Barangay: N Ellipsoidal H Ellipsoidal H Zone: 3	gt: 42.40800 m. gt: 91.39500 m.
sland: LUZON Municipality: PINAMALAYAN Latitude: 12º 59' 12.43671" Latitude: 12º 59' 7.43505" Northing: 1436124.562 m.	PRS: Longitude: WGS Longitude: PTM Easting:	92 Coordinates 121º 24' 46.52637'' 84 Coordinates 121º 24' 51.55668'' // Coordinates 544797.009 m.	Barangay: N Ellipsoidal H Ellipsoidal H Zone: 3	gt: 42.40800 m. gt: 91.39500 m.

MRE-54

From Calapan City to Roxas, along Nat'l Road, approx. 100 m from Pula Bridge, along Brgy. Sto. Niño, right turn to Brgy. Road leading to Gloria Airport, passing through Brgy. Sto. Niño, Brgy. Sta. Maria, Brgy. Pambigan Malaki, all in Mun. of Pinamalayan. approx. 7.8 Km. from Nat'l Road, 1.1 Km. from Brgy. Chapel, 600 m from Maliangkog Elem. School, left side of road located Brgy. Hall of Maliangkog, Pinamalayan, Oriental Mindoro. Station is located beside of flagpole near gate of brgy. hall. Mark is the head of a 4 in, copper nail flushed in a cement block embedded in the ground with inscriptions, "MRE-54, 2007, NAMRIA".

Requesting Party: UP-DREAM Pupose: Reference OR Number: 8795255 A T.N.: 2014-196

Ditta For RUEL DM. BELEN, MNSA

Director, Mapping And Geodesy Branch

6

NAMRIA OFFICES: Main : Lawton Avenue, Fort Bonifacio, 1634 Taguig (ity, Philippines Tel. No.: (632) 810-4831 to 41 Branch : 421 Barraca St. San Nicolas, 1010 Manila, Philippines, Tel. No. (632) 241-3494 to 98 www.namria.gov.ph

2. MRE-11

Figure A-2.2. MRE-11

MRE-11

Location Description

To reach the station from Calapan town proper, travel SE to S ialong the nat'l. road for about 120 kms. leading to the town of iBongabong, passing by the towns of Victoria, Pinamalayan and iBansud. Station is located inside the school compound of iMagdalena Umali Suyon Elem. School on the SE corner of the ifooting of a concrete landmark bearing the school name. It is iabout 20 m. W of the main gate along Gov. Umali St. Mark is the ihead of a 4 in. copper nail embedded and centered on a 0.15 m. x i0.15 m. cement putty, with inscriptions "MRE-11 1997 NAMRIA".

Purpose: OR Number: T.N.:

Requesting Party: ENGR. CHRISTOPHER CRUZ Reference 8088472 I 2015-3525

RUEL DM. BELEN, MNSA Director, Mapping And Geodesy Branch

NAMRIA OFFICES: Main : Lawton Avenue, Fort Bonifacio, 1634 Taguig City, Philippines Tel. No.: (632) 810-4831 to 41 Branch : 421 Barraca St. San Nicolas, 1010 Manila, Philippines, Tel. No. (632) 241-3494 to 98 www.namria.gov.ph

ISO 9001: 2008 CERTIFIED FOR MAPPING AND GEOSPATIAL INFORMATION MANAGEMENT

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

3. MRE-56

Figure A-2.3. MRE-56

MRE-56

From Calapan City to Bulalacao, along Nat'l Road approx. 4 Km. from Roxas Proper is an intersection of Roxas, Mansalay, Bongabong Road, turn left, approx. 14 Km. travel, right side of Nat'l Road located Mun. Hall of Mansalay, Oriental Mindoro, in front of Mansalay Hospital. Station is located in corner wall of Mun. Park in front of Mun. Hall. Mark is the head of a 4 in. copper nail flushed in a cement block embedded in the ground with inscritions, "MRE-56, 2007, NAMRIA"

Purpose: OR Number: T.N .:

Requesting Party: ENGR. CHRISTOPHER CRUZ Reference 80884721 2015-3523

RUEL DM. BELEN, MNSA Director, Mapping And Geodesy Branch (7

NAMRIA OFFICES: Main : Lawton Venue, Fort Bonifacio, 1634 Taguig City, Philippines Tel. No. (632) 810-4831 to 41 Branch : 421 Barraca St. San Nicolas, 1010 Manila, Philippines, Tel. No. (632) 241-3494 to 98 www.namria.gov.ph

ISO 9001: 2008 CERTIFIED FOR MAPPING AND GEOSPATIAL INFORMATION MANAGEMENT
Annex 3. Baseline Processing Reports of Control Points used in the LIDAR Survey

1. MRE-4563

Table A-3.1. MRE-4563

Project informati	on	Coordinate Sys	tem	
Name:		Name:	UTM	
Size:		Datum:	WGS 1984	
Modified:	10/12/2012 4:40:11 PM (UTC:-6)	Zone:	51 North (123E)	
Time zone:	Mountain Standard Time	Geoid:	EGMPH	
Reference numbe	r:	Vertical datum:		
Description:				

Baseline Processing Report

	Processing Summary											
Observation	From	То	Solution Type	H. Prec. (Meter)	V. Prec. (Meter)	Geodetic Az.	Ellipsoid Dist. (Meter)	ΔHeight (Meter)				
MRE-4563 MRE- 54 (B1)	MRE-54	MRE-4563	Fixed	0.005	0.015	359*56'42"	3244.605	-17.680				

Acceptance Summary

Processed	Passed	Flag P	Fail 🕨	
1	1	0	0	

MRE-4563 - MRE-54 (7:57:34 AM-5:20:54 PM) (S1)

Baseline observation:	MRE-4563 MRE-54 (B1)
Processed:	2/11/2014 3:05:00 PM
Solution type:	Fixed
Frequency used:	Dual Frequency (L1, L2)
Horizontal precision:	0.005 m
Vertical precision:	0.015 m
RMS:	0.001 m
Maximum PDOP:	6.448
Ephemeris used:	Broadcast
Antenna model:	Trimble Relative
Processing start time:	2/6/2014 7:57:51 AM (Local: UTC+8hr)
Processing stop time:	2/6/2014 5:20:54 PM (Local: UTC+8hr)
Processing duration:	09:23:03
Processing interval:	1 second

2. MRE-11A

Table A-3.2. MRE-11A

1

Project informatio	n				Coordi	nate Syst	em				
Name:					Name:			Default			
Size:					Datum	:		WGS 19	84		
Modified:	10/	12/2012 4:	40:11 PM (UTC	:-6)	Zone:			Default			
Time zone:	Mo	untain Sta	ndard Time		Geoid:						
Reference numbe	r:				Vertica	datum:					
Description:											
			Baseli	ine Proce	əssing	Repo	rt				
				Processing	Summa	гy					
Observation	From	тө	Solution Type	H. Prec. (Meter)	V. Prec. (Meter)	AX (Meter)	(Meter)	AZ (Meter)	Geodetic Az.	Ellipsoid Dist. (Meter)	AHeight (Meter)
MRE11 -25 MRE11A - 25 (B1)	MRE11 - 25	MRE11A - 25	Fixed	0.001	0.002	1.673	0.540	1.035	302°48'1 6"	2.032	0.515
			4	Acceptance	Summe	ary					
Proces	ised		Passed		Fla	•g	7		Fail	1	
1			1			0			0		

Baseline observation:	MRE11 -25 MRE11A - 25 (B1)
Processed:	11/5/2015 4:59:57 PM
Solution type:	Fixed
Frequency used:	Dual Frequency (L1, L2)
Horizontal precision:	0.001 m
Vertical precision:	0.002 m
RMS:	0.001 m
Maximum PDOP:	3.139
Ephemeris used:	Broadcast
Antenna model:	NGS Absolute
Processing start time:	10/25/2015 7:49:43 AM (Local: UTC+8hr)
Processing stop time:	10/25/2015 10:53:15 AM (Local: UTC+8hr)
Processing duration:	03:03:32
Processing interval:	1 second

MRE11 -25 - MRE11A - 25 (7:49:43 AM-10:53:15 AM) (S1)

Vector Components (Mark to Mark)

From:	MRE11 -25	RE11 -25						
Gi	rid	Lo	cal		Global			
Easting	0.310 m	Latitude	N12°44'45.47200	" Latitude		N12°44'45.47200"		
Northing	-4.205 m	Longitude	E121°29'12.85377	" Longitude		E121°29'12.85377"		
Elevation	55.043 m	Height	55.043 r	n Height		55.043 m		
То:	MRE11A - 25							
G	rid	Lo		Global				
Easting	-1.398 m	Latitude	N12°44'45.50783	" Latitude		N12°44'45.50783"		
Northing	-3.104 m	Longitude	E121°29'12.79714	Longitude		E121°29'12.79714"		
Elevation	55.558 m	Height	55.558 r	n Height		55.558 m		
Vector								
∆Easting	-1.70	8 m NS Fwd Azimuth		302°48'16"	ΔX	1.321 m		
ΔNorthing	1.10	1 m Ellipsoid Dist.		2.032 m	ΔY	1.114 m		
∆Elevation	0.51	5 m ∆Height		0.515 m	ΔZ	1.188 m		

11/5/2015 5:01:03 PM	Business Center - HCE

2

1.

3. MRE-11 AM1

Table A-3.3. MRE-11 AM1

MRE54 - 22 - MRE11 AM1 -22 (7:40:13 AM-8:58:26 AM) (S3)

Baseline observation:	MRE54 - 22 MRE11 AM1 -22 (B3)
Processed:	11/5/2015 4:50:09 PM
Solution type:	Fixed
Frequency used:	Dual Frequency (L1, L2)
Horizontal precision:	0.006 m
Vertical precision:	0.035 m
RMS:	0.005 m
Maximum PDOP:	3.705
Ephemeris used:	Broadcast
Antenna model:	NGS Absolute
Processing start time:	10/22/2015 7:40:33 AM (Local: UTC+8hr)
Processing stop time:	10/22/2015 8:58:26 AM (Local: UTC+8hr)
Processing duration:	01:17:53
Processing interval:	1 second

Vector Components (Mark to Mark)

From:	MR	E54 - 22								
	Grid			Local			Global			
Easting		328016.924 m	Lati	tude	N12°59'0	7.43505"	Latitude		N12°59'07.43505"	
Northing		1436055.870 m	Lon	gitude	E121°24'5	1.55668"	Longitude		E121°24'51.55668"	
Elevation		43.116 m	Heig	ght	ç	91.395 m	Height		91.395 m	
To:	MR	E11 AM1 -22								
	Grid			Local			Global			
Easting		335735.169 m	Lati	tude	N12°44'4	5.47242"	17242" Latitude		N12°44'45.47242"	
Northing		1409521.797 m	Lon	gitude	E121°29'12.85426"		Longitude		E121°29'12.85426"	
Elevation		5.611 m	Heig	ght	E	54.990 m	Height		54.990 m	
Vector										
∆Easting		7718.24	15 m	NS Fwd Azimuth			163°25'41"	ΔX	-9779.902 m	
∆Northing		-26534.07	'3 m	Ellipsoid Dist.			27635.215 m	ΔY	890.711 m	
∆Elevation		-37.50)5 m	∆Height			-36.405 m	ΔZ	-25831.822 m	

1

4. MRE-11 PM2

Table A-3.4. MRE-11 PM2

Project information	on				Coordi	inate Syst	em				
Name:					Name			UTM			
Size:					Datum			WGS 19	84		
Modified:	10	0/12/2012 4	:40:11 PM (UTC	2:-6)	Zone:			51 North	(123E)		
Time zone:	м	ountain Sta	ndard Time		Geoid			EGM96	(Global)		
Reference numb	er:				Vertica	al datum:					
Description:											
			Baseli	ine Proce	essing	Repo	-t				
				Processing	Summa	агу					
Observation	From	То	Solution Type	H. Prec. (Meter)	V. Prec. (Meter)	۵× (Meter)	∆Y (Meter)	ΔZ (Meter)	Geodetic Az.	Ellipsoid Dist. (Meter)	∆Height (Meter)
MRE54 - 22 MRE11 AM1 -22 (B3)	MRE 54 - 22	MRE11 AM1-22	Fixed	0.006	0.035	- 9779.846	890.616	- 25831.85 3	163°25'4 1"	27635.21 5	-36.405
	MRE54 -	MRE11 PM2 - 22	Fixed	0.004	0.023	- 9779.877	890.724	- 25831.85	163°25'4 1"	27635.23 2	-36.300

Acceptance Summary											
Processed	Passed	Flag	7	Fail	1						
2	2	0		0							

MRE54 - 22	- MRE11 PM	12 - 22 (1:23	3:53 PM-4:46:28	3 PM) (S2)
------------	------------	---------------	-----------------	------------

MRE54 - 22 MRE11 PM2 - 22 (B2)
11/5/2015 4:50:38 PM
Fixed
Dual Frequency (L1, L2)
0.004 m
0.023 m
0.006 m
8.263
Broadcast
NGS Absolute
10/22/2015 1:23:53 PM (Local: UTC+8hr)
10/22/2015 4:46:28 PM (Local: UTC+8hr)
03:22:35
1 second

Vector Components (Mark to Mark)

From:	MRE54 - 22						
Gi	id	Lo	cal			Glo	bal
Easting	328016.924 m	Latitude	N12°59'07	.43505"	Latitude		N12°59'07.43505"
Northing	1436055.870 m	Longitude	E121°24'51	.55668"	Longitude		E121°24'51.55668"
Elevation	43.116 m	Height	9	1.395 m	Height		91.395 m
To:	MRE11 PM2 - 22						
Gi	id	Lo	cal			Glo	bal
Easting	335735.139 m	Latitude	N12°44'45	5.47157"	Latitude		N12°44'45.47157"
Northing	1409521.771 m	Longitude	E121°29'12	2.85328"	Longitude		E121°29'12.85328"
Elevation	5.716 m	Height	5	5.095 m	Height		55.095 m
Vector							
∆Easting	7718.21	5 m NS Fwd Azimuth			163°25'41"	ΔX	-9779.933 m
ΔNorthing	-26534.09	9 m Ellipsoid Dist.			27635.232 m	ΔΥ	890.818 m
∆Elevation	-37.40	0 m ∆Height			-36.300 m	ΔZ	-25831.824 m

11/5/2015 4:52:33 PM	Business Center - HCE

3

1

5. MRE-56A

Table A-3.5. MRE-56A

Project informatio	n				Coordi	nate Syst	em				
Name:					Name:			UTM			
Size:					Datum	:		WGS 19	84		
Modified:	10/	12/2012 4	40:11 PM (UTC	0:-6)	Zone:			51 North	(123E)		
Time zone:	Mo	untain Sta	ndard Time		Geoid			EGM96	(Global)		
Reference numbe	r:				Vertica	datum:					
Description:											
			Basel	ine Proce	əssina	Repo	nt				
			1	Processing	Summe	iry					
Observation	From	Тө	Solution Type	H. Prec. (Meter)	V. Prec. (Meter)	AX (Meter)	۵۲ (Meter)	AZ (Meter)	Geodetic Az.	Ellipsoid Dist. (Meter)	AHeight (Meter)
MRE56 - 26 MRE56a - 26 (B1)	MRE56 - 26	E56 - MRE56a - Fixed 0.001 0.002					-0.909	-8.525	156°03'0 0"	9.407	-0.535
				Acceptance	Summe	ary					
Proces	sed		Passed		Fla	×g	4		Fail	1	
1			1			0				0	

MRE56 - 26 - MRE56a - 26 (6:52:03 AM-10:24:32 AM) (

Baseline observation:	MRE56 - 26 MRE56a - 26 (B1)
Processed:	11/5/2015 5:05:12 PM
Solution type:	Fixed
Frequency used:	Dual Frequency (L1, L2)
Horizontal precision:	0.001 m
Vertical precision:	0.002 m
RMS:	0.000 m
Maximum PDOP:	12.356
Ephemeris used:	Broadcast
Antenna model:	NGS Absolute
Processing start time:	10/26/2015 6:52:03 AM (Local: UTC+8hr)
Processing stop time:	10/26/2015 10:24:32 AM (Local: UTC+8hr)
Processing duration:	03:32:29
Processing interval:	1 second

Vector Components (Mark to Mark)

From:	MRE56 - 26							
Gi	rid		Lo	al			Glo	bal
Easting	330684.411 m	Latitu	ude	N12°31'20	0.87629"	Latitude		N12°31'20.87629"
Northing	1384827.258 m	Long	gitude	E121°26'30	0.28143"	Longitude		E121°26'30.28143"
Elevation	7.925 m	Heigh	ht	5	58.136 m	Height		58.136 m
To:	MRE56a - 26							
Gi	rid		Lo	al			Glo	bal
Easting	330688.179 m	Latitu	ude	N12°31'20	0.59653"	Latitude		N12°31'20.59653"
Northing	1384818.639 m	Long	jitude	E121°26'30	0.40791"	Longitude		E121°26'30.40791"
Elevation	7.390 m	Heigh	ht	E	57.601 m	Height		57.601 m
Vector								
∆Easting	3.76	58 m M	NS Fwd Azimuth			156°03'00"	ΔX	-3.958 m
ΔNorthing	-8.61	19 m B	Ellipsoid Dist.			9.407 m	ΔY	-0.847 m
∆Elevation	-0.53	35 m 🖌	∆Height			-0.535 m	ΔZ	-8.509 m

11/5/2015 5:06:23 PM	Business Center - HCE

2

Annex 4. The LiDAR Survey Team Composition

Data Acquisition Component Sub -Team	Designation	Name	Agency / Affiliation
PHIL-LIDAR 1	Program Leader	ENRICO C. PARINGIT, D.ENG	UP-TCAGP
Data Acquisition Component Leader	Data Component Project Leader – I	ENGR. CZAR JAKIRI SARMIENTO	UP-TCAGP
	Chief Science Research Specialist (CSRS)	ENGR. CHRISTOPHER CRUZ	UP-TCAGP
Survey Supervisor	Supervising Science	LOVELY GRACIA ACUÑA	UP-TCAGP
	(Supervising SRS)	LOVELYN ASUNCION	UP-TCAGP
	FIELI	D TEAM	
	Senior Science Research Specialist	PAULINE JOANNE ARCEO	UP-TCAGP
LiDAR Operation	Research Associate (RA)	MARY CATHERINE BALIGUAS	UP-TCAGP
	RA	ENGR. MILLIE SHANE REYES	UP-TCAGP
	RA	ENGR. IRO NIEL ROXAS	UP-TCAGP
Ground Survey,	RA	GRACE SINADJAN	UP-TCAGP
Transfer	RA	ENGR. GEF SORIANO	UP-TCAGP
	Airborne Security	SSG. ERIC CACANINDIN	PHILIPPINE AIR FORCE (PAF)
LiDAR Operation	Pilot	CAPT. JEFFREY JEREMY ALAAR	ASIAN AEROSPACE CORPORATION (AAC)
		CAPT. JACKSON JAVIER	AAC

Table A-4.1. The LiDAR Survey Team Composition

Annex 5. Data Transfer Sheet for Bansud Floodplain

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

Figure A-5.1. Transfer Sheet for Bansud Floodplain - A

Figure A-5.2. Transfer Sheet for Bansud Floodplain - B

Figure A-5.3. Transfer Sheet for Bansud Floodplain - C

Figure A-5.4. Transfer Sheet for Bansud Floodplain - D

Annex 6. Flight logs for the flight missions

....

1. Flight Log for 1056A

1207

ight Log No.: /	1: RP9122							
H	6 Aircraft Identification			18 Total Flight Time:				Lidar Operator RI MC GCD Signature over Printed Name
	5 Aircraft Type: Cesnna T206H		(Airport, City/Province):	17 Landing:				mand
	8 co by 4 Type: VFR		12 Airport of Arrival	16 Take off:		÷		Pilot-in-Com
	3 Mission Name: GBLk2	9 Route:	(Airport, City/Province):	15 Total Engine Time:		11/21 MARS.	·. {·	Jistion Flight Certified by
	2 ALTM Model: AQUARUU	lot: J. JAVIER	12 Airport of Departure (ne Off:		CANNENIA		V Acqu
ta Acquisition Flight Log	Operator: RV ARCED	J. PLAJAR 8 CO-PI	FEBRUAREN 3, 2014	e On: 824 14 Eng	ner	rks:	lems and Solutions:	Acquisition Flight Approved 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
DREAM Dat	1 LIDAR C	7 Pilot:	10 Date:	13 Engine	19 Weath	20 Remai	21 Probl	

Figure A-6.1. Flight Log for Mission 1056A

21 Problems and Solutions: 21 Problems 21 Protent 21 Problems 21 Protent	in value:	a type: vrn 2 mulant, Gity ake off: 17 Landing awith-Atuff.	Province):	18 Total Flight Time:	
Date: E.g. C, 2014 12 Airport of Departure (Airport, City Stegies On: 13 49 10 Weather 14 Engine Off: 15 Total Er 11 Weather 13 49 14 Engine Off: 15 Total Er 11 Weather 13 10 14 mg/s 12 Airport of Departure (Airport, City State Er 10 Weather 13 49 14 Fugine Off: 15 Total Er 11 Mutarks: 17 24 13 /19 Live 11 Problems and Solutions: 17 24 13 /19 Live 21 Problems and Solutions: Acquisition Flight Approved by Acquisition Flight Constrained by Acquisition Flight Approved by Acquisition Flight Approved by Acquisition Flight Constrained by Signature over Printed Name Signature over Printed Name Signature over Printed Name	Ity/Province): 12/ Engine Time: 16 3 + 35 Letter Duve to Trim E	irport of Arrival (Airport, City, ake off:	Province):	18 Total Flight Time:	
3 Engine On: 14 Engine Off: 15 Total Er 9 Weather 9 Weather 1724 15 Total Er 9 Remarks: 0 Remarks: 0 Remarks: 0 Remarks: 1734 15 Total Er 9 Remarks: 0 Remarks: 0 Remarks: 0 Remarks: 13 / 19 Urve Urve 0 Remarks: 0 Remarks: 0 Remarks: 0 Remarks: 0 Remarks: 0 Remarks: 0 Remarks: 0 Remarks: 0 Remarks: 0 Remarks: 0 Remarks: 0 Remarks: 0 Remarks: 0 Remarks: 0 Remarks: 0 Remarks: 0 Remarks: 0 Remarks: 0 Remarks: 21 Problems and Solutions: 0 Remarks: 0 Remarks: 0 Remarks: 21 Problems and Solutions: 0 Remarks: 0 Remarks: 0 Remarks: 21 Problems and Solutions: 0 Remarks: 0 Remarks: 0 Remarks: 21 Problems and Solutions: 0 Remarks: 0 Remarks: 0 Remarks: 21 Problems and Solutions: 0 Remarks: 0 Remarks: 0 Remarks: 21 Problems and Solutions: 0 Remarks: 0 Remarks: 0 Remarks: 21 Problems and Solutions: 0 Remarks: 0 Remarks: 0 Remarks: 22 Remarks: 0 Remarks: 0 Remarks: 0 Remarks: 23 Re	16. 3+35 LETED DAVE TO TAME	ake off: 17 Landin		18 Total Flight Time:	
9 Weather 0 Remarks: 2 Remarks: 2 Problems and Solutions: 2 Problems an	NEC.	વાન્ના નીંદ.			
0 Remarks: Completed I a / 19 Live MMIS DN NOT a MPLET MMIS DN NOT a MPLET MMIS DN NOT a MPLET Acquisition Flight Approved by Acquisition Flight Approve	NEG.	- there is a second			
21 Problems and Solutions: Acquisition Flight Approved by Acquisition Flight Construction Flight Construct					
21 Problems and Solutions: Acquisition Flight Approved by Acquisition Flight Construction Flight Construct					
Acquisition Flight Approved by Acquisition Flight C Acquisition					
Acquisition Flight Approved by Acquisition Flight C 4 a Lev Cry Leuritz Lev Cry Leuritz Signature over Printed Name (End User Representative)				1	
Acquisition Flight Approved by Acquisition Flight C 4-20 C - 1 A E-11-1-2 Signature over Printed Name Signature over Printed Name (PAF Representative)			0		
	ht Certified by	Pilot-in-Command		Lidar Operator	

Figure A-6.2. Flight Log for Mission 1066A

3. Flight Log for 1070A

Figure A-6.3. Flight Log for Mission 1070A

7601	2		1			1]	
Flight Log No.:	6 Aircraft Identification: Rp9123	and an an an and an and the second		18 Total Flight Time:			1	lidar Operator 1 - Rafar E Signature oper Printed Name
	5 Aircraft Type: Cesnna T206H	Airoot Chy/Browneel-	(Arriport, City/Frownice).	17 Landing:				In and In U. E.F. er Printed Name
A3A	4 Type: VFR	12 Airport of Arrival		16 Take off:		м 4		Pilot-in-Com J Aff Signature or
3BUK ABES	3 Magion Name:	9 Route: Mirrort Chv/Province)	אוו אמוני, בו נאל אוטא ווכפן.	15 Total Engine Time: 4406		lines in Areas A		ation flight Certified by
000	C 2 ALTM Model: 3 PLK 28A BI	Co-Pilot: J. ALAJAN		Engine Off: 13/3		comp loted		wed by Acqui
DREAM Data Acquisition Flight Log	1 LIDAR Operator: IN ROXP.	7 Pilot: J. J. J. VINK 84	1000000 FBB. 12, 2014	13 Engine On: \$ 08	19 Weather	20 Remarks:	21 Problems and Solutions:	Acquisition Flight Appre

Figure A-6.4. Flight Log for Mission 1092A

5. Flight Log for 8302G

Identified Z ALTM Model: Genurn 3 Mission Name: I 8 Co-Plot: J ADOMET 9 Route: CALENT I 2 Alroot of beparture (Airport, Gity/Provintie) 20 Route: CALENT I 4 Engine Off: J 2 Alroot of beparture (Airport, Gity/Provintie) 15 Total Engine T 3443 20.5 Non Billable 20.5 Others 20.6 Non Billable 20.5 Others 3443 0 Ancraft Test Flight 0 LiDAR Syst 0 Others: 0 Phil-LiDAR	Rem Maintenance Rem Maintenance R admin Activities R admin Activities R admin Activities	5 Aircraft Type: Cesnna 7206H Airport, City/Province): 17 Landing: 1112 1112 1112 1112	6 Aircraft Identification: 9322
1 a co-ruce: CALEN 12 Alroor of Departure (Airport, Gity/Provintile) 13 Cale pow 14 Engine Off: 13 Cale pow 20.b Non Billable 20.c Others 3443 20.b Non Billable 20.c Others 3443 0 Ancraft Test Flight 0 0 Others: 0 0 Others: 0	VAN - CALARDAN nce): 12 Airport of Arrival (alcoont of Arrival (alcoont): 16 Take off: 21 Remarks 21 Remarks 21 Remarks 21 Remarks 21 Remarks 21 Remarks 21 Remarks 21 Remarks 21 Remarks 21 Remarks 22 Applew (butthe	Airport, Gity/Province): 17 Landing: 1112 1112 1112 1128	
14 Engine Off: 15 Total Engine T 20.b Non Billable 20.c Others 20.b Non Billable 20.c Others 20.b Mon Billable 20.c Others 0 Ancraft Test Flight 0 0 Ancraft Test Flight 0 0 Others: 0	Time: 16 Take off: 21 Remarks 21 Remarks 21 Remarks 21 Remarks 21 Remarks 21 Remarks 21 Remarks 21 Remarks 21 Remarks 22 Remarks 23 Remarks 24 Remarks 24 Remarks 25 Remarks 26 Remarks 27 Remarks 28 Remarks 29 Remarks 20 Remarks	17 Landing: 1112 1112 1112 1112 1128	
20.c Others 20.c Others Ancraft Test Flight 0 LIDAR Syst AAC Amin Flight 0 Aircraft M O Others: 0 Phil-LIDAR	21 Remarks 21 Remarks Septem ferm Maintenance (butth daintenance R Admin Activities	earthal flight for BI 1281	18 Total Flight Time: 3+37
20.b Non Biliable 20.c Others O Aircraft Test Flight O LiDAR Syst O AAC Admin Flight O Aircraft M O Others: O Phil-LiDAR	21 Remarks tem Maintenance laintenance R Admin Activities	central flight for BIK284	
		while after the Clarades) and	s, completed BIK28E connect BIK28 H&I
by Acquisition Flight Certified by Adduct CHANUSAN MARTARS (4F Signature over Frinted Name (PAF Representative)	Filotin-command	Lidar Operator MSRTMS Signature over Printed Name	Aircraft Mechanic/ Technidan

Figure A-6.5. Flight Log for Mission 8302G

Figure A-6.6. Flight Log for Mission 8304G

7. Flight Log for 8306G

a Acquisition Flight Log		Drai 100	VOREC CORP			Flight Log No.:	83066
DAR Operator: MCE BRUIGUA	2 ALTM Model: Genni	3 Mission Name:	4 Type: VFR	5 Aircraft Type: Cesnna 7	T206H 6 Aircra	ft Identification:	9322
ot: M TANGONAN 8 Co ate: Oct. 25, 2415	Pilot: J MDDNEY 12 Airport of Departure (9 Route: Calapan - C	alapan 12 Airport of Arriv	al (Airport, City/Province):			
ngine On: 07 ין כ 14 E	ngine Off: 1127	15 Total Engine Time: 3ト41	16 Take off: D751	17 Landing: 11 22	18 Tota	Flight Time:	
eather (Moudy					5	
ght Classification Billable 20 o Acquisition Flight o Ferry Flight	b Non Billable O Aircraft Test Flight O AAC Admin Flight	20.c Others 0 LiDAR System Maint 0 Aircraft Maintenanc	21 Rema 21 Rema enance and enance	arks Galib over Pinamalaya Boughed 3 lines of Bl	n. Completed k286	B1k28F	
oblems and Solutions oblems and Solutions o Weather Problem o System Problem o Aircraft Problem o Others:		en este este este este este este este es					
quisition Flight Approved by	Acquisition Flight Certif	ied by Pilotin	-Command	Lidar Operator		Aircraft Mechanic/ Tech	nician
snature over Printed Name (End User Representative)	Signature over ¹ Printed N (PAF Representative	lame Signatu	re over Printed Name	signature over Printee	d Name	Signature over Printed h	Vame

Figure A-6.7. Flight Log for Mission 8306G

Annex 7. Flight status reports

BANSUD FLOODPLAIN

February 2-15, 2014; October 23-26, 2014

Table A-7.1. Flight Status Report

FLIGHT NO.	AREA	MISSION	OPERATOR	DATE FLOWN	REMARKS
1056A	BLK28C	3BLK28C034A	PAULINE AR- CEO	FEB 3, 2014	Finished lower half of BLK28C
1066A	BLOCK 28D	3BLK28DS036A	PAULINE AR- CEO	FEB 5, 2014	Survey 8 lines BLK28D
1070A	BLOCK 28D & 28E	3BLK28DSE037A	IRO ROXAS	FEB 6, 2014	Finished Block 28D and some lines of Block 28E
1092A	BLK 28A,B,E	3BLK28ABES043A	IRO ROXAS	FEB 12, 2014	Mission Complete
8302G	BLK28EHI	2BLK28ASEHI296A	CATH BALIGU- AS	OCT 23, 2014	Supplemental flight for BLK 28A, com- pleted BLK28E and covered BLK 28 H&I
8304G	BLK28FH	2BLK28FHS297A	CATH BALIGU- AS, SHANE REYES	OCT 24, 2014	Covered BLK 28 F&H
8306G	BLK28F	2CALIBBLK28FSGS298A	PAU ARCEO, CATH BALIGU- AS	OCT 25, 2014	LMS Calib over Pinamalayan; com- pleted BLK 28F and covered BLK 28G
8308G	BLK28J	2BLK28J299A	MS Reyes	OCT 26, 2014	Supplemental flight for BLK28F and covered BLK28J with voids due to clouds. Experienced Digitizer hard drive writing error.

SWATH PER FLIGHT MISSION

FLIGHT LOG NO. AREA: MISSION NAME: 1056A BLOCK 28C 3BLK28C034A

Figure A-7.1. Swath for Flight No. 1056A

1066A BLOCK 28D 3BLK28DS036A

Figure A-7.2. Swath for Flight No. 1066A

1070A BLOCK 28D & BLOCK 28E 3BLK28DSE037A

Figure A-7.3. Swath for Flight No. 1070A

1092A BLOCK 28A, B, E 3BLK28ABES43A

Figure A-7.4. Swath for Flight No. 1092A

8302G BLOCK 28A, 28E, 28H & 28I 2BLK28ASEHI296A

Figure A-7.5. Swath for Flight No. 8302G

8304G BLOCK 28F & 28H 2BLK28FHS297A

Figure A-7.6. Swath for Flight No. 8304G

8306G BLOCK 28F & 28G 2CALIBBLK28FSGS298A

Figure A-7.7. Swath for Flight No. 8306G

FLIGHT NO.: AREA: MISSION NAME: ALT: 1000 m 8308G Oriental Mindoro 2BLK28J299A SCAN FREQ: 50

SCAN ANGLE: 18

Figure A-7.8. Swath for Flight No. 8308G

Annex 8. Mission Summary Reports

Flight Area	Oriental Mindoro
Mission Name	Blk 28C
Inclusive Flights	1056A
Range data size	12.2 GB
POS	210 MB
Image	77.2 GB
Base data size	6.29 MB
Transfer date	February 6, 2014
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	Yes
Processing Mode (<=1)	Yes
Smoothed Performance Metrics(in cm)	
RMSE for North Position (<4.0 cm)	2.2
RMSE for East Position (<4.0 cm)	2.6
RMSE for Down Position (<8.0 cm)	4.2
Boresight correction stdev (<0.001deg)	0.000367
IMU attitude correction stdev (<0.001deg)	0.011964
GPS position stdev (<0.01m)	0.0209
Minimum % overlap (>25)	65.39%
Ave point cloud density per sq.m. (>2.0)	2.77
Elevation difference between strips (<0.20m)	Yes
Number of 1km x 1km blocks	257
Maximum Height	254.22 m
Minimum Height	48.61 m
Classification (# of points)	
Ground	60,654,258
Low vegetation	70,685,819
Medium vegetation	65,858,614
High vegetation	99,720,386
Building	2,215,401
Orthophoto	Yes
Processed by	Engr. Carlyn Ann Ibaňez, Engr. Christy Lubiano, Engr. Jeffrey Delica

Table A-8.1. Mission Summary Report for Mission Blk28C

Figure A-8.1. Solution Status

Figure A-8.2. Smoothed Performance Metrics Parameters

Figure A-8.3. Best Estimated Trajectory

Figure A-8.4 Coverage of LiDAR data

Figure A-8.5. Image of data overlap

Figure A-8.6. Density map of merged LiDAR data

Figure A-8.7. Elevation difference between flight lines

Elight Area	Oriental Mindora
Flight Area	
Banga data siza	1038A
	12.2 GB
Base data size	6.29 MB
POS	210 MB
Image	//.2 GB
Transfer date	February 6,2014
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	Yes
Processing Mode (<=1)	No
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	2.2
RMSE for East Position (<4.0 cm)	2.6
RMSE for Down Position (<8.0 cm)	4.3
Boresight correction stdev (<0.001deg)	0.000367
IMU attitude correction stdev (<0.001deg)	0.011964
GPS position stdev (<0.01m)	0.0209
Minimum % overlap (>25)	52.68%
Ave point cloud density per sq.m. (>2.0)	3.26
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	161
Maximum Height	236.75 m
Minimum Height	48.61 m
Classification (# of points)	
Ground	46 847 528
	57 381 551
Medium vegetation	53 054 311
High vegetation	75 001 227
Building	1 796 652
	1,700,035
Ortanhata	No
	Engr Carlyn Ann Ibañez
Processed by	Engr. Harmond Santos, Engr. Gladvs
	Mae Apat

 Table A-8.2. Mission Summary Report for Mission Blk28C_supplement

Figure A-8.8. Solution Status

Figure A-8.9. Smoothed Performance Metrics Parameters

Figure A-8.10. Best Estimated Trajectory

Figure A-8.11. Coverage of LiDAR data

Figure A-8.12. Image of data overlap

Figure A-8.13. Density map of merged LiDAR data

Figure A-8.14. Elevation difference between flight lines

Flight Area	Oriental Mindoro
Mission Name	Blk28D_supplement
Inclusive Flights	1066A
Range data size	11.7 GB
POS	203 MB
Image	73.9 GB
Base data size	14.5 MB
Transfer date	February 20, 2014
Solution Status	
Number of Satellites (>6)	No
PDOP (<3)	No
Baseline Length (<30km)	Yes
Processing Mode (<=1)	Yes
Smoothed Performance Metrics(in cm)	
RMSE for North Position (<4.0 cm)	1.4
RMSE for East Position (<4.0 cm)	1.7
RMSE for Down Position (<8.0 cm)	4.1
Boresight correction stdev (<0.001deg)	0.000424
IMU attitude correction stdev (<0.001deg)	0.000955
GPS position stdev (<0.01m)	0.0019
Minimum % overlap (>25)	49.41%
Ave point cloud density per sq.m. (>2.0)	3.47
Elevation difference between strips (<0.20m)	Yes
Number of 1km x 1km blocks	159
Maximum Height	358.99 m
Minimum Height	47.66 m
Classification (# of points)	
Ground	51,219,472
Low vegetation	61,022,435
Medium vegetation	58,444,262
High vegetation	84,379,495
Building	3,448,633
Orthophoto	No
Processed by	Engr. Irish Cortez, Engr. Christy Lubiano, Engr. Jeffrey Delica

Table A-8.3. Mission Summary Report for Mission Blk28D_supplement

Figure A-8.15. Solution Status

Figure A-8.16. Smoothed Performance Metrics Parameters

Figure A-8.17. Best Estimated Trajectory

Figure A-8.18. Coverage of LiDAR data

Figure A-8.19. Image of data overlap

Figure A-8.20. Density map of merged LiDAR data

Figure A-8.21. Elevation difference between flight lines

Flight Area	Oriental Mindoro
Mission Name	Blk28E
Inclusive Flights	1070A
Range data size	15.9 GB
POS	270 MB
Image	104 GB
Base data size	14.9 MB
Transfer date	February 20, 2014
Solution Status	
Number of Satellites (>6)	No
PDOP (<3)	No
Baseline Length (<30km)	No
Processing Mode (<=1)	Yes
Smoothed Performance Metrics(in cm)	
RMSE for North Position (<4.0 cm)	1.7
RMSE for East Position (<4.0 cm)	1.9
RMSE for Down Position (<8.0 cm)	3.8
Boresight correction stdev (<0.001deg)	0.000346
IMU attitude correction stdev (<0.001deg)	0.0001166
GPS position stdev (<0.01m)	0.0087
Minimum % overlap (>25)	38.34%
Ave point cloud density per sq.m. (>2.0)	3.35
Elevation difference between strips (<0.20m)	Yes
Number of 1km x 1km blocks	202
Maximum Height	388.91 m
Minimum Height	48.91 m
Classification (# of points)	
Ground	81,447,001
Low vegetation	92,938,121
Medium vegetation	85,912,374
High vegetation	92,936,807
Building	3,360,220
Orthophoto	Yes
Processed by	Engr. Carlyn Ann Ibaňez, Engr. Charmaine Cruz, Engr. Elainne Lopez, Engr. John Dill Macapagal

Table A-8.4. Mission Summary Report for Mission Blk28E

Figure A-8.22. Solution Status

Figure A-8.23. Smoothed Performance Metrics Parameters

Figure A-8.24. Best Estimated Trajectory

Figure A-8.25. Coverage of LiDAR data

Figure A-8.26. Image of data overlap

Figure A-8.27. Density map of merged LiDAR data

Figure A-8.28. Elevation difference between flight lines

Flight Area	Oriental Mindoro
Mission Name	Blk28E_supplement
Inclusive Flights	1092A
Range data size	12.7 GB
POS	242 MB
Image	23.7 GB
Base data size	15.4 MB
Transfer date	February 21, 2014
Solution Status	
Number of Satellites (>6)	No
PDOP (<3)	No
Baseline Length (<30km)	Yes
Processing Mode (<=1)	Yes
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	1.8
RMSE for East Position (<4.0 cm)	2.1
RMSE for Down Position (<8.0 cm)	5.6
Boresight correction stdev (<0.001deg)	0.000491
IMU attitude correction stdev (<0.001deg)	0.001513
GPS position stdev (<0.01m)	0.0156
Minimum % overlap (>25)	25.89%
Ave point cloud density per sq.m. (>2.0)	2.82
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	70
Maximum Height	344.97 m
Minimum Height	50.00 m
Classification (# of points)	
Ground	32,795,240
Low vegetation	33,440,686
Medium vegetation	23,067,538
High vegetation	28,790,559
Building	759,771
Orthophoto	Yes
Processed by	Engr. Kenneth Solidum, Engr. Melanie Hingpit, Jovy Narisma

|--|

Figure A-8.29. Solution Status

Figure A-8.30. Smoothed Performance Metrics Parameters

Figure A-8.31. Best Estimated Trajectory

Figure A-8.32. Coverage of LiDAR data

Figure A-8.33. Image of data overlap

Figure A-8.34. Density map of merged LiDAR data

Figure A-8.35. Elevation difference between flight lines

Elight Area	Oriental Mindoro Peflights
Mission Namo	
	0302G
PUS	228 WB
Image	28.2 GB
Base data size	11.5 MB
Iransfer date	November 12, 2015
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	Yes
Processing Mode (<=1)	Yes
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	1.58
RMSE for East Position (<4.0 cm)	1.36
RMSE for Down Position (<8.0 cm)	2.86
Boresight correction stdev (<0.001deg)	0.006431
IMU attitude correction stdev (<0.001deg)	0.044182
GPS position stdev (<0.01m)	0.0030
Minimum % overlap (>25)	35.65
Ave point cloud density per sq.m. (>2.0)	3.70
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	78
Maximum Height	172.45
Minimum Height	51.2
Classification (# of points)	
Ground	23,964,162
Low vegetation	31,143,186
Medium vegetation	61,650,233
High vegetation	57,492,838
Building	320,789
5	,
Orthophoto	Yes
Disease the	Engr. Regis Guhiting, Engr. Chelou Prado. Alex
Processed by	John Escobido

Table A-8.6. Mission Summary Report for Mission Blk28C

Figure A-8.36. Solution Status

Figure A-8.37. Smoothed Performance Metrics Parameters

Figure A-8.38. Best Estimated Trajectory

Figure A-8.39. Coverage of LiDAR data

Figure A-8.40. Image of data overlap

Figure A-8.41. Density map of merged LiDAR data

Figure A-8.42. Elevation difference between flight lines

Flight Area	Oriental Mindoro Reflights
Mission Name	BIk28E
Inclusive Flights	8306G, 8308G
Range data size	24.7 GB
POS	455 MB
Image	NA
Base data size	16.67 MB
Transfer date	November 12, 2015
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	Yes
Processing Mode (<=1)	Yes
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	1.10
RMSE for East Position (<4.0 cm)	0.987
RMSE for Down Position (<8.0 cm)	1.40
Boresight correction stdev (<0.001deg)	0.000735
IMU attitude correction stdev (<0.001deg)	0.001016
GPS position stdev (<0.01m)	0.0015
Minimum % overlap (>25)	39.53
Ave point cloud density per sq.m. (>2.0)	4.69
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	56
Maximum Height	437.09
Minimum Height	53.72
Classification (# of points)	
Ground	18,836,742
Low vegetation	24,281,146
Medium vegetation	45,637,220
High vegetation	49,797,647
Building	1,096,309
Orthophoto	No
Processed by	Engr. Abigail Joy Ching, Engr. Justine Francisco, Marie Denise Bueno

Table A-8.7. Mission Summary Report for Mission Blk28E

Figure A-8.43. Solution Status

Figure A-8.44. Smoothed Performance Metrics Parameters

Figure A-8.45. Best Estimated Trajectory

Figure A-8.46. Coverage of LiDAR data

Figure A-8.47. Image of data overlap

Figure A-8.48. Density map of merged LiDAR data

Figure A-8.49. Elevation difference between flight lines

Flight Area	Oriental Mindoro Reflights
Mission Name	Blk28H supplement
Inclusive Flights	8304G, 8306G
Range data size	24.9 GB
POS	434 MB
Image	24.8 GB
Base data size	17.2 MB
Transfer date	November 12, 2015
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	No
Processing Mode (<=1)	No
ŭ (
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	1.33
RMSE for East Position (<4.0 cm)	1.40
RMSE for Down Position (<8.0 cm)	3.05
Boresight correction stdev (<0.001deg)	0.000292
IMU attitude correction stdev (<0.001deg)	0.000461
GPS position stdev (<0.01m)	0.0016
Minimum % overlap (>25)	38.13
Ave point cloud density per sq.m. (>2.0)	4.70
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	78
Maximum Height	374.61
Minimum Height	41.25
Classification (# of points)	
Ground	33,733,252
Low vegetation	20,442,478
Medium vegetation	63,131502
High vegetation	145,339525
Building	5,009,201
Orthophoto	Yes
Processed by	Engr. Abigail Joy Ching, Engr. Melanie Hingpit, Maria Tamsyn Malabanan

Table A-8.8. Mission Summary Report for Mission Blk28H_supplement

Figure A-8.50. Solution Status

Figure A-8.51. Smoothed Performance Metrics Parameters

Figure A-8.52. Best Estimated Trajectory

Figure A-8.53. Coverage of LiDAR data

Figure A-8.54. Image of data overlap

Figure A-8.55. Density map of merged LiDAR data

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

Figure A-8.56. Elevation difference between flight lines

Annex 9. Bansud Model Basin Parameters

0.46118 0.30746 Ratio to 0.4706 0.31373 0.31373 0.46118 0.53301 0.32013 0.31373 0.31373 0.31373 0.46118 0.69177 Peak 0.5 0.5 0.5 **RECESSION BASEFLOW** Recession Constant 0.19753 0.19753 0.19753 0.19753 0.19753 0.19753 0.19753 0.19753 0.19753 0.19753 0.19782 0.19753 0.2963 0.2963 --Discharge (CU.M/S) 0.23141 0.58676 0.67879 0.59813 0.13918 0.11359 0.59175 3.8262 0.59652 0.72584 2.9934 0.11637 2.5565 0.67192 1.0177 1.965Initial Storage Coefficient CLARK UNIT HYDROGRAPH TRANSFORM 0.82812 0.76049 2.15466 0.96296 11.272 1.39480.8932 0.76128 1.39841.2742 3.4534 1.0272 2.9702 1.38631.43310.8961 (HR) Concentration (HR) 0.45974 0.20721 0.43271 Time of 0.38527 3.2716 2.7949 2.2755 2.9564 1.28642.2055 3.2885 3.2931 2.7047 3.2864 2.2004 2.8991 Imperviousness (%) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 SCS CURVE NUMBER LOSS Curve Number 72.643 73.819 75.115 84.365 70.838 72.147 89.733 81.91 66 66 66 66 66 66 66 66 Abstraction 8.3096 10.578 1.73904 3.4398 10.472 10.939 11.215 4.6093 7.2218 7.0283 2.57904 5.4239 11.221 10.835 11.221 (MM) 11.11Initial Subbasin W320 W330 W340 W350 W360 W370 W380 W390 W400 W410 W420 W430 W450 W460 W470 W480

0	2.4435	66	0	4.0707	0.72588	0.10885	0.19753	0.31373
	9.6232	66	0	0.84643	3.7271	0.67385	0.2963	0.46118
	8.3576	84.981	0	2.2184	1.8771	1.5634	0.19753	0.46118
	10.67	74.536	0	2.291	0.96204	1.4882	0.19753	0.46118
	10.89	56.549	0	2.1824	1.4606	0.88287	0.19753	0.31373
	6.8954	82.176	0	2.0085	1.2386	1.1393	0.19753	0.31373
	5.0999	66	0	3.0305	0.85254	1.7669	0.19753	0.21342
0	10.67	72.283	0	0.88045	2.8976	1.0055	0.29037	0.46118
	2.8742	66	0	3.8333	1.2993	0.50654	0.19753	0.31373
	8.988	88.547	0	0.16501	2.3809	0.26498	0.66667	0.46118
	6.05	66	0	2.6595	0.57211	0.0827423	0.19753	0.31373
	6.3973	56.482	0	1.7682	0.99516	3.0043	0.19753	0.46118
0	4.837	66	0	3.0443	0.75132	0.73746	0.19753	0.31373
0	7.3927	66	0	2.7733	2.9626	0.49126	0.19753	0.46118
	3.17376	66	0	3.5621	2.39352	0.77535	1	0.5
	2.4532	66	0	3.8267	0.87324	0.22441	0.19753	0.31373
Annex 10. Bansud Model Reach Parameters

		Side Slope (xH:1V)	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
		Width (M)	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40
		Shape	Trapezoid															
	NEL ROUTING	Manning's n	0.0435555	0.0669755	0.1	0.0966495	0.0883908	0.0922368	0.1	0.147	0.50625	0.064179	0.15211	0.16567	0.0946988	0.09604	0.0611728	0.20315
	M CUNGE CHAN	Slope(M/M)	0.0083422	0.0332135	0.0015508	0.0031700	0.0143974	.0009531	0.0083615	0.0178704	0.0523968	0.0048693	0.18080	0.0056953	0.0314317	.00064963	0.0024794	0.0307474
MUSKINGUN	MUSKINGUI	Length (M)	3815.0	953.26	2584.5	1025.7	13084	1598.5	3504.5	2472.8	2058.2	5501.1	459.71	3438.5	1223.7	233.85	601.84	1262.0
		Time Step Method	Automatic Fixed Interval															
		REACH	R100	R110	R120	R130	R140	R150	R160	R170	R200	R210	R220	R260	R40	R50	R660	R80

Table A-10.1. Bansud Model Reach Parameters

Annex 11. Bansud Field Validation Points

Point	Validation	Model	Vali-	Error	Event	Date	Rain Return/	
ber	Latitude	Longitude	Var (m)	Points	LIIOI	Lvent	Date	Scenario
1	12.82508300000	121.47649700000	0.32	0.3	-0.02	Nona		25-Year
2	12.83014800000	121.48409000000	0.1	0.2	0.1	Frank		25-Year
3	12.83225900000	121.46092000000	0.46	0.75	0.29	Caloy		25-Year
4	12.83232700000	121.46107000000	0.87	0	-0.87			25-Year
5	12.83264900000	121.46020200000	0.67	0	-0.67			25-Year
6	12.83281700000	121.47806700000	0.18	0.27	0.09	Nona		25-Year
7	12.83466600000	121.46008900000	0.03	0	-0.03			25-Year
8	12.83598300000	121.46115000000	0.15	0.15	0	Caloy	2007	25-Year
9	12.84034000000	121.46005700000	0.92	0	-0.92			25-Year
10	12.84173500000	121.46000900000	0.03	0.16	0.13	Nona		25-Year
11	12.84404500000	121.45981500000	0.69	0	-0.69			25-Year
12	12.84491900000	121.44448000000	0.04	0.16	0.12	Yolan- da		25-Year
13	12.84496200000	121.44875300000	2.18	2	-0.18	Caloy		25-Year
14	12.84498900000	121.44736900000	0.76	0	-0.76			25-Year
15	12.84594000000	121.45108000000	1.26	0.68	-0.58	Nona		25-Year
16	12.84610600000	121.45516600000	0.31	0.8	0.49		2002	25-Year
17	12.84734800000	121.43527000000	1.44	0.82	-0.62	Nona	Decem- ber 2015	25-Year
18	12.84815500000	121.43651000000	2.55	0.45	-2.1	Nona	Decem- ber 2015	25-Year
19	12.84919900000	121.43783000000	1.17	0	-1.17	Nona	Decem- ber 2015	25-Year
20	12.84947200000	121.43847000000	1.08	0.22	-0.86	Caloy	2005	25-Year
21	12.84954200000	121.43896000000	1.1	0.33	-0.77	Nona	Decem- ber 2015	25-Year
22	12.85017700000	121.47112900000	0.76	0.12	-0.64	Nona	Dec. 15, 2015	25-Year
23	12.85026900000	121.47159100000	0.68	0.84	0.16	Nona	Dec. 15, 2015	25-Year
24	12.85047000000	121.47668900000	0.5	0.69	0.19	Nona	Dec. 15, 2015	25-Year
25	12.85060100000	121.47688200000	0.42	0.56	0.14	Lando	October 2015	25-Year
26	12.85063400000	121.47488200000	0.25	0.16	-0.09	Ofel	October 2012	25-Year
27	12.85066300000	121.46846700000	0.7	0.52	-0.18	Ofel	October 2012	25-Year

Table A-11.1. Bansud Field Validation Points

28	12.85069600000	121.47016100000	0.95	0.75	-0.2	Nona	Dec. 15, 2015	25-Year
29	12.85074900000	121.46909700000	0.89	0.82	-0.07		Septem- ber 2013	25-Year
30	12.85084000000	121.46826400000	0.67	0.64	-0.03	Ofel	October 2012	25-Year
31	12.85094600000	121.46859900000	0.87	0.86	-0.01	Ofel	October 2012	25-Year
32	12.85107800000	121.47687800000	0.55	0.56	0.01	Nona	Dec. 15, 2015	25-Year
33	12.85105000000	121.46737500000	0.74	0.94	0.2	Nona	Dec. 15, 2015	25-Year
34	12.85123600000	121.47930000000	0.34	0.58	0.24	Nona	Dec. 15, 2015	25-Year
35	12.85126600000	121.48060400000	0.46	0.93	0.47			25-Year
36	12.85148400000	121.47893700000	0.21	0.55	0.34	Nona	Dec. 15, 2015	25-Year
37	12.85147100000	121.46879300000	0.61	0.73	0.12	Caloy	May 2006	25-Year
38	12.85160500000	121.46734700000	0.7	0.86	0.16			25-Year
39	12.85162100000	121.45958900000	2.51	0	-2.51			25-Year
40	12.85164600000	121.45948800000	2.4	0.29	-2.11	Nona	Dec. 15, 2015	25-Year
41	12.85170000000	121.46145500000	0.28	0.69	0.41	Nona	Dec. 15, 2015	25-Year
42	12.85173400000	121.46111600000	0.28	0	-0.28			25-Year
43	12.85183800000	121.47288700000	0.06	0	-0.06			25-Year
44	12.85181900000	121.46079700000	0.34	0	-0.34			25-Year
45	12.85198700000	121.46804500000	0.76	0.69	-0.07	Ofel	October 2012	25-Year
46	12.85189100000	121.43013000000	0.03	0.32	0.29	Caloy	May, 2005	25-Year
47	12.85189100000	121.43013000000	0.05	0.32	0.27	Caloy	May, 2005	25-Year
48	12.85307300000	121.45878100000	0.13	0	-0.13			25-Year
49	12.85688700000	121.45872200000	0.13	0.09	-0.04			25-Year
50	12.85722700000	121.45921600000	0.65	0.87	0.22	Ondoy	Sept. 26, 2009	25-Year
51	12.85747500000	121.46912900000	0.03	0.05	0.02	Nona	Dec. 15, 2015	25-Year
52	12.85753600000	121.46883200000	0.05	0.87	0.82	Ondoy	Sept. 26, 2009	25-Year
53	12.85763400000	121.45830700000	0.38	1.41	1.03	Nona	Dec. 15, 2015	25-Year
54	12.85785100000	121.46783700000	0.03	0.32	0.29	Nona	Dec. 15, 2015	25-Year
55	12.85794400000	121.45908100000	0.62	0.5	-0.12	Caloy	May 2006	25-Year

56	12.85799900000	121.46636200000	0.03	0.1	0.07	Nona	Dec. 15, 2015	25-Year
57	12.85798000000	121.45933700000	0.83	0.19	-0.64		2013	25-Year
58	12.85831100000	121.45226900000	0.13	0.5	0.37	Nona	Dec. 15, 2015	25-Year
59	12.85846200000	121.45962500000	0.9	0.52	-0.38	Yolan- da	Nov. 8, 2013	25-Year
60	12.85858800000	121.45972400000	0.89	0	-0.89	Nona	Dec. 15, 2015	25-Year
61	12.85867300000	121.45992900000	0.98	0.62	-0.36		2013	25-Year
62	12.85871000000	121.46342600000	0.03	0.41	0.38	Nona	Dec. 15, 2015	25-Year
63	12.85873400000	121.45907200000	0.44	0.26	-0.18	Caloy	May 2006	25-Year
64	12.85879300000	121.46221400000	0.11	0.75	0.64	Nona	Dec. 15, 2015	25-Year
65	12.85885500000	121.46128300000	0.03	1.05	1.02	Nona	Dec. 15, 2015	25-Year
66	12.85901600000	121.45953800000	0.51	0.69	0.18	Nona	Dec. 15, 2015	25-Year
67	12.85905200000	121.45907800000	0.27	0.09	-0.18		2011	25-Year
68	12.85918700000	121.45665000000	0.03	0	-0.03			25-Year
69	12.85927500000	121.45919700000	0.18	1.02	0.84	Nona	Dec. 15, 2015	25-Year
70	12.85947000000	121.46043100000	0.13	0.52	0.39	Yolan- da	Nov. 8, 2013	25-Year
71	12.85948800000	121.42250000000	0.03	0.5	0.47	Caloy	2007	25-Year
72	12.86043500000	121.42152000000	0.04	0.31	0.27	Nona	Decem- ber 2015	25-Year
73	12.86075300000	121.42112000000	0.19	0	-0.19			25-Year
74	12.86097300000	121.41956000000	0.18	0.6	0.42	Nona	Decem- ber 2015	25-Year
75	12.86113600000	121.42069000000	0.1	0	-0.1			25-Year
76	12.86134200000	121.41990000000	0.61	0	-0.61			25-Year
77	12.86160600000	121.41929000000	0.1	0	-0.1	Nona	Decem- ber 2015	25-Year
78	12.86186600000	121.41964400000	0.21	0	-0.21			25-Year
79	12.86189500000	121.41945000000	0.58	0	-0.58			25-Year
80	12.86195400000	121.41852000000	0.27	0.48	0.21	Nona	Decem- ber 2015	25-Year
81	12.86244000000	121.41859000000	0.61	0.94	0.33	Nona	Decem- ber 2015	25-Year
82	12.86285700000	121.41855000000	0.65	0.19	-0.46	Nona	Decem- ber 2015	25-Year

Annex 12. Phil-LiDAR 1 UPLB Team Composition

Project Leader

Asst. Prof. Edwin R. Abucay (CHE, UPLB)

Project Staffs/Study Leaders

Asst. Prof. Efraim D. Roxas (CHE, UPLB) Asst. Prof. Joan Pauline P. Talubo (CHE, UPLB) Ms. Sandra Samantela (CHE, UPLB) Dr. Cristino L. Tiburan (CFNR, UPLB) Engr. Ariel U. Glorioso (CEAT, UPLB) Ms. Miyah D. Queliste (CAS, UPLB) Mr. Dante Gideon K. Vergara (SESAM, UPLB)

Sr. Science Research Specialists

Gillian Katherine L. Inciong For. John Alvin B. Reyes

Research Associates

Alfi Lorenz B. Cura Angelica T. Magpantay Gemmalyn E. Magnaye Jayson L. Arizapa Kevin M. Manalo Leendel Jane D. Punzalan Maria Michaela A. Gonzales Paulo Joshua U. Quilao Sarah Joy A. Acepcion Ralphael P. Gonzales

Computer Programmers

Ivan Marc H. Escamos Allen Roy C. Roberto

Information Systems Analyst

Jan Martin C. Magcale

Project Assistants

Daisili Ann V. Pelegrina Athena Mercado Kaye Anne A. Matre Randy P. Porciocula