Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

LiDAR Surveys and Flood Mapping of Bongabong River

University of the Philippines Training Center for Applied Geodesy and Photogrammetry University of the Philippines Los Baños (UPLB)

APRIL 2017

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

© University of the Philippines Diliman and University of the Philippines Los Baños 2017

Published by the UP Training Center for Applied Geodesy and Photogrammetry (TCAGP) College of Engineering University of the Philippines – Diliman Quezon City 1101 PHILIPPINES

This research project is supported by the Department of Science and Technology (DOST) as part of its Grants-in-Aid (GIA) Program and is to be cited as:

E.C. Paringit and E.R. Abucay (eds.) (2017), LiDAR Surveys and Flood Mapping of Bongabong River, Quezon City: University of the Philippines Training Center for Applied Geodesy and Photogrammetry — 197pp

The text of this information may be copied and distributed for research and educational purposes with proper acknowledgement. While every care is taken to ensure the accuracy of this publication, the UP TCAGP disclaims all responsibility and all liability (including without limitation, liability in negligence) and costs which might incur as a result of the materials in this publication being inaccurate or incomplete in any way and for any reason.

For questions/queries regarding this report, contact:

Asst. Prof. Edwin R. Abucay

Project Leader, Phil-LiDAR 1 Program University of the Philippines, Los Banos Los Banos, Laguna, Philippines 4031 E-mail: erabucay@up.edu.ph

Enrico C. Paringit, Dr. Eng.

Program Leader, Phil-LiDAR 1 Program University of the Philippines Diliman Quezon City, Philippines 1101 E-mail: ecparingit@up.edu.ph

National Library of the Philippines ISBN: 978-621-430-129-4

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

TABLE OF CONTENTS

LIST C	OF TAB	LES	V				
LIST C	of Fig	URES	vii				
LIST C	OF ACR	RONYMS AND ABBREVIATIONS	. ix				
CHAP	TER 1 :	OVERVIEW OF THE PROGRAM AND BONGABONG RIVER	1				
	1.1	Background of the Phil-LIDAR 1 Program	1				
	1.2	Overview of the Bongabong River Basin	2				
CHAP	TER 2 :	LIDAR DATA ACQUISITION OF THE BONGABONG FLOODPLAIN	4				
	2.1	Flight Plans	4				
	2.2	Ground Base Stations	5				
	2.3	Flight Missions	10				
	2.4	Survey Coverage	11				
CHAP	TER 3:	LIDAR DATA PROCESSING FOR BONGABONG FLOODPLAIN	13				
	3.1	LiDAR Data Processing for Bongabong Floodplain	13				
		3.1.1 Overview of the LiDAR Date Pre-Processing	13				
	3.2	Transmittal of Acquired LiDAR Data	14				
	3.3	Trajectory Computation	14				
	3.4	LiDAR Point Cloud Computation	17				
	35	LiDAR Data Quality Checking	17				
	3.6	LiDAR Point Cloud Classification and Rasterization	22				
	3.0	LiDAR Image Processing and Orthonhotograph Rectification	2/				
	3.7	DEM Editing and Hydro-Correction	27				
	2.0	Mospicking of Blocks	20				
	2.9 2.10	Calibration and Validation of Mosaicked LiDAR DEM	20				
	5.10 2.11	Integration of Pathymetric Data into the LiDAR Deivi	20				
CUAD		THE BALLON OF DATION CUDVEY AND MEASUREMENTS OF THE DONGADONG DIVER DASIN	35 35				
СНАР	IEK 4:	LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE BOINGABOING RIVER BASIN	35				
	4.1	Summary of Activities	35				
	4.2	Control Survey	37				
	4.3	Baseline Processing	45				
	4.4	Network Adjustment	46				
	4.5	Cross-section and Bridge As-Built survey and Water Level Marking	48				
	4.6	Validation Points Acquisition Survey	52				
	4.7	River Bathymetric Survey	53				
CHAP	TER 5:	FLOOD MODELING AND MAPPING	57				
	5.1	Data Used for Hydrologic Modeling	57				
		5.1.1 Hydrometry and Rating Curves	57				
		5.1.2 Precipitation	57				
		5.1.3 Rating Curves and River Outflow	58				
	5.2	RIDF Station	61				
	5.3	HMS Model	63				
	5.4	Cross-section Data	67				
	5.5	Flo 2D Model	68				
	5.6	Results of HMS Calibration	68				
	5.7	Calculated outflow hydrographys and discharge values for different rainfall					
		return periods	70				
		5.7.1 Hydrograph using the Rainfall Runoff Model	70				
	5.8	River Analysis (RAS) Model Simulation	75				
	5.9	Flow Depth and Flood Hazard	75				
	5.10	Inventory of Areas Exposed to Flooding of Affected Areas	79				
	5.11	Flood Validation	86				
REFER	RENCE	S	89				
ANNF	XES		90				
/	Anney	1 Technical Specifications of the LIDAR Sensors used in the Bongahong Floodnlain					
	Surve		90				
	Annov	2 NAMRIA Certification of Reference Points Lised in the LIDAR Survey	92				
	Anney	2 Recelling Processing Reports of Control Doints used in the LIDAR Survey	96				
	Anno	A The LIDAR Survey Team Composition	00				
	Anne	V. The LIDAN JULVEY TEATH COMPOSITION	22				
	Anne	A Elight Logs for the Elight Missions	00				
	Annex	V. I light Lugs IVI the Flight MissiOlis	100				
	Annex	V. I light Status Reputes	20 T0				
	Annex 8: Mission Summary Reports						

Annex 9. Bongabong Model Basin Parameters	180
Annex 10. Bongabong Model Reach Parameters	183
Annex 11. Bongabong Field Validation Points	185
Annex 12. Phil-LiDAR 1 UPLB Team Composition	187

LIST OF TABLES

Table 1. Flight planning parameters for Aquarius LiDAR system.	4
Table 2. Flight planning parameters for Gemini LiDAR system.	4
Table 3. Details of the recovered NAMRIA horizontal control point MRE-54 used as base	
station for the LiDAR acquisition	6
Table 4. Details of the recovered NAMRIA horizontal control point MRE-44 used as base	
station for the LiDAR acquisition	7
Table 5. Details of the recovered NAMRIA horizontal control point MRE-4563 used as base	
station for the LiDAR acquisition with reprocessed coordinates.	8
Table 6. Details of the recovered NAMRIA horizontal control point MRE-32 used as base	
station for the LiDAR acquisition	8
Table 7. Details of the recovered NAMRIA horizontal control point MRE-11 used as base	
station for the LiDAR acquisition	9
Table 8. Details of the established horizontal control point MRE-11A used as base	_
station for the LiDAR acquisition	9
Table 9. Ground control points used during LiDAR data acquisition	. 10
Table 10. Flight missions for LiDAR data acquisition in Bongabong floodplain.	. 10
Table 11. Actual parameters used during LiDAR data acquisition	. 11
Table 12. List of municipalities and cities surveyed during Bongabong floodplain LiDAR survey	. 11
Table 13. Self-Calibration Results values for Bongabong flights.	. 17
Table 14. List of LiDAR blocks for Bongabong floodplain	. 18
Table 15. Bongabong classification results in TerraScan	. 22
Table 16. LIDAR blocks with its corresponding area.	. 26
Table 17. Shift Values of each LIDAR block of Bongabong floodplain	. 28
Table 18. Calibration Statistical Measures.	. 32
Table 19. Validation Statistical Measures.	33
Table 20. List of Reference and Control Points used in Bongabong River Basin Survey (Source:	20
Table 21. Paseline Processing Penert for Pengahang Piver Static survey	159
Table 21. Daseline Processing Report for Bongabong River Static survey	.43
Table 22. Control Point Constraints	40
Table 23. Adjusted Geodetic Coordinates	40
Table 25. List of references and control points used in Bongabong River Survey	.47 //Q
Table 26. RIDE values for Rombion Rain Gauge computed by PAGASA	61
Table 27. Range of Calibrated Values for Bongabong	69
Table 28. Summary of the Efficiency Test of Bongabong HMS Model	70
Table 29. Peak values of the Bongabong HECHMS Model outflow using the Romblon RIDE	71
Table 30. Summary of Bongahong river (1) discharge generated in HEC-HMS	74
Table 31. Summary of Bongabong river (2) discharge generated in HEC-HMS	74
Table 32. Summary of Bongabong river (2) discharge generated in HEC-HMS	74
Table 33. Validation of river discharge estimates	74
Table 34 Municipalities affected in Bongabong floodplain	75
Table 35. Affected Areas in Bongabong, Oriental Mindoro during 5-Year Rainfall Return Period	.80
Table 36. Affected Areas in Bongabong, Oriental Mindoro during 5-Year Rainfall Return Period	. 80
Table 37. Affected Areas in Bongabong, Oriental Mindoro during 25-Year Rainfall Return Period	. 82
Table 38. Affected Areas in Bongabong, Oriental Mindoro during 25-Year Rainfall Return Period	. 82
Table 39. Affected Areas in Bongabong, Oriental Mindoro during 100-Year Rainfall Return Period	. 84
Table 40. Affected Areas in Bongabong, Oriental Mindoro during 100-Year Rainfall Return Period	. 84
Table 41. Actual Flood Depth vs Simulated Flood Depth in Bongabong	. 88
Table 42. Summary of Accuracy Assessment in Bongabong	. 88

LIST OF FIGURES

Figure 1. Map of the Bongabong River Basin in brown Figure 2. Flight plan and base stations used for Bongabong floodplain	2 5
Figure 3. GPS set-up over MRE-54 as recovered inside the compound of the barangay hall of Maliangcog, municipality of Pinamalayan, Oriental Mindoro (a) and NAMRIA reference	
point MRE-54 (b) as recovered by the field team.	6
Figure 4. GPS set-up over MRE-44 as recovered just outside the compound of the barangay hall of Happy Valley, municipality of Roxas, Oriental Mindoro (a) NAMRIA reference point	_
MRE-44 (b) as recovered by the field team	/
Figure 5. GPS set-up over MRE-4563 as recovered, just outside the compound of the barangay hall of Brgy. Pagala-gala, municipality of Pinamalayan, Oriental Mindoro (a) and NAMRIA	Q
Figure 6. Actual LiDAR survey coverage for Pengahang floodalain	0
Figure 7 Schematic Diagram for Data Pre-Processing Component	12
Figure 7. Schematic Didgiani for Data Pre-Processing Component	14
Figure 8. Shibblined Periorinalice Methic Parahene Elight 1078A	15
Figure 3. Solution Status Parameters of Dongabolig Flight 1070A.	10
floodplain	17
Tiouupidin	17
Figure 11. Boundary of the processed LIDAR data over Bongabong Floodplain	10
Figure 12. Intage of udid overlap for boligabolig hooupidit	19
Figure 15. Density map of merged LiDAR data for Bongabong noouplain.	20
Figure 14. Elevation difference map between flight lines for Bongabong flooupidin	21
Figure 15. Quality thetking for a Bongabong flight 1078A using the Profile 1001 of QT Modeler	22
Figure 10. Thes for Bongabong hoodplain (a) and classification results (b) in terrascan	23
Figure 17. Point cloud before (a) and after (b) classification.	23
Figure 18. The production of last return DSIM (a) and DTIM (b), first return DSIM (c) and secondary	24
DTM (d) in some portion of Bongabong Hoodplain.	24
Figure 19. Bongabong floodplain with available orthophotographs	25
Figure 20. Sample orthophotograph files for Bongabong floodplain.	25
Figure 21. Portions in the DTW of Bongabong hoodplain – a bridge before (a) and after	
(b) manual editing; a river embankment before (c) and after (d) data retrieval; and	27
a misclassified nill before (e) and after (f) manual editing	27
Figure 22. Map of Processed LIDAR Data for Bongabong Flood Plain	29
Figure 23. Map of Bongabong Flood Plain with Validation survey points in green	31
Figure 24. Correlation plot between calibration survey points and LIDAR data	32
Figure 25. Correlation plot between validation survey points and LIDAR data.	33
Figure 26. Map of Bongabong Flood Plain with bathymetric survey points shown in blue	34
Figure 27. Extent of the bathymetric survey (blue line) in Bongabong River and the LiDAR	20
data validation survey (in red)	36
Figure 28. GNSS network of Bongabong River field survey	38
Figure 29. GPS setup of Trimble [®] SPS 882 at MRE-32, located at the Municipal Park of Victoria,	
In Brgy. Poblacion 1, Oriental Mindoro	40
Figure 30. The GPS setup of Trimble [®] SPS 985 at MRE-4650, an LMS control point located at	
the approach of Bansud Bridge, in Brgy. Pagasa, Municipality of Bansud, Oriental Mindoro	40
Figure 31. GPS setup of Trimble [®] SPS 882 at BAR-1, an established control point located in	
Baroc Bridge, Brgy. San Isidro, Mansalay, Oriental Mindoro	41
Figure 32. GNSS setup of Trimble® SPS 882 on BONG-01 in Brgy. San Isidro, Municipality	
of Bongabong, Oriental Mindoro	41
Figure 33. GPS setup of Trimble [®] SPS 852 at MOR-10, located in the approach of the Cawacat	
Bridge, in Bry. Campasaan, Municipality of Bulalacao, Oriental Mindoro	42
Figure 34. GPS setup of Trimble [®] SPS 852 at ORM-1, located on Subaan Bridge, Brgy. Subaan,	
Municipality of Socorro, Oriental Mindoro	42
Figure 35. Trimble [®] SPS 985 setup at ORM-3 located at the approach of Balete Bridge, Brgy.	
Balete, Municipality of Gloria, Oriental Mindoro	43
Figure 36. GNSS receiver Trimble [®] SPS 852 setup at ORM-4, located at the right side of the	
approach of Pola Bridge in Barangay Casiligan, Municipality of Pola, Oriental Mindoro	43
Figure 37. GPS setup of Trimble [®] SPS 985 at SUB-1, an established control point located at	
Maramot Residence in Brgy. Subaan, Municipality of Socorro, Oriental Mindoro	44
Figure 38. Cross-section and bridge as-built survey for Bongabong Bridge, Brgy San Isidro,	
Oriental Mindoro	49
Figure 39. Bongabong bridge cross-section location map	50
Figure 40. Bongabong Bridge cross-section diagram	50

Figure 41. Bongabong Bridge Data Form	. 51
Figure 42. Trimble SPS®882 setup for validation points acquisition survey of Bongabong River Basin	. 52
Figure 43. Validation points acquisition survey along Bongabong River Basin	. 53
Figure 44. Bathymetric survey in Bongabong River: (a) upstream and (b) downstream	. 54
Figure 45. Bathymetric points gathered along Bongabong River	. 55
Figure 46. Riverbed profile of Bongabong	. 56
Figure 47. The location map of Bongabong HEC-HMS model used for calibration	. 58
Figure 48. Cross-Section Plot of Orconuma Bridge	. 59
Figure 49. Rating Curve at Bongabong Bridge, Oriental Mindoro	. 60
Figure 50. Rainfall and outflow data at Bongabong used for modeling	. 61
Figure 51. Location of Romblon RIDF relative to Bongabong River Basin	. 62
Figure 52. Synthetic Storm Generated For A 24-hr Period Rainfall For Various Return Periods	. 62
Figure 53. The soil map of the Bongabong River Basin used for the estimation of the CN	
parameter. (Source of data: Digital soil map of the Philippines published by the Bureau	
of Soil and Water Management – Department of Agriculture)	. 63
Figure 54. The land cover map of the Bongabong River Basin used for the estimation of the CN and	
watershed lag parameters of the rainfall-runoff model. (Source of data: Digital soil map of the	
Philippines published by the Bureau of Soil and Water Management – Dep	. 64
Figure 55. Slope Map of the Bongabong River Basin	. 65
Figure 56. Stream Delineation Map of the Bongabong River Basin	. 66
Figure 57. The Bongabong river basin model generated using HEC-HMS	. 67
Figure 58. River cross-section of Bongabong River generated through Arcmap HEC GeoRAS tool	. 67
Figure 59. Screenshot of subcatchment with the computational area to be modeled in FLO-2D	
GDS Pro	. 68
Figure 60. Outflow Hydrograph of Bongabong produced by the HEC-HMS model compared	
with observed outflow	. 69
Figure 61. Outflow hydrograph at Bongabong Station generated using Romblon RIDF simulated	
in HEC-HMS	. 71
Figure 62. Bongabong river (1) generated discharge using 5-, 25-, and 100-year Romblon rainfall	
intensity-duration-frequency (RIDF) in HEC-HMS	. 72
Figure 63. Bongabong river (2) generated discharge using 5-, 25-, and 100-year Romblon rainfall	
intensity-duration-frequency (RIDF) in HEC-HMS	. 72
Figure 64. Bongabong river (3) generated discharge using 5-, 25-, and 100-year Romblon rainfall	
intensity-duration-frequency (RIDF) in HEC-HMS	. 73
Figure 65. Bongabong HEC-RAS Output	. 75
Figure 66. 100-year Flood Hazard Map for Bongabong Floodplain	. 76
Figure 67. 100-year Flow Depth Map for Bongabong Floodplain	. 76
Figure 68. 25-year Flood Hazard Map for Bongabong Floodplain	. 77
Figure 69. 25-year Flow Depth Map for Bongabong Floodplain	. 77
Figure 70. 5-year Flood Hazard Map for Bongabong Floodplain	. 78
Figure 71. 5-year Flow Depth Map for Bongabong Floodplain	. 78
Figure 72. Affected Areas Bongabong, Oriental Mindoro during 5-Year Rainfall Return Period	. 81
Figure 73. Affected Areas in Bongabong, Oriental Mindoro during 25-Year Rainfall Return Period	. 83
Figure 74. Affected Areas in Bongabong, Oriental Mindoro during 100-Year Rainfall Return Period	. 85
Figure 75. Validation points for 25-year Flood Depth Map of Bongabong Floodplain	. 87
Figure 76. Flood map depth vs actual flood depth	. 87

LIST OF ACRONYMS AND ABBREVIATIONS

AAC	Asian Aerospace Corporation				
Ab	abutment				
ALTM	Airborne LiDAR Terrain Mapper				
ARG	automatic rain gauge				
ATQ	Antique				
AWLS	Automated Water Level Sensor				
BA	Bridge Approach				
BM	benchmark				
CAD	Computer-Aided Design				
CN	Curve Number				
CSRS	Chief Science Research Specialist				
DAC	Data Acquisition Component				
DEM	Digital Elevation Model				
DENR	Department of Environment and Natural Resources				
DOST	Department of Science and Technology				
DPPC	Data Pre-Processing Component				
DREAM	Disaster Risk and Exposure Assessment for Mitigation [Program]				
DRRM	Disaster Risk Reduction and Management				
DSM	Digital Surface Model				
DTM Digital Terrain Model					
DVBC	Data Validation and Bathymetry Component				
FMC	Flood Modeling Component				
FOV	Field of View				
GiA	Grants-in-Aid				
GCP	Ground Control Point				
GNSS	Global Navigation Satellite System				
GPS	Global Positioning System				
HEC-HMS	Hydrologic Engineering Center - Hydrologic Modeling System				
HEC-RAS	Hydrologic Engineering Center - River Analysis System				
HC	High Chord				
IDW	Inverse Distance Weighted [interpolation method]				
IMU	Inertial Measurement Unit				
kts	knots				
LAS	LiDAR Data Exchange File format				
LC	Low Chord				
LGU	local government unit				
Lidar	Light Detection and Ranging				
LMS	LiDAR Mapping Suite				

m AGL	meters Above Ground Level			
MMS	Mobile Mapping Suite			
MSL	mean sea level			
NAMRIA	National Mapping and Resource Information Authority			
NSTC	Northern Subtropical Convergence			
PAF	Philippine Air Force			
PAGASA	Philippine Atmospheric Geophysical and Astronomical Services Administration			
PDOP	Positional Dilution of Precision			
РРК	Post-Processed Kinematic [technique]			
PRF	Pulse Repetition Frequency			
PTM	Philippine Transverse Mercator			
QC	Quality Check			
QT	Quick Terrain [Modeler]			
RA	Research Associate			
RIDF	Rainfall-Intensity-Duration- Frequency			
RMSE	Root Mean Square Error			
SAR	Synthetic Aperture Radar			
SCS	Soil Conservation Service			
SRTM	Shuttle Radar Topography Mission			
SRS	Science Research Specialist			
SSG	Special Service Group			
ТВС	Thermal Barrier Coatings			
UPLB	University of the Philippines Los Baños			
UP-TCAGP	University of the Philippines – Training Center for Applied Geodesy and Photogrammetry			
UTM	Universal Transverse Mercator			
WGS	World Geodetic System			

CHAPTER 1: OVERVIEW OF THE PROGRAM AND BONGABONG RIVER

Enrico C. Paringit, Dr. Eng., Prof. Edwin R. Abucay, and Asst. Prof. Joan Pauline P. Talubo

1.1 Background of the Phil-LIDAR 1 Program

The University of the Philippines Training Center for Applied Geodesy and Photogrammetry (UP-TCAGP) launched a research program in 2014 entitled "Nationwide Hazard Mapping using LiDAR" or Phil-LiDAR 1, supported by the Department of Science and Technology (DOST) Grants-in-Aid (GiA) Program. The program was primarily aimed at acquiring a national elevation and resource dataset at sufficient resolution to produce information necessary to support the different phases of disaster management. Particularly, it targeted to operationalize the development of flood hazard models that would produce updated and detailed flood hazard maps for the major river systems in the country.

Also, the program was aimed at producing an up-to-date and detailed national elevation dataset suitable for 1:5,000 scale mapping, with 50 cm and 20 cm horizontal and vertical accuracies, respectively. These accuracies were achieved through the use of the state-of-the-art Light Detection and Ranging (LiDAR) airborne technology procured by the project through DOST.

The methods applied in this report are thoroughly described in a separate publication entitled "FLOOD MAPPING OF RIVERS IN THE PHILIPPINES USING AIRBORNE LIDAR: METHODS" (Paringit, et. Al. 2017).

The implementing partner university for the Phil-LiDAR 1 Program is the University of the Philippines Los Baños (UPLB). UPLB is in charge of processing LiDAR data and conducting data validation reconnaissance, cross section, bathymetric survey, validation, river flow measurements, flood height and extent data gathering, flood modeling, and flood map generation for the 45 river basins in the MIMAROPA Region. The university is located in Los Baños in the province of Laguna.

1.2 Overview of the Bongabong River Basin

Bongabong River Basin that encompasses the Municipality of Bongabong is located in the Southeastern part of Oriental Mindoro as shown in Figure C-1. The basin has a catchment area of 396 km2 according to DENR River Basin Control Office (DENR-RBCO, 2015). It is recorded to have a total population of 62,271 people based on the 2010 census of National Statistics Office.

Its main stem, Bongabong River, is part of the 45 river systems in Southern Luzon under the PHIL-LiDAR partner HEI, the University of the Philippines Los Baños. The delineated extent of the Bongabong River channel has an estimated length of 22.7 km starting from Brgy. Lasan to the boundary of Bongabong River and Tablas Strait. It is bounded by Brgy. Formon to the North; by Tablas Strait to the East; by Brgy. Lisap to the West; by Brgy. San Vicente to the South. The vicinity along Bongabong River reflects medium to high susceptibility of flooding according to the 2012 Mines and Geosciences Bureau (MGB)'s hazard maps. Recent flooding event occurred last December 9, 2014 caused by Typhoon Ruby which also led families to evacuate from their communities.

Climate Type I and III prevails in MIMAROPA and Laguna based on the Modified Corona Classification of climate. Type I has two pronounced seasons, dry from November to April, and wet the rest of the year with maximum rain period from June to September. On the other hand, Type III has no very pronounced maximum rain period and with short dry season lasting only from one to three months, during the period from December to February or from March to May.

Bongabong River Basin is a 45,000-hectare watershed located in Oriental Mindoro. It covers the barangays of Ligaya, Malisbong, San Agustin and Tuban in Sablayan municipality; Conrazon, Malo, Manihala and Rosacara in Bansud; Anilao, Batangan, Formon, Hagan, Hagupit, Lisap, Luna, Malitbog, Mapang, Masaguisi, Mina de Oro, Morente, San Isidro, San Jose, San Juan, Sigange and Tawas in Bongabong; Macario Adriatico, Manguyang and Mirayan in Gloria; and, Bonbon and San Vicente in Mansalay and Roxas, respectively. The basin area has twelve geological classifications including Basement Complex, Recent, Upper Miocene-Pliocene, Oligocene-Miocene, Cretaceous-Paleogene, Paleocene-Eocene, Oligocene, Jurrasic, Pliocene-Pleistocene and Neogene. Moreover, the river basin is generally characterized by 30-50% slope and elevation of 500-750 meters above mean sea level. Bongabong River Basin is also characterized by six soil types including Maranlig gravelly sandy clay loam, Buguay loamy sand, San Manuel silt/silt Loam, Maranlig loam, San Manuel sandy loam and Cabangan sandy loam. On the other hand, about ten land cover types exists in the area including open forest, annual crop, built-up, grassland, mangrove forest, open/barren, perennial crop, shrubs and wooded grassland.

Bongabong River passes through Ligaya, Malisbong, San Agustin and Tuban in Sablayan; Conrazon, Malo, Manihala and Rosacara in Bansud; Anilao, Batangan, Formon, Hagan, Hagupit, Lisap, Luna, Malitbog, Mapang, Masaguisi, Mina de Oro, Morente, San Isidro, San Jose, San Juan, Sigange and Tawas in Bongabong; Macario Adriatico, Manguyan and Mirayan in Gloria; and, Bonbon and San Vicente in Mansalay and Roxas, respectively. As recorded in the 2010 NSO Census of Population and Housing, among the barangays in Sablayan, Ligaya is the most populated, Conrazon in Bansud, and Lisap in Bongabong.

According to the Mines and Geoscience Bureau, the barangays at high-risk during landslides are in Sablayan, Bansud, Gloria, Mansalay and Roxas; Batangan, Formon, Hagan, Lisap, Malitbog, Masaguisi, San-Juan, Sigange and Tawas in Bongabong. Based on the field surveys conducted by the PHIL-LiDAR 1 validation team, there were eight notable weather disturbance that caused flooding in 1993 (Monang and Manny), 2009 (Ondoy), 2013 (Yolanda), 2015 (Nona), and 2016 (Nina).

Figure 1. Map of the Bongabong River Basin (in brown)

CHAPTER 2: LIDAR DATA ACQUISITION OF THE BONGABONG FLOODPLAIN

Engr. Louie P. Balicanta, Engr. Christopher Cruz, Lovely Gracia Acuña, Engr. Gerome Hipolito, Engr. Iro Niel D. Roxas, and Ms. Rowena M. Gabua

The methods applied in this Chapter were based on the DREAM methods manual (Sarmiento, et al., 2014) and further enhanced and updated in Paringit, et al. (2017).

2.1 Flight Plans

Plans were made to acquire LiDAR data within the delineated priority area for Bongabong Floodplain in Oriental Mindoro. These missions were planned for 21 lines that run for at most four and a half (4.5) hours including take-off, landing and turning time. The flight planning parameters for the LiDAR system is found in Table 1 and Table 2. Figure 2 shows the flight plan for Bongabong Floodplain.

Block Name	Flying Height (m AGL)	Overlap (%)	Max. Field of View(θ)	Pulse Rate Frequency (PRF) (kHz)	Scan Frequency (Hz)	Average Speed (kts)	Average Turn Time (Minutes)
BLK 28A	600	30	36	50	45	130	5
BLK 28B	600	30	36	50	45	130	5
BLK 28D	600	30	36	50	45	130	5
BLK 28E	600	30	36	50	45	130	5
BLK 28F	600	30	36	50	45	130	5
BLK 28G	600	30	36	50	45	130	5
BLK 28H	600	30	36	50	45	130	5
BLK 28I	600	30	36	50	45	130	5
BLK 28J	1000	30	36	50	45	130	5

Table 1. Flight planning parameters for Aquarius LiDAR system.

Table 2. Flight planning parameters for Gemini LiDAR system.

Block Name	Flying Height (m AGL)	Overlap (%)	Max. Field of View(θ)	Pulse Rate Frequency (PRF) (kHz)	Scan Frequency (Hz)	Average Speed (kts)	Average Turn Time (Minutes)
BLK 28E	1200	30	30	100	50	130	5
BLK 28F	1200	30	30	100	50	130	5
BLK 28H	1000	30	40	100	50	130	5
BLK 28I	1200	30	30	100	50	130	5

Figure 2. Flight plan and base stations used for Bongabong floodplain.

2.2 Ground Base Stations

The project team was able to recover three (3) NAMRIA ground control points: MRE-54, MRE-44, and MRE-32 which are of second (2nd) order accuracy. The project team also re-established ground control points MRE-11 which is of third (3rd) order accuracy, and MRE-4563 which is of fourth (4th) order accuracy. The project team also established one (1) ground control point MRE-11A. The certifications for the NAMRIA reference points are found in Annex 2 the while the baseline processing report for the established ground control point is found in Annex 3. These were used as base stations during flight operations for the entire duration of the survey (February 6 - 15, 2014 and October 23 - 25, 2015). Base stations were observed using dual frequency GPS receivers, TRIMBLE SPS 852 and SPS 985. Flight plans and location of base stations used during the aerial LiDAR acquisition in Bongabong floodplain are shown in Figure 2.

Figure 3 to Figure 5 show the recovered NAMRIA reference points within the area. In addition, Table 3 to Table 8 show the details about the following NAMRIA control stations and established points while Table 9 shows the list of all ground control points occupied during the acquisition together with the dates the corresponding dates of utilization.

(a)

Figure 3. GPS set-up over MRE-54 as recovered inside the compound of the barangay hall of Maliangcog, municipality of Pinamalayan, Oriental Mindoro (a) and NAMRIA reference point MRE-54 (b) as recovered by the field team.

Table 3. Details of the recovered NAMRIA horizontal control point MRE-54 used as base station for the LiDAR acquisition.

Station Name	MRE-54			
Order of Accuracy	2 nd			
Relative Error (horizontal positioning)	1 in 50,000			
	Latitude	12°59'12.43671'' North		
Geographic Coordinates, Philippine Refer-	Longitude	121°24'46.52637'' East		
	Ellipsoidal Height	42.40800 meters		
Grid Coordinates, Philippine Transverse	Easting	544797.009 meters		
Mercator Zone 3 (PTM Zone 3 PRS 92)	Northing	1436124.562 meters		
Geographic Coordinates World Geodetic	Latitude	12°59'7.43505'' North		
System 1984 Datum	Longitude	122°41′8.09853′′ East		
(WGS 84)	Ellipsoidal Height	91.39500 meters		
Grid Coordinates, Universal Transverse	Easting	327864.09 meters		
1992)	Northing	1436121.49 meters		

Figure 4. GPS set-up over MRE-44 as recovered just outside the compound of the barangay hall of Happy Valley, municipality of Roxas, Oriental Mindoro (a) NAMRIA reference point MRE-44 (b) as recovered by the field team.

Table 4. Details of the recovered NAMRIA horizontal control point MRE-44 used as base station for the LiDAR acquisition.

Station Name	MRE-44		
Order of Accuracy	2nd		
Relative Error (horizontal positioning)	1 in 50,000		
Geographic Coordinates, Philippine	Latitude	12°38′59.03778′′ North	
Reference of 1992 Datum (PRS 92)	Longitude	121°24'32.60444'' East	
	Ellipsoidal Height	87.94200 meters	
Grid Coordinates, Philippine Transverse	Easting	544436.519 meters	
Mercator Zone 3 (PTM Zone 3 PRS 92)	Northing	1398838.995 meters	
Geographic Coordinates, World Geodetic	Latitude	12°38′54.11733′′ North	
System 1984 Datum	Longitude	121°24'37.66392'' East	
(₩63.84)	Ellipsoidal Height	137.80400 meters	
Grid Coordinates, Universal Transverse	Easting	327214.81 meters	
Mercator Zone 51 North (UTM 51N PRS 1992)	Northing	1398840.08 meters	

Figure 5. GPS set-up over MRE-4563 as recovered, just outside the compound of the barangay hall of Brgy. Pagala-gala, municipality of Pinamalayan, Oriental Mindoro (a) and NAMRIA reference point MRE-4563 (b) as recovered by the field team.

Table 5. Details of the recovered NAMRIA horizontal control point MRE-4563 used as base station for the LiDAR acquisition with reprocessed coordinates.

Station Name	MRE-4563		
Order of Accuracy	2nd		
Relative Error (horizontal positioning)	1:50,000		
	Latitude	13°00'53.01692'' North	
Grid Coordinates, World Geodetic System	Longitude	121°24'51.45337'' East	
1364 Datam (W03 64)	Ellipsoidal Height	73.715 meters	
Grid Coordinates, Universal Transverse	Easting	328034.015 meters	
Mercator Zone 51 North (UTM 51N PRS 1992)	Northing	1439300.319 meters	

Table 6. Details of the recovered NAMRIA horizontal control point MRE-32 used as base station for th	e
LiDAR acquisition.	

Station Name	MRE-32		
Order of Accuracy		2nd	
Relative Error (horizontal positioning)		1 in 50,000	
Geographic Coordinates, Philippine	Latitude	13°10'28.85064'' North	
Reference of 1992 Datum (PRS 92)	Longitude	121°16'38.44761'' East	
	Ellipsoidal Height	19.49300 meters	
Grid Coordinates, Philippine Transverse Mercator Zone 3	Easting	530065.679 meters	
(PTM Zone 3 PRS 92)	Northing	1456889.419 meters	
Geographic Coordinates, World Geodetic	Latitude	13°10'23.79251'' North	
System 1984 Datum	Longitude	121°16'43.46244'' East	
	Ellipsoidal Height	67.64700 meters	
Grid Coordinates, Universal Transverse Mercator Zone 51 North (UTM 51N PRS	Easting	313296.85 meters	
1992)	Northing	1457002.75 meters	

Table 7. Details of the recovered NAMRIA horizontal control point MRE-11 used as base station for the LiDAR acquisition.

Station Name	MRE-11		
Order of Accuracy		3rd	
Relative Error (horizontal positioning)	1i	n 20,000	
Geographic Coordinates, Philippine	Latitude	12°44'50.41380'' North	
Reference of 1992 Datum (PRS 92)	Longitude	121°29'7.80130'' East	
	Ellipsoidal Height	5.11500 meters	
Grid Coordinates, Philippine Transverse	Easting	552720.766 meters	
Mercator Zone 3 (PTM Zone 3 PRS 92)	Northing	1409650.153 meters	
Geographic Coordinates, World Geodetic	Latitude	12°44'45.47630'' North	
System 1984 Datum	Longitude	121°29'12.85191'' East	
(₩63.84)	Ellipsoidal Height	54.91100 meters	
Grid Coordinates, Universal Transverse Mercator Zone 51 North (UTM 51N PRS	Easting	335581.55 meters	
1992)	Northing	1409587.05 meters	

Table 8. Details of the established horizontal control point MRE-11A used as base station for the LiDAR acquisition.

Station Name	MRE-11A		
Order of Accuracy	3 rd		
Relative Error (horizontal positioning)	1:20,000		
Grid Coordinates, World Geodetic System 1984 Datum (WGS 84)	Latitude	12°44'45.50783'' North	
	Longitude	121°29'29.79714'' East	
	Ellipsoidal Height	55.558 m	
Grid Coordinates, Universal Transverse	Easting	338880.152 meters	
Mercator Zone 51 North (UTM 51N -PRS 1992)	Northing	1409583.946 meters	

Date Surveyed	Flight Number	Mission Name	Ground Control Points
6-Feb-14	1070A	3BLK28DSE037A	MRE-54, MRE-4563
7-Feb-14	1072A	3BLK28F038A	MRE-44
7-Feb-14	1074A	3BLK28FSG038B	MRE-44
8-Feb-14	1076A	3BLK28G039A	MRE-44
8-Feb-14	1078A	3BLK28GSH039B	MRE-44
11-Feb-14	1088A	3BLK28HS042A	MRE-44
11-Feb-14	1090A	3BLK28J042B	MRE-44
12-Feb-14	1092A	3BLK28ABES043A	MRE-54, MRE-4563
13-Feb-14	1098A	3BLK28JSI044B	MRE-44, MRE-32
15-Feb-14	1104A	3BLK28JSI046A	MRE-44
23-Oct-15	8302G	2BLK28ASEHI296A	MRE-54, MRE-11
24-Oct-15	8304G	2BLK28FHS297A	MRE-54, MRE-11
25-Oct-15	8306G	2CALIBBLK28FSGS298A	MRE-11, MRE11A

Table 9. Ground control points used during LiDAR data acquisition

2.3 Flight Missions

Thirteen (13) missions were conducted to complete the LiDAR Data Acquisition in Bongabong floodplain, for a total of fifty hours (50+00) of flying time for RP-C9122 and RP-C9322. All missions were acquired using the Aquarius and Gemini LiDAR systems. Table 10 shows the total area of actual coverage and the corresponding flying hours per mission, while Table 11 presents the actual parameters used during the LiDAR data acquisition.

Data Curr		Flight	Cumunumd	Area Surveyed	Area Surveyed	No. of	Flying Hours	
veyed	Number	Plan Area (km²)	Area (km ²)	within the Floodplain (km²)	Outside the Floodplain (km ²)	Images (Frames)	¥	Min
6-Feb-14	1070A	204.55	134.14	0.69	133.45	1517	4	29
7-Feb-14	1072A	100.27	106.58	42.63	63.95	1143	4	23
7-Feb-14	1074A	218.60	53.87	17.15	36.72	538	3	5
8-Feb-14	1076A	118.33	100.75	32.25	68.50	1041	4	5
8-Feb-14	1078A	215.35	68.06	22.76	45.30	869	3	29
11-Feb-14	1088A	97.02	90.59	30.09	60.5	1235	4	29
11-Feb-14	1090A	69.40	28.77	NA	28.77	319	2	47
12-Feb-14	1092A	308.50	99.90	NA	99.90	1176	4	5
13-Feb-14	1098A	103.26	76.86	5.57	71.29	909	3	59
15-Feb-14	1104A	144.96	125.50	0.64	124.86	771	4	41
23-Oct-15	8302G	144.96	117.20	22.21	94.99	444	3	37
24-Oct-15	8304G	259.93	110.37	31.93	78.44	368	3	20
25-Oct-15	8306G	197.29	70.58	11.50	59.08	NA	3	31
тот	AL	2182.42	1183.17	217.42	965.75	10330	50	00

Table 10. Flight missions for LiDAR data acquisition in Bongabong floodplain.

Flight Number	Flying Height (m AGL)	Overlap (%)	FOV (θ)	PRF (kHz)	Scan Frequency (Hz)	Average Speed (kts)	Average Turn Time (Minutes)
1070A	600	30	36	50	40	130	5
1072A	600	30	36	50	50 <i>,</i> 40	130	5
1074A	600	30	36	50	50	130	5
1076A	600	30	36	50	50	130	5
1078A	600, 1000	30	36, 30, 20	50, 70	50	130	5
1088A	600	30	36	50	50	130	5
1090A	600	30	36	50	50	130	5
1092A	600	30	36	50	40	130	5
1098A	600	30	36	50	40, 50	130	5
1104A	600, 1000	30	36, 30	50, 30, 40	50	130	5
8302G	1200, 800	30	30, 40	100	50	130	5
8304G	1200, 900	35	30, 36	100	50	130	5
8306G	1200, 900	35	30, 40	100	50	130	5

Table 11. Actual parameters used during LiDAR data acquisition

2.4 Survey Coverage

Bongabong floodplain is located in the province of Oriental Mindoro, with majority of the floodplain situated within the municipality of Bongabong. Municipalities of Bongabong and Roxas are mostly covered by the survey. The list of municipalities and cities surveyed, with at least one (1) square kilometer coverage, is shown in Table 12. The actual coverage of the LiDAR acquisition for Bongabong floodplain is presented in Figure 6.

Table 12. List of municipalities and	d cities surveyed during Bor	ngabong floodplain LiDAR survey.

Province	Municipality/ City	Area of Municipali- ty/City (km ²)	Total Area Sur- veyed (km ²)	Percentage of Area Surveyed
	Roxas	90.14	79.78	88%
	Bongabong	493.74	270.98	55%
	Bansud	197	83.33	42%
Oriental Mindoro	Gloria	327.28	127.86	39%
	Pola	127.04	38.21	30%
	Mansalay	477.24	130.61	27%
	Pinamalayan	206.87	52.8	26%
	Socorro	206.05	35.25	17%
	Bulalacao	365.58	40.39	11%
	Naujan	431.57	3.69	1%
	Victoria	216.22	1.03	0%
TOTAI		3138.73	863.93	27.52%

Figure 6. Actual LiDAR survey coverage for Bongabong floodplain.

CHAPTER 3: LIDAR DATA PROCESSING FOR BONGABONG FLOODPLAIN

Engr. Ma. Rosario Concepcion O. Ang, Engr. John Louie D. Fabila, Engr. Sarah Jane D. Samalburo , Engr. Harmond F. Santos , Engr. Angelo Carlo B. Bongat , Engr. Ma. Ailyn L. Olanda, Engr. Antonio B. Chua Jr., Marie Denise V. Bueno , Engr. Regis R. Guhiting, Engr. Merven Matthew D. Natino, Gillian Katherine L. Inciong, Gemmalyn E. Magnaye, Leendel Jane D. Punzalan, Sarah Joy A. Acepcion, Ivan Marc H. Escamos, Allen Roy C. Roberto, and Jan Martin C. Magcale

The methods applied in this Chapter were based on the DREAM methods manual (Ang, et al., 2014) and further enhanced and updated in Paringit, et al. (2017).

3.1 LiDAR Data Processing for Bongabong Floodplain

3.1.1 Overview of the LiDAR Date Pre-Processing

The data transmitted by the Data Acquisition Component are checked for completeness based on the list of raw files required to proceed with the pre-processing of the LiDAR data. Upon acceptance of the LiDAR field data, georeferencing of the flight trajectory is done in order to obtain the exact location of the LiDAR sensor when the laser was shot. Point cloud georectification is performed to incorporate correct position and orientation for each point acquired. The georectified LiDAR point clouds are subject for quality checking to ensure that the required accuracies of the program, which are the minimum point density, vertical and horizontal accuracies, are met. The point clouds are then classified into various classes before generating Digital Elevation Models such as Digital Terrain Model and Digital Surface Model.

Using the elevation of points gathered in the field, the LiDAR-derived digital models are calibrated. Portions of the river that are barely penetrated by the LiDAR system are replaced by the actual river geometry measured from the field by the Data Validation and Bathymetry Component. LiDAR acquired temporally are then mosaicked to completely cover the target river systems in the Philippines. Orthorectification of images acquired simultaneously with the LiDAR data is done through the help of the georectified point clouds and the metadata containing the time the image was captured.

These processes are summarized in the flowchart shown in Figure 7.

Figure 7. Schematic Diagram for Data Pre-Processing Component

3.2 Transmittal of Acquired LiDAR Data

Data transfer sheets for all the LiDAR missions for Bongabong floodplain can be found in Annex 5. Missions flown during the first survey conducted on February 2014 used the Airborne LiDAR Terrain Mapper (ALTM[™] Optech Inc.) Aquarius system while missions acquired during the second survey on October 2015 were flown using the Gemini system over Bongabong, Oriental Mindoro. The Data Acquisition Component (DAC) transferred a total of 136.27 Gigabytes of Range data, 2.664 Gigabytes of POS data, 152.95 Megabytes of GPS base station data, and 585.9 Gigabytes of raw image data to the data server on February 21, 2014 for the first survey and November 12, 2015 for the second survey. The Data Pre-processing Component (DPPC) verified the completeness of the transferred data. The whole dataset for Bongabong was fully transferred on November 12, 2015, as indicated on the Annex 5: Data Transfer Sheets for Bongabong floodplain.

3.3 Trajectory Computation

The *Smoothed Performance Metrics* of the computed trajectory for flight 1078A, one of the Bongabong flights, which is the North, East, and Down position RMSE values are shown in Figure 8. The x-axis corresponds to the time of flight, which is measured by the number of seconds from the midnight of the start of the GPS week, which on that week fell on February 8, 2014 00:00AM. The y-axis is the RMSE value for that particular position.

Figure 8. Smoothed Performance Metric Parameters of a Bongabong Flight 1078A.

The time of flight was from 539250 seconds to 546250 seconds, which corresponds to afternoon of February 8, 2014. The initial spike that is seen on the data corresponds to the time that the aircraft was getting into position to start the acquisition, and the POS system starts computing for the position and orientation of the aircraft. Redundant measurements from the POS system quickly minimized the RMSE value of the positions. The periodic increase in RMSE values from an otherwise smoothly curving RMSE values correspond to the turn-around period of the aircraft, when the aircraft makes a turn to start a new flight line. Figure 8 shows that the North position RMSE peaks at 1.51 centimeters, the East position RMSE peaks at 1.30 centimeters, and the Down position RMSE peaks at 3.50 centimeters, which are within the prescribed accuracies described in the methodology.

Figure 9. Solution Status Parameters of Bongabong Flight 1078A.

The Solution Status parameters of flight 1078A, one of the Bongabong flights, which are the number of GPS satellites, Positional Dilution of Precision (PDOP), and the GPS processing mode used, are shown in Figure 9. The graphs indicate that the number of satellites during the acquisition did not go down to 6. Majority of the time, the number of satellites tracked was between 6 and 10. The PDOP value also did not go above the value of 3, which indicates optimal GPS geometry. The processing mode stayed at the value of 0 for majority of the survey with some peaks up to 1 attributed to the turns performed by the aircraft. The value of 0 corresponds to a Fixed, Narrow-Lane mode, which is the optimum carrier-cycle integer ambiguity resolution technique available for POSPAC MMS. All of the parameters adhered to the accuracy requirements for optimal trajectory solutions, as indicated in the methodology. The computed best estimated trajectory for all Bongabong flights is shown in Figure 10.

Figure 10. The best estimated trajectory of the LiDAR missions conducted over the Bongabong floodplain.

3.4 LiDAR Point Cloud Computation

The produced LAS data contains 153 flight lines, with each flight line containing one channel, since the Gemini and Aquarius systems both contain one channel only. The summary of the self-calibration results obtained from LiDAR processing in LiDAR Mapping Suite (LMS) software for all flights over Bongabong floodplain are given in Table 13.

Parameter	Absolute Value	Computed Value
Boresight Correction stdev	(<0.001degrees)	0.000220
IMU Attitude Correction Roll and Pitch Corrections stdev	(<0.001degrees)	0.000962
GPS Position Z-correction stdev	(<0.01meters)	0.0037

Table 13. Self-Calibration Results values for Bongabong flights.

The optimum accuracy is obtained for all Bongabong flights based on the computed standard deviations of the corrections of the orientation parameters. Standard deviation values for individual blocks are available in the Annex 8. Mission Summary Reports.

3.5 LiDAR Data Quality Checking

The boundary of the processed LiDAR data on top of a SAR Elevation Data over Bongabong Floodplain is shown in Figure 11. The map shows gaps in the LiDAR coverage that are attributed to cloud coverage.

Figure 11. Boundary of the processed LiDAR data over Bongabong Floodplain

The total area covered by the Bongabong missions is 776.62 sq.km that is comprised of twelve (12) flight acquisitions grouped and merged into eleven (11) blocks as shown in Table 14

LiDAR Blocks	Flight Numbers	Area (sq. km)	
OrientalMindoro_Blk28E	1070A	125.84	
OrientelMindere DIV205	1072A	124.01	
	1074A	124.61	
OrientalMindoro_Blk28F_additional	1072A	12.70	
OrientalMindoro_Blk28G	1076A	95.35	
Oriental Mindoro_Blk 28G_supplement H	1078A	62.40	
OrientalMindoro_Blk28H_supplement	1088A	84.37	
OrientelMindere DIV201	1098A	07.02	
OrientalMindoro_Blk28I	1104A	97.92	
	1090A		
OrientalMindoro_Blk28J	1098A	92.85	
	1104A		
OrientalMindoro_reflights_Blk28F	8302G	23.25	
Orignal Mindage reflictete DU/2011 supplement	8304G	F1.C0	
Orienalivindoro_rellights_Bik28H_supplement	8306G	51.60	
Oriental Mindoro_reflights_Blk28I_additional	8306G	5.73	
	TOTAL	776.62 sq.km	

Table 14.	List of LiDAR	blocks for	Bongabong	floodplain.
TUDIC 14.		510000 101	Dollgabolig	nooupium

The overlap data for the merged LiDAR blocks, showing the number of channels that pass through a particular location is shown in Figure 12. Since the Gemini and Aquarius systems both employ one channel, we

would expect an average value of 1 (blue) for areas where there is limited overlap, and a value of 2 (yellow) or more (red) for areas with three or more overlapping flight lines.

Figure 12. Image of data overlap for Bongabong floodplain.

The overlap statistics per block for the Bongabong floodplain can be found in Annex 8. One pixel corresponds to 25.0 square meters on the ground. For this area, the minimum and maximum percent overlaps are 33.03% and 66.45% respectively, which passed the 25% requirement.

The density map for the merged LiDAR data, with the red parts showing the portions of the data that satisfy the 2 points per square meter criterion is shown in Figure 13. It was determined that all LiDAR data for Bongabong floodplain satisfy the point density requirement, and the average density for the entire survey area is 3.42 points per square meter.

Figure 13. Density map of merged LiDAR data for Bongabong floodplain.

The elevation difference between overlaps of adjacent flight lines is shown in Figure 14. The default color range is from blue to red, where bright blue areas correspond to portions where elevations of a previous flight line, identified by its acquisition time, are higher by more than 0.20m relative to elevations of its adjacent flight line. Bright red areas indicate portions where elevations of a previous flight line are lower by more than 0.20m relative to elevations of its adjacent flight line. Areas with bright red or bright blue need to be investigated further using Quick Terrain Modeler software.

Figure 14. Elevation difference map between flight lines for Bongabong floodplain.

A screen capture of the processed LAS data from a Bongabong flight 1078A loaded in QT Modeler is shown in Figure 15. The upper left image shows the elevations of the points from two overlapping flight strips traversed by the profile, illustrated by a dashed red line. The x-axis corresponds to the length of the profile. It is evident that there are differences in elevation, but the differences do not exceed the 20-centimeter mark. This profiling was repeated until the quality of the LiDAR data becomes satisfactory. No reprocessing was done for this LiDAR dataset.

Figure 15. Quality checking for a Bongabong flight 1078A using the Profile Tool of QT Modeler.

3.6 LiDAR Point Cloud Classification and Rasterization

Pertinent Class	Total Number of Points	
Ground	505,025,141	
Low Vegetation	562,415,876	
Medium Vegetation	558,547,228	
High Vegetation	593,014,797	
Building	21,576,597	

Table 15. Bongabong classification results in TerraScan.

The tile system that TerraScan employed for the LiDAR data and the final classification image for a block in Bongabong floodplain is shown in Figure 16. A total of 1,158 1km by 1km tiles were produced. The number of points classified to the pertinent categories is illustrated in Table 15. The point cloud has a maximum and minimum height of 570.88 meters and 31.32 meters respectively.

Figure 16. Tiles for Bongabong floodplain (a) and classification results (b) in TerraScan.

An isometric view of an area before and after running the classification routines is shown in Figure 17. The ground points are in orange, the vegetation is in different shades of green, and the buildings are in cyan. It can be seen that residential structures adjacent or even below canopy are classified correctly, due to the density of the LiDAR data.

Figure 17. Point cloud before (a) and after (b) classification.

The production of last return (V_ASCII) and the secondary (T_ ASCII) DTM, first (S_ ASCII) and last (D_ ASCII) return DSM of the area in top view display are shown in Figure 18. It shows that DTMs are the representation of the bare earth while on the DSMs, all features are present such as buildings and vegetation.

Figure 18. The production of last return DSM (a) and DTM (b), first return DSM (c) and secondary DTM (d) in some portion of Bongabong floodplain.

3.7 LiDAR Image Processing and Orthophotograph Rectification

The 991 1km by 1km tiles area covered by Bongabong floodplain is shown in Figure 19. After tie point selection to fix photo misalignments, color points were added to smoothen out visual inconsistencies along the seamlines where photos overlap. The Bongabong floodplain survey attained a total of 609.69 km² in orthophotogaph coverage, comprised of 6,389 images. A zoomed in version of sample orthophotographs named in reference to its tile number is shown in Figure 20.

Figure 19. Bongabong floodplain with available orthophotographs.

Figure 20. Sample orthophotograph tiles for Bongabong floodplain.

3.8 DEM Editing and Hydro-Correction

Eleven (11) mission blocks were processed for Bongabong flood plain. These blocks are composed of Oriental Mindoro and OrientalMindoro_reflights blocks with a total area of 776.62 square kilometers. Table 16 shows the name and corresponding area of each block in square kilometers.

LiDAR Blocks	Area (sq.km)
OrientalMindoro_Blk28E	125.84
OrientalMindoro_Blk28F	124.61
OrientalMindoro_Blk28F_additional	12.70
OrientalMindoro_Blk28G	95.35
OrientalMindoro_Blk28G_supplementH	62.40
OrientalMindoro_Blk28H_supplement	84.37
OrientalMindoro_Blk28I	97.92
OrientalMindoro_Blk28J	94.85
OrientalMindoro_reflights_Blk28F	23.25
OrienalMindoro_reflights_Blk28H_supplement	51.60
OrientalMindoro_reflights_Blk28I_additional	5.73
TOTAL	776.62 sq.km

Table 16. LiDAR blocks with its corresponding area.

Portions of DTM before and after manual editing are shown in Figure 21. The bridge (Figure 21a) is also considered to be an impedance to the flow of water along the river and has to be removed (Figure 21b) in order to hydrologically correct the river. The river embankment (Figure 21c) has been misclassified and removed during classification process and has to be retrieved to complete the surface (Figure 21d) to allow the correct flow of water. A portion of hill also (Figure 21e) has been misclassified that needs to be retrieved to retain the correct terrain (Figure 21f). Object retrieval uses the secondary DTM (t_layer) to fill in these areas.

Figure 21. Portions in the DTM of Bongabong floodplain – a bridge before (a) and after (b) manual editing; a river embankment before (c) and after (d) data retrieval; and a misclassified hill before (e) and after (f) manual editing.

3.9 Mosaicking of Blocks

OccidentalMindoro_Blk29N was used as the reference block at the start of mosaicking because it was referred to a base station with an acceptable order of accuracy. Table B-5 shows the shift values applied to each LiDAR block during mosaicking.

Mission Blocks	Shi	ft Values (met	ers)
IVIISSION BIOCKS	х	У	Z
OrientalMindoro_Blk28E	0.00	0.00	0.69
OrientalMindoro_Blk28F	0.00	0.00	0.84
Oriental Mindoro_Blk28F_additional	0.00	0.00	0.85
OrientalMindoro_Blk28G	0.00	0.00	0.86
OrientalMindoro_Blk28G_supplementH	0.00	0.00	-0.08
Oriental Mindoro_Blk28H_supplement	0.00	0.00	-0.29
OrientalMindoro_Blk28I	0.00	0.00	-0.20
OrientalMindoro_Blk28J	0.00	0.00	0.00
OrientalMindoro_reflights_Blk28F	0.00	0.00	0.01
OrienalMindoro_reflights_Blk28H_supplement	0.00	0.00	0.04
OrientalMindoro_reflights_Blk28I_additional	0.00	0.00	-1.20

Table 17. Shift Values of each LiDAR block of Bongabong floodplain

Mosaicked LiDAR DTM for Bongabong floodplain is shown in Figure 22. It can be seen that the entire Bongabong floodplain is 99.20% covered by LiDAR data.

Figure 22. Map of Processed LiDAR Data for Bongabong Flood Plain.

3.10 Calibration and Validation of Mosaicked LiDAR DEM

The extent of the validation survey done by the Data Validation and Bathymetry Component (DVBC) in Bongabong to collect points with which the LiDAR dataset is validated is shown in Figure 23. A total of 19,114 survey points were gathered for all the flood plains within Oriental Mindoro wherein the Bongabong floodplain is located. Random selection of 80% of the survey points, resulting to 15,291 points, were used for calibration.

A good correlation between the uncalibrated mosaicked LiDAR elevation values and the ground survey elevation values is shown in Figure 24. Statistical values were computed from extracted LiDAR values using the selected points to assess the quality of data and obtain the value for vertical adjustment. The computed height difference between the LiDAR DTM and calibration elevation values is 2.60 meters with a standard deviation of 0.17 meters. Calibration of Bongabong LiDAR data was done by subtracting the height difference value, 2.60 meters, to Bongabong mosaicked LiDAR data. Table 18 shows the statistical values of the compared elevation values between LiDAR data and calibration data.

Figure 23. Map of Bongabong Floodplain with validation survey points in green.

Figure 24. Correlation plot between calibration survey points and LiDAR data.

Calibration Statistical Measures	Value (meters)
Height Difference	2.60
Standard Deviation	0.17
Average	-2.59
Minimum	-3.03
Maximum	-1.70

Table 18. Calibration St	atistical Measures.
--------------------------	---------------------

The remaining 20% of the total survey points were intersected to the flood plain, resulting to 726 points. These were used for the validation of calibrated Bongabong DTM. A good correlation between the calibrated mosaicked LiDAR elevation values and the ground survey elevation, which reflects the quality of the LiDAR DTM is shown in Figure 25. The computed RMSE between the calibrated LiDAR DTM and validation elevation values is 0.09 meters with a standard deviation of 0.09 meters, as shown in Table 19.

Figure 25. Correlation plot between validation survey points and LiDAR data.

Validation Statistical Measures	Value (meters)
RMSE	0.09
Standard Deviation	0.09
Average	-0.00
Minimum	-0.35
Maximum	0.48

3.11 Integration of Bathymetric Data into the LiDAR Digital Terrain Model

For bathy integration, only centerline data was available for Bongabong with 522 bathymetric survey points. The resulting raster surface produced was done by Inverse Distance Weighted (IDW) interpolation method. After burning the bathymetric data to the calibrated DTM, assessment of the interpolated surface is represented by the computed RMSE value of 0.15 meters. The extent of the bathymetric survey done by the Data Validation and Bathymetry Component (DVBC) in Bongabong integrated with the processed LiDAR DEM is shown in Figure 26.

Figure 26. Map of Bongabong Flood Plain with bathymetric survey points shown in blue.

CHAPTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE BONGABONG RIVER BASIN

Engr. Louie P. Balicanta, Engr. Joemarie S. Caballero, Ms. Patrizcia Mae. P. dela Cruz, Engr. Dexter T. Lozano For. Dona Rina Patricia C. Tajora, Elaine Bennet Salvador, and For. Rodel C. Alberto

The methods applied in this Chapter were based on the DREAM methods manual (Balicanta, et al., 2014) and further enhanced and updated in Paringit, et al. (2017).

4.1 Summary of Activities

The project team conducted a fieldwork in Bongabong River on May 30, 2014 to June 11, 2014. The objectives were to conduct the following activities: courtesy call to the LGU of Bongabong Municipality; static survey for the establishment of control point at the approach of the bridge to be occupied as base station for GNSS surveys; cross-section, and bridge as-built survey of Bongabong Bridge in Brgy. San Isidro, Muicipality of Bongabong; LiDAR ground validation with estimated length of 26.071 km; and manual bathymetric survey of Bongabong River with distance of approximately 9.21 km starting from the Bongabong Bridge to the Barangays of San Isidro, Mina de Oro and Anilao down to the mouth of the Bongabong River at Tablas Strait using Trimble[®] SPS 882 in GNSS RTK survey technique. The fieldwork activities were assisted by the partner SUC, University of the Philippines Los Baños.

Figure 27. Extent of the bathymetric survey (blue line) in Bongabong River and the LiDAR data validation survey (in red)

4.2 Control Survey

A GNSS network was established for previous PHIL-LiDAR fieldwork in Mindoro on February 28 – March 11, 2013 occupying MR-178, a first-order BM located at the approach of Panggalaan Bridge in Brgy. Bucayao, Calapan City, Oriental Mindoro; and MRE-32, a second order GCP in Brgy. Poblacion 1, Mun. of Victoria, Oriental Mindoro.

The GNSS network used for Bongabong River Basin is composed of two (2) loops and four (4) baselines established on May 30 and May 31, 2014 occupying the reference point MRE-32, a second-order GCP fixed from the previous field survey in Mindoro Oriental for Mag Asawang Tubig river.

Seven (7) control points were established namely: BAR-1 located at the approach of Baroc Bridge in Brgy. San Isidro, Municipality of Mansalay; BONG-01 located near Bongabong Bridge in Brgy. San Isidro, Municipality of Luna; MOR-10, located at the approach of Cawacat Bridge in Brgy. Campaasan, Municipality of Bulalacao; ORM-1, located in Subaan Bridge in Barangay Subaan, Municipality of Socorro; ORM-3 located in Balete bridge in Brgy. Balete, Municipality of Gloria; ORM-4 in Pola Bridge, Brgy. Casiligan, Municipality of Pola; and SUB-01, located within the Maramot Residence in Brgy. Subaan, Municipality of Socorro. An LMS-established control point namely MRE-4650, located at Bansud Bridge, Brgy. Pagasa, Municipality of Bansud, Oriental Mindoro was also occupied to use as marker in the survey.

The summary of references and control points and its location is summarized in Table 30 while the GNSS network established is illustrated in Table 24.

Figure 28 GNSS network of Bongabong River field survey

Table 20. List of Reference and Control Points used in Bongabong River Basin survey (Source: NAMRIA; UP-TCAGP)

		Geographic Coordinates (WGS 84)					
Control Point	Order of Accuracy	Latitude	Longitude	Ellipsoid height (Meter)	Elevation in MSL (m)	Date Estab- lished	
MRE-32	2nd order, GCP	13°10'23.79251"	121°16′43.46244″	65.638	17.175	2007	
MRE-4650	Used as marker	-		-	-	2011	
BAR-1	UP Estab- lished	-	-	-	-	6-1-20014	
BONG-01	UP Estab- lished	-	-	-	-	6-1-2014	
MOR-10	UP Estab- lished	-	-	-	-	5-31-2014	
ORM-1	UP Estab- lished	-	-	-	-	5-30-2014	
ORM-3	UP Estab- lished	-	-	-	-	5-31-2014	
ORM-4	UP Estab- lished	-	-	-	-	5-31-2014	
SUB-01	UP Estab- lished	-	-	-	-	5-31-2014	

The GNSS set ups made in the location of the reference and control points are exhibited in Figure 29 to Figure 37.

Figure 29. GPS setup of Trimble[®] SPS 882 at MRE-32, located at the Municipal Park of Victoria, in Brgy. Poblacion 1, Oriental Mindoro

Figure 30. The GPS setup of Trimble[®] SPS 985 at MRE-4650, an LMS control point located at the approach of Bansud Bridge, in Brgy. Pagasa, Municipality of Bansud, Oriental Mindoro

Figure 31. GPS setup of Trimble[®] SPS 882 at BAR-1, an established control point located in Baroc Bridge, Brgy. San Isidro, Mansalay, Oriental Mindoro

Figure 32. GNSS setup of Trimble[®] SPS 882 on BONG-01 in Brgy. San Isidro, Municipality of Bongabong, Oriental Mindoro

Figure 33. GPS setup of Trimble[®] SPS 852 at MOR-10, located in the approach of the Cawacat Bridge, in Bry. Campasaan, Municipality of Bulalacao, Oriental Mindoro

Figure 34. GPS setup of Trimble[®] SPS 852 at ORM-1, located on Subaan Bridge, Brgy. Subaan, Municipality of Socorro, Oriental Mindoro

Figure 35. Trimble[®] SPS 985 setup at ORM-3 located at the approach of Balete Bridge, Brgy. Balete, Municipality of Gloria, Oriental Mindoro

Figure 36. GNSS receiver Trimble[®] SPS 852 setup at ORM-4, located at the right side of the approach of Pola Bridge in Barangay Casiligan, Municipality of Pola, Oriental Mindoro

Figure 37. GPS setup of Trimble[®] SPS 985 at SUB-1, an established control point located at Maramot Residence in Brgy. Subaan, Municipality of Socorro, Oriental Mindoro

4.3 Baseline Processing

GNSS Baselines were processed simultaneously in TBC by observing that all baselines have fixed solutions with horizontal and vertical precisions within +/-20cm and +/-10cm requirement, respectively. In case where one or more baselines did not meet all of these criteria, masking is performed. Masking is done by removing/masking portions of these baseline data using the same processing software. It is repeatedly processed until all baseline requirements are met. If the reiteration yields out of the required accuracy, resurvey is initiated. Baseline processing result of control points in Bongabong River Basin is summarized in Table 21 which was generated using the TBC software.

Observation	Date of Observation	Solution Type	H. Prec. (Meter)	V. Prec. (Meter)	Geodetic Az.	Ellipsoid Dist. (Meter)	ΔHeight (Meter)
ORM-1 SUB-01	05-30-2014	Fixed	0.004	0.006	301°40'27"	1466.251	4.823
SUB-01 MRE-32	05-30-2014	Fixed	0.010	0.031	318°11′52″	15342.18	-9.283
SUB-01 MOR-10	05-31-2014	Fixed	0.014	0.044	182°47'52"	80162.62	-16.502
SUB-01 MRE-4650	05-31-2014	Fixed	0.006	0.038	158°49'08"	25506.78	-9.971
SUB-01 ORM-3	5-31-2014	Fixed	0.007	0.028	141°48'05"	17755.532	-12.886
SUB-01 ORM-4	6-1-2014	Fixed	0.003	0.022	48°43′17″	7475.934	-19.149
SUB-01 BAR-1	6-1-2014	Fixed	0.024	0.107	167°15'17"	57308.832	-16.370
SUB-01 BONG-01	6-1-2014	Fixed	0.021	0.035	164°45'51"	45313.95	0.212
ORM-1 MRE 32	05-30-2014	Fixed	0.010	0.032	319°54'33"	13942.72	-14.146
MOR-10 MRE 4650	05-31-2014	Fixed	0.012	0.051	13°07′21″	57794.34	6.484

Table 21. Baseline Processing Report for Bongabong River Static survey

As shown in Table 21, a total of ten (10) baselines were processed and all of them passed the required accuracy set by the project.

4.4 Network Adjustment

After the baseline processing procedure, network adjustment is performed using TBC. Looking at the Adjusted Grid Coordinates table of the TBC generated Network Adjustment Report, it is observed that the square root of the sum of the squares of x and y must be less than 20 cm and z less than 10 cm or in equation from:

$$\sqrt{((x_e)^2 + (y_e)^2)}$$
<20cm and $z_e < 10 \ cm$

Where:

 x_e is the Easting Error, y_e is the Northing Error, and z_e is the Elevation Error

The five (5) control points, MRE-32, ORM-1, MOR-10, MRE-4650 and SUB-01 were occupied and observed simultaneously to form a GNSS loop. Coordinates and elevation values of MRE-32 were held fixed during the processing of the control points as presented in Table 22. Through these reference points, the coordinates and elevation of the unknown control points were computed.

Point ID	Туре	East σ (Meter)	North σ (Meter)	Height σ (Meter)	Elevation σ (Meter)	
MRE-32	Grid	Fixed	Fixed	Fixed	Fixed	
Fixed = 0.000001(Meter)						

Table 22. Control Point Constraints

The list of adjusted grid coordinates, i.e. Northing, Easting, Elevation and computed standard errors of the control points in the network is indicated in Table 23. All fixed control points have no values for grid and elevation errors.

Point ID	Easting (Meter)	Easting Error (Meter)	Northing (Meter)	Northing Error (Meter)	Elevation (Meter)	Elevation Error (Meter)	Cons- traint
MOR-10	319188.891	0.010	1365393.240	0.010	6.868	0.052	
MRE-32	313449.201	?	1456936.499	?	17.175	?	ENe
MRE-4650	332665.789	0.008	1421592.819	0.006	14.627	0.049	
ORM-1	322358.982	0.007	1446211.774	0.003	30.565	0.028	
SUB-01	323601.847	0.007	1445433.872	0.003	25.687	0.028	

Table 23. Adjusted Grid Coordinates

The network is fixed at reference points. The list of adjusted grid coordinates of the network is shown in Table 24. Using the equation for horizontal and for the vertical; below is the computation for accuracy that passed the required precision:

a.	MRE-32 Horizontal accuracy Vertical accuracy	= =	Fixed Fixed
b.	MOR-10 Horizontal accuracy	= = =	v ((1.0) ² + (1.0) ² v(1.0 + 1.0) 1 1 cm < 20 cm
	Vertical accuracy	=	1.4 cm< 10 cm
C.	MRE-4650 Horizontal accuracy Vertical accuracy	= = =	√ ((0.8) ² + (0.6) ² √(0.64 + 0.36) 1.0 cm < 20 cm 4.9 cm < 10 cm
	ORM-1		
	Horizontal accuracy	= = =	√ ((0.7) ² + (0.3) ² √(0.49 + 0.90) 1.2 cm < 20 cm
	Vertical accuracy	=	2.8 cm < 10 cm

d.

e. **SUB-01** Horizontal accuracy = $\sqrt{((0.7)^2 + (0.3)^2}$ = $\sqrt{(0.49 + 0.90)}$ = 1.2 cm < 20 cm Vertical accuracy = 2.8 cm < 10 cm

Following the given formula, the horizontal and vertical accuracy result of the five (5) occupied control points are within the required accuracy of the project.

Point ID	Latitude	Longitude	Ellipsoidal Height (Meter)	Height Error (Meter)	Constraint
MOR-10	N12°20'46.18547"	E121°20'13.54772"	58.186	0.052	
MRE-32	N13°10'23.79251"	E121°16′43.46244″	65.368	?	ENe
MRE-4650	N12°51'17.70515"	E121°27'28.71020"	64.693	0.049	
ORM-1	N13°04'36.74731"	E121°21'41.63863"	79.500	0.028	
SUB-01	N13°04'11.69491"	E121°22'23.06063"	74.676	0.028	

Table 24. Adjusted Geodetic Coordinates

		Geographic	Coordinates (WGS 8	4)	UTM Zone N51			
Con trol Point	Order	Latitude	Longitude	Ellip- soidal Height (m)	Northing (m)	Easting (m)	Eleva- tion in MSL	
MRE- 32	2nd Order, GCP	13°10'23.79251"	121°16′43.46244″	65.368	1456936.499	313449.201	17.175	
MRE- 4650	Used as Marker	12°51′17.70515″	121°27′28.71020″	64.693	1421592.819	332665.789	14.627	
BAR-1	UP Estab- lished	12°33'52.65149"	121°29'21.90040"	58.344	1389460.775	335892.131	6.953	
BONG- 01	UP Estab- lished	12°40'28.89755"	121°28'57.71173"	74.917	1401640.553	335232.485	23.974	
MOR- 10	UP Estab- lished	12°20′46.18547"	121°20′13.54772″	58.186	1365393.24	319188.891	6.868	
ORM- 1	UP Estab- lished	13°04'36.74731"	121°21′41.63863″	79.5	1446211.774	322358.982	30.565	
ORM- 3	UP Estab- lished	12°56′37.56304″	121°28'27.33712"	61.799	1431410.893	334491.821	12.031	
ORM- 4	UP Estab- lished	13°06'52.16736"	121°25′29.58456″	55.523	1450329.531	329251.554	6.585	
SUB- 01	UP Estab- lished	13°04'11.69491"	121°22′23.06063″	74.676	1445433.872	323601.847	25.687	

Table 25. List of references and control points used in Bongabong River Survey

4.5 Cross-section and Bridge As-Built survey and Water Level Marking

GNSS receiver Trimble[®] SPS 882 in PPK survey technique was utilized to acquire a cross section of the river along the downstream side of Bongabong Bridge in Brgy. San Isidro, Oriental Mindoro. The cross-section survey setup for Bongabong Bridge on October 29, 2014 is shown in Figure 40. Bridge as-built features determination was also performed to get the distance of piers and abutments from the bridge approach. The bridge deck was measured using GNSS receiver Trimble[®] SPS 882 to get the high cord, and meter tapes to get its low cord elevation. The DVBC established control BONG-01 was used as base station during the conduct of the survey.

Figure 38. Cross-section and bridge as-built survey for Bongabong Bridge, Brgy San Isidro, Oriental Mindoro

The cross-sectional line for the Bongabong Bridge is about 329.24 meters with 26 cross-sectional points. The planimetric location map, the summary of gathered cross-section, and as-built data for Bongabong Bridge are displayed in Figure 39 to Figure 41, respectively.

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

Figure 39. Bongabong bridge cross-section location map

					bridge Da					
Brig	ridge Name: _BONGABONG_BRIDGE						Dat	te: <u>October 29</u>	9, 2014	
Riv	River Name: BONGABONG RIVER Time: 10:20 am								n	
Loc	ation (Brgy, C	City, Region):	Brgy.Orcon	uma , Bong	abong (Oriental Mindor	o		
Sur	vey Tea	am:	DVBC Mindoro	Survey Tea	im					
Flo	w cond	ition:	low	normal	high		Weather (Condition: (f	air) rainy	
Lati	itude:	12d4	0'31.20966" N				Longitude	: <u>121d28'56.60</u>	0320" E	
RA1	BA2		D	<u>`</u>	\bigcirc	BA3	PA4 Lege	end:		
UAI				-			BA = Ab =	= Bridge Approach P = = Abutment D =	Pier LC = Low Ch Deck HC = High Cl	
		Ab1				162				
		ADI		P	,	ADZ				
						H				
			Deck (Please	start your mea	asurement from	the left si	le of the bank facing	downstream)		
Eleva	ation	_23.90	09 m (MSL)	Width:	<u>8.00 m</u>	eters	Span (BA3-BA	2): <u>126.943</u>	meters	
	Station				High	Chord Elevation	Low Cho	Low Chord Elevation		
1			Pier 1				23.952 m	22	22.803 m	
2										
3										
			Bridge App	roach (Please st	art your measurem	ent from the	left side of the bank facing	g downstream)		
Station(Distance from BA1) Elevation Station/Distance from BA1						nce from BA1)	Flevation			
	BA1 0 21.932			BA3	202	2.419 23.971				
F	BA2 96.270 23.996		23.996	BA4	329	9.366 23,261				
L			201270 201000							
	Abu	tment	nt: Is the abutment sloping? Yes			No; If yes, fill in th		e following information:		
						(No;)	If yes, fill in th	e tollowing inform		
			S	tation (Di	stance from	$\frac{(N_{0};)}{n BA(1)}$	If yes, fill in th	Flevatio	on l	
	A) 1	S	tation (Di	stance fror	No;) n BA1)	If yes, fill in th	Elevatio	on	
	A	01 12	S	tation (Di	stance from	(No;) n BA1)	If yes, fill in th	Elevatio	on	
	Al	01 02	Pier (Please st	tation (Di	stance from	No;) n BA1)	If yes, fill in th	Elevatio	on	
	Al	51 52	Pier (Please st	tation (Di	stance from	No;) n BA1) the left sic	If yes, fill in the	Elevatic 19.765	bn 5	
Sh	Al Al	51 5 2 _Cylind	Pier (Please st	tation (Di 1 art your meas Numb	stance from 195.449 surement from t	No;) m BA1) the left sic	If yes, fill in the	Elevatio 19.765 downstream)	5	
Sh	Al Al ape:	b1 b2 _Cylind	Pier (Please st Irical Station (Dist	tation (Di 1 tart your meas Numb tance fron	stance from 195.449 surement from f per of Piers: _ n BA1)	(No;) n BA1) the left sic 0	If yes, fill in the le of the bank facing Height of c	Elevatic 19.765 downstream) olumn footing: Pier \	on 5 Width	
Sh	Al Al ape: Pier 1	b1 b2 _Cylind	Pier (Please st Irical Station (Dist	tation (Di 1 1 1art your mean Numb tance fron 8.642	stance from 195.449 surement from to per of Piers: _ n BA1)	(No;) n BA1) the left sic 0	If yes, fill in the le of the bank facing Height of c Elevation 23.939	Elevatio 19.765 downstream) olumn footing: Pier V	on	
Sh	Al Al ape: Pier 1 Pier 2	51 52 _Cylind	Pier (Please st Irical Station (Dist 91 11	tation (Di 1 tart your mean Numb tance fron 8.642 .2.647	stance from 195.449 surement from to per of Piers: _ n BA1)	(No;) n BA1) the left sic	If yes, fill in the le of the bank facing Height of co Elevation 23.939 23.964	Elevatic 19.765 downstream) olumn footing: Pier V	on 5 Width	
Sh	Al Al Al Pier 1 Pier 2 Pier 3	b1 b2 	Pier (Please st Irical Station (Dist 93 11 12	tation (Di 1 tart your meas Numb tance fron 8.642 1.2.647 1.7.024	stance from 195.449 surement from t per of Piers: _ n BA1)	(No;) n BA1) the left sic	If yes, fill in the le of the bank facing Height of co Elevation 23.939 23.964 23.910	Elevatic 19.765 downstream) olumn footing: Pier \	on 5 Width	
Sh	Al Al Al Pier 1 Pier 2 Pier 3 Pier 4	b1 b2 _Cylind	Pier (Please st frical Station (Dist 91 11 12 14	tation (Di 1 1 tart your mean Numb tance from 8.642 12.647 17.024 11.354	stance from 195.449 surement from to per of Piers: _ n BA1)	(No;) n BA1) the left sic 0_ E	If yes, fill in the le of the bank facing Height of c 23.939 23.964 23.910 23.940	Elevatio	Width	
Sh	Al Al Al Pier 1 Pier 2 Pier 3 Pier 4 Pier 5	b1 b2 _Cylind	Pier (Please st Irical Station (Dist 9) 11 12 14 15	tation (Di 1 tart your meas Numb tance from 8.642 12.647 27.024 11.354 i5.939	stance from 195.449 surement from to per of Piers: _ n BA1)	(No;) n BA1) the left sic	If yes, fill in the le of the bank facing Height of c 23.939 23.964 23.910 23.940 23.927	Elevatic 19.765 downstream) olumn footing: Pier \	on 5 Width	
Sh	Al Al Al Pier 1 Pier 2 Pier 3 Pier 3 Pier 4 Pier 5 Pier 6	b1 b2 	Pier (Please st Irical Station (Dist 9: 11 12 14 15 17	tation (Di 1 tart your meas Numb tance fron 8.642 12.647 12.647 11.354 5.939 70.526	stance from L95.449 surement from t per of Piers: _ n BA1)	(No;) n BA1) the left sic	If yes, fill in the le of the bank facing Height of c 23.939 23.964 23.910 23.927 23.916	Elevatio	Width	
Sh	Al Al Al Pier 1 Pier 2 Pier 3 Pier 3 Pier 4 Pier 5 Pier 6 Pier 7	b1 b2 	S Pier (Please st Irical Station (Dist 90 11 12 14 15 17 18	tation (Di 1 1 tart your mean Numb tance from 8.642 12.647 27.024 11.354 55.939 70.526 35.242	stance from 195.449 surement from to per of Piers: _ n BA1)	(No;) n BA1) the left sic	If yes, fill in the le of the bank facing Height of co Elevation 23.939 23.964 23.910 23.940 23.927 23.916 23.933	Elevatio	Width	

Figure 41. Bongabong Bridge Data Form

4.6 Validation Points Acquisition Survey

Validation points acquisition survey was conducted on June 5, 2014 using a survey-grade GNSS Rover receiver, Trimble[®] SPS 882, mounted on a range pole which was attached on the roof rack of a vehicle as shown in Figure C-16. It was secured with a cable-tie to ensure that it was horizontally and vertically balanced. The antenna height was measured and recorded to be 1.498m from the ground up to the bottom of notch of the GNSS Rover receiver. The survey was conducted using PPK technique on a continuous topography mode, which started from Brgy. Dangay along Strong Republic Nautical Highway to Brgy. Labasan, Bongabong which gathered 3,671 validation points covering an approximate distance of 26.071 km using the DVBC established control BONG-01 as base station. The gaps in the validation line as shown in Figure 44 were due to some difficulties in acquiring satellite because of the presence of obstruction such as dense canopy cover of trees along the roads.

Figure 42. Trimble SPS[®]882 setup for validation points acquisition survey of Bongabong River Basin

Figure 43. Validation points acquisition survey along Bongabong River Basin

4.7 River Bathymetric Survey

Bathymetric survey for Bongabong River was conducted on May 29, 2014 to June 11, 2014 covering Brgy. San Isidro, Brgy. Mina de Oro and Brgy. Anilao Trimble® SPS 882 in GNSS PPK survey technique as shown in Figure 46. It started at the upstream part of the river in Bongabong Bridge in Brgy. San Isidro, Municipality of Bongabong with coordinates 12°40′28.89771″ 121°28′57.71150″ traversed the river via foot, and ended at the mouth of the river in Brgy. Anilao, also in Municipality of Bongabog with coordinates 12′43′58.34656″ 121°30′24.60034″. The UP established control point BONG-01 was used as the GNSS base all throughout the survey.

Figure 44. Bathymetric survey in Bongabong River: (a) upstream and (b) downstream

The bathymetric line length surveyed covered an estimated 9.21 km with 533 bathymetric points covering the bridge and passing three barangay boundaries namely Brgy. San Isidro, Brgy. Mina de Oro and Brgy. Anilao down to the boundary of Bongabong River and Tablas Strait as shown in Figure 47. Problems. A CAD drawing was also produced to illustrate the riverbed profile of Bongabong river. As shown in Figure 48, an elevation drop of 21 meters in MSL was observed within the surveyed distance of the river. The highest elevation value observed was 20.589 m in MSL located at the upstream part of the river near the bridge, while the lowest elevation value observed was -0.859 m below MSL located at the downstream part of the river in Brgy. Anilao. Problems were encountered such as the presence of security threats in the upstream region of the river which made it non-traversable thus only a portion of the river delineated was surveyed. About 13.41km of the planned bathy survey in the upstream was not covered.

Figure 45. Bathymetric points gathered along Bongabong River

Figure 46. Riverbed profile of Bongabong

CHAPTER 5: FLOOD MODELING AND MAPPING

Dr. Alfredo Mahar Lagmay, Christopher Uichanco, Sylvia Sueno, Marc Moises, Hale Ines, Miguel del Rosario, Kenneth Punay, Neil Tingin, Khristoffer Quinton, John Alvin B. Reyes, Alfi Lorenz B. Cura, Angelica T. Magpantay, Maria Michaela A. Gonzales Paulo Joshua U. Quilao, Jayson L. Arizapa, Raphael P. Gonzales, and Kevin M. Manalo

The methods applied in this Chapter were based on the DREAM methods manual (Lagmay, et al., 2014) and further enhanced and updated in Paringit, et al. (2017).

5.1 Data Used for Hydrologic Modeling

5.1.1 Hydrometry and Rating Curves

All data that affect the hydrologic cycle of the river basin were monitored, collected, and analyzed. Rainfall, water level, and flow in a certain period of time, which may affect the hydrologic cycle of the Bongabong River Basin were monitored, collected, and analyzed.

5.1.2 Precipitation

Precipitation data was taken from two Automatic Rain Gauge (ARG) Stations surrounding the watershed. The location of the rain gauges is seen in Figure 49.

The total precipitation for each rain gauge station are as follows: Brgy. Villa Pag-asa, 34.01 mm and Sta. Maria, 21.2 mm. The corresponding peak rainfall are as follows: Brgy, Villa Pag-asa ARG, 10.8 mm. on March 27, 2017 at 5:00 am and Sta. Maria ARG, 3.556 mm on March 27, 2017 at 4:45 am.

Figure 47. The location map of Bongabong HEC-HMS model used for calibration

5.1.3 Rating Curves and River Outflow

A rating curve was developed at Orconuma Bridge, Oriental Mindoro (12.675211° N, 121.482694° E) using Manning's Bankfull Method. It gives the relationship between the observed change in water and the outflow of the watershed at this location.

For Orconuma Bridge, the rating curve is expressed as $Q = 6E-11e^{1.3038x}$ as shown in Figure 51.

Figure 48. Cross-Section Plot of Orconuma Bridge

Figure 49. Rating Curve at Bongabong Bridge, Oriental Mindoro

For the calibration of the HEC-HMS model, shown in Figure 52, actual flow discharge during a rainfall event was collected in the Orconuma bridge. Peak discharge is 13.0 cu.m/s on March 27, 2017 at 10:50 am.

Figure 50. Rainfall and outflow data at Bongabong used for modeling

5.2 RIDF Station

The Philippines Atmospheric Geophysical and Astronomical Services Administration (PAGASA) computed Rainfall Intensity Duration Frequency (RIDF) values for the Romblon Rain Gauge. The RIDF rainfall amount for 24 hours was converted to a synthetic storm by interpolating and re-arranging the values in such a way a certain peak value will be attained at a certain time. This station chosen based on its proximity to the Bongabong watershed. The extreme values for this watershed were computed based on a 48-year record.

COMPUTED EXTREME VALUES (in mm) OF PRECIPITATION									
T (yrs)	10 mins	20 mins	30 mins	1 hr	2 hrs	3 hrs	6 hrs	12 hrs	24 hrs
2	18.2	27	33.5	44.3	59.5	70.4	89.5	107	119.8
5	26	37.7	46.5	60.7	82.2	97.6	125.5	152.9	171.6
10	31.1	44.8	55	71.5	97.3	115.7	149.3	183.4	205.9
15	34	48.8	59.9	77.7	105.8	125.8	162.8	200.5	225.2
20	36	51.6	63.3	82	111.8	133	172.2	212.6	238.8
25	37.6	53.8	65.9	85.3	116.4	138.4	179.4	221.8	249.2
50	42.4	60.4	74	95.4	130.5	155.3	201.8	250.3	281.4
100	47.2	67	81.9	105.5	144.5	172.1	223.9	278.6	313.3

Table 26. RID	F values for	Romblon	Rain	Gauge	computed	by PAGASA
---------------	--------------	---------	------	-------	----------	-----------

Figure 51. Location of Romblon RIDF relative to Bongabong River Basin

Romblon Rainfall Intensity Duration Frequency

Figure 52. Synthetic Storm Generated For A 24-hr Period Rainfall For Various Return Periods
5.3 HMS Model

The soil shape file was taken on 2004 from the Bureau of Soils and Water Management under the Department of Agriculture. The land cover dataset is from the National Mapping and Resource information Authority (NAMRIA). The soil map and land cover map can be found in Figures 53 and 54, respectively.

Figure 53. The soil map of the Bongabong River Basin used for the estimation of the CN parameter. (Source of data: Digital soil map of the Philippines published by the Bureau of Soil and Water Management – Department of Agriculture)

Figure 54. The land cover map of the Bongabong River Basin used for the estimation of the CN and watershed lag parameters of the rainfall-runoff model. (Source of data: Digital soil map of the Philippines published by the Bureau of Soil and Water Management – Dep

For Bongabong, the soil classes identified were silt loam, sandy loam, sandy clay loam, and undifferentiated. The land cover types identified were shrubland, grassland, forest plantation, open forest, closed forest, barren, and cultivated.

Figure 55. Slope Map of the Bongabong River Basin

Figure 56. Stream Delineation Map of the Bongabong River Basin

Using SAR-based DEM, the Bongabong basin was delineated and further subdivided into subbasins. The model consists of 55 sub basins, 28 reaches, and 28 junctions as shown in Figure 59. The main outlet is in Orconuma Bridge.

Figure 57. The Bongabong river basin model generated using HEC-HMS

5.4 Cross-section Data

Riverbed cross-sections of the watershed were necessary in the HEC-RAS model setup. The cross-section data for the HEC-RAS model was derived from the LiDAR DEM data. It was defined using the Arc GeoRAS tool and was post-processed in ArcGIS.

Figure 58. River cross-section of Bongabong River generated through Arcmap HEC GeoRAS tool

5.5 Flo 2D Model

The automated modelling process allows for the creation of a model with boundaries that are almost exactly coincidental with that of the catchment area. As such, they have approximately the same land area and location. The entire area is divided into square grid elements, 10 meter by 10 meter in size. Each element is assigned a unique grid element number which serves as its identifier, then attributed with the parameters required for modelling such as x-and y-coordinate of centroid, names of adjacent grid elements, Manning coefficient of roughness, infiltration, and elevation value. The elements are arranged spatially to form the model, allowing the software to simulate the flow of water across the grid elements and in eight directions (north, south, east, west, northeast, northwest, southeast, southwest).

Based on the elevation and flow direction, it is seen that the water will generally flow from the southwest of the model to the north, following the main channel. As such, boundary elements in those particular regions of the model are assigned as inflow and outflow elements respectively.

Figure 59. Screenshot of subcatchment with the computational area to be modeled in FLO-2D GDS Pro

The simulation is then run through FLO-2D GDS Pro. This particular model had a computer run time of 34.08411 hours. After the simulation, FLO-2D Mapper Pro is used to transform the simulation results into spatial data that shows flood hazard levels, as well as the extent and inundation of the flood. Assigning the appropriate flood depth and velocity values for Low, Medium, and High creates the following food hazard map. Most of the default values given by FLO-2D Mapper Pro are used, except for those in the Low hazard level. For this particular level, the minimum h (Maximum depth) is set at 0.2 m while the minimum vh (Product of maximum velocity (v) times maximum depth (h)) is set at 0 m2/s.

The creation of a flood hazard map from the model also automatically creates a flow depth map depicting the maximum amount of inundation for every grid element. The legend used by default in Flo-2D Mapper is not a good representation of the range of flood inundation values, so a different legend is used for the layout. In this particular model, the inundated parts cover a maximum land area of 42738700.00 m2.

There is a total of 89570449.32 m3 of water entering the model. Of this amount 13310963.40 m3 is due to rainfall while 76259485.92 m3 is inflow from other areas outside the model. 9047591.00 m3 of this water is lost to infiltration and interception, while 13328470.10 m3 is stored by the flood plain. The rest, amounting up to 67194394.02 m3, is outflow.

5.6 Results of HMS Calibration

After calibrating the Bongabong HEC-HMS river basin model, its accuracy was measured against the observed values (see Annex 9: Bongabong Model Basin Parameters). Figure 62 shows the comparison be-

tween the two discharge data.

Figure 60. Outflow Hydrograph of Bongabong produced by the HEC-HMS model compared with observed outflow

Enumerated in Table 27 are the adjusted ranges of values of the parameters used in calibrating the model.

Hydrologic Element	Calculation Type	Method	Parameter	Range of Calibrated Values
	Loss	SCS Curve number	Initial Abstraction (mm)	2 - 46
	LUSS	SCS Curve number	Curve Number	35 - 95
Pacin	Transform	Clark Unit Hydrograph	Time of Concentration (hr)	0.1 - 7
DdSIII	Transform Clark Unit Hydrograph		Storage Coefficient (hr)	2 - 103
	Baseflow Becession		Recession Constant	0.2 - 1
	Basenow	Recession	Ratio to Peak	0.2 – 0.5
Reach	Routing	Muskingum-Cunge	Manning's Coefficient	0.004 - 0.04

Initial abstraction defines the amount of precipitation that must fall before surface runoff. The magnitude of the outflow hydrograph increases as initial abstraction decreases. The range of values from 2mm to 46mm means that there is a minimal to average amount of infiltration or rainfall interception by vegetation per subbasin.

Curve number is the estimate of the precipitation excess of soil cover, land use, and antecedent moisture. The magnitude of the outflow hydrograph increases as curve number increases. The range of 35 to 95 for curve number is acceptable for Philippine watersheds, however, some of the subbasins corresponds to a lower value than common watersheds. This depends on the soil and land cover of the watershed.

Time of concentration and storage coefficient are the travel time and index of temporary storage of runoff in a watershed. The range of calibrated values from 0.1 to 103 hours determines the reaction time of the model with respect to the rainfall. The peak magnitude of the hydrograph also decreases when these parameters are increased.

Recession constant is the rate at which baseflow recedes between storm events and ratio to peak is the

ratio of the baseflow discharge to the peak discharge. Recession constant of 0.2 indicates that the basin is likely to quickly go back to its original discharge. Ratio to peak of 0.2 to 0.5 indicates a steeper to a relative-ly average receding limb of the outflow hydrograph.

Manning's roughness coefficient of 0.004 to 0.04 means that each river segment reacts differently wherein water flow smoothly or otherwise.

Accuracy Measure	Value
Root Mean Square Error (RMSE)	0.685
Pearson Correlation Coefficient (r2)	0.991
Nash-Sutcliffe (E)	0.948
Percent Bias (PBIAS)	-3.391
Observation Standard Deviation Ratio (RSR)	0.227

Table 28. Summary of the Efficiency Test of Bongabong HMS Model

The Root Mean Square Error (RMSE) method aggregates the individual differences of these two measurements. It was identified at 0.685.

The Pearson correlation coefficient (r2) assesses the strength of the linear relationship between the observations and the model. This value being close to 1 corresponds to an almost perfect match of the observed discharge and the resulting discharge from the HEC HMS model. Here, it measured 0.991.

The Nash-Sutcliffe (E) method was also used to assess the predictive power of the model. Here the optimal value is 1. The model attained an efficiency coefficient of 0.948.

A positive Percent Bias (PBIAS) indicates a model's propensity towards under-prediction. Negative values indicate bias towards over-prediction. Again, the optimal value is 0. In the model, the PBIAS is -3.391.

The Observation Standard Deviation Ratio, RSR, is an error index. A perfect model attains a value of 0 when the error in the units of the valuable a quantified. The model has an RSR value of 0.227.

5.7 Calculated outflow hydrographys and discharge values for different rainfall return periods

5.7.1 Hydrograph using the Rainfall Runoff Model

The summary graph (Figure 63) shows the Bongabong outflow using the Romblon Rainfail Intensity-Duration-Frequency curves (RIDF) in 5 different return periods (5-year, 10-year, 25-year, 50-year, and 100-year rainfall time series) based on the Philippine Atmospheric Geophysical and Astronomical Services Administration (PAGASA) data. The simulation results reveal significant increase in outflow magnitude as the rainfall intensity increases for a range of durations and return periods.

Figure 61. Outflow hydrograph at Bongabong Station generated using Romblon RIDF simulated in HEC-HMS

A summary of the total precipitation, peak rainfall, peak outflow, time to peak and lag time of the Bongabong discharge using the Romblon Rainfall Intensity-Duration-Frequency curves (RIDF) in five different return periods is shown in Table 29.

Table 29. Peak values of the Bongabong HECHMS Model outflow using the Romblon RIDF

RIDF PERIOD	Total Precipitation (mm)	Peak Rainfall (mm)	Peak Outflow (cu.m/s)	Time to Peak	Lag Time
5-yr	171.60	26	142.70		
10-yr	205.90	31.1	196.70		
25-yr	249.20	37.6	271.70	18 hours 30	6 hours 30
50-yr	281.40	42.4	331.40	minutes	minutes
100-yr	313.30	47.2	393.80		

The river discharges for the three points in the floodplain where rivers are shown in Figure 64 to Figure 66 and the peak values are summarized in Table 34 to Table 36.

Figure 62. Bongabong river (1) generated discharge using 5-, 25-, and 100-year Romblon rainfall intensityduration-frequency (RIDF) in HEC-HMS

Figure 63. Bongabong river (2) generated discharge using 5-, 25-, and 100-year Romblon rainfall intensityduration-frequency (RIDF) in HEC-HMS

Figure 64. Bongabong river (3) generated discharge using 5-, 25-, and 100-year Romblon rainfall intensityduration-frequency (RIDF) in HEC-HMS

Table 30. Summ	ary of Bongabor	g river (1) discl	harge generated i	n HEC-HMS
----------------	-----------------	-------------------	-------------------	-----------

RIDF Period	Peak discharge (cms)	Time-to-peak
100-Year	3162.6	15 hours, 40 minutes
25-Year	2361.5	15 hours, 40 minutes
5-Year	1410.7	15 hours, 50 minutes

Table 31. Summary of Bongabong river (2) discharge generated in HEC-HMS

RIDF Period	Peak discharge (cms)	Time-to-peak
100-Year	431.8	12 hours, 10 minutes
25-Year	327.4	12 hours, 10 minutes
5-Year	200.4	12 hours, 10 minutes

Table 32. Summary of Bongabong river (3) discharge generated in HEC-HMS

RIDF Period	Peak discharge (cms)	Time-to-peak
100-Year	656.8	12 hours, 10 minutes
25-Year	497.5	12 hours, 10 minutes
5-Year	303.9	12 hours, 10 minutes

The comparison of the discharge results using Dr. Horritt's recommended hydrological method against the bankful and specific discharge estimates is shown in Table 33.

				VALIDATION	
Discharge Point	cms	Cms	cms	Bankful Discharge	Specific Discharge
Bongabong (1)	abong (1) 1241.416 2027.884		1316.795	Pass	Pass
Bongabong (2)	176.352	168.809	159.254	Pass	Pass
Bongabong (3)	267.432	505.510	215.543	Pass	Pass

Table 33. Validation of river discharge estimates

All three values from the HEC-HMS river discharge estimates were able to satisfy the conditions for validation using the bankful and specific discharge methods. The calculated values are based on theory but are supported using other discharge computation methods so they were good to use flood modeling. These values will need further investigation for the purpose of validation. It is therefore recommended to obtain actual values of the river discharges for higher-accuracy modeling.

5.8 River Analysis (RAS) Model Simulation

The HEC-RAS Flood Model produced a simulated water level at every cross-section for every time step for every flood simulation created. The resulting model will be used in determining the flooded areas within the model. The simulated model will be an integral part in determining real-time flood inundation extent of the river after it has been automated and uploaded on the DREAM website. The sample map of Bongabong River using the HMS base flow is shown on Figure 65 below.

Figure 65. Bongabong HEC-RAS Output

5.9 Flow Depth and Flood Hazard

The resulting hazard and flow depth maps for 5-, 25-, and 100-year rain return scenarios of the Bongabong floodplain are shown in Figure 68 to 73. The floodplain, with an area of 53.89 sq. km., covers one municipality namely Bongabong. Table 34 shows the percentage of area affected by flooding per municipality.

Municipality	Total	Area	% Flood-
	Area	Flooded	ed
Bongabong	493.741	53.48787	10.83318

Table 34. Municipalities affected in	Bongabong floodplain
--------------------------------------	----------------------

Figure 66. 100-year Flood Hazard Map for Bongabong Floodplain

Figure 67. 100-year Flow Depth Map for Bongabong Floodplain

Figure 68. 25-year Flood Hazard Map for Bongabong Floodplain

Figure 69. 25-year Flow Depth Map for Bongabong Floodplain

Figure 70. 5-year Flood Hazard Map for Bongabong Floodplain

Figure 71. 5-year Flow Depth Map for Bongabong Floodplain

5.10 Inventory of Areas Exposed to Flooding of Affected Areas

Affected barangays in Bongabong river basin, grouped by municipality, are listed below. For the said basin, four municipalities consisting of 17 barangays are expected to experience flooding when subjected to 5-yr rainfall return period.

For the 5-year return period, 3.56% of the municipality of Bongabong with an area of 493.74 sq. km. will experience flood levels of less 0.20 meters. 1.40% of the area will experience flood levels of 0.21 to 0.50 meters while 2.16%, 2.48%, 1.22%, and 0.01% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Tables 35-36 are the affected areas in square kilometres by flood depth per barangay.

Table 35. Affected Areas in Bongabong, Oriental Mindoro during 5-Year Rainfall Return Period

				Affec	ted Baranga	ys in Bongal	guoc		
APPNIDA		Anilao	Aplaya	Batangan	Formon	Hagan	Hagupit	Lisap	Luna
	0.03-0.20	0.56	0.0025	1.01	0.015	1.14	2.61	2.12	4.44
	0.21-0.50	1.08	0.0031	0.1	0.0001	0.25	0.5	0.54	0.6
Affected	0.51-1.00	2.82	0.0036	0.28	0	0.22	0.16	1.01	0.28
Area (sa. km.)	1.01-2.00	3.21	0.0081	0.24	0	0.18	0.49	1.59	0.14
	2.01-5.00	0.77	0.0012	0.061	0	0.0026	0.4	0.62	0.14
	> 5.00	0.0072	0	0	0	0	0.0093	0	0

g
÷
Pe
Ę
'n
Get
=
fa
Ш.
Ř
ar
¥
ப்
ള
Ē
Ъ
õ
ē
Ľ
Ξ
_
nti
<u>e</u> .
ō
ည်
ou
ğ
ള്
õ
Ē
.=
g
ž
σ
te
e G
Aff
36
<u>e</u>
ac
-

				Affec	ted Baranga	ys in Bongal	bong		
BONGAB	ONG BASIN	Mapang	Masaguisi	Mina de Oro	Morente	Sagana	San Isidro	San Jose	San Juan
	0.03-0.20	1.39	0.15	0.57	0.63	0.056	2.67	0.19	0.0091
	0.21-0.50	0.62	0.15	1.61	0.21	0.1	1.05	0.13	0.0015
Affected	0.51-1.00	0.95	0.28	2.18	0.27	0.093	1.94	0.19	0
area (sg. km.)	1.01-2.00	1.06	0.56	1.38	0.57	0.1	2.25	0.46	0
	2.01-5.00	0.23	0.058	1.23	0.87	0.0001	0.74	0.92	0
	> 5,00	C	C	0.077	0.0094	U	0.0064	0.0013	С

Figure 72. Affected Areas Bongabong, Oriental Mindoro during 5-Year Rainfall Return Period

experience flood levels of 0.21 to 0.50 meters while 2.02%, 2.09%, and 0.06% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to For the 25-year return period, 3.73% of the municipality of Bongabong with an area of 493.74 sq. km. will experience flood levels of less 0.20 meters. 1.27% of the area will 5 meters, and more than 5 meters, respectively. Listed in Tables 37-38 are the affected areas in square kilometres by flood depth per barangay.

					fortod Darag	and ai such	noder			
BASIN	-	-		E -			Saburg	-		
Anilao Aplaya Bagu	Anilao Aplaya Bagu	Aplaya Bagu	Bagu	mbayan II	Batangan	Formon	Hagan	Hagupit	Lisap	Luna
0.03-0.20 1.32 0.21 0	1.32 0.21 (0.21 (0.000074	0.99	0.014	0.59	2.28	1.33	4.19
0.21-0.50 0.98 0.044	0.98 0.044	0.044		0	0.081	0.0002	0.084	0.35	0.18	0.74
0.51-1.00 2.58 0.0083	2.58 0.0083	0.0083		0	0.18	0	0.16	0.32	0.57	0.46
1.01-2.00 3.65 0.01	3.65 0.01	0.01		0	0.34	0	0.57	0.27	2	0.15
2.01-5.00 0.87 0.0012	0.87 0.0012	0.0012		0	0.11	0	0.38	0.91	1.79	0.24
> 5.00 0.0094 0	0.0094 0	0		0	0	0	0	0.055	0.0012	0.00099

Table 37. Affected Areas in Bongabong, Oriental Mindoro during 25-Year Rainfall Return Period

Table 38. Affected Areas in Bongabong, Oriental Mindoro during 25-Year Rainfall Return Period

For the 100-year return period, 3.38% of the municipality of Bongabong with an area of 493.74 sq. km. will experience flood levels of less 0.20 meters. 1.09% of the area will experience flood levels of 0.51 to 1.05 meters, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Tables 39-40 are the affected areas in square kilometres by flood depth per barangay.

		Lisap	1.28	0.11	0.27	1.6	2.6	0.012
		Hagupit	2.19	0.34	0.18	0.37	0.98	0.13
	60	Hagan	0.56	0.055	0.085	0.4	0.69	0
	n Bongabon	Formon	0.014	0.0003	0	0	0	0
)	Barangays ii	Batangan	0.96	0.07	0.12	0.36	0.19	0
ò	Affected	Bagumbayan II	0.000067	0.00006	0	0	0	0
2		Aplaya	0.2	0.054	0.0089	0.011	0.0014	0
		Anilao	1.13	0.85	2.32	4.06	1.03	0.013
			0.03-0.20	0.21-0.50	0.51-1.00	1.01-2.00	2.01-5.00	> 5.00
					Affected	area (sg. km.)	-	

Table 39. Affected Areas in Bongabong, Oriental Mindoro during 100-Year Rainfall Return Period

Table 40. Affected Areas in Bongabong, Oriental Mindoro during 100-Year Rainfall Return Period

Affected Barangays in Bongabong	Mina de Oro Morente Sagana San Isidro San Jose San Juan	0.14 0.35 0.31 4.74 0.047 0.28	0.78 0.009 0.14 1.84 0.0044 0.04	2.48 0.1 0.12 1.57 0.039 0.0016	1.92 0.49 0.18 2.84 0.19 0	1.72 1.42 0.0096 1.71 1.34 0	0.081 0.19 0 0.033 0.26 0
gabong	Sagana	0.31	0.14	0.12	0.18	0.0096	0
ngays in Bor	Morente	0.35	0.009	0.1	0.49	1.42	0.19
Affected Bara	Mina de Oro	0.14	0.78	2.48	1.92	1.72	0.081
	Masaguisi	0.039	0.18	0.22	0.63	0.15	0
-	Mapang	0.48	0.13	0.62	1.73	1.29	0.0091
	Luna	3.97	0.78	0.53	0.22	0.28	0.0026
		0.03-0.20	0.21-0.50	0.51-1.00	1.01-2.00	2.01-5.00	> 5.00
				Affected	sa. km.)	-	

Among the barangays in the municipality of Bongabong, San Isidro is projected to have the highest percentage of area that will experience flood levels at 1.75%. Meanwhile, Anilao posted the second highest percentage of area that may be affected by flood depths at 1.71%.

5.11 Flood Validation

In order to check and validate the extent of flooding in different river systems, a validation survey work was performed. Field personnel gathered secondary data regarding flood occurrence in the area within the major river system in the Philippines.

From the Flood Depth Maps produced by Phil-LiDAR 1 Program, multiple points representing the different flood depths for different scenarios were identified for validation.

The validation personnel went to the specified points identified in a river basin and gathered data regarding the actual flood level in each location. Data gathering was done through the help of the local DRRM office in obtaining maps or situation reports about the past flooding events and through interviews of some residents with knowledge of or have had experienced flooding in a particular area.

The actual data from the field were compared to the simulated data to assess the accuracy of the Flood Depth Maps produced and to improve on what is needed.

The flood validation consists of 77 points randomly selected all over the Bongabong flood plain. It has an RMSE value of 0.60.

Figure 75. Validation points for 25-year Flood Depth Map of Bongabong Floodplain

Actual Flood			Modeled	Flood Depth	(m)		
Depth (m)	0-0.20	0.21-0.50	0.51-1.00	1.01-2.00	2.01-5.00	> 5.00	Total
0-0.20	14	10	11	1	0	0	36
0.21-0.50	0	6	12	5	1	0	24
0.51-1.00	4	4	5	1	0	0	14
1.01-2.00	0	0	1	1	0	0	2
2.01-5.00	0	0	0	1	0	0	1
> 5.00	0	0	0	0	0	0	0
Total	18	20	29	9	1	0	77

Table 41. Actual Flood Depth vs Simulated Flood Depth in Bongabong

The overall accuracy generated by the flood model is estimated at 33.77%, with 26 points correctly matching the actual flood depths. In addition, there were 29 points estimated one level above and below the correct flood depths while there were 20 points estimated two levels above and below the correct flood. A total of 41 points were overestimated while a total of 10 points were underestimated in the modelled flood depths of Bongabong.

	No. of Points	%
Correct	26	33.77
Overestimated	41	53.25
Underestimated	10	12.99
Total	77	100

Table 42. Summary of Accuracy Assessment in Bongabong

REFERENCES

Ang M.O., Paringit E.C., et al. 2014. *DREAM Data Processing Component Manual*. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Balicanta L.P., Paringit E.C., et al. 2014. *DREAM Data Validation Component Manual*. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Brunner, G. H. 2010a. HEC-RAS River Analysis System Hydraulic Reference Manual. Davis, CA: U.S. Army Corps of Engineers, Institute for Water Resources, Hydrologic Engineering Center.

Lagmay A.F., Paringit E.C., et al. 2014. *DREAM Flood Modeling Component Manual*. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Paringit E.C, Balicanta L.P., Ang, M.O., Sarmiento, C. 2017. *Flood Mapping of Rivers in the Philippines Using Airborne Lidar: Methods*. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Sarmiento C., Paringit E.C., et al. 2014. *DREAM Data Acquisition Component Manual*. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

UP TCAGP 2016, Acceptance and Evaluation of Synthetic Aperture Radar Digital Surface Model (SAR DSM) and Ground Control Points (GCP). Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

ANNEXES

Annex 1.Technical Specifications of the LIDAR Sensors used in the Bongabong Floodplain Survey

1. AQUARIUS SENSOR

Figure A-1.1. Aquarius Sensor

Table A-1.1. Parameters and S	pecification of Aquarius Sensor
-------------------------------	---------------------------------

Parameter	Specification
Operational altitude	300-600 m AGL
Laser pulse repetition rate	33, 50. 70 kHz
Scan rate	0-70 Hz
Scan half-angle	0 to ± 25 °
Laser footprint on water surface	30-60 cm
Depth range	0 to > 10 m (for k < 0.1/m)
Topographic mode	
Operational altitude	300-2500
Range Capture	Up to 4 range measurements, including 1st, 2nd, 3rd, and last returns
Intensity capture	12-bit dynamic measurement range
Position and orientation system	POS AVTM 510 (OEM) includes embedded 72-channel GNSS receiver (GPS and GLONASS)
Data Storage	Ruggedized removable SSD hard disk (SATA III)
Power	28 V, 900 W, 35 A
Image capture	5 MP interline camera (standard); 60 MP full frame (optional)
Full waveform capture	12-bit Optech IWD-2 Intelligent Waveform Digitizer (optional)
Dimensions and weight	Sensor:250 x 430 x 320 mm; 30 kg; Control rack: 591 x 485 x 578 mm; 53 kg
Operating temperature	0-35°C
Relative humidity	0-95% no-condensing

2. GEMINI SENSOR

Figure A-1.2. Gemini Sensor

Parameter	Specification
Operational envelope (1,2,3,4)	150-4000 m AGL, nominal
Laser wavelength	1064 nm
Horizontal accuracy (2)	1/5,500 x altitude, (m AGL)
Elevation accuracy (2)	<5-35 cm, 1 σ
Effective laser repetition rate	Programmable, 33-167 kHz
Position and orientation system	POS AV™ AP50 (OEM); 220-channel dual frequency GPS/GNSS/Galileo/L- Band receiver
Scan width (WOV)	Programmable, 0-50°
Scan frequency (5)	Programmable, 0-70 Hz (effective)
Sensor scan product	1000 maximum
Beam divergence	Dual divergence: 0.25 mrad (1/e) and 0.8 mrad (1/e), nominal
Roll compensation	Programmable, ±5° (FOV dependent)
Range capture	Up to 4 range measurements, including 1st, 2nd, 3rd, and last returns
Intensity capture	Up to 4 intensity returns for each pulse, including last (12 bit)
Video Camera	Internal video camera (NTSC or PAL)
Image capture	Compatible with full Optech camera line (optional)
Full waveform capture	12-bit Optech IWD-2 Intelligent Waveform Digitizer (optional)
Data storage	Removable solid state disk SSD (SATA II)
Power requirements	28 V; 900 W;35 A(peak)
Dimensions and weight	Sensor: 260 mm (w) x 190 mm (l) x 570 mm (h); 23 kg Control rack: 650 mm (w) x 590 mm (l) x 530 mm (h); 53 kg
Operating temperature	-10°C to +35°C (with insulating jacket)

Relative humidity	0-95% no-condensing
-------------------	---------------------

Annex 2. NAMRIA Certification of Reference Points Used in the LIDAR Survey

1. MRE-54

Republic of the Department of NATIONA	he Philippines of Environment and Natural L MAPPING AND RES		AUTHORITY		
				I	ebruary 04, 201
	CER	TIFICATION			
whom it may concern:					
This is to certify that accordin	ng to the records on f	file in this office, the requ	ested survey i	nforma	ation is as follows
	Province: ORI	ENTAL MINDORO			. 4-
	Station N	lame: MRE-54			
Island: 11170N	Order	2nd	Poronaou	MALL	ANGCOC
Municipality: DINAMALAVAN			barangay.	WAL	ANGCOG
wumepanty. FINAWALATAN	PRSS	92 Coordinates			
Latitude: 12º 59' 12.43671"	PRSS Longitude:	92 Coordinates 121º 24' 46.52637"	Ellipsoidal	Hgt:	42.40800 m.
Latitude: 12º 59' 12.43671"	PRS: Longitude: WGS	92 Coordinates 121º 24' 46.52637'' 84 Coordinates	Ellipsoidal	Hgt:	42.40800 m.
Latitude: 12º 59' 12.43671" Latitude: 12º 59' 7.43505"	PRS Longitude: WGS Longitude:	92 Coordinates 121º 24' 46.52637" 84 Coordinates 121º 24' 51.55668"	Ellipsoidal Ellipsoidal	Hgt: Hgt:	42.40800 m. 91.39500 m.
Latitude: 12º 59' 12.43671" Latitude: 12º 59' 7.43505"	PRS Longitude: WGS Longitude: PTN	92 Coordinates 121º 24' 46.52637" 84 Coordinates 121º 24' 51.55668" // Coordinates	Ellipsoidal Ellipsoidal	Hgt: Hgt:	42.40800 m. 91.39500 m.
Latitude: 12º 59' 12.43671" Latitude: 12º 59' 7.43505" Northing: 1436124.562 m.	PRSS Longitude: WGS Longitude: PTM Easting:	92 Coordinates 121° 24' 46.52637'' 84 Coordinates 121° 24' 51.55668'' 1 Coordinates 544797.009 m.	Ellipsoidal Ellipsoidal Zone:	Hgt: Hgt: 3	42.40800 m. 91.39500 m.
Latitude: 12º 59' 12.43671" Latitude: 12º 59' 7.43505" Northing: 1436124.562 m.	PRS Longitude: WGS Longitude: PTN Easting:	92 Coordinates 121° 24' 46.52637" 84 Coordinates 121° 24' 51.55668" 7 Coordinates 544797.009 m.	Ellipsoidal Ellipsoidal Zone:	Hgt: Hgt: 3	42.40800 m. 91.39500 m.

From Calapan City to Roxas, along Nat'l Road, approx. 100 m from Pula Bridge, along Brgy. Sto. Niño, right turn to Brgy. Road leading to Gloria Airport, passing through Brgy. Sto. Niño, Brgy. Sta. Maria, Brgy. Pambigan Malaki, all in Mun. of Pinamalayan. approx. 7.8 Km. from Nat'l Road, 1.1 Km. from Brgy. Chapel, 600 m from Maliangkog Elem. School, left side of road located Brgy. Hall of Maliangkog, Pinamalayan, Oriental Mindoro. Station is located beside of flagpole near gate of brgy. hall. Mark is the head of a 4 in, copper nail flushed in a cement block embedded in the ground with inscriptions, "MRE-54, 2007, NAMRIA".

 Requesting Party:
 UP-DREAM

 Pupose:
 Reference

 OR Number:
 8795255 A

 T.N.:
 2014-196

1 DAD For RUEL DM. BELEN, MNSA Director, Mapping And Geodesy Branch 6

NAMRIA OFFICES:

Main : Lowton Avenue, Fort Bonifacio, 1634 Taguig City, Philippines Tel. No.: (632) 810-4831 to 41 Branch : 421 Barraca St. San Nicolas, 1010 Manila, Philippines, Tel. No. (632) 241-3494 to 98 www.namria.gov.ph

Figure A-2.1. MRE-54

February 04, 2014

CERTIFICATION

To whom it may concern:

This is to certify that according to the records on file in this office, the requested survey information is as follows -

	Province: ORIENTAL MINDORO	
	Station Name: MRE-44	
Island: LUZON Municipality: ROXAS	Order: 2nd	Barangay: HAPPY VALLEY
	PRS92 Coordinates	
Latitude: 12º 38' 59.03778"	Longitude: 121º 24' 32.60444"	Ellipsoidal Hgt: 87.94200 m.
atitudo: 120 201 54 447000	WGS84 Coordinates	
Lautude. 12 36 54.11/33"	Longitude: 121º 24' 37.66392"	Ellipsoidal Hgt: 137.80400 m.
	PTM Coordinates	
Northing: 1398838.995 m.	Easting: 544436.519 m.	Zone: 3
Northings d 000 p.c.	UTM Coordinates	
Noruning: 1,398,840.08	Easting: 327,214.81	Zone: 51

MRE-44

Location Description

From Calapan City to Bulalacao, approx. 4 Km. from Roxas Town Proper, along Nat'l Road is an intersection going to Roxas Proper, Mansalay, and Bongabong, Oriental Mindoro. Turn right to road leading to Bongabong Town Proper, approx. 6.9 Km., passing through Brgy. San Aquilino, Brgy. Libertad, Brgy. Little Tanauan, and Brgy. San Mariano, all in Mun. of Roxas. Along Brgy. San Rafael, left side of road located Km. post 130 about 50 m after RCBCulvert, turn left to Brgy. Road leading to Sitio Amawan, approx. 800 m passing through San Rafael Elem. School, and GK Village, left side of road located Brgy. Hall of Happy Valley, Roxas, Oriental Mindoro. Station is located beside of streetlight outside wall of brgy. hall. Mark is the head of a 4 in. copper nial flushed in a cement block embedded in the ground with inscriptions, "MRE-44, 2007, NAMRIA".

Requesting Party: UP-DREAM Pupose: Reference OR Number: 8795255 A T.N.: 2014-198

For RUEL DM. BELEN, MNSA Director, Mapping And Geodesy Branch

NAMRIA OFFICES: Main : Lawton Avenue, Fort Bonifacio, 1634 Taguig City, Philippines Tel. No.: (632) 810-4831 to 41 Branch : 421 Barraca St. San Nicolas, 1010 Manila, Philippines, Tel. No. (632) 241-3494 to 98 www.namria.gov.ph

Figure A-2.2. MRE-44

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

3. MRE-32

April 05, 2013

CERTIFICATION

To whom it may concern:

This is to certify that according to the records on file in this office, the requested survey information is as follows -

	Province: ORIENTAL MINDORO		
	Station Name: MRE-32		
Island: LUZON	Order: 2nd		
Municipality: VICTORIA		Barangay:	
	PRS92 Coordinates		
Latitude: 13º 10' 28.85064''	Longitude: 121º 16' 38.44761"	Ellipsoidal Hgt:	19.49300 m.
	WGS84 Coordinates		
Latitude: 13º 10' 23.79251"	Longitude: 121º 16' 43.46244"	Ellipsoidal Hgt:	67.64700 m.
	PTM Coordinates		
Northing: 1456889.419 m.	Easting: 530065.679 m.	Zone: 3	
No. dl.	UTM Coordinates		
Northing: 1,457,002.75	Easting: 313,296.85	Zone: 51	

MRE-32

Location Description

From Calapan City to Roxas, along Nat'l. Road approx. 34 Km. travel to Victoria Town Proper, 10 Km. from intersection of Naujan, left turn to Shell Gasoline Station, approx. 150 m, right side of road located Mun. Hall of Victoria, Oriental Mindoro. Station is located in Mun. Park in front of Former Mayor Statue, along corner of pathwalk. Mark is the head of a 4 in. copper nail flushed in a cement block embedded in the ground with inscriptions, "MRE-32, 2007, NAMRIA".

 Requesting Party:
 UP-TCAGP

 Pupose:
 Reference

 OR Number:
 3943485 B

 T.N.:
 2013-0270

RUEL DM. BELEN, MNSA

Director, Mapping and Geodesy Department

NAMRIA OFFICES: Main : Lawton Avenue, Fort Bonifacio, 1634 Taguig City, Philippines Tel. No.: (632) 810-4831 to 41 Branch : 421 Barraca St. San Nicolas, 1010 Manila, Philippines, Tel. No. (632) 241-3494 to 98 www.namria.gov.ph

Figure A-2.3. MRE-32

Requesting Party: EN Purpose: Re OR Number: 80

T.N.:

ENGR. CHRISTOPHI Reference 8088472 I 2015-3525

RUEL DM. BELEN, MNSA Director, Mapping And Geodesy Branch

NANRIA OFFICES: Main : Lawton Avenue, Fort Bonifacio, 1634 Taguig City, Philippines Tel. No. (632) 810-4831 to 41 Branch : 421 Barraca St. San Nicolas, 1010 Manila, Philippines, Tel. No. (632) 241-3494 to 98 www.namria.gov.ph

ISO 9001: 2008 CERTIFIED FOR MAPPING AND GEOSPATIAL INFORMATION MANAGEMENT

Figure A-2.4. MRE-11

Annex 3.Baseline Processing Reports of Control Points used in the LIDAR Survey

Table A-3.1. Baseline Processing Reports of Control Points used in the LIDAR Survey

rootor comp	,	inant to many							
From:	MF	RE-54							
Grid				Local			Global		
Easting		328016.924 m	Lati	itude	N12°59'0	7.43505"	Latitude		N12°59'07.43505"
Northing		1436055.870 m	Lon	ngitude	E121°24'5	1.55668"	Longitude		E121°24'51.55668"
Elevation		41.949 m	Hei	Height 91.395 m		Height		91.395 m	
To:	MF	RE-4563							
	Grid		Local		Global				
Easting		328034.015 m	Lati	itude	N13°00'53	3.01692"	Latitude		N13°00'53.01692"
Northing		1439300.319 m	Lon	ngitude	E121°24'51.45337"		Longitude		E121°24'51.45337"
Elevation		24.394 m	Hei	ight	7	73.715 m	Height		73.715 m
Vector									
∆Easting		17.09)1 m	NS Fwd Azimuth			359°56'42"	ΔX	392.071 m
∆Northing		3244.45	i0 m	Ellipsoid Dist.			3244.605 m	ΔY	-635.982 m
∆Elevation		-17.55	i5 m	im <mark>ΔHeight</mark>		-17.680 m	ΔZ	3157.508 m	

Vector	Components	(Mark t	o Mark)
--------	------------	---------	---------

1

Table A-3.2. MRE-11

D					0						
Project Informatio	n				Coordi	nate Syst	em				
Name:					Name:			Default			
Size:					Datum	:		WGS 19	84		
Modified:	10	12/2012 4	40:11 PM (UTC	0:-6)	Zone:			Default			
Time zone:	Mo	untain Sta	ndard Time		Geoid:						
Reference numbe	er:				Vertica	al datum:					
Description:											
•			Basel	ine Proce	essing	Repo	rt				
				Processing	Summa	ury.					
Observation	From	То	Solution Type	H. Prec. (Meter)	V. Prec. (Meter)	۵× (Meter)	∆Y (Meter)	ΔZ (Meter)	Geodetic Az.	Ellipsoid Dist. (Meter)	AHeight (Meter)
MRE11 -25 MRE11A - 25 (B1)	MRE11 - 25	MRE11A - 25	Fixed	0.001	0.002	1.673	0.540	1.035	302°48'1 6"	2.032	0.515
	Acceptance Summary										
Proces	sed		Passed		Fla	*g			Fail	-	
1			1			0				0	

Table A-3.3. MRE-1125

Baseline observation:	MRE11 -25 MRE11A - 25 (B1)
Processed:	11/5/2015 4:59:57 PM
Solution type:	Fixed
Frequency used:	Dual Frequency (L1, L2)
Horizontal precision:	0.001 m
Vertical precision:	0.002 m
RMS:	0.001 m
Maximum PDOP:	3.139
Ephemeris used:	Broadcast
Antenna model:	NGS Absolute
Processing start time:	10/25/2015 7:49:43 AM (Local: UTC+8hr)
Processing stop time:	10/25/2015 10:53:15 AM (Local: UTC+8hr)
Processing duration:	03:03:32
Processing interval:	1 second

MRE11 -25 - MRE11A - 25 (7:49:43 AM-10:53:15 AM) (S1)

Vector Components (Mark to Mark)

From:	MRE11 -25	IRE11 -25						
Grid		Local			Global			
Easting	0.310 m	Latitude	N12°44'45	.47200"	Latitude		N12°44'45.47200"	
Northing	-4.205 m	Longitude	E121°29'12	.85377"	Longitude		E121°29'12.85377"	
Elevation	55.043 m	Height	5	5.043 m	Height		55.043 m	
To: MRE11A - 25								
Grid		Local			Global			
Easting	-1.398 m	Latitude	N12°44'45	5.50783" Latitude			N12°44'45.50783"	
Northing	-3.104 m	Longitude	E121°29'12.79714" L		Longitude		E121°29'12.79714"	
Elevation	55.558 m	Height	5	5.558 m	3 m Height		55.558 m	
Vector								
∆Easting	-1.70	08 m NS Fwd Azimuth			302°48'16"	ΔX	1.321 m	
∆Northing	1.10	01 m Ellipsoid Dist.			2.032 m	ΔY	1.114 m	
∆Elevation	0.51	5 m ΔHeight			0.515 m	ΔZ	1.188 m	

11/5/2015 5:01:03 PM	Business Center - HCE

2
Annex 4. The LIDAR Survey Team Composition

Data Acquisition Component Sub -Team	Designation	Name	Agency / Affiliation
PHIL-LIDAR 1	Program Leader	ENRICO C. PARINGIT, D.ENG	UP-TCAGP
Data Acquisition Component Leader	Data Component Project Leader – I	ENGR. CZAR JAKIRI SARMIENTO	UP-TCAGP
	Chief Science Research Specialist (CSRS)	ENGR. CHRISTOPHER CRUZ	UP-TCAGP
Survey Supervisor	Supervising Science	LOVELY GRACIA ACUÑA	UP-TCAGP
	(Supervising SRS)	LOVELYN ASUNCION	UP-TCAGP
	F	IELD TEAM	
	Senior Science Research Specialist	PAULINE JOANNE ARCEO	UP-TCAGP
LiDAR Operation	Research Associate (RA)	MARY CATHERINE BALIGUAS	UP-TCAGP
	RA	ENGR. MILLIE SHANE REYES	UP-TCAGP
	RA	ENGR. IRO NIEL ROXAS	UP-TCAGP
Ground Survey,	RA	GRACE SINADJAN	UP-TCAGP
Transfer	RA	ENGR. GEF SORIANO	UP-TCAGP
	Airborne Security	SSG. ERIC CACANINDIN	PHILIPPINE AIR FORCE (PAF)
LiDAR Operation		CAPT. JEFFREY JEREMY ALAAR	ASIAN AEROSPACE CORPORATION (AAC)
	Pilot	CAPT. JACKSON JAVIER	AAC

Table A-4.1. The LIDAR Survey Team Composition

Annex 5. Data Transfer Sheet for Bongabong Floodplain

Figure A-5.1. Transfer Sheet for Bongabong Floodplain - A

LiDAR Surveys and Flood Mapping of Bongabong River

Figure A-5.2. Transfer Sheet for Bongabong Floodplain - B

Figure A-5.3. Transfer Sheet for Bongabong Floodplain - C

Annex 6. Flight Logs for the Flight Missions

1. Flight Log for Mission 3BLK28DSE037A

Figure A-6.1. Flight Log for Mission 3BLK28DSE037A

2. Flight Log for Mission 3BLK28F038A

Figure A-6.2. Flight Log for Mission 3BLK28F038A

3. Flight Log for Mission 3BLK28FSG038B

Figure A-6.3. Flight Log for Mission 3BLK28FSG038B

4. Flight Log for Mission 3BLK28G039A

Figure A-6.4. Flight Log for Mission 3BLK28G039A

Figure A-6.5. Flight Log for Mission 3BLK28GSH039B

6. Flight Log for Mission 3BLK28HS042A

Figure A-6.6. Flight Log for Mission 3BLK28HS042A

Figure A-6.7. Flight Log for Mission 3BLK28J042B

8. Flight Log for Mission 3BLK28ABES043A

	2				the second of the second second			
	6 Aircraft Identification: RP91		n an and an	18 Total Flight Time:				lidar Operator 1. North Signature over Printed Name
	5 Aircraft Type: Cesnna T206H		(Airport, City/Province):	17 Landing:				mand de vi et er Printed Name
60430	4 Type: VFR		12 Airport of Arrival	16 Take off:		A E.		Pilot-in-Corr) 120 Signature or
3BLK ABE	ers buggion Name:	9 Route:	(Airport, City/Province):	15 Total Engine Time: 440		lind in Aneas A		utisition Flight Certified by
AGRIA	2 ALTM Model: 3PLK28A	0-Pilot: J. ALAIAN	12 Airport of Departure	Engine Off: 1313		canp lecas		ed by Car (00 Sig Ind
	1 LIDAR Operator: IN RoxPS	7 Pilot: J. JAVIER 8 G	10 Date: 12, 20 l4	13 Engine On: 908	19 Weather	20 Remarks:	21 Problems and Solutions:	Acquisition Flight Appro LACH Accel Signature over Printed N End User Representativ

Figure A-6.8. Flight Log for Mission 3BLK28ABES043A

Figure A-6.9. Flight Log for Mission 3BLK28JSI044B

10. Flight Log for Mission 3BLK28JSI046A

Flight Log No.: \$3026 5 Aircraft Type: CesnnaT206H 6 Aircraft Identification: 9322 (with ords due to clouds) and averal BIK28 H&I Wer Printed Nam TIM CLIKEN BIK28A, completed BIK2PE 18 Total Flight Time: 3 + 37 irreaft Mar Ś Printed Name - CALA-PON 12 Airport of Arrival (Airport, City/Province): MSREPS ature over à 17 Landing: 1112 Supplemental flight 21 Remarks 4 Type: VFR L- AN EDDA, Galapan 16 Take off: 0735 over Printed Name - LiDAR System Maintenance
 Aircraft Maintenance
 Phil-LiDAR Admin Activities 1 LIDAR Operator: McBaligags 2 ALTM Model: Comin, 3 Mission Neme: 2012230 7 Pilot: M TANGONAN 8 Co-Pilot: J MOONUT 9 Route: CAL RPAN - CA 10 Date: 6-4. どう、ショットラ 12 Airoot of Departure (Airport, Gity/Province): 1 13 Engine On: 14 Engine Off: 15 Total Engine Time: 1 13 Engine On: 14 Engine Off: 15 Total Engine Time: 1 3447 20.c Others ANNIC CHAMISSINA NAV FRUND PAF Acquisition Flight Certified by (PAF Representative) Aircraft Test Flight
 AAC Admin Flight
 Others: N17 20.b Non Billable Acquisition Flight Approved by Ferry Flight System Test Flight Calibration Flight Weather Problem System Problem Aircraft Problem Pilot Problem Others: ted Name Acquisition Flight
Ferry Flight
System Test Flight
Calibration Flight 22 Problems and Solutions Data Acquisition Flight Log 6730 20 Flight Classification (End User Re 19 Weather 20.a Billable 0 0 0 0 0

Figure A-6.10. Flight Log for Mission 3BLK28JSI046A

Figure A-6.11. Flight Log for Mission 2BLK28ASEHI296A

12. Flight Log for Mission 2BLK28FHS297A

L

AR Operator: MS REYES 2 ALTM Model: Genur ti: M Touldo MMN 8 co-Pilot: J MOD/MEY te: 0.4. 24, 2015 12 Airport of Departur gine On: 0.3.11 14 Engine Off: 104] aather Classification pht Classification Billable 20.b Non Billable Mind Acquisition Flight 0 AAC Admin Flight 5 System Test Flight 0 Others:	a Mission Name: 2012815 a Mission Name: 2012815 a Mission Name: 2013 a Route: CALBYAN- Chuh e (Airport, Gity/Province): 15 Total Engine Time: 3+35 20.c Others o LiDAR System Mainten o Aircraft Maintenance o Aircraft Maintenance	4 Type: VFR PPA 12 Aiport of Arrival (Composition of the offici- 16 Take offici- 5 T 1L	5 Aircraft Type: CesnnaT206H Virport, City/Province): 171 a.vdi.oo.	
t: M TayLGO MAN 8 co-Pilot: J MODNEX te: 0.4. 24., 24., 2015 12 Airport of Departur efine On: 0.1 14 Engine Off: 104] aather C. DONOT 104] aather C. DONOT 104] aather C. DONOT 104] asther C. DONOT 104] Sather C. DONOT 104] Classification 20.0 Non Billable Ferry Flight 0 AAC Admin Flight System Test Flight 0 Others: Dibration Flight 0 Others:	9 Route: CALBPAN-ChLh e (Airport, City/Province): 15 Total Engine Time: 3435 20.c Others 0 LiDAR System Mainten 0 Aircraft Maintenance 0 Aircraft Maintenance	PPA 12 Airport of Arrival (, (Grave off: 16 Take off: 21 L	Virport, City/Province): 1171 = ndiam	6 Aircraft Identification: 9722
0:4- 24, 2015 Cata pow gine On: 03-11 14 Engine Off: 14 Engine Off: 104 iather 0,00001 int classification 20.b Non Billable Sillable 20.b Non Billable Ferry Flight 0 Arc Admin Flight 5 System Test Flight 0 Others: 0 Calibration Flight 0 Others:	15 Total Engine Time: 15 Total Engine Time: 3-1.30 20.c Others 0 LIDAR System Mainten 0 Aircraft Maintenance	Galapon 16 Take off: 0714	171	
sine On: b 1 14 Engine Off: 14 Engine Off: 14 Engine 14 Engine	15 Total Engine Time: 3,35 20.c Others 0 LIDAR System Mainten 0 Aircraft Maintenance 0 Aircraft Maintenance	16 Take off: のフル	17 Landing.	
ather Chastification ht Classification allable 20.b Non Billable Aquisition Flight O Arcaft Test Flight Ferry Flight O Arc Admin Flight System Test Flight O Others:	20.c Others 0. LIDAR System Mainten 0. Alicraft Maintenance 0. Alicraft Maintenance	21 Remarks	1036	18 Total Flight Time: 3+20
ht Classification ailable ² 20.b Non Billable ² Acquisition Flight ⁰ Arcraft Test Flight ² Ferry Flight ⁰ AAC Admin Flight ³ System Test Flight ⁰ Others: <u>1</u> ² Calibration Flight ⁰ Others: <u>1</u> blems and Solutions	20.c Others 0. LIDAR System Mainten 0. Altrarft Maintenance 0. Altrarba Ancie	21 Remarks		
illable 20.b Non Billable Acquisition Flight O Aircraft Test Flight Ferry Flight O Arc Admin Flight System Test Flight O Others:	20.c Others 0 LIDAR System Mainten 0 Airtraft Maintenance 0 AirLintux Admin Artivi			
Acquisition Flight Acquisition Flight Ferry Flight Acquisition Flight Acquisition Flight System Test Flight Others:	 LiDAR System Mainten Aircraft Maintenance Phill iDAR Admin Artivi 	-	DI MONTA	
blems and Solutions		ance Overel	UL & L & H	
Weather Problem				
System Problem	· · ·			
Pilot Problem				
Others:				
uisition Flight Approved by Acquisition Flight Ce	rtified by Pilot-in-C	bummand	Lidar Operator	Aircraft Mechanic/Technician
ANUC CHARTER AND ATTRACT AND Signature over Printe ature over Printe Muser Representative) (PAF Representative)	ANUS PFF NLC-77	Wer Printed Name	My Cherres Signature over Printed Name	G. A. TO MD

Figure A-6.12. Flight Log for Mission 2BLK28FHS297A

1 LiDAR Operator: Mer Butteroor 7 Pilot: M THVGCMAN 8 Co 10 Date: 0 と, 25, 2415 13 Engine On: 0 1 4(L		PCALIFUR	K29,FSC.529879		Flight Log No.:	83066
7 Pilot: M 7M/COVMAN 800 10 Date: 0 く・25, 2315 13 Engine On: 0 1 416	2 ALTM Model: Genni	3 Mission Name:	4 Type: VFR	5 Aircraft Type: Cesnna T206H	6 Aircraft Identification:	5322
10 Date: 0 ch. と5, よいら 13 Engine On: 07 以ん 14 E	-Pilot: J MDDNEY	9 Route: Calapan - Ca	ilapan			
13 Engine On: 07 りん	12 Airport of Departure	(Airport, City/Province):	12 Airport of Arrival	l (Airport, City/Province):		
	ngine Off: 1127	15 Total Engine Time: 3+4	16 Take off: DT51	17 Landing:	18 Total Flight Time:	
19 Weather	March				-	
20 Flight Classification		*	21 Remari	ks		
20.a Billable 🔧	.b Non Billable	20.c Others	- TWS C	alib over Pinamalayan. Com	npleted BIL28F	
 Acquisition Flight Ferry Flight System Test Flight Calibration Flight 	 Aircraft Test Flight AAC Admin Flight Others: 	 LIDAR System Mainte Aircraft Maintenance Phil-LiDAR Admin Act 	enance and a ivities	outred 3 lines of 181k286		
 Weather Problem System Problem Aircaft Problem Pilot Problem Others: 						
Acquisition Flight Approved by	Acquisition Flight Certi Advic CHH (Ann MA Signature over Printed I (PAF Representative	fied by Pilot-in- Main-Via 1AF Signatur	command 	Lidar Operator	Aircraft Mechanic/Ter G. HHTDM	Name

Figure A-6.13. Flight Log for Mission 2CALIBBLK28FSGS298A

Annex 7. Flight Status Reports

BONGABONG FLOODPLAIN February 2-15, 2014; October 23-25, 2015

Table A-7.1. Flight Status Report

FLIGHT NO.	AREA	MISSION	OPERATOR	DATE FLOWN	REMARKS
1070A	BLOCK 28D & 28E	3BLK28DSE037A	IRO ROXAS	FEB 6, 2014	Finished Block 28D and some lines of Block 28E
1072A	BLOCK 28F	3BLK28F038A	PAULINE ARCEO	FEB 7, 2014	Mission Complete
1074A	BLOCK 28F, 28G	3BLK28G038B	IRO ROXAS	FEB 7, 2014	Mission Complete
1076A	BLOCK 28G	3BLK28GS039A	IRO ROXAS	FEB 8, 2014	Mission Complete
1078A	BLOCK 28G & BLOCK 28H	3BLK28GSH039B	PAULINE ARCEO	FEB 8, 2014	Mission Complete
1088A	BLK 28H	3BLK28HS042A	IRO ROXAS	FEB 11, 2014	Mission Complete
1090A	BLK 28J	3BLK28J042B	PAU ARCEO	FEB 11, 2014	Mission Complete
1092A	BLK 28A,B,E	3BLK28ABES043A	IRO ROXAS	FEB 12, 2014	Mission Complete
1098A	BLK28J,I	3BLK28JSI044B	PAU ARCEO	FEB 13, 2014	Mission Complete
1104A	BLK28J,I	3BLK28JSI046A	IRO ROXAS	FEB 15, 2014	Mission Complete
8302G	BLK28E,H,I	2BLK28ASEHI296A	CATH BALIGUAS	OCT 23, 2014	Supplemental flight for BLK 28A, completed BLK28E and covered BLK 28 H&I
8304G	BLK28FH	2BLK28FHS297A	CATH BALIGUAS, SHANE REYES	OCT 24, 2014	Covered BLK 28 F&H
8306G	BLK28F	2CALIBBLK28FSGS298A	PAU ARCEO, CATH BALIGUAS	OCT 25, 2014	LMS Calib over Pinamalayan; completed BLK 28F and covered BLK 28G

1070A BLOCK 28D & BLOCK 28E 3BLK28DSE037A Scan Freq: 45 kHz Scan Angle: 18 deg Alt: 600 m

Figure A-7.1. 1070A

1072A BLOCK 28F 3BLK28F038A Scan Freq: 45 kHz Scan Angle: 18 deg Alt: 600 m

Figure A-7.2. 1072A

1074A BLOCK 28F & BLOCK28G 3BLK28FSG038B Scan Freq: 45 kHz Scan Angle: 18 deg Alt: 600 m

Figure A-7.3. 1074A

1076A BLOCK 28G 3BLK28G039A Scan Freq: 45 kHz Scan Angle:18deg Alt: 600 m

Figure A-7.4. 1076A

1078A BLOCK 28G, 28H 3BLK28GSH039B Scan Freq: 45 kHz Scan Angle: 18 deg Alt: 600 m

Figure A-7.5. 1078A

1088A BLOCK 28H 3BLK28HS042A Scan Freq: 45 kHz Scan Angle: 18 deg Alt: 600 m

Figure A-7.6. 1088A

1090A BLOCK 28J 3BLK28HS042B Scan Freq: 45 kHz Scan Angle: 18 deg Alt: 600 m

SURVEY COVERAGE:

Figure A-7.7. 1090A

1092A BLOCK 28A, B, E 3BLK28ABES43A Scan Freq: 45 kHz Scan Angle: 18 deg Alt: 600 m

SURVEY COVERAGE:

Figure A-7.8. 1092A

1098A BLOCK 28JI 3BLK28JSI044B Scan Freq: 45 kHz Scan Angle: 18 deg Alt: 600 m

Figure A-7.9. 1098A

1104A BLOCK 28JI 3BLK28JSI046A Scan Freq: 45 kHz Scan Angle: 18 deg Alt: 1000 m

Figure A-7.10. 1104A

8302G BLOCK 28A, 28E, 28H & 28I 2BLK28ASEHI296A Scan Freq: 50 kHz Scan Angle: 15 deg Alt: 1200 m

Figure A-7.11. 8302G

8304G BLOCK 28F & 28H 2BLK28FHS297A Scan Freq: 50 kHz Scan Angle: 15 deg Alt: 1200 m

Figure A-7.12. 8304G

8306G BLOCK 28F & 28G 2CALIBBLK28FSGS298A Scan Freq: 50 kHz Scan Angle: 20deg Alt: 1000 m

Figure A-7.13. 8306G

Annex 8: Mission Summary Reports

Table A-8.1. Mission Sun	nmary Report for Mission Blk28E
Flight Area	Oriental Mindoro
Mission Name	BIk28E
Inclusive Flights	1070A
Range data size	15.9 GB
Base data size	14.9 MB
POS	270 MB
Image	104 GB
Transfer date	February 20, 2014
Solution Status	
Number of Satellites (>6)	No
PDOP (<3)	No
Baseline Length (<30km)	No
Processing Mode (<=1)	Yes
Smoothed Performance Metrics(in cm)	
RMSE for North Position (<4.0 cm)	1.7
RMSE for East Position (<4.0 cm)	1.9
RMSE for Down Position (<8.0 cm)	3.8
Boresight correction stdev (<0.001deg)	0.000346
IMU attitude correction stdev (<0.001deg)	0.0001166
GPS position stdev (<0.01m)	0.0087
Minimum % overlap (>25)	38.34%
Ave point cloud density per sq.m. (>2.0)	3.35
Elevation difference between strips (<0.20m)	Yes
Number of 1km x 1km blocks	202
Maximum Height	388.91 m
Minimum Height	48.91 m
Classification (# of points)	
Ground	81,447,001
Low vegetation	92,938,121
Medium vegetation	85,912,374
High vegetation	92,936,807
Building	3,360,220
Orthophoto	Yes
Processed by	Engr. Carlyn Ann Ibanez, Engr. Charmaine Cruz, Engr. Elainne Lopez, Engr. John Dill Macapagal

Figure A-8.1. Solution Status

Figure A-8.2. Smoothed Performance Metrics Parameters

Figure A-8.3. Best Estimated Trajectory

Figure A-8.4. Coverage of LiDAR data

Figure A-8.5. Image of data overlap

Figure A-8.6. Density map of merged LiDAR data

Figure A-8.7. Elevation difference between flight lines
Elight Area	Oriental Mindero	
Mission Namo		
	BIK28F	
	ive Flights 1072A	
Range data size	12.5 GB	
Base data size	14.1 MB	
POS	256 MB	
Image	81.4 GB	
Transfer date	February 20, 2014	
Solution Status		
Number of Satellites (>6)	Yes	
PDOP (<3)	No	
Baseline Length (<30km)	Yes	
Processing Mode (<=1)	Yes	
Smoothed Performance Metrics (in cm)		
RMSE for North Position (<4.0 cm)	1.4	
RMSE for East Position (<4.0 cm)	1.5	
RMSE for Down Position (<8.0 cm)	3.8	
Boresight correction stdev (<0.001deg)	0.000425	
IMU attitude correction stdev (<0.001deg)	0.009525	
GPS position stdev (<0.01m)	0.0318	
Minimum % overlap (>25)	42.58%	
Ave point cloud density per sq.m. (>2.0)	2.86	
Elevation difference between strips (<0.20 m)	Yes	
Number of 1km x 1km blocks	190	
Maximum Height	146.32 m	
Minimum Height	31.32 m	
Classification (# of points)		
Ground	83,396,476	
Low vegetation	114.178.225	
Medium vegetation	59.793.586	
High vegetation	34.546.932	
Building	3.692.979	
Orthonhoto	νρς	
	Engr Carlyn Ann Ibanez Engr	
Processed by	Antonio Chua Jr, Engr. Elainne	
	Lopez	

Table A-8.2. Mission Summary Report for Mission Blk28F

Figure A-8.8. Solution Status

Figure A-8.9. Smoothed Performance Metrics Parameters

Figure A-8.10. Best Estimated Trajectory

Figure A-8.11. Coverage of LiDAR data

Figure A-8.12. Image of data overlap

Figure A-8.13. Density of merged LiDAR data

Figure A-8.14. Elevation difference between flight lines

Flight Area	Oriental Mindoro
Mission Name	Blk28G
Inclusive Flights	1076A
Range data size	11.5 GB
Base data size	14.3 MB
POS	233 MB
Image	76.8 GB
Transfer date	February 20, 2014
Solution Status	
Number of Satellites (>6)	No
PDOP (<3)	No
Baseline Length (<30km)	Yes
Processing Mode (<=1)	No
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	4.8
RMSE for East Position (<4.0 cm)	3.5
RMSE for Down Position (<8.0 cm)	8.6
Boresight correction stdev (<0.001deg)	0.000407
IMU attitude correction stdev (<0.001deg)	0.001355
GPS position stdev (<0.01m)	0.0097
Minimum % overlap (>25)	33.27%
Ave point cloud density per sq.m. (>2.0)	2.89
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	141
Maximum Height	216.76 m
Minimum Height	35.08 m
Classification (# of points)	
Ground	67,283,967
Low vegetation	77,300,272
Medium vegetation	51,202,535
High vegetation	45,765,772
Building	1,511,333
Orthophoto	Yes
Processed by	Engr. Kenneth Solidum, Engr. Christy Lubiano, Engr. John Dill Macapagal

Table A-8.3. Mission Summary Report for Mission Blk28G

Figure A-8.15. Solution Status

Figure A-8.16. Smoothed Performance Metrics Parameters

Figure A-8.17. Best Estimated Trajectory

Figure A-8.18. Coverage of LiDAR data

Figure A-8.19. Image of data overlap

Figure A-8.20. Density of merged LiDAR data

Figure A-8.21. Elevation difference between flight lines

Flight Area	Oriental Mindoro	
Mission Name	Blk28F_additional	
Inclusive Flights	1074A, 1072A	
Range data size	18.9 GB	
Base data size	28.2 MB	
POS	430 MB	
Image	115.1 GB	
Transfer date	February 20,2014	
Solution Status		
Number of Satellites (>6)	Yes	
PDOP (<3)	Yes	
Baseline Length (<30km)	Yes	
Processing Mode (<=1)	No	
Smoothed Performance Metrics (in cm)		
RMSE for North Position (<4.0 cm)	1.3	
RMSE for East Position (<4.0 cm)	1.2	
RMSE for Down Position (<8.0 cm)	6.5	
Boresight correction stdev (<0.001deg)	0.000425	
IMU attitude correction stdev (<0.001deg)	0.009525	
GPS position stdev (<0.01m)	0.0111	
Minimum % overlap (>25)	15.62%	
Ave point cloud density per sq.m. (>2.0)	2.28	
Elevation difference between strips (<0.20 m)	Yes	
Number of 1km x 1km blocks	41	
Maximum Height	90.78 m	
Minimum Height	47.32 m	
Classification (# of points)		
Ground	7,224,934	
Low vegetation	etation 8.421.215	
Medium vegetation	4.311.749	
High vegetation	3 208 204	
Building	105 376	
Orthophoto	No	
	Engr. Carlyn Ann Ibanez, Engr.	
Processed by	Edgardo Gubatanga Jr., Engr. Gladys	
	Mae Apat	

Table A-8.4. Mission Summary Report for Mission Blk28f_Additional

Figure A-8.22. Solution Status

Figure A-8.23. Smoothed Performance Metric Parameters

Figure A-8.24. Best Estimated Trajectory

Figure A-8.25. Coverage of LiDAR data

Figure A-8.26. Image of data overlap

Figure A-8.27. Density Map of merged LiDAR data

Figure A-8.28. Elevation Difference Between flight lines

Flight Area	Oriental Mindoro	
Mission Name	Blk28GsH	
Inclusive Flights	1078A	
Range data size	9.71 GB	
Base data size	14.3 MB	
POS	197 MB	
Image	56.8 GB	
Transfer date	February 20, 2014	
Solution Status		
Number of Satellites (>6)	No	
PDOP (<3)	Yes	
Baseline Length (<30km)	Yes	
Processing Mode (<=1)	Yes	
Smoothed Performance Metrics (in cm)		
RMSE for North Position (<4.0 cm)	1.6	
RMSE for East Position (<4.0 cm)	1.2	
RMSE for Down Position (<8.0 cm)	6.0	
Boresight correction stdev (<0.001deg)	0.000552	
IMU attitude correction stdev (<0.001deg)	0.004258	
GPS position stdev (<0.01m)	0.0143	
Minimum % overlap (>25)	58.5%	
Ave point cloud density per sq.m. (>2.0)	4.00	
Elevation difference between strips (<0.20 m)	Yes	
Number of 1km x 1km blocks	107	
Maximum Height	288.11 m	
Minimum Height	48.43 m	
Classification (# of points)		
Ground	46,444,727	
Low vegetation	58,505,631	
Medium vegetation	50,918,523	
High vegetation	49,004,112	
Building	1,332,080	
Orthophoto	Yes	
Processed by	Engr. Jennifer Saguran, Celina Rosete, Engr. Elainne Lopez	

Table A-8.5. Mission Summary Report for Mission Blk28GsH

Figure A-8.29. Solution Status

Figure A-8.30. Smoothed Performance Metrics Parameters

Figure A-8.31. Best Estimated Trajectory

Figure A-8.32. Coverage of LiDAR data

Figure A-8.33. Image of data overlap

Figure A-8.34. Density of merged LiDAR data

Figure A-8.35. Elevation difference between flight lines

Flight Area	Oriental Mindoro	
Mission Name	Blk28Hs	
Inclusive Flights	1088A	
Range data size	14 GB	
Base data size	14.7 MB	
POS	269 MB	
Image	80.7 GB	
Transfer date	February 21, 2014	
Solution Status		
Number of Satellites (>6)	Yes	
PDOP (<3)	Yes	
Baseline Length (<30km)	Yes	
Processing Mode (<=1)	No	
Smoothed Performance Metrics (in cm)		
RMSE for North Position (<4.0 cm)	1.6	
RMSE for East Position (<4.0 cm)	1.8	
RMSE for Down Position (<8.0 cm)	5.3	
Boresight correction stdev (<0.001deg)	0.000304	
IMU attitude correction stdev (<0.001deg)	0.000768	
GPS position stdev (<0.01m)	0.0088	
Minimum % overlap (>25)	66.45%	
Ave point cloud density per sq.m. (>2.0)	4.35	
Elevation difference between strips (<0.20 m)	Yes	
Number of 1km x 1km blocks	128	
Maximum Height	418.58 m	
Minimum Height	42.03 m	
Classification (# of points)		
Ground	67,410,264	
Low vegetation	78,245,475	
Medium vegetation	73,011,298	
High vegetation	74,100,895	
Building	2,106,955	
Orthophoto	Yes	
Processed by	Engr. Jennifer Saguran, Eleyn Pama, Marie Joyce Ilagan	

	C			
Table A-8.6.IVIISSION	Summary	Report for	IVIISSION BIKZ8HS	

Figure A-8.36. Solution Status

Figure A-8.37. Smoothed Performance Metrics Parameters

Figure A-8.38. Best Estimated Trajectory

Figure A-8.39. Coverage of LiDAR data

Figure A-8.40. Image of data overlap

Figure A-8.41. Density of merged LiDAR data

Figure A-8.42. Elevation difference between flight lines

Flight Area	Oriental Mindoro	
Mission Name	BIk28IJ	
Inclusive Flights	1104A	
Range data size	10.3 GB	
Base data size	9.85 MB	
POS	276 MB	
Image	56.2 GB	
Transfer date	February 21, 2014	
Solution Status		
Number of Satellites (>6)	No	
PDOP (<3)	No	
Baseline Length (<30km)	No	
Processing Mode (<=1)	No	
Smoothed Performance Metrics (in cm)		
RMSE for North Position (<4.0 cm)	3.4	
RMSE for East Position (<4.0 cm)	3.9	
RMSE for Down Position (<8.0 cm)	1.1	
Boresight correction stdev (<0.001deg)	0.000220	
IMU attitude correction stdev (<0.001deg)	0.001457	
GPS position stdev (<0.01m)	0.0037	
Minimum % overlap (>25)	47.15%	
Ave point cloud density per sq.m. (>2.0)3.29		
Elevation difference between strips (<0.20 m)	Yes	
Number of 1km x 1km blocks	254	
Maximum Height	570.88 m	
Minimum Height	37.28 m	
Classification (# of points)		
Ground	110,601,059	
Low vegetation	99,664,631	
Medium vegetation	142,219,461	
High vegetation	131,163,224	
Building	4,203,923	
Orthophoto	Yes	
Processed by	Engr. Angelo Carlo Bongat, Engr. Christy Lubiano, Engr. Elainne Lopez	

Table A-8.7. Mission Summary Report for Mission Blk28IJ

Figure A-8.43. Solution Status

Figure A-8.44. Smoothed Performance Metrics Parameters

Figure A-8.45. Best Estimated Trajectory

Figure A-8.46. Coverage of LiDAR data

Figure A-8.47. Image of data overlap

Figure A-8.48. Density of merged LiDAR data

Figure A-8.49. Elevation difference between flight lines

Flight Area	Oriental Mindoro Reflights	
Mission Name	Blk28F	
Inclusive Flights	8302G	
Range data size	14.5 GB	
Base data size	11.5 MB	
POS	228 MB	
Image	28.2 GB	
Transfer date	November 12, 2015	
Solution Status		
Number of Satellites (>6)	Yes	
PDOP (<3)	Yes	
Baseline Length (<30km)	Yes	
Processing Mode (<=1)	Yes	
Smoothed Performance Metrics (in cm)		
RMSE for North Position (<4.0 cm)	0.934	
RMSE for East Position (<4.0 cm)	1.04	
RMSE for Down Position (<8.0 cm)	1.47	
Boresight correction stdev (<0.001deg)	0.000889	
IMU attitude correction stdev (<0.001deg)	0.000102	
GPS position stdev (<0.01m)	0.0109	
Minimum % overlap (>25)	33.03	
Ave point cloud density per sq.m. (>2.0)	3.19	
Elevation difference between strips (<0.20 m)	Yes	
Number of 1km x 1km blocks	43	
Maximum Height	94.12 m	
Minimum Height	51.59 m	
Classification (# of points)		
Ground	10,986,543	
Low vegetation	16,821,408	
Medium vegetation	25,819,248	
High vegetation	14,191,912	
Building	289,175	
Orthophoto	Yes	
Processed by	Engr. Kenneth Solidum, Engr. Anotonio Chua Jr, Marie Denise Bueno	

Table A-8.8. Mission Summary Report for Mission Blk28F

Figure A-8.50. Solution Status

Figure A-8.51. Smoothed Performance Metric Parameters

Figure A-8.52. Best Estimate Trajectory

Figure A-8.53. Coverage of LiDAR data

Figure A-8.54. Image of data overlap

Figure A-8.55. Density Map of merged LiDAR data

Figure A-8.56. Elevation Difference Between flight lines

Flight Area	Oriental Mindoro Reflights	
Mission Name	Blk28H_supplement	
Inclusive Flights		
Range data size	24.9 GB	
Base data size	17.2 MB	
POS	434 MB	
Image	24.8 GB	
Transfer date	November 12, 2015	
Solution Status		
Number of Satellites (>6)	Yes	
PDOP (<3)	Yes	
Baseline Length (<30km)	No	
Processing Mode (<=1)	No	
Smoothed Performance Metrics (in cm)		
RMSE for North Position (<4.0 cm)	1.33	
RMSE for East Position (<4.0 cm)	1.40	
RMSE for Down Position (<8.0 cm)	3.05	
Boresight correction stdev (<0.001deg)	0.000292	
IMU attitude correction stdev (<0.001deg)	0.000461	
GPS position stdev (<0.01m)	0.0016	
Minimum % overlap (>25)	38.13	
Ave point cloud density per sq.m. (>2.0)	4.70	
Elevation difference between strips (<0.20 m)	Yes	
Number of 1km x 1km blocks	78	
Maximum Height 374.61 m		
Minimum Height	41.25 m	
Classification (# of points)		
Ground	33,733,252	
Low vegetation	20,442,478	
Medium vegetation	63,131502	
High vegetation	145,339525	
Building	5,009,201	
Orthophoto	Yes	
Processed by	Engr. Abigail Joy Ching, Engr. Melanie Hingpit, Maria Tamsyn Malabanan	

Table A-8.9. Mission Summary Report for Mission Blk28H_supplement

Figure A-8.57. Solution Status

Figure A-8.58. Smoothed Performance Metric Parameters

Figure A-8.59. Best Estimate Trajectory

Figure A-8.60. Coverage of LiDAR data

Figure A-8.61. Image of data overlap

Figure A-8.62. Density Map of merged LiDAR data

Figure A-8.63. Elevation Difference Between flight lines

Flight Area	Oriental Mindoro Reflights
Mission Name	Blk28I additional
Inclusive Flights	
Range data size	10.7 GB
Base data size	8.28 MB
POS	220 MB
Image	NA
Transfer date	November 12, 2015
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	Yes
Processing Mode (<=1)	Yes
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	0.915
RMSE for East Position (<4.0 cm)	0.984
RMSE for Down Position (<8.0 cm)	1.65
Boresight correction stdev (<0.001deg)	0.002500
IMU attitude correction stdev (<0.001deg)	0.000957
GPS position stdev (<0.01m)	0.0023
Minimum % overlap (>25)	11.76
Ave point cloud density per sq.m. (>2.0)	3.77
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	15
Maximum Height	515.09 m
Minimum Height	159.61 m
Classification (# of points)	
Ground	3,721,852
Low vegetation	4,319,635
Medium vegetation	6,538,701
High vegetation	5,965,618
Building	70,731
Orthophoto	No
Processed by	Engr. Abigail Joy Ching, Engr. Melanie Hingpit, Engr. Krisha Marie Bautista

	Table A-8.10.	Mission Summary	Report for	Mission	BLk28I	additional
--	---------------	------------------------	------------	---------	--------	------------

Figure A-8.64. Solution Status

Figure A-8.65. Smoothed Performance Metric Parameters

Figure A-8.66. Best Estimate Trajectory

Figure A-8.67. Coverage of LiDAR data

Figure A-8.68. Image of data overlap

Figure A-8.69. Density Map of merged LiDAR data

Figure A-8.70. Elevation Difference Between flight lines

	SCS	CURVE NUN	IBER LOSS	CLARK UNIT HYDF	ROGRAPH TRANSFORM	RECE	SSION BASEFLO	M
Subbasin	Initial Abstraction (MM)	Curve Number	Imperviousness (%)	Time of Concentration (HR)	Storage Coefficient (HR)	Initial Discharge (CU.M/S)	Recession Constant	Ratio to Peak
W1000	20.8270	38.0420	0.0	0.2718	32.5670	0.0788	0.2904	0.5000
W1010	11.0690	40.4630	0.0	0.6389	49.9870	0.1409	0.4269	0.5000
W1020	4.8898	94.7290	0.0	0.3294	11.9930	0600.0	0.1975	0.4706
W1030	13.8490	37.8140	0.0	0.4076	31.7820	0.0647	0.6667	0.5000
W1040	4.1096	75.5520	0.0	1.2752	2.0812	0.0018	0.6403	0.5000
W1050	7.8157	48.0050	0.0	0.7422	58.9710	0.0634	0.4269	0.5000
W1080	7.8707	48.2490	0.0	0.1845	9.7256	0.0104	0.1975	0.4706
W1090	9.3095	47.8600	0.0	0.6589	10.7660	0.0206	0.2904	0.4802
W1130	8.7328	59.2550	0.0	2.9207	4.7666	0.0050	1.0000	0.5000
W1140	4.0751	58.8560	0.0	2.7156	64.2780	0.1493	0.4269	0.5000
W540	8.6179	38.4480	0.0	2.5209	58.0160	0.1400	0.2904	0.5000
W550	15.6740	35.2980	0.0	1.8549	96.7650	0.1073	0.1975	0.5000
W560	15.1450	43.5530	0.0	1.2776	28.9850	0.0414	0.1975	0.5000
W570	10.4770	40.4730	0.0	0.7814	17.9650	0.0414	0.1975	0.5000
W580	10.3480	43.0640	0.0	0.7557	17.6430	0.0138	0.4445	0.4802
W590	10.4860	40.5600	0.0	0.5853	29.4680	0.0465	0.2904	0.5000
W600	15.4670	39.4790	0.0	0.6506	22.6190	0.0426	0.2904	0.5000
W610	10.4510	42.7060	0.0	0.8836	30.3390	0.0503	0.2904	0.5000
W620	9.6078	44.3740	0.0	0.7780	40.7660	0.1071	0.4269	0.5000
W630	12.1480	39.8330	0.0	0.3177	37.1280	0.0693	0.2904	0.5000
W640	10.3490	42.9410	0.0	0.3871	43.8700	0.1419	0.4269	0.5000
W650	11.2410	38.7190	0.0	2.8203	43.2950	0.1991	0.6667	0.5000
W660	8.5385	47.2270	0.0	0.2185	24.7710	0.0425	0.4269	0.5000

Table A-9.1. Bongabong Model Basin Parameters

W670	15.9280	42.3390	0.0	0.1405	16.4120	0.0157	0.4269	0.4900
W680	13.9210	38.8080	0.0	0.6628	78.6020	0.0956	0.2904	0.5000
W690	13.3260	46.5470	0.0	0.5163	40.0010	0.0395	0.4269	0.5000
W700	20.6240	39.0240	0.0	0.1689	5.9620	0.0105	0.2904	0.2178
W710	31.0040	37.9080	0.0	0.1720	5.8104	0.0015	0.1975	0.4706
W720	13.0190	39.3330	0.0	0.2749	31.3070	0.0730	0.4269	0.5000
W730	20.7940	38.8080	0.0	1.5850	16.6640	0.0515	0.4269	0.5000
W740	11.7280	41.4620	0.0	0.5379	8.8322	0.0651	0.4269	0.4802
W750	20.8290	38.8080	0.0	0.7495	40.7430	0.0911	0.4269	0.5000
W760	13.9500	38.8080	0.0	0.3925	20.4700	0.0439	0.4269	0.5000
W770	20.8340	38.8130	0.0	0.1965	6.7676	0.0194	0.4377	0.4802
W780	10.5360	44.0600	0.0	0.5478	19.7820	0.0976	0.4269	0.5000
W790	12.5520	40.6510	0.0	0.4027	32.1290	0.0827	0.4269	0.5000
W800	23.8790	44.3530	0.0	0.1984	6.9972	0.0060	0.2977	0.4706
W810	13.9550	38.8080	0.0	0.4645	54.0230	0.0910	1.0000	0.5000
W820	20.7940	38.8080	0.0	0.6699	23.7680	0.0865	0.6402	0.5000
W830	45.9510	38.8250	0.0	0.6092	21.0860	0.0358	0.4330	0.5000
W840	11.6120	42.0260	0.0	0.8282	43.2890	0.1279	0.4355	0.5000
W850	17.0230	42.1740	0.0	0.1937	10.2080	0.0281	0.4467	0.4802
W860	31.0890	38.8080	0.0	0.2936	51.1810	0.0511	0.4355	0.5000
W870	11.8630	47.8340	0.0	1.5643	81.9520	0.1349	0.4371	0.5000
W880	3.7729	77.0970	0.0	6.8191	11.1290	0.0645	1.0000	0.5000
W890	6.5294	51.7420	0.0	0.1765	8.9785	0.0475	0.4466	0.4802
006M	20.6990	38.7110	0.0	0.5917	31.4870	0.0510	0.4355	0.5000
W910	13.9520	38.8080	0.0	0.2915	23.2590	0.0550	0.4355	0.5000
W920	12.7880	39.0800	0.0	0.4804	37.3990	0.0942	0.6534	0.5000
W940	20.7980	38.8090	0.0	0.8897	102.8900	0.0978	0.4355	0.5000
W950	13.9230	38.8080	0.0	0.2091	36.7880	0.0461	0.4408	0.5000

8240	38.8080	0.0	0.2928	22.8640	0.0325	0.5111	0.5000
	38.8080	0.0	0.5349	27.9260	0.0381	0.4355	0.5000
	93.7230	0.0	0.1543	5.1259	0.0136	0.2904	0.3137
	38.8130	0.0	0.3329	39.4750	0.0243	0.4464	0.5000

	Side Slope (xH:1V)	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Width (M)	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40
OLITING	Shape	Trapezoid																						
	Manning's n	0.0036	0.0036	0.0036	0.0036	0.0036	0.0036	0.0036	0.0036	0.0036	0.0036	0.0036	0.0036	0.0036	0.0036	0.0036	0.0036	0.0036	0.0036	0.0036	0.0036	0.0036	0.0036	0.0036
	Slope(M/M)	0.0212813	0.0012211	0.0051693	0.0141579	0.0467878	0.0467878	0.0224227	0.0246047	0.0147726	0.0783992	0.0083194	0.0173780	0.0112009	0.0472860	0.0431915	0.0098821	0.0099558	0.0542404	0.0170020	0.0228250	0.0073842	0.0116300	0.0179127
	Length (M)	4322.7	1516.4	11548	2011.7	5949.3	197.99	855.69	3307.4	2527.5	2085.2	4570.3	893.26	1814.6	1463.3	5095.5	5109.4	2886.9	3052.8	1204.6	2005.1	1668.8	1602.3	3750.0
	Time Step Method	Automatic Fixed Interval																						
	REACH	R110	R1110	R1160	R130	R150	R160	R170	R20	R210	R220	R250	R260	R280	R30	R300	R330	R360	R370	R390	R420	R430	R440	R450

Table A-10.1. Bongabong Model Reach Parameters

Annex 10. Bongabong Model Reach Parameters

	Itomatic Fixed Interval	1079.2	0.0125382	0.0036	Trapezoid	40	Ч
R480 Au	Itomatic Fixed Interval	5902.4	0.0039049	0.04	Trapezoid	40	1
R500 Au	Itomatic Fixed Interval	903.97	.00063754	0.04	Trapezoid	40	1
R80 Au	Itomatic Fixed Interval	3513.6	0.0418013	0.0036	Trapezoid	40	1
R90 Au	Itomatic Fixed Interval	5222.9	0.0227292	0.0036	Trapezoid	40	1

Validation Coordinates Valida-Point Rain Model tion Num-Error Event/Date Return/ Var (m) Points Latitude Longitude ber Scenario (m) 1 12.6647230 121.4365200 1.76 1.28 -0.48 Unding / November 2004 25-Year 2 12.6718520 121.4912420 0.52 0.85 0.33 Yolanda / November 2013 25-Year 3 12.6719820 121.4912230 0.31 0.00 -0.31 25-Year 4 1.24 -0.94 Yolanda / November 2013 12.6719540 121.4854140 0.30 25-Year 5 12.6720320 121.4919380 0.71 0.14 -0.57 Typhoon / 1993 25-Year 6 12.6720700 0.84 -0.84 121.4907940 0.00 25-Year 7 12.6720770 121.4900020 0.57 0.00 -0.57 25-Year 121.4916210 0.63 0.35 -0.28 25-Year 8 12.6721180 Typhoon / 1993 25-Year 12.6721160 0.29 Yolanda / November 2013 9 121.4889630 0.64 0.93 10 12.6721340 121.4906600 0.81 0.07 -0.74 Yolanda / November 2013 25-Year 12.6721370 0.70 11 121.4901710 0.00 -0.70 25-Year 12 12.6721610 1.54 0.06 -1.48 Yolanda / November 2013 121.4845950 25-Year 13 12.6722750 121.4879060 1.56 2.75 1.19 Yolanda / November 2013 25-Year 14 12.6724850 0.94 0.32 -0.62 Nona / December 2015 121.4927440 25-Year 15 12.6725600 121.4923920 0.88 0.00 -0.88 25-Year 16 12.6733940 121.4941660 0.75 0.14 -0.61 Nona / December 2015 25-Year 0.19 17 12.6735950 121.4832580 0.87 1.06 Unding / November 2004 25-Year 18 12.6740510 121.4949530 0.79 0.42 -0.37 Nona / December 2015 25-Year 19 12.6743770 121.4950530 0.99 0.45 -0.54 Unding / November 2004 25-Year 20 12.6740910 121.4447680 0.03 0.12 0.09 Ondoy / Sept. 26, 2009 25-Year 21 12.6744200 121.4945260 0.87 0.93 0.06 Typhoon / 1993 25-Year 22 12.6741950 121.4416010 2.09 0.35 -1.74 Yolanda / Nov. 8, 2013 25-Year 23 12.6747590 121.4967190 0.96 0.00 -0.96 25-Year 24 12.6754680 0.54 -0.54 121.5018180 0.00 25-Year 25 12.6755880 121.4948850 0.45 0.46 0.01 25-Year 0.96 -0.76 26 12.6758390 121.5000150 0.20 25-Year 27 12.6754440 0.58 0.52 121.4269380 0.06 Yolanda / Nov. 8, 2013 25-Year 28 12.6759760 121.5011580 0.88 0.60 -0.28 Typhoon / 1993 25-Year 29 12.6760020 121.5002490 0.79 0.32 -0.47 Typhoon / 1993 25-Year 30 12.6760150 121.4983240 0.63 0.00 -0.63 25-Year 31 12.6761080 121.4998890 0.88 0.40 -0.48 Typhoon / 1993 25-Year 32 12.6761220 121.4986470 0.67 0.33 -0.34 Typhoon / 1993 25-Year 33 12.6763160 121.4994160 0.86 0.45 -0.41 Typhoon / 1993 25-Year 34 12.6764510 121.4819120 0.15 0.90 0.75 Yolanda / Nov. 8, 2013 25-Year 121.5045470 35 12.6769890 0.50 -0.40 Nona / December 2015 25-Year 0.10 Ondoy / Sept. 26, 2009 36 12.6769740 121.4179700 0.13 0.00 -0.13 25-Year 37 12.6775290 121.5046890 0.77 0.45 -0.32 Typhoon / 1993 25-Year 0.66 38 12.6774850 0.39 0.27 Yolanda / Nov. 8, 2013 25-Year 121.4831270 39 12.6771940 121.4076820 1.22 0.44 -0.78 Atang 25-Year 40 12.6776420 121.4756070 0.06 0.00 -0.06 Caloy / May, 2006 25-Year 41 12.6779020 121.4764070 0.10 -0.10 Yolanda / Nov. 8, 2013 0.00 25-Year

Annex 11. Bongabong Field Validation Points

42	12.6782440	121.5054870	0.45	0.23	-0.22		25-Year
43	12.6781450	121.4835310	0.48	0.15	-0.33	Yolanda / Nov. 8, 2013	25-Year
44	12.6783440	121.5052520	0.83	0.39	-0.44	Trining	25-Year
45	12.6788570	121.5050920	0.50	0.36	-0.14	Unding / November 2004	25-Year
46	12.6790020	121.5058610	0.45	0.32	-0.13	Yolanda / November 2013	25-Year
47	12.6791530	121.5070160	0.14	0.00	-0.14		25-Year
48	12.6792470	121.5064560	0.31	0.00	-0.31		25-Year
49	12.6792640	121.5077710	0.20	0.09	-0.11	Yolanda / November 2013	25-Year
50	12.6792850	121.5066720	0.28	0.51	0.23	Typhoon / 1993	25-Year
51	12.6793120	121.5072860	0.08	0.00	-0.08		25-Year
52	12.6787430	121.4000210	1.87	0.72	-1.15	Yolanda / Nov. 8, 2013	25-Year
53	12.6788100	121.3993420	1.76	0.46	-1.3	Yolanda / Nov. 8, 2013	25-Year
54	12.6788910	121.3982170	1.27	0.24	-1.03	Caloy / May 2006	25-Year
55	12.6795740	121.5078890	0.05	0.00	-0.05		25-Year
56	12.6789510	121.3994080	1.94	0.25	-1.69	Yolanda / Nov. 8, 2013	25-Year
57	12.6796450	121.4848690	0.65	0.53	-0.12	Yolanda / Nov. 8, 2013	25-Year
58	12.6798840	121.5081870	0.38	0.46	0.08	Typhoon / 1993	25-Year
59	12.6800610	121.5085600	0.27	0.73	0.46		25-Year
60	12.6803600	121.5085010	0.17	0.00	-0.17		25-Year
61	12.6807840	121.5087710	0.35	0.00	-0.35		25-Year
62	12.6808330	121.4849140	0.24	0.92	0.68	2011	25-Year
63	12.6814860	121.5091280	0.38	0.00	-0.38		25-Year
64	12.6818190	121.5091720	0.39	0.00	-0.39		25-Year
65	12.6818190	121.5091690	0.39	0.00	-0.39		25-Year
66	12.6829510	121.4865980	0.03	0.00	-0.03	Yolanda / Nov. 8, 2013	25-Year
67	12.6833400	121.4880370	0.03	0.00	-0.03	Yolanda / Nov. 8, 2013	25-Year
68	12.6833970	121.4880170	0.03	0.18	0.15	Yolanda / Nov. 8, 2013	25-Year
69	12.6871100	121.4908210	0.08	0.91	0.83	Yolanda / Nov. 8, 2013	25-Year
70	12.6987340	121.5061520	0.45	0.10	-0.35	Yolanda / Nov. 2013	25-Year
71	12.6989290	121.5143660	0.08	0.10	0.02	Nona / Dec. 2015	25-Year
72	12.7118880	121.4918700	0.41	0.49	0.08	Nina / Dec. 2016	25-Year
73	12.7123250	121.4900200	0.06	0.70	0.64	Marce / Nov. 2016	25-Year
74	12.7137530	121.4967300	0.23	0.10	-0.13	Yolanda / Nov. 2013	25-Year
75	12.7176570	121.4992470	0.03	0.00	-0.03	Marce / Nov. 2016	25-Year
76	12.7193890	121.5028470	0.66	0.27	-0.39	Yolanda / Nov. 2013	25-Year
77	12.7298130	121.4945600	0.81	0.44	-0.37	Yolanda / Nov. 2013	25-Year

Annex 12. Phil-LiDAR 1 UPLB Team Composition

Project Leader

Asst. Prof. Edwin R. Abucay (CHE, UPLB)

Project Staffs/Study Leaders

Asst. Prof. Efraim D. Roxas (CHE, UPLB) Asst. Prof. Joan Pauline P. Talubo (CHE, UPLB) Ms. Sandra Samantela (CHE, UPLB) Dr. Cristino L. Tiburan (CFNR, UPLB) Engr. Ariel U. Glorioso (CEAT, UPLB) Ms. Miyah D. Queliste (CAS, UPLB) Mr. Dante Gideon K. Vergara (SESAM, UPLB)

Sr. Science Research Specialists

Gillian Katherine L. Inciong For. John Alvin B. Reyes

Research Associates

Alfi Lorenz B. Cura Angelica T. Magpantay Gemmalyn E. Magnaye Jayson L. Arizapa Kevin M. Manalo Leendel Jane D. Punzalan Maria Michaela A. Gonzales Paulo Joshua U. Quilao Sarah Joy A. Acepcion Raphael P. Gonzales

Computer Programmers

Ivan Marc H. Escamos Allen Roy C. Roberto

Information Systems Analyst

Jan Martin C. Magcale

Project Assistants

Daisili Ann V. Pelegrina Athena Mercado Kaye Anne A. Matre Randy P. Porciocula