


Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)





© University of the Philippines Diliman and University of the Philippines Los Baños 2017

Published by the UP Training Center for Applied Geodesy and Photogrammetry (TCAGP)
College of Engineering
University of the Philippines – Diliman
Quezon City
1101 PHILIPPINES

E.C. Paringit and E.R. Abucay (Eds.) (2017), LiDAR Surveys and Flood Mapping of Caguray River. Quezon City: University of the Philippines Training Center for Applied Geodesy and Photogrammetry-169pp

The text of this information may be copied and distributed for research and educational purposes with proper acknowledgement. While every care is taken to ensure the accuracy of this publication, the UP TCAGP disclaims all responsibility and all liability (including without limitation, liability in negligence) and costs which might incur as a result of the materials in this publication being inaccurate or incomplete in any way and for any reason.

For questions/queries regarding this report, contact:

#### Asst. Prof. Edwin R. Abucay

Project Leader, Phil-LiDAR 1 Program University of the Philippines, Los Banos Los Banos, Laguna, Philippines 4031 E-mail: erabucay@up.edu.ph

#### Enrico C. Paringit, Dr. Eng.

Program Leader, Phil-LiDAR 1 Program University of the Philippines Diliman Quezon City, Philippines 1101 E-mail: ecparingit@up.edu.ph

National Library of the Philippines ISBN: 978-621-430-132-4

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

# TABLE OF CONTENTS

| LIST OF FIGURES                                                                                                                                   |      |
|---------------------------------------------------------------------------------------------------------------------------------------------------|------|
| LIST OF TABLES                                                                                                                                    |      |
| LIST OF ACRONYMS AND ABBREVIATIONS                                                                                                                | X    |
| CHAPTER 1: OVERVIEW OF THE PROGRAM AND CAGURAY RIVER                                                                                              |      |
| 1.1 Background of the Phil-LIDAR 1 Program                                                                                                        |      |
| 1.2 Overview of the Caguray River Basin                                                                                                           | 1    |
| 2.1 Flight Plans                                                                                                                                  |      |
| 2.2 Ground Base Station                                                                                                                           |      |
| 2.3 Flight Missions                                                                                                                               |      |
| 2.4 Survey Coverage                                                                                                                               |      |
| CHAPTER 3: LIDAR DATA PROCESSING FOR CAGURAY FLOODPLAIN                                                                                           | 12   |
| 3.1 Overview of LiDAR Data Pre-Processing                                                                                                         | 12   |
| 3.2 Transmittal of Acquired LiDAR Data                                                                                                            | 13   |
| 3.3 Trajectory Computation                                                                                                                        |      |
| 3.4 LiDAR Point Cloud Computation                                                                                                                 |      |
| 3.5 LiDAR Data Quality Checking                                                                                                                   | 16   |
| 3.6 LiDAR Point Cloud Classification and Rasterization                                                                                            |      |
| 3.7 LiDAR Image Processing and Orthophotograph Rectification                                                                                      |      |
| 3.8 DEM Editing and Hydro-Correction                                                                                                              |      |
| 3.9 Mosaicking of Blocks                                                                                                                          |      |
| 3.10 Calibration and Validation of Mosaicked LiDAR Digital Elevation Model                                                                        | 2/   |
| 3.11 Integration of Bathymetric Data into the LiDAR Digital Terrain Model CHAPTER 4: DATA VALIDATION SURVEY AND MEASUREMENTS IN THE CAGURAY RIVER | 3U   |
| 4.1 Summary of Activities                                                                                                                         |      |
| 4.2 Control Survey                                                                                                                                |      |
| 4.3 Baseline Processing                                                                                                                           |      |
| 4.4 Network Adjustment                                                                                                                            |      |
| 4.5 Cross-section and Bridge As-Built survey and Water Level Marking                                                                              |      |
| 4.6 Validation Points Acquisition Survey                                                                                                          |      |
| 4.7 Bathymetric Survey                                                                                                                            | 51   |
| CHAPTER 5: FLOOD MODELING AND MAPPING                                                                                                             | 55   |
| 5.1 Data used                                                                                                                                     |      |
| 5.1.1 Hydrometry and Rating Curves                                                                                                                |      |
| 5.1.2 Precipitation                                                                                                                               |      |
| 5.1.3 Rating Curves and River Outflow                                                                                                             |      |
| 5.2 RIDF Station                                                                                                                                  |      |
| 5.3 HMS Model                                                                                                                                     |      |
| 5.4 Cross-section Data                                                                                                                            |      |
| 5.5 Flo 2D Model<br>5.6 Results of HMS Calibration                                                                                                |      |
| 5.7 Calculated outflow hydrographs and discharge values for different rainfall return                                                             |      |
| 5.7.1 Hydrograph using the Rainfall Runoff Model                                                                                                  |      |
| 5.7.2 Discharge data using Dr. Horritts's recommended hydrologic method                                                                           | 69   |
| 5.8 River Analysis Model Simulation                                                                                                               | 70   |
| 5.9 Flood Hazard and Flow Depth Map                                                                                                               |      |
| 5.10 Inventory of Areas Exposed to Flooding                                                                                                       |      |
| 5.11 Flood Validation                                                                                                                             |      |
| REFERENCES                                                                                                                                        |      |
| ANNEXES                                                                                                                                           |      |
| Annex 1. Optech Technical Specification of the Sensor                                                                                             |      |
| Annex 2. NAMRIA Certificates of Reference Points Used                                                                                             |      |
| Annex 3. Baseline Processing Report of Reference Points Used                                                                                      |      |
| Annex F. Data Transfer Sheet For Cogusty Floodelain                                                                                               |      |
| Annex 5. Data Transfer Sheet For Caguray Floodplain                                                                                               |      |
| Annex 7. Flight Status                                                                                                                            |      |
| Autica A. Fugue Status                                                                                                                            | ± ±0 |

| Annex 8. Mission Summary Reports             | 119 |
|----------------------------------------------|-----|
| Annex 9. Caguray Model Basin Parameters      |     |
| Annex 10. Caguray Model Reach Parameters     |     |
| Annex 11. Caguray Field Validation Data      | 154 |
| Annex 12 Phil-LiDAR 1 LIPLB Team Composition |     |

## **LIST OF FIGURES**

| Figure 1. Map of Caguray River Basin (in brown)                                                  | 2  |
|--------------------------------------------------------------------------------------------------|----|
| Figure 2. Flight plans and base stations used for Caguray Floodplain                             | 4  |
| Figure 3. GPS set-up over MRW-22 as recovered in Lumintao Bridge in Brgy. Tanyag,                |    |
| municipality of Calintaan, Occidental Mindoro (a) and NAMRIA reference point                     |    |
| MRW-22 (b) as recovered by the field team                                                        | 5  |
| Figure 4. GPS set-up over MRW-24 as recovered in the basketball court in Brgy. Iriron,           |    |
| municipality of Calintaan, Occidental Mindoro (a) and NAMRIA reference point                     |    |
| MRW-24 (b) as recovered by the field team.                                                       | 6  |
| Figure 5. GPS set-up over MRW-4203 as recovered front of the barangay hall of Brgy. Mapaya,      |    |
| municipality of San Jose, Occidental Mindoro (a) and NAMRIA reference point                      |    |
| MRW-4203 (b) as recovered by the field team                                                      | 7  |
| Figure 6. Actual LiDAR data acquisition for Caguray floodplain                                   | 11 |
| Figure 7. Schematic Diagram for Data Pre-Processing Component                                    | 12 |
| Figure 8. Smoothed Performance Metric Parameters of Caguray Flight 1166A                         | 13 |
| Figure 9. Solution Status Parameters of Caguray Flight 1166A                                     | 14 |
| Figure 10. Best Estimated Trajectory for Caguray Floodplain.                                     | 15 |
| Figure 11. Boundary of the processed LiDAR data over Caguray Floodplain                          | 16 |
| Figure 12. Image of data overlap for Caguray floodplain.                                         | 17 |
| Figure 13. Pulse density map of merged LiDAR data for Caguray Floodplain                         | 18 |
| Figure 14. Elevation difference map between flight lines for Caguray Floodplain                  | 19 |
| Figure 15. Quality checking for Caguray flight 1166A using the Profile Tool of QT Modeler        | 20 |
| Figure 16. Tiles for Caguray Floodplain (a) and classification results (b) in TerraScan          | 21 |
| Figure 17. Point cloud before (a) and after (b) classification                                   | 21 |
| Figure 18. The production of last return DSM (a) and DTM (b), first return DSM (c) and secondary |    |
| DTM (d) in some portion of Caguray floodplain                                                    | 22 |
| Figure 19. Caguray floodplain with available orthophotographs                                    | 23 |
| Figure 20. Sample orthophotograph tiles for Caguray Floodplain                                   | 23 |
| Figure 21. Portions in the DTM of Caguray floodplain – a bridge before (a) and after (b) manual  |    |
| editing; a paddy field before (c) and after (d) data retrieval                                   | 24 |
| Figure 22. Map of Processed LiDAR Data for Caguray Floodplain.                                   | 26 |
| Figure 23. Map of Caguray Flood Plain with validation survey points in green                     | 28 |
| Figure 24. Correlation plot between calibration survey points and LiDAR data                     | 29 |
| Figure 25. Correlation plot between validation survey points and LiDAR data                      | 30 |
| Figure 26. Map of Caguray Flood Plain with bathymetric survey points shown in blue               | 31 |
| Figure 27. Caguray River Survey Extent                                                           | 33 |
| Figure 28. GNSS Network of Caguray Field Survey                                                  | 35 |
| Figure 29. GNSS base set-up, Trimble® SPS 882, at MRW-24 in front of Iriron Elementary School    |    |
| in Brgy. Iriron, Municipality of Calintaan, Occidental Mindoro                                   | 36 |
| Figure 30. GNSS receiver setup, Trimble® SPS 882, at MRW- 30 Amnay Bridge approach in Sitio      |    |
| Kabangkalan, Brgy. Pinagturilan, Municipality of Santa Cruz, Occidental Mindoro                  | 37 |
| Figure 31. GNSS base receiver, Trimble® SPS 882, setup at UP-ILA in Ilaya Bridge, Brgy. Ilaya,   |    |
| Dapitan City                                                                                     | 37 |
| Figure 32. GNSS receiver set-up, Trimble® SPS 882, at MC-212, Busuanga Bridge approach           |    |
| in Bgry. Sto Niño, Municipality of Rizal, Occidental Mindoro                                     | 38 |
| Figure 33. GNSS base, Trimble® SPS 852, at MC-90, used as marker, located at the Pola Bridge     |    |
| approach in Brgy. Barahan, Municipality of Santa Cruz, Occidental Mindoro                        | 38 |

| Figure 34.  | GNSS receiver, Trimble® SPS 882, at GPS-4 on right side of the road abutment              |    |
|-------------|-------------------------------------------------------------------------------------------|----|
|             | after Caguray Bridge going to Bulalacao in Brgy. Poblacion,                               |    |
|             | Municipality of Magsaysay, Occidental Mindoro                                             | 39 |
| Figure 35.  | GNSS base receiver set-up, Trimble® SPS 882, at UP-PIN Pinamanaan Bridge approach         |    |
|             | in Brgy. Mapaya, Municipality of San Jose, Occidental Mindoro                             | 39 |
| Figure 36.  | GNSS receiver set-up, Trimble® SPS 882, at UP-MOM, Mompong Bridge approach                |    |
|             | in Brgy. Lumang Bato, Municipality of Sablayan, Occidental Mindoro                        | 40 |
| Figure 37.  | GNSS receiver set up, Trimble® SPS 882, at UP-ALI, Alipid Bridge approach                 |    |
|             | in Brgy. Sto. Niño, Municipality of Sablayan, Occidental Mindoro                          |    |
| _           | As-built survey at Caguray Bridge, Brgy. Poblacion, Municipality of Magsaysay             |    |
| _           | Location Map of Caguray Bridge River Cross-Section survey                                 |    |
| _           | Caguray Bridge cross-section diagram                                                      |    |
| _           | Bridge as-built form of Caguray Bridge                                                    |    |
| _           | Water level marking at Caguray Bridge deck, Brgy. Poblacion, Municipality of Magsaysay    |    |
| _           | Validation Points Acquisition Set-up for Caguray River                                    |    |
|             | Validation point acquisition survey of Caguray River Basin                                |    |
|             | Bathymetric survey using Hi-Target™ Echo Sounder along Caguray River                      |    |
|             | Manual bathymetric survey in Caguray River                                                |    |
| _           | Bathymetric survey of Caguray River                                                       |    |
|             | Caguray centerline riverbed profile (Upstream)                                            |    |
| _           | Caguray centerline riverbed profile (Downstream)                                          |    |
| _           | The location map of Caguray HEC-HMS model used for calibration                            |    |
| _           | Cross-Section Plot of Caguray Bridge                                                      |    |
|             | Rating Curve at Caguray Bridge, Magsaysay, Occidental Mindoro                             |    |
|             | Rainfall and outflow data at Caguray River Basin used for modeling                        |    |
|             | Location of Caguray RIDF station relative to Caguray River Basin                          |    |
| _           | Synthetic storm generated for a 24-hr period rainfall for various return periods          |    |
| _           | Soil map of Caguray River Basin used for the estimation of the CN parameter. (Source: DA) | 59 |
| rigure 57.  | Land cover map of Caguray River Basin used for the estimation of the CN                   | 60 |
| Figure FO   | and watershed lag parameters of the rainfall-runoff model. (Source: NAMRIA)               |    |
| _           | Slope map of Caguray River Basin  Stream Delineation Map of the Caguray River Basin       |    |
|             | HEC-HMS generated Caguray River Basin Model                                               |    |
| _           | River cross-section of Baroc River generated through Arcmap HEC GeoRAS tool               |    |
| _           | Screenshot of subcatchment with the computational area to be modeled in FLO-2D GDS Pro    |    |
| •           | Outflow Hydrograph of Caguray produced by the HEC-HMS model compared                      | 05 |
| rigure os.  | with observed outflow                                                                     | 66 |
| Figure 6/   | Outflow hydrograph at Caguray Station generated using Romblon RIDF                        | 00 |
| rigure 04.  | simulated in HEC-HMS                                                                      | 68 |
| Figure 65   | Caguray river (1) generated discharge using 5-, 25-, and 100-year Romblon                 | 00 |
| i igure os. | rainfall intensity-duration-frequency (RIDF) in HEC-HMS                                   | 69 |
| Figure 66   | Caguray river (2) generated discharge using 5-, 25-, and 100-year Romblon                 | 03 |
| i igure oo. | rainfall intensity-duration-frequency (RIDF) in HEC-HMS                                   | 69 |
| Figure 67   | Sample output of Caguray RAS Model                                                        |    |
| _           | 100-year Flood Hazard Map for Caguray Floodplain overlaid in Google Earth imagery         |    |
| _           | 100-year Flow Depth Map for Caguray Floodplain overlaid in Google Earth imagery           |    |
| _           | 25-year Flood Hazard Map for Caguray Floodplain overlaid in Google Earth imagery          |    |
| _           | 25-year Flow Depth Map for Caguray Floodplain overlaid in Google Earth imagery            |    |
| _           | 5-year Flood Hazard Map for Caguray Floodplain overlaid in Google Earth imagery           |    |
|             | · · · · · · · · · · · · · · · · · · ·                                                     |    |

| Figure 73. 5-year Flow Depth Map for Caguray Floodplain overlaid in Google Earth imagery          | 77 |
|---------------------------------------------------------------------------------------------------|----|
| Figure 74. Affected Areas in Magsaysay, Occidental Mindoro during 5-Year Rainfall Return Period   | 78 |
| Figure 75. Affected Areas in San Jose, Occidental Mindoro during 5-Year Rainfall Return Period    | 79 |
| Figure 76. Affected Areas in Magsaysay, Occidental Mindoro during 25-Year Rainfall Return Period  | 80 |
| Figure 77. Affected Areas in San Jose, Occidental Mindoro during 25-Year Rainfall Return Period   | 81 |
| Figure 78. Affected Areas in Magsaysay, Occidental Mindoro during 100-Year Rainfall Return Period | 82 |
| Figure 79. Affected Areas in San Jose, Occidental Mindoro during 100-Year Rainfall Return Period  | 83 |
| Figure 80. Validation points for 25-year Flood Depth Map of Caguray Floodplain                    | 85 |
| Figure 81. Flood map depth vs. actual flood depth                                                 | 85 |

# LIST OF TABLES

| Table 1. Flight planning parameters for Aquarius LiDAR system                                    | 3  |
|--------------------------------------------------------------------------------------------------|----|
| Table 2. Flight planning parameters for Pegasus LiDAR system                                     | 3  |
| Table 3. Details of the recovered NAMRIA horizontal control point MRW-22                         |    |
| used as base station for the LiDAR Acquisition.                                                  | 5  |
| Table 4. Details of the recovered NAMRIA horizontal control point MRE-24                         |    |
| used as base station for the LiDAR Acquisition.                                                  | 6  |
| Table 5. Details of the recovered NAMRIA horizontal control point MRE-4203                       |    |
| used as base station for the LiDAR Acquisition.                                                  | 7  |
| Table 6. Details of the recovered NAMRIA horizontal control point MRW-18                         |    |
| used as base station for the LiDAR Acquisition.                                                  | 8  |
| Table 7. Details of the recovered NAMRIA horizontal control point MRW-18A                        |    |
| used as base station for the LiDAR Acquisition.                                                  | 8  |
| Table 8. Details of the recovered NAMRIA horizontal control point MRW-4205                       |    |
| used as base station for the LiDAR Acquisition.                                                  | 8  |
| Table 9. Ground control points used during LiDAR data acquisition                                | 9  |
| Table 10. Flight missions for LiDAR data acquisition in Caguray Floodplain                       | 9  |
| Table 11. Actual parameters used during LiDAR data acquisition.                                  | 10 |
| Table 12. List of municipalities and cities surveyed in Caguray Floodplain LiDAR survey          | 10 |
| Table 13. Self-Calibration Results values for Caguray flights                                    | 15 |
| Table 14. List of LiDAR blocks for Caguray Floodplain.                                           | 16 |
| Table 15. Caguray classification results in TerraScan.                                           | 20 |
| Table 16. LiDAR blocks with its corresponding area.                                              | 24 |
| Table 17. Shift Values of each LiDAR Block of Caguray floodplain.                                |    |
| Table 18. Calibration Statistical Measures.                                                      | 29 |
| Table 19. Validation Statistical Measures.                                                       | 30 |
| Table 20. List of reference and control points used during the survey in Caguray River           | 36 |
| Table 21. Baseline Processing Report for Caguray River Static Survey (Source: NAMRIA, UP-TCAGP)  |    |
| Table 22. Control Point Constraints                                                              | 42 |
| Table 23. Adjusted Grid Coordinates                                                              | 42 |
| Table 24. Adjusted Geodetic Coordinates                                                          |    |
| Table 25. Reference and control points used and its location (Source: NAMRIA, UP-TCAGP)          |    |
| Table 26. RIDF values for Romblon Rain Gauge computed by PAGASA                                  |    |
| Table 27. Range of Calibrated Values for Caguray                                                 |    |
| Table 28. Summary of the Efficiency Test of Caguray HMS Model                                    |    |
| Table 29. Peak values of the Caguray HECHMS Model outflow using the Romblon RIDF 24-hour values  |    |
| Table 31. Summary of Caguray river (1) discharge generated in HEC-HMS                            |    |
| Table 32. Summary of Caguray river (2) discharge generated in HEC-HMS                            |    |
| Table 30. Validation of river discharge estimates                                                |    |
| Table 33. Municipalities affected in Caguray Floodplain                                          |    |
| Table 34. Affected Areas in Magsaysay, Occidental Mindoro during 5-Year Rainfall Return Period   |    |
| Table 35. Affected Areas in San Jose, Occidental Mindoro during 5-Year Rainfall Return Period    |    |
| Table 36. Affected Areas in Magsaysay, Occidental Mindoro during 25-Year Rainfall Return Period  |    |
| Table 37. Affected Areas in San Jose, Occidental Mindoro during 25-Year Rainfall Return Period   |    |
| Table 38. Affected Areas in Magsaysay, Occidental Mindoro during 100-Year Rainfall Return Period |    |
| Table 39. Affected Areas in San Jose, Occidental Mindoro during 100-Year Rainfall Return Period  |    |
| Table 40. Actual flood vs simulated flood depth at different levels in the Caguray River Basin   |    |
| Table 41. Summary of Accuracy Assessment in Caguray River Basin Survey                           | 86 |

## LIST OF ACRONYMS AND ABBREVIATIONS

| AAC     | Asian Aerospace Corporation                                    |  |  |  |
|---------|----------------------------------------------------------------|--|--|--|
| Ab      | abutment                                                       |  |  |  |
| ALTM    | Airborne LiDAR Terrain Mapper                                  |  |  |  |
| ARG     | automatic rain gauge                                           |  |  |  |
| ATQ     | Antique                                                        |  |  |  |
| AWLS    | Automated Water Level Sensor                                   |  |  |  |
| BA      | Bridge Approach                                                |  |  |  |
| BM      | benchmark                                                      |  |  |  |
| CAD     | Computer-Aided Design                                          |  |  |  |
| CN      | Curve Number                                                   |  |  |  |
| CSRS    | Chief Science Research Specialist                              |  |  |  |
| DAC     | Data Acquisition Component                                     |  |  |  |
| DEM     | Digital Elevation Model                                        |  |  |  |
| DENR    | Department of Environment and Natural Resources                |  |  |  |
| DOST    | Department of Science and Technology                           |  |  |  |
| DPPC    | Data Pre-Processing Component                                  |  |  |  |
| DREAM   | Disaster Risk and Exposure Assessment for Mitigation [Program] |  |  |  |
| DRRM    | Disaster Risk Reduction and Management                         |  |  |  |
| DSM     | Digital Surface Model                                          |  |  |  |
| DTM     | Digital Terrain Model                                          |  |  |  |
| DVBC    | Data Validation and Bathymetry<br>Component                    |  |  |  |
| FMC     | Flood Modeling Component                                       |  |  |  |
| FOV     | Field of View                                                  |  |  |  |
| GiA     | Grants-in-Aid                                                  |  |  |  |
| GCP     | Ground Control Point                                           |  |  |  |
| GNSS    | Global Navigation Satellite System                             |  |  |  |
| GPS     | Global Positioning System                                      |  |  |  |
| HEC-HMS | Hydrologic Engineering Center - Hydrologic<br>Modeling System  |  |  |  |
| HEC-RAS | Hydrologic Engineering Center - River<br>Analysis System       |  |  |  |
| НС      | High Chord                                                     |  |  |  |
| IDW     | Inverse Distance Weighted [interpolation method]               |  |  |  |
|         |                                                                |  |  |  |

| IMU      | Inertial Measurement Unit                                                                    |  |  |  |
|----------|----------------------------------------------------------------------------------------------|--|--|--|
| kts      | knots                                                                                        |  |  |  |
| LAS      | LiDAR Data Exchange File format                                                              |  |  |  |
| LC       | Low Chord                                                                                    |  |  |  |
| LGU      | local government unit                                                                        |  |  |  |
| LiDAR    | Light Detection and Ranging                                                                  |  |  |  |
| LMS      | LiDAR Mapping Suite                                                                          |  |  |  |
| m AGL    | meters Above Ground Level                                                                    |  |  |  |
| MMS      | Mobile Mapping Suite                                                                         |  |  |  |
| MSL      | mean sea level                                                                               |  |  |  |
| NSTC     | Northern Subtropical Convergence                                                             |  |  |  |
| PAF      | Philippine Air Force                                                                         |  |  |  |
| PAGASA   | Philippine Atmospheric Geophysical<br>and Astronomical Services<br>Administration            |  |  |  |
| PDOP     | Positional Dilution of Precision                                                             |  |  |  |
| PPK      | Post-Processed Kinematic [technique]                                                         |  |  |  |
| PRF      | Pulse Repetition Frequency                                                                   |  |  |  |
| PTM      | Philippine Transverse Mercator                                                               |  |  |  |
| QC       | Quality Check                                                                                |  |  |  |
| QT       | Quick Terrain [Modeler]                                                                      |  |  |  |
| RA       | Research Associate                                                                           |  |  |  |
| RIDF     | Rainfall-Intensity-Duration-Frequency                                                        |  |  |  |
| RMSE     | Root Mean Square Error                                                                       |  |  |  |
| SAR      | Synthetic Aperture Radar                                                                     |  |  |  |
| SCS      | Soil Conservation Service                                                                    |  |  |  |
| SRTM     | Shuttle Radar Topography Mission                                                             |  |  |  |
| SRS      | Science Research Specialist                                                                  |  |  |  |
| SSG      | Special Service Group                                                                        |  |  |  |
| ТВС      | Thermal Barrier Coatings                                                                     |  |  |  |
| UPLB     | University of the Philippines Los Baños                                                      |  |  |  |
| UP-TCAGP | University of the Philippines – Training<br>Center for Applied Geodesy and<br>Photogrammetry |  |  |  |
| UTM      | Universal Transverse Mercator                                                                |  |  |  |
| WGS      | World Geodetic System                                                                        |  |  |  |

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

# CHAPTER 1: OVERVIEW OF THE PROGRAM AND CAGURAY RIVER

Enrico C. Paringit, Dr. Eng. and Asst. Prof. Edwin R. Abucay, and Engr. Ariel U. Glorioso

#### 1.1 Background of the Phil-LIDAR 1 Program

The University of the Philippines Training Center for Applied Geodesy and Photogrammetry (UP-TCAGP) launched a research program entitled "Nationwide Hazard Mapping using LiDAR" or Phil-LiDAR 1, supported by the Department of Science and Technology (DOST) Grants-in-Aid (GiA) Program. The program was primarily aimed at acquiring a national elevation and resource dataset at sufficient resolution to produce information necessary to support the different phases of disaster management. Particularly, it targeted to operationalize the development of flood hazard models that would produce updated and detailed flood hazard maps for the major river systems in the country.

Also, the program was aimed at producing an up-to-date and detailed national elevation dataset suitable for 1:5,000 scale mapping, with 50 cm and 20 cm horizontal and vertical accuracies, respectively. These accuracies were achieved through the use of the state-of-the-art Light Detection and Ranging (LiDAR) airborne technology procured by the project through DOST.

The implementing partner university for the Phil-LiDAR 1 Program is the University of the Philippines Los Baños (UPLB). UPLB is in charge of processing LiDAR data and conducting data validation reconnaissance, cross section, bathymetric survey, validation, river flow measurements, flood height and extent data gathering, flood modeling, and flood map generation for the 45 river basins in the Southern Luzon region. The university is located in Los Baños in the province of Laguna.

#### 1.2 Overview of the Caguray River Basin

The Caguray River Basin is a 3,830-hectare watershed located on the southern part of the province of Occidental Mindoro. It covers the barangays of Paclolo, Gapasan, Lourdes, Purnaga, Nicolas, Poblacion, Caguray, Calawag, Sibalat and Leste in Magsaysay municipality; Bayotoot, Monte Carlo and Batasan in San Jose; Cabugao, San Isidro, San Francisco, Maujan and Benli in Bulalacao; Budburan, Don Pedro, Panaytayan, Santa Maria and Waygan in Mansalay. The DENR River Basin Control Office (RCBO) states that the Caguray River Basin has a drainage area of 234 km2 and an estimated 374 million cubic meter (MCM) annual runoff.

The basin area has seven geological classifications with Paleocene-Eocene as the most dominant while the rest include Jurassic, Oligocene-Miocene, Pliocene-Pleistocene, Pliocene-Quaternary and Recent. It also generally characterized by 3-8% slope and elevation of 301-2,200 meters above mean sea level. About six soil types can be found in Caguray River Basin including Magsaysay clay, Umingan loam, Faraon clay/river wash, Quingua silty clay, Bolinao clay, and San Manuel sandy loam. Hydrosol and rough mountain land (unclassified) can also be found in the area. The most dominant type of land cover is cultivated area mixed with brushland/grassland while the rest include arable land (crops mainly cereals and sugar), built-up area, closed canopy (mature trees covering > 50%), crop land mixed with coconut plantation, fishponds derived from mangrove, grassland (grass covering >70%) and open canopy (mature trees covering <50%).

Caguray River passes through Paclolo, Gapasan, Purnaga, Poblacion, Caguray, Calawag in Magsaysay municipality; Benli in Bulalacao; and, Budburan in Mansalay. The areas along the Caguray River are mainly used for agricultural purposes as early as the Spanish Regime on the Philippines. In 1982, the National Irrigation Administration (NIA) constructed a 45 kilometer road for irrigation along Caguray River from which twenty-one percent (21%) of the agricultural lands of the municipality of Magsaysay benefited (Candelario, n.d.). An estimated 14,806 people are residing within the immediate vicinity of the river which is distributed among the 4 barangays as of 2010 according to the Philippine Statistics Authority Census. Barangay Poblacion in Magsaysay is considered to be the most populated area per record in the 2010 NSO Census of Population and Housing.

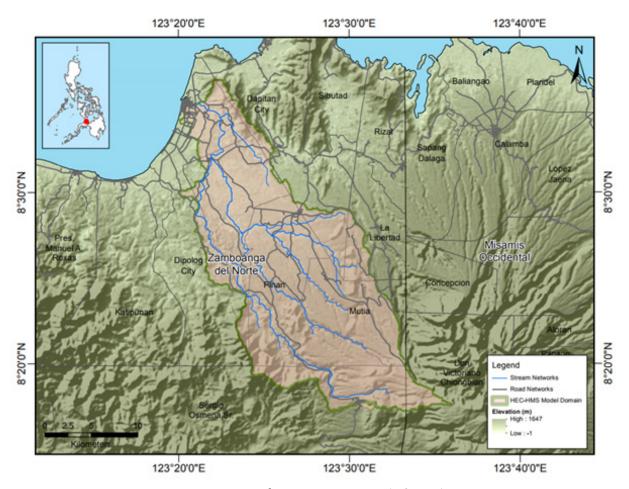



Figure 1. Map of Caguray River Basin (in brown)

Meanwhile, Climate Type I and III prevails in the Caguray river basin area, as in MIMAROPA and Laguna based on the Modified Corona Classification of climate. Type I has two pronounced seasons, dry from November to April, and wet the rest of the year with maximum rain period from June to September. On the other hand, Type III has no very pronounced maximum rain period and with short dry season lasting only from one to three months, during the period from December to February or from March to May.

Based on the studies conducted by the Mines and Geosciences Bureau, the barangays in both municipality of Magsaysay and Bulalacao in general have low to high risk to landslide and ood suscep bility. Additionally, the field surveys conducted by the PHIL-LiDAR 1 validation team showed that there were about eight notable weather disturbance that caused flooding in 1984 (Undang), 2008 (Frank), 2009 (Ondoy), 2014 (Glenda, Mario and Ruby), and 2015 (Nona).

# CHAPTER 2: LIDAR ACQUISITION IN CAGURAY FLOODPLAIN

Engr. Louie P. Balicanta, Engr. Christopher Cruz, Lovely Gracia Acuña, Engr. Gerome Hipolito, Engr. Iro Niel D. Roxas, and Ms. Rowena M. Gabua

The methods applied in this Chapter were based on the DREAM methods manual (Sarmiento, et al., 2014) and further enhanced and updated in Paringit, et al. (2017).

#### 2.1 Flight Plans

Plans were made to acquire LiDAR data within the delineated priority area for Caguray Floodplain in Occidental Mindoro. These missions were planned for 18 lines that run for at most four and a half (4.5) hours including take-off, landing and turning time. The flight planning parameters for the LiDAR system is found in Table 1 and Table 2. Figure 2 shows the flight plan for Caguray Floodplain.

Table 1. Flight planning parameters for Aquarius LiDAR system

| Block<br>Name | Flying Height<br>(AGL) | Overlap<br>(%) | Field<br>of<br>View | Pulse Repetition Frequency (PRF) (kHz) | Scan Frequency | Average<br>Speed | Average Turn Time (Minutes) |
|---------------|------------------------|----------------|---------------------|----------------------------------------|----------------|------------------|-----------------------------|
| BLK29A        | 550                    | 30             | 36                  | 125                                    | 40             | 130              | 5                           |
| BLK29B        | 600                    | 30             | 36                  | 125                                    | 40             | 130              | 5                           |
| BLK29C        | 650                    | 30             | 36                  | 125                                    | 40             | 130              | 5                           |
| BLK29D        | 550, 600               | 30             | 36                  | 125                                    | 40             | 130              | 5                           |
| BLK29K        | 550                    | 30             | 36                  | 125                                    | 40             | 130              | 5                           |

Table 2. Flight planning parameters for Pegasus LiDAR system

| Block<br>Name | Flying Height<br>(AGL) | Overlap<br>(%) | Field<br>of<br>View | Pulse Repetition Frequency (PRF) (kHz) | Scan Frequency | Average<br>Speed | Average Turn Time (Minutes) |
|---------------|------------------------|----------------|---------------------|----------------------------------------|----------------|------------------|-----------------------------|
| BLK29N        | 850                    | 30             | 50                  | 200                                    | 50             | 130              | 5                           |
| BLK29Q        | 850                    | 30             | 50                  | 200                                    | 50             | 130              | 5                           |
| BLK29R        | 850, 1100              | 30             | 50                  | 200                                    | 50             | 130              | 5                           |
| BLK29S        | 850                    | 30             | 50                  | 200                                    | 30             | 130              | 5                           |

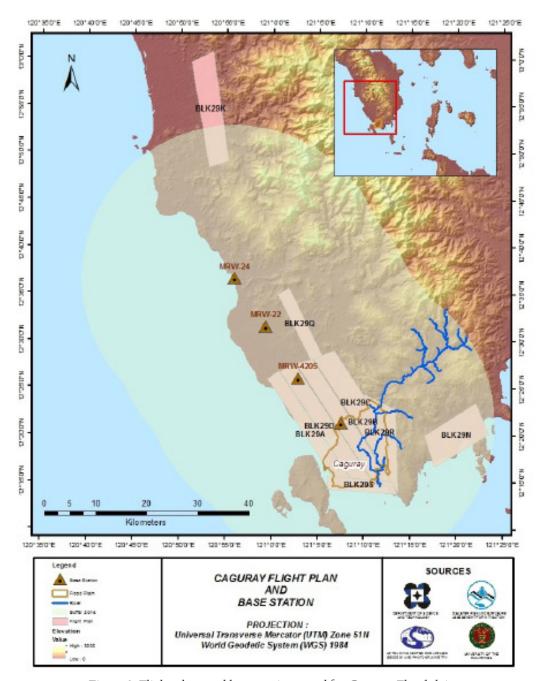



Figure 2. Flight plans and base stations used for Caguray Floodplain

#### 2.2 Ground Base Station

The project team was able to recover five (5) NAMRIA ground control points: MRW-18, MRW-22 and MRW-24 which are of second (2nd) order accuracy and MRW-4203 and MRW-4205 which are of third (3rd) order accuracy. The project team also established one (1) ground control point MRW-18A. The certifications for the NAMRIA reference points are found in Annex 2, while the baseline processing reports for the established ground control point is found in Annex 3. These were used as base stations during flight operations for the entire duration of the survey (February 28-March 3, 2014; December 11-12, 2015). Base stations were observed using dual frequency GPS receivers, TRIMBLE SPS 852 and SPS 985. Flight plans and location of base stations used during the aerial LiDAR acquisition in Caguray floodplain are shown in Figure 2. The list of team members are shown in Annex 4.

Figure 3 to Figure 5 show the recovered NAMRIA reference points within the area, in addition Table 3 to Table 7 show the details about the following NAMRIA control stations and established points, Table 8 shows the list of all ground control points occupied during the acquisition together with the dates they are utilized during the survey.

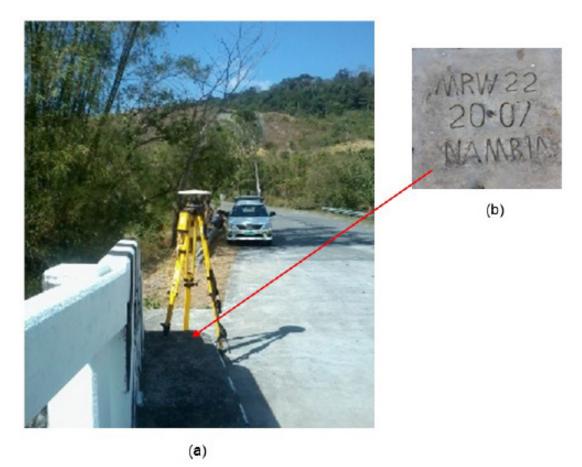



Figure 3. GPS set-up over MRW-22 as recovered in Lumintao Bridge in Brgy. Tanyag, municipality of Calintaan, Occidental Mindoro (a) and NAMRIA reference point MRW-22 (b) as recovered by the field team.

Table 3. Details of the recovered NAMRIA horizontal control point MRW-22 used as base station for the LiDAR Acquisition.

| Station Name                                                                      | MRW-22                                      |                                                                   |  |
|-----------------------------------------------------------------------------------|---------------------------------------------|-------------------------------------------------------------------|--|
| Order of Accuracy                                                                 | 2nd                                         |                                                                   |  |
| Relative Error (horizontal positioning)                                           | 1:50,000                                    |                                                                   |  |
| Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)               | Latitude<br>Longitude<br>Ellipsoidal Height | 12°31'36.76881" North<br>120°59'13.46492" East<br>35.12700 meters |  |
| Grid Coordinates, Philippine Transverse<br>Mercator Zone 5 (PTM Zone 5 PRS 92)    | Easting<br>Northing                         | 498595.125 meters<br>1385214.96 meters                            |  |
| Geographic Coordinates, World Geodetic System<br>1984 Datum (WGS 84)              | Latitude<br>Longitude<br>Ellipsoidal Height | 12°31'31.84278" North<br>120°59'18.53734" East<br>84.27100 meters |  |
| Grid Coordinates, Universal Transverse Mercator<br>Zone 51 North (UTM 51N PRS 92) | Easting<br>Northing                         | 281265.62 meters<br>1385563.72 meters                             |  |



Figure 4. GPS set-up over MRW-24 as recovered in the basketball court in Brgy. Iriron, municipality of Calintaan, Occidental Mindoro (a) and NAMRIA reference point MRW-24 (b) as recovered by the field team.

Table 4. Details of the recovered NAMRIA horizontal control point MRE-24 used as base station for the LiDAR Acquisition.

| Station Name                                                                        | MRW-24                                      |                                                                   |  |
|-------------------------------------------------------------------------------------|---------------------------------------------|-------------------------------------------------------------------|--|
| Order of Accuracy                                                                   | 2nd                                         |                                                                   |  |
| Relative Error (horizontal positioning)                                             | 1:50,000                                    |                                                                   |  |
| Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)                 | Latitude<br>Longitude<br>Ellipsoidal Height | 12°36′42.98691″ North<br>120°55′49.01762″ East<br>5.69500 meters  |  |
| Grid Coordinates, Philippine Transverse Mercator<br>Zone 4 (PTM Zone 5 PRS 92)      | Easting<br>Northing                         | 492425.435 meters<br>1394624.897 meters                           |  |
| Geographic Coordinates, World Geodetic System<br>1984 Datum (WGS 84)                | Latitude<br>Longitude<br>Ellipsoidal Height | 12°36′38.03549″ North<br>120°55′54.08296″ East<br>54.47900 meters |  |
| Grid Coordinates, Universal Transverse Mercator<br>Zone 51 North (UTM 51N PRD 1992) | Easting<br>Northing                         | 275166.05 meters<br>1395022.71 meters                             |  |



Figure 5. GPS set-up over MRW-4203 as recovered front of the barangay hall of Brgy. Mapaya, municipality of San Jose, Occidental Mindoro (a) and NAMRIA reference point MRW-4203 (b) as recovered by the field team.

Table 5. Details of the recovered NAMRIA horizontal control point MRE-4203 used as base station for the LiDAR Acquisition.

| Station Name                                                                        | MRW-4203                                    |                                                                   |  |
|-------------------------------------------------------------------------------------|---------------------------------------------|-------------------------------------------------------------------|--|
| Order of Accuracy                                                                   | 3rd Ord                                     | ler                                                               |  |
| Relative Error (horizontal positioning)                                             | 1:2000                                      | 00                                                                |  |
| Geographic Coordinates, Philippine Reference<br>of 1992 Datum (PRS 92)              | Latitude<br>Longitude<br>Ellipsoidal Height | 12°21'24.45294" North<br>121°07'26.92407" East<br>7.40100 meters  |  |
| Grid Coordinates, Philippine Transverse<br>Mercator Zone 5 (PTM Zone 5 PRS 92)      | Easting<br>Northing                         | 513501.246 meters<br>1366404.003 meters                           |  |
| Geographic Coordinates, World Geodetic<br>System 1984 Datum (WGS 84)                | Latitude<br>Longitude<br>Ellipsoidal Height | 12°21′19.57973″ North<br>121°07′32.01059″ East<br>57.32000 meters |  |
| Grid Coordinates, Universal Transverse<br>Mercator Zone 51 North (UTM 51N PRD 1992) | Easting<br>Northing                         | 296032.79 meters<br>1366637.32 meters                             |  |

Table 6. Details of the recovered NAMRIA horizontal control point MRW-18 used as base station for the LiDAR Acquisition.

| Station Name                                                                           | MRW-18                                      |                                                                  |  |
|----------------------------------------------------------------------------------------|---------------------------------------------|------------------------------------------------------------------|--|
| Order of Accuracy                                                                      | 2nd                                         |                                                                  |  |
| Relative Error (horizontal positioning)                                                | 1:50,00                                     | 00                                                               |  |
| Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)                    | Latitude<br>Longitude<br>Ellipsoidal Height | 12°18'45.39463" North<br>121°8'36.92441" East<br>21.29500 meters |  |
| Grid Coordinates, Philippine Transverse<br>Mercator Zone 5 (PTM Zone 5 PRS 92)         | Easting<br>Northing                         | 515618.524 meters<br>1361517.851 meters                          |  |
| Geographic Coordinates, World Geodetic<br>System 1984 Datum (WGS 84)                   | Latitude<br>Longitude<br>Ellipsoidal Height | 12°18'40.53383" North<br>121°8'42.01469" East<br>71.37500 meters |  |
| Grid Coordinates, Universal Transverse<br>Mercator Zone 51 North (UTM 51N WGS<br>1984) | Easting<br>Northing                         | 298113.89 meters<br>1361734.74 meters                            |  |

 $\label{thm:control} \begin{tabular}{l} Table 7. Details of the recovered NAMRIA horizontal control point MRW-18A used as base station for the LiDAR Acquisition. \\ \end{tabular}$ 

| Station Name                                                                   | MRW-18A                                     |                                                                    |  |
|--------------------------------------------------------------------------------|---------------------------------------------|--------------------------------------------------------------------|--|
| Order of Accuracy (benchmark)                                                  | 2nd                                         |                                                                    |  |
| Elevation (horizontal positioning)                                             | 1:50,00                                     | 00                                                                 |  |
| Geographic Coordinates, Philippine Reference<br>of 1992 Datum (PRS 92)         | Latitude<br>Longitude<br>Ellipsoidal Height | 12°18'45.53986'' North<br>121°8'36.76504'' East<br>21.84500 meters |  |
| Grid Coordinates, Philippine Transverse<br>Mercator Zone 5 (PTM Zone 5 PRS 92) | Easting<br>Northing                         | 298109.109 meters<br>1361739.241 meters                            |  |
| Geographic Coordinates, World Geodetic<br>System 1984 Datum (WGS 84)           | Latitude<br>Longitude<br>Ellipsoidal Height | 12°18'40.67904'' North<br>121°8'41.85529'' East<br>71.92600 meters |  |

Table 8. Details of the recovered NAMRIA horizontal control point MRW-4205 used as base station for the LiDAR Acquisition.

| Station Name                                                                           | MRW-4205                                    |                                                                   |  |
|----------------------------------------------------------------------------------------|---------------------------------------------|-------------------------------------------------------------------|--|
| Order of Accuracy                                                                      | 3rd                                         |                                                                   |  |
| Relative Error (horizontal positioning)                                                | 1:50,00                                     | 00                                                                |  |
| Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)                    | Latitude<br>Longitude<br>Ellipsoidal Height | 12°26'8.33964" North<br>121°2'46.62783" East<br>12.56900 meters   |  |
| Grid Coordinates, Philippine Transverse<br>Mercator Zone 5 (PTM Zone 5 PRS 92)         | Easting<br>Northing                         | 505032.188 meters<br>1375124 meters                               |  |
| Geographic Coordinates, World Geodetic<br>System 1984 Datum (WGS 84)                   | Latitude<br>Longitude<br>Ellipsoidal Height | 12°26′4.44072′′ North<br>121°2′51.70789′′ East<br>62.09500 meters |  |
| Grid Coordinates, Universal Transverse<br>Mercator Zone 51 North (UTM 51N WGS<br>1984) | Easting<br>Northing                         | 87627.78 meters<br>1375422.19 meters                              |  |

Table 9. Ground control points used during LiDAR data acquisition

| Date Surveyed | Flight Number | Mission Name   | Ground Control Points        |
|---------------|---------------|----------------|------------------------------|
| 28-Feb-14     | 1158A         | 3BLK29A59B     | MRW-22, MRW-24, MRW-<br>4205 |
| 1-Mar-14      | 1160A         | 3BLK29C60A     | MRW-22, MRW-4205             |
| 1-Mar-14      | 1162A         | 3BLK29AS60B    | MRW-22, MRW-4205             |
| 2-Mar-14      | 1164A         | 3BLK29N61A     | MRW-22, MRW-4203             |
| 2-Mar-14      | 1166A         | 3BLK29BS62A    | MRW-22, MRW-4203             |
| 3-Mar-14      | 1168A         | 3BLK29BS62A    | MRW-4203, MRW-22             |
| 11-Dec-15     | 3078P         | 1BLK29NQRS345A | MRW-18, MC-252               |
| 12-Dec-15     | 3082P         | 1BLK29R346A    | MRW-18, MRW-18A              |

## 2.3 Flight Missions

Eight (8) missions were conducted to complete the LiDAR Data Acquisition in Caguray Floodplain, for a total of thirty hours and thirty-two minutes (30+32) of flying time for RP-C9122. All missions were acquired using the Aquarius and Pegasus LiDAR system. Table 10 shows the total area of actual coverage and the corresponding flying hours per mission, while Table 11 presents the actual parameters used during the LiDAR data acquisition.

Table 10. Flight missions for LiDAR data acquisition in Caguray Floodplain

|                  |                  |                              |                           | Area                                          | Area                                  |                              | Flying | Hours |
|------------------|------------------|------------------------------|---------------------------|-----------------------------------------------|---------------------------------------|------------------------------|--------|-------|
| Date<br>Surveyed | Flight<br>Number | Flight<br>Plan Area<br>(km2) | Surveyed<br>Area<br>(km2) | Surveyed<br>within the<br>Floodplain<br>(km2) | Surveyed Outside the Floodplain (km2) | No. of<br>Images<br>(Frames) | Hr     | Min   |
| 28-Feb-14        | 1158A            | 72.02                        | 100.05                    | NA                                            | 100.05                                | 652                          | 3      | 41    |
| 1-Mar-14         | 1160A            | 97.59                        | 107.85                    | 38.84                                         | 69.01                                 | 200                          | 4      | 35    |
| 1-Mar-14         | 1162A            | 160.96                       | 87.17                     | 27.33                                         | 59.84                                 | 594                          | 3      | 41    |
| 2-Mar-14         | 1164A            | 162.96                       | 112.10                    | 8.68                                          | 103.42                                | NA                           | 4      | 53    |
| 2-Mar-14         | 1166A            | 85.08                        | 115.93                    | 46.42                                         | 69.51                                 | NA                           | 3      | 59    |
| 3-Mar-14         | 1168A            | 90.69                        | 60.65                     | 18.29                                         | 42.36                                 | 212                          | 4      | 29    |
| 11-Dec-15        | 3078P            | 221.86                       | 81.14                     | 41.04                                         | 40.10                                 | 192                          | 2      | 37    |
| 12-Dec-15        | 3082P            | 76.62                        | 60.65                     | 18.29                                         | 42.36                                 | 212                          | 2      | 37    |
| ТОТА             | L                | 967.77                       | 725.54                    | 198.89                                        | 526.65                                | 1850                         | 30     | 32    |

Table 11. Actual parameters used during LiDAR data acquisition.

| Flight<br>Number | Flying<br>Height<br>(AGL) | Overlap<br>(%) | Field of<br>View (θ) | Pulse<br>Repetition<br>Frequency<br>(PRF) (kHz) | Scan<br>Frequency<br>(Hz) | Average<br>Speed<br>(kts) | Average<br>Turn Time<br>(Minutes) |
|------------------|---------------------------|----------------|----------------------|-------------------------------------------------|---------------------------|---------------------------|-----------------------------------|
| 28-Feb-14        | 1158A                     | 600            | 50                   | 50                                              | 40                        | 130                       | 5                                 |
| 1-Mar-14         | 1160A                     | 600            | 50                   | 50                                              | 40                        | 130                       | 5                                 |
| 1-Mar-14         | 1162A                     | 600            | 50                   | 50                                              | 40                        | 130                       | 5                                 |
| 2-Mar-14         | 1164A                     | 600            | 50                   | 50                                              | 40                        | 130                       | 5                                 |
| 2-Mar-14         | 1166A                     | 600            | 50                   | 50                                              | 40                        | 130                       | 5                                 |
| 3-Mar-14         | 1168A                     | 600            | 40, 36               | 70, 50                                          | 40                        | 120                       | 5                                 |
| 11-Dec-15        | 3078P                     | 850            | 50                   | 200                                             | 32                        | 120                       | 5                                 |
| 12-Dec-15        | 3082P                     | 1100           | 50                   | 200                                             | 30                        | 120                       | 5                                 |

#### 2.4 Survey Coverage

Caguray floodplain is located in the province of Zamboanga del Norte with the floodplain situated within the municipalities of Dapitan City, Caguray City, Pinan, and Polanco. The list of municipalities and cities surveyed with at least one (1) square kilometer coverage, is shown in Table 14. The actual coverage of the LiDAR acquisition for Caguray floodplain is presented in Figure 10. Annex 7 shows the flight status reports.

Table 12. List of municipalities and cities surveyed in Caguray Floodplain LiDAR survey.

| Province              | Municipality/City | Area of<br>Municipality/City<br>(km2) | Total Area<br>Surveyed (km2) | Percentage of Area<br>Surveyed |
|-----------------------|-------------------|---------------------------------------|------------------------------|--------------------------------|
| Oriental Mindoro      | Bulalacao         | 365.58                                | 77.68                        | 21%                            |
|                       | Magsaysay         | 256.56                                | 190.74                       | 74%                            |
| Occidental<br>Mindoro | Rizal             | 184.98                                | 24.11                        | 13%                            |
|                       | San Jose          | 449.82                                | 183.89                       | 41%                            |
| то                    | TAL               | 1256.94                               | 476.42                       | 37.90%                         |

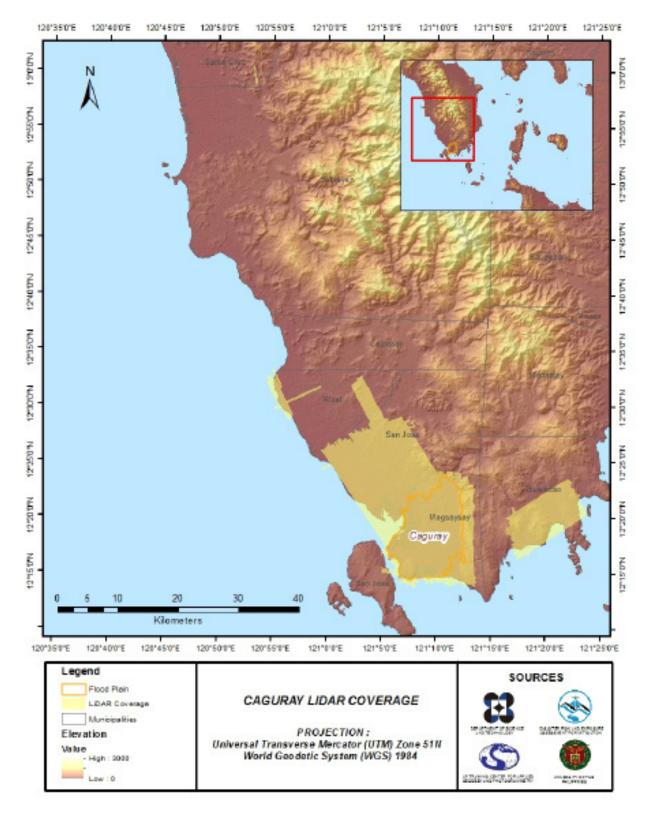



Figure 6. Actual LiDAR data acquisition for Caguray floodplain.

# CHAPTER 3: LIDAR DATA PROCESSING FOR CAGURAY FLOODPLAIN

Engr. Ma. Rosario Concepcion O. Ang, Engr. John Louie D. Fabila, Engr. Sarah Jane D. Samalburo, Engr. Harmond F. Santos, Engr. Angelo Carlo B. Bongat, Engr. Ma. Ailyn L. Olanda, Engr. Velina Angela S. Bemida, Marie Denise V. Bueno, Engr. Regis R. Guhiting, Engr. Merven Matthew D. Natino, Gillian Katherine L. Inciong, Gemmalyn E. Magnaye, Leendel Jane D. Punzalan, Sarah Joy A. Acepcion, Ivan Marc H. Escamos, Allen Roy C. Roberto, and Jan Martin C. Magcale

The methods applied in this Chapter were based on the DREAM methods manual (Ang, et al., 2014) and further enhanced and updated in Paringit, et al. (2017).

#### 3.1 Overview of LiDAR Data Pre-Processing

completeness based on the list of raw files required to proceed with the pre-processing of the LiDAR data. Upon acceptance of the LiDAR field data, georeferencing of the flight trajectory is done in order to obtain the exact location of the LiDAR sensor when the laser was shot. Point cloud georectification is performed to incorporate correct position and orientation for each point acquired. The georectified LiDAR point clouds are subject for quality checking to ensure that the required accuracies of the program, which are the minimum point density, vertical and horizontal accuracies, are met. The point clouds are then classified into various classes before generating Digital Elevation Models such as Digital Terrain Model and Digital Surface Model.

Using the elevation of points gathered in the field, the LiDAR-derived digital models are calibrated. Portions of the river that are barely penetrated by the LiDAR system are replaced by the actual river geometry measured from the field by the Data Validation and Bathymetry Component. LiDAR acquired temporally are then mosaicked to completely cover the target river systems in the Philippines. Orthorectification of images acquired simultaneously with the LiDAR data is done through the help of the georectified point clouds and the metadata containing the time the image was captured.

These processes are summarized in the flowchart shown in Figure 7.

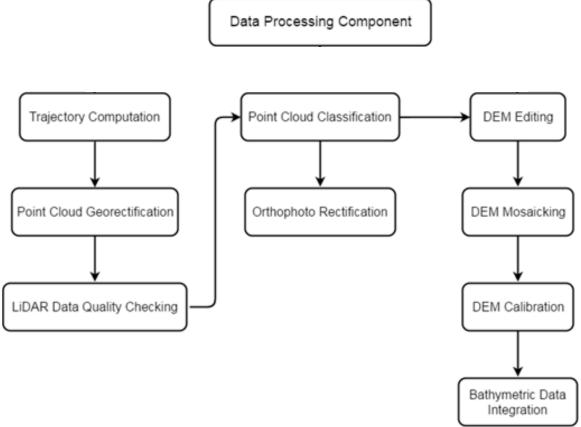



Figure 7. Schematic Diagram for Data Pre-Processing Component

#### 3.2 Transmittal of Acquired LiDAR Data

Data transfer sheets for all the LiDAR missions for Caguray floodplain can be found in Annex 5. Missions flown during the first survey conducted on March 2014 used the Airborne LiDAR Terrain Mapper (ALTM™ Optech Inc.) Aquarius system while missions acquired during the second survey on December 2015 were flown using the Pegasus system over Magsaysay, Occidental Mindoro.

The Data Acquisition Component (DAC) transferred a total of 43.96 Gigabytes of Range data, 0.88 Gigabytes of POS data, 60.91 Megabytes of GPS base station data, and 64.6 Gigabytes of raw image data to the data server on April 23, 2014 for the first survey and January 15, 2016 for the second survey. The Data Preprocessing Component (DPPC) verified the completeness of the transferred data. The whole dataset for Caguray was fully transferred on January 15, 2016, as indicated on the Data Transfer Sheets for Caguray floodplain.

#### 3.3 Trajectory Computation

The Smoothed Performance Metrics of the computed trajectory for flight 1166A, one of the Caguray flights, which is the North, East, and Down position RMSE values are shown in Figure 8. The x-axis corresponds to the time of flight, which is measured by the number of seconds from the midnight of the start of the GPS week, which on that week fell on March 2, 2014 00:00AM. The y-axis is the RMSE value for that particular position.

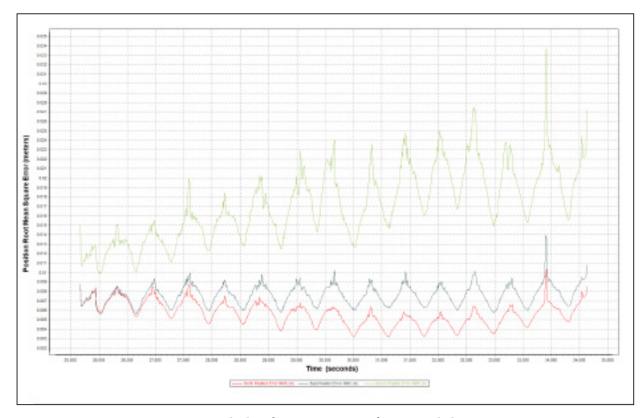



Figure 8. Smoothed Performance Metrics of Caguray Flight 1166A.

The time of flight was from 25500 seconds to 34500 seconds, which corresponds to afternoon of March 2, 2014. The initial spike that is seen on the data corresponds to the time that the aircraft was getting into position to start the acquisition, and the POS system starts computing for the position and orientation of the aircraft. Redundant measurements from the POS system quickly minimized the RMSE value of the positions. The periodic increase in RMSE values from an otherwise smoothly curving RMSE values correspond to the turn-around period of the aircraft, when the aircraft makes a turn to start a new flight line. Figure 8 shows that the North position RMSE peaks at 1.00 centimeters, the East position RMSE peaks at 1. 40 centimeters, and the Down position RMSE peaks at 3.40 centimeters, which are within the prescribed accuracies described in the methodology.

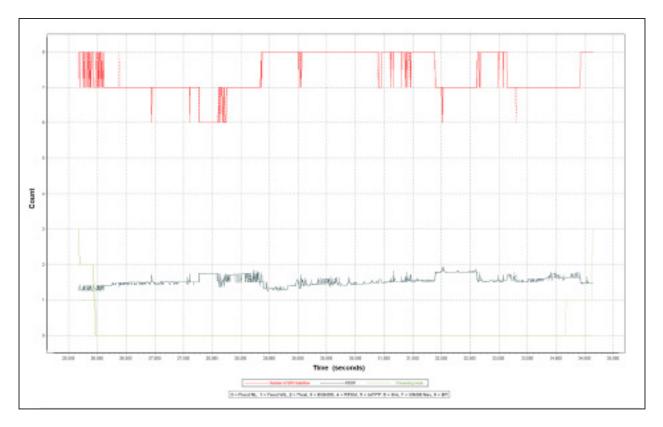



Figure 9. Solution Status Parameters of Caguray Flight 1166A.

The Solution Status parameters of flight 1166A, one of the Caguray flights, which are the number of GPS satellites, Positional Dilution of Precision (PDOP), and the GPS processing mode used, are shown in Figure 9. The graphs indicate that the number of satellites during the acquisition did not go down to 5. Majority of the time, the number of satellites tracked was between 6 and 8. The PDOP value also did not go above the value of 3, which indicates optimal GPS geometry. The processing mode stayed at the value of 0 for majority of the survey with some peaks up to 1 attributed to the turns performed by the aircraft. The value of 0 corresponds to a Fixed, Narrow-Lane mode, which is the optimum carrier-cycle integer ambiguity resolution technique available for POSPAC MMS. All of the parameters adhered to the accuracy requirements for optimal trajectory solutions, as indicated in the methodology. The computed best estimated trajectory for all Caguray flights is shown in Figure 10.

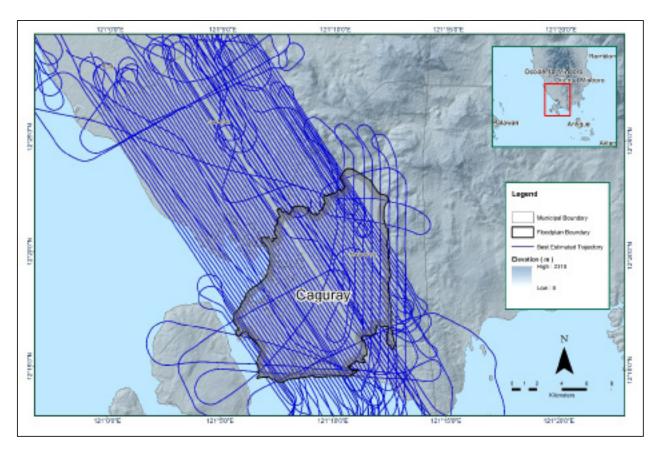



Figure 10. Best Estimated Trajectory for Caguray Floodplain.

### 3.4 LiDAR Point Cloud Computation

The produced LAS data contains 77 flight lines, with each flight line containing one channel for the Aquarius system and two channels for the Pegasus system. The summary of the self-calibration results obtained from LiDAR processing in LiDAR Mapping Suite (LMS) software for all flights over Caguray floodplain are given in Table 13.

ParameterAcceptable ValueValueBoresight Correction stdev(<0.001degrees)</td>0.000426IMU Attitude Correction Roll and Pitch Corrections stdev(<0.001degrees)</td>0.000960GPS Position Z-correction stdev(<0.01meters)</td>0.0034

Table 13. Self-Calibration Results values for Caguray flights.

The optimum accuracy is obtained for all Caguray flights based on the computed standard deviations of the corrections of the orientation parameters. Standard deviation values for individual blocks are available in Annex 8: Mission Summary Reports.

### 3.5 LiDAR Data Quality Checking

The boundary of the processed LiDAR data on top of a SAR Elevation Data over Caguray Floodplain is shown in Figure 11. The map shows gaps in the LiDAR coverage that are attributed to cloud coverage.



Figure 11. Boundary of the processed LiDAR data over Caguray Floodplain

The total area covered by the Caguray missions is 500.69 sq.km that is comprised of four (4) flight acquisitions grouped and merged into six (6) blocks as shown in Table 14.

| Table 14  | List of I | iDΔR  | blocks for | r Camuray | Floodplain    |
|-----------|-----------|-------|------------|-----------|---------------|
| Table 14. | LISLOLI   | HIJAK | DIOCKSTO   | L'agillav | THOOGIDIAIII. |

| LiDAR Blocks                                  | Flight Numbers | Area (sq. km) |
|-----------------------------------------------|----------------|---------------|
| OccidentalMindoro_Blk29A                      | 1158A          | 140.61        |
| OccidentalMindoro_Blk29B                      | 1166A          | 146.16        |
| OccidentalMindoro_Blk29C                      | 1160A          | 102.42        |
| OccidentalMindoro_reflights_Blk29A_additional | 3078P          | 14.30         |
| OccidentalMindoro_reflights_Blk29B_additional | 3078P          | 8.96          |
| OccidentalMindoro_reflights_Blk29C_additional | 3078P          | 88.24         |
| TOTAL                                         | 500.69 sq.km   |               |

The overlap data for the merged LiDAR blocks, showing the number of channels that pass through a particular location is shown in Figure 12. Since the Aquarius system employs one channel and the Pegasus system employs two, we would expect an average value of 1 (blue) for areas where there is limited overlap, and a value of 2 (yellow) or more (red) for areas with three or more overlapping flight lines.

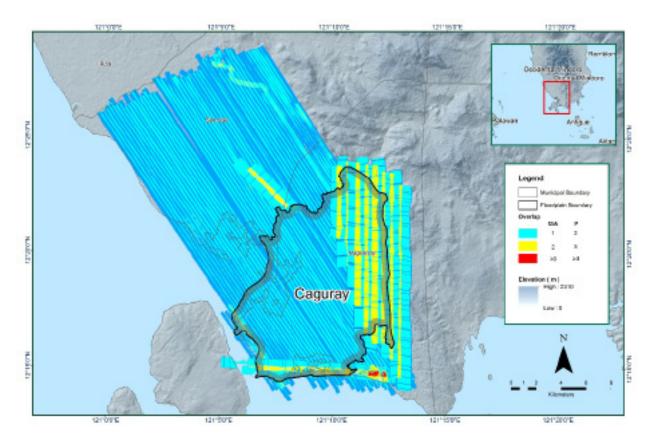



Figure 12. Image of data overlap for Caguray Floodplain.

The overlap statistics per block for the Caguray floodplain can be found in Annex B-1. One pixel corresponds to 25.0 square meters on the ground. For this area, the minimum and maximum percent overlaps are 29.39% and 44.16% respectively, which passed the 25% requirement.

The pulse density map for the merged LiDAR data, with the red parts showing the portions of the data that satisfy the 2 points per square meter criterion is shown in Figure 13. It was determined that all LiDAR data for Caguray floodplain satisfy the point density requirement, and the average density for the entire survey area is 2.81 points per square meter.

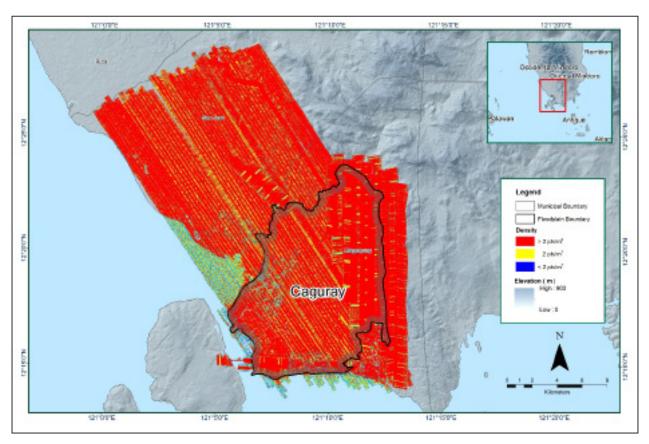



Figure 13. Pulse density map of merged LiDAR data for Caguray Floodplain.

The elevation difference between overlaps of adjacent flight lines is shown in Figure 14. The default color range is from blue to red, where bright blue areas correspond to portions where elevations of a previous flight line, identified by its acquisition time, are higher by more than 0.20m relative to elevations of its adjacent flight line. Bright red areas indicate portions where elevations of a previous flight line are lower by more than 0.20m relative to elevations of its adjacent flight line. Areas with bright red or bright blue need to be investigated further using Quick Terrain Modeler software

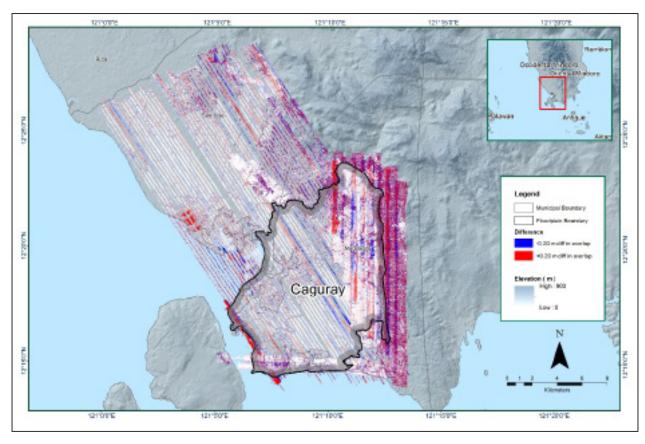



Figure 14. Elevation difference map between flight lines for Caguray Floodplain.

A screen capture of the processed LAS data from a Caguray flight 1166A loaded in QT Modeler is shown in Figure 15. The upper left image shows the elevations of the points from two overlapping flight strips traversed by the profile, illustrated by a dashed red line. The x-axis corresponds to the length of the profile. It is evident that there are differences in elevation, but the differences do not exceed the 20-centimeter mark. This profiling was repeated until the quality of the LiDAR data becomes satisfactory. No reprocessing was done for this LiDAR dataset.

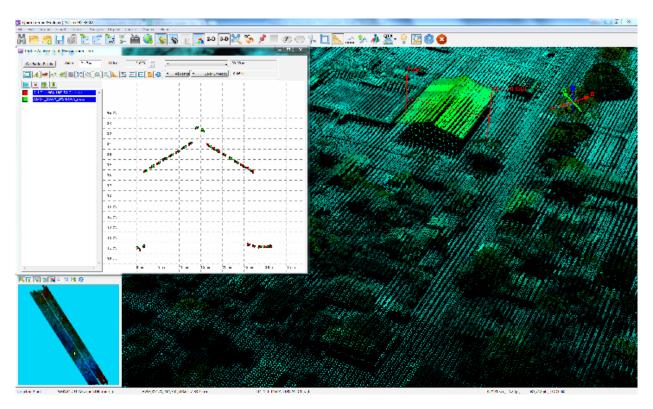



Figure 15. Quality checking for Caguray flight 1166A using the Profile Tool of QT Modeler.

#### 3.6 LiDAR Point Cloud Classification and Rasterization

| Pertinent Class   | Total Number of Points |
|-------------------|------------------------|
| Ground            | 488,855,057            |
| Low Vegetation    | 490,749,885            |
| Medium Vegetation | 444,550,801            |
| High Vegetation   | 742,708,426            |
| Building          | 23,923,698             |

Table 15. Caguray classification results in TerraScan.

The tile system that TerraScan employed for the LiDAR data and the final classification image for a block in Caguray floodplain is shown in Figure 16. A total of 701 1km by 1km tiles were produced. The number of points classified to the pertinent categories is illustrated in Table 16. The point cloud has a maximum and minimum height of 521.55 meters and 43.10 meters respectively.

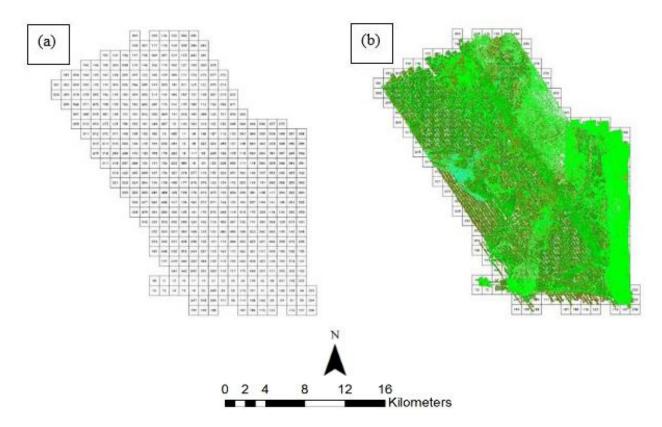



Figure 16. Tiles for Caguray Floodplain (a) and classification results (b) in TerraScan.

An isometric view of an area before and after running the classification routines is shown in Figure 17. The ground points are in orange, the vegetation is in different shades of green, and the buildings are in cyan. It can be seen that residential structures adjacent or even below canopy are classified correctly, due to the density of the LiDAR data.

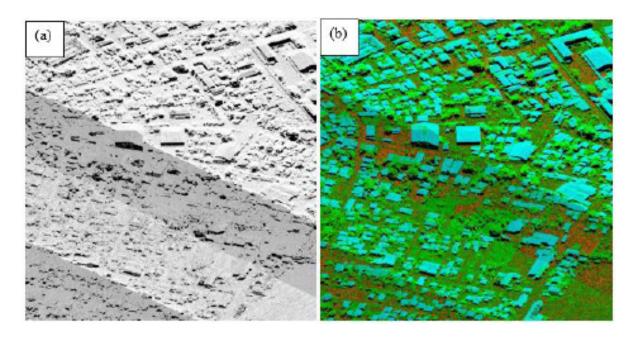



Figure 17. Point cloud before (a) and after (b) classification.

The production of last return (V\_ASCII) and the secondary (T\_ASCII) DTM, first (S\_ASCII) and last (D\_ASCII) return DSM of the area in top view display are shown in Figure 18. It shows that DTMs are the representation of the bare earth while on the DSMs, all features are present such as buildings and vegetation.

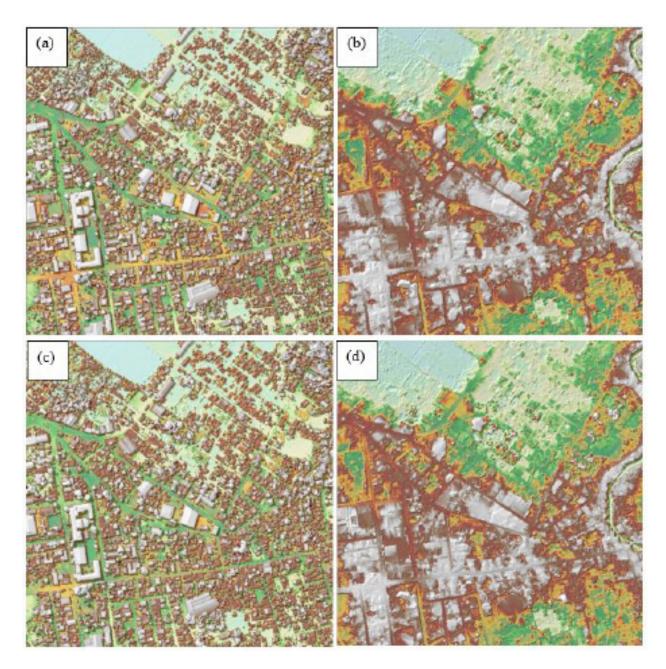



Figure 18. The production of last return DSM (a) and DTM (b), first return DSM (c) and secondary DTM (d) in some portion of Caguray Floodplain.

### 3.7 LiDAR Image Processing and Orthophotograph Rectification

The 450 1km by 1km tiles area covered by Caguray floodplain is shown in Figure 19. After tie point selection to fix photo misalignments, color points were added to smoothen out visual inconsistencies along the seamlines where photos overlap. The Caguray floodplain has a total of 251.35 sq.km orthophotogaph coverage comprised of 1,434 images. A zoomed in version of sample orthophotographs named in reference to its tile number is shown in Figure 20.

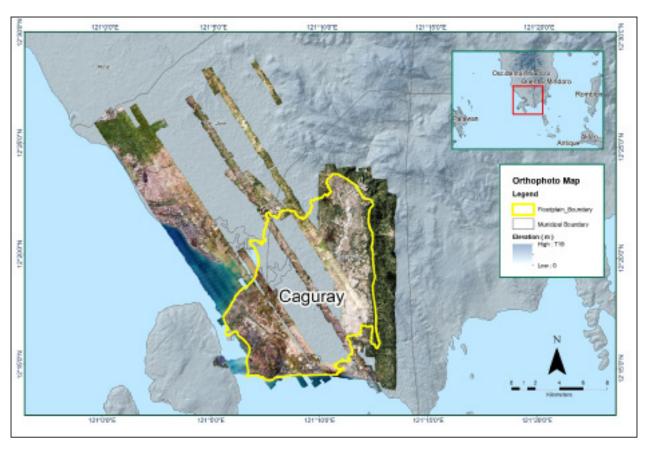



Figure 19. Caguray Floodplain with available orthophotographs



Figure 20. Sample orthophotograph tiles for Caguray Floodplain

#### 3.8 DEM Editing and Hydro-Correction

Six (6) mission blocks were processed for Caguray flood plain. These blocks are composed of OccidentalMindoro and OccidentalMindoro\_reflights blocks with a total area of 500.69 square kilometers. Table 16 shows the name and corresponding area of each block in square kilometers.

| LiDAR Blocks                                  | Area (sq.km) |
|-----------------------------------------------|--------------|
| OccidentalMindoro_Blk29A                      | 140.61       |
| OccidentalMindoro_Blk29B                      | 146.16       |
| OccidentalMindoro_Blk29C                      | 102.42       |
| OccidentalMindoro_reflights_Blk29A_additional | 14.30        |
| OccidentalMindoro_reflights_Blk29B_additional | 8.96         |
| OccidentalMindoro_reflights_Blk29C_additional | 88.24        |
| TOTAL                                         | 500.69 sq.km |

Table 16. LiDAR blocks with its corresponding area.

Portions of DTM before and after manual editing are shown in Figure 21. The bridge (Figure 21a) is also considered to be an impedance to the flow of water along the river and has to be removed (Figure 21b) in order to hydrologically correct the river. The paddy field (Figure 21c) has been misclassified and removed during classification process and has to be retrieved to complete the surface (Figure 21d) to allow the correct flow of water.

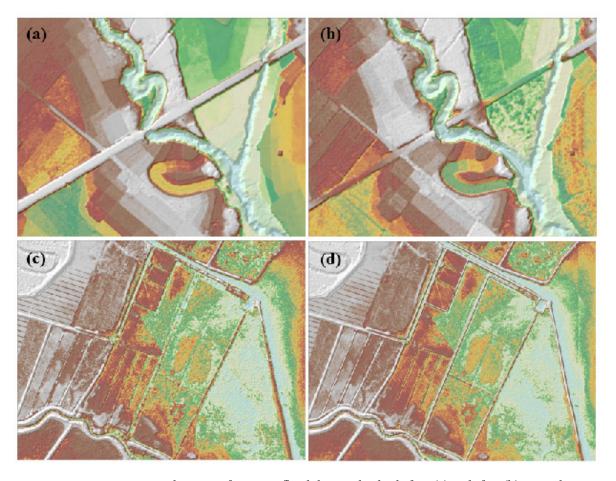



Figure 21. Portions in the DTM of Caguray floodplain – a bridge before (a) and after (b) manual editing; a paddy field before (c) and after (d) data retrieval.

# 3.9 Mosaicking of Blocks

OccidentalMindoro\_Blk29M was used as the reference block at the start of mosaicking because it was referred to a base station with an acceptable order of accuracy. Table 17 shows the shift values applied to each LiDAR block during mosaicking.

Mosaicked LiDAR DTM for Caguray floodplain is shown in Figure 22. It can be seen that the entire Caguray floodplain is 100% covered by LiDAR data.

Table 17. Shift Values of each LiDAR Block of Caguray Floodplain.

| Mission Blocks                                | Shift Values (meters) |      |       |  |  |  |
|-----------------------------------------------|-----------------------|------|-------|--|--|--|
| WIISSION DIOCKS                               | х                     | У    | z     |  |  |  |
| OccidentalMindoro_Blk29A                      | 0.00                  | 0.00 | -0.44 |  |  |  |
| OccidentalMindoro_Blk29B                      | 0.00                  | 0.00 | -0.55 |  |  |  |
| OccidentalMindoro_Blk29C                      | 0.00                  | 0.34 | -0.99 |  |  |  |
| OccidentalMindoro_reflights_Blk29A_additional | 0.00                  | 0.00 | -1.72 |  |  |  |
| OccidentalMindoro_reflights_Blk29B_additional | 0.00                  | 0.00 | -0.50 |  |  |  |
| OccidentalMindoro_reflights_Blk29C_additional | 0.00                  | 0.00 | -0.59 |  |  |  |

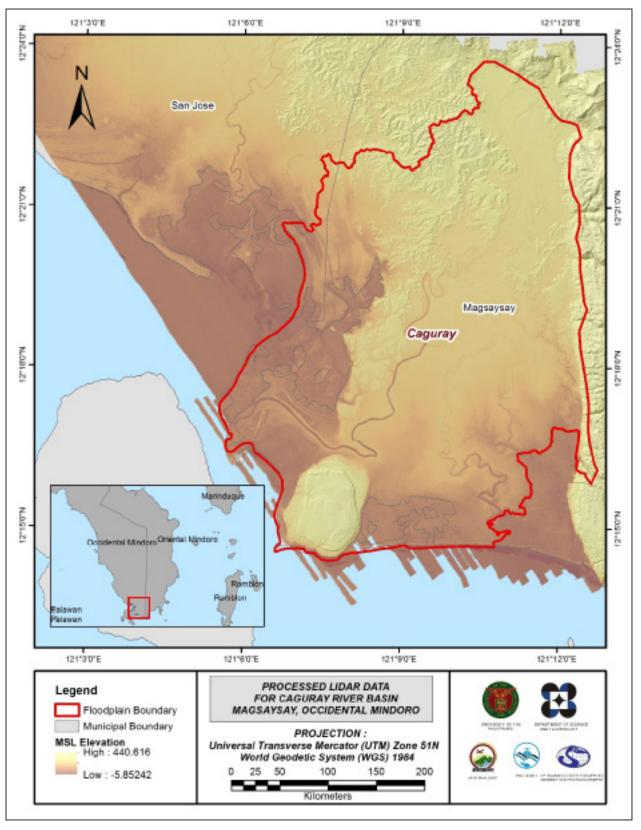



Figure 22. Map of Processed LiDAR Data for Caguray Flood Plain.

# 3.10 Calibration and Validation of Mosaicked LiDAR Digital Elevation Model

The extent of the validation survey done by the Data Validation and Bathymetry Component (DVBC) in Caguray to collect points with which the LiDAR dataset is validated is shown in Figure 23. A total of 28,494 survey points were gathered for all the flood plains within Occidental Mindoro wherein the Caguray floodplain is located. Random selection of 80% of the survey points, resulting to 22,795 points, were used for calibration.

A good correlation between the uncalibrated mosaicked LiDAR elevation values and the ground survey elevation values is shown in Figure 24. Statistical values were computed from extracted LiDAR values using the selected points to assess the quality of data and obtain the value for vertical adjustment. The computed height difference between the LiDAR DTM and calibration elevation values is 0.23 meters with a standard deviation of 0.20 meters. Calibration of Caguray LiDAR data was done by adding the height difference value, 0.23 meters, to Caguray mosaicked LiDAR data. Table 18 shows the statistical values of the compared elevation values between LiDAR data and calibration data.

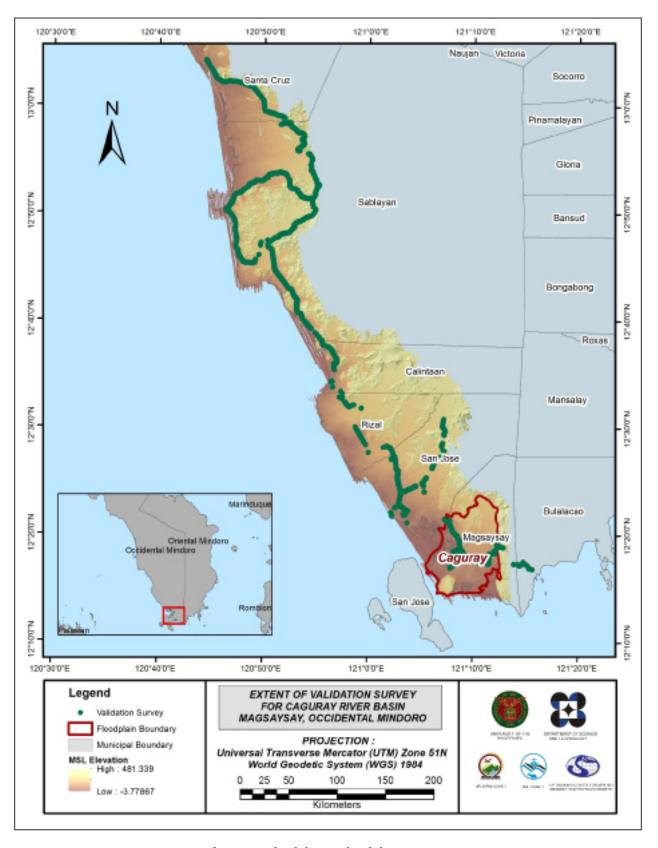



Figure 23. Map of Caguray Floodplain with validation survey points in green.

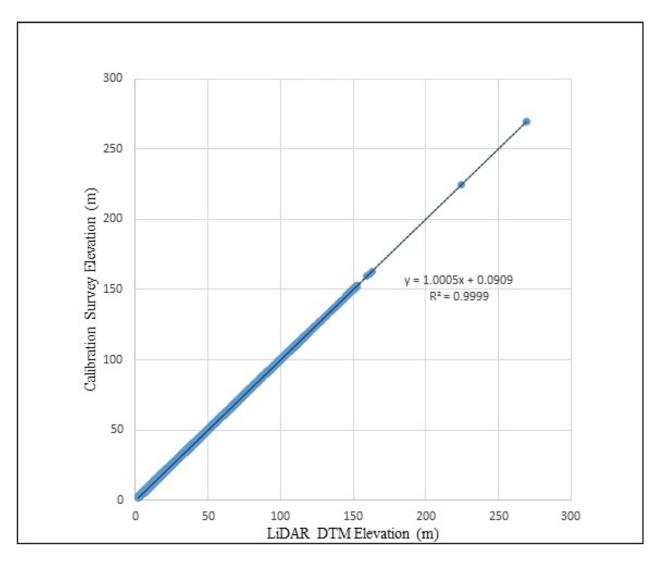



Figure 24. Correlation plot between calibration survey points and LiDAR data.

Table 18. Calibration Statistical Measures.

| Calibration Statistical Measures | Value (meters) |
|----------------------------------|----------------|
| Height Difference                | 0.23           |
| Standard Deviation               | 0.20           |
| Average                          | 0.10           |
| Minimum                          | -0.33          |
| Maximum                          | 0.53           |

The remaining 20% of the total survey points were intersected to the flood plain, resulting to 621 points. These were used for the validation of calibrated Caguray DTM. A good correlation between the calibrated mosaicked LiDAR elevation values and the ground survey elevation, which reflects the quality of the LiDAR DTM is shown in Figure 25. The computed RMSE between the calibrated LiDAR DTM and validation elevation values is 0.17 meters with a standard deviation of 0.14 meters, as shown in Table 19.

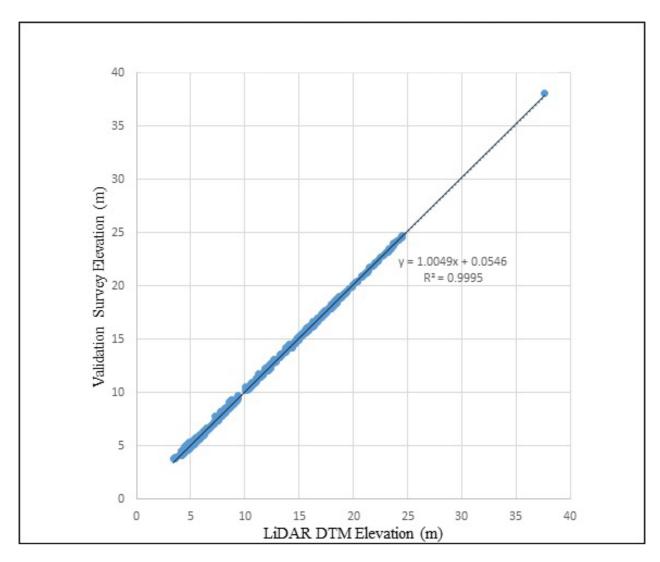



Figure 25. Correlation plot between validation survey points and LiDAR data.

Table 19. Validation Statistical Measures.

| Validation Statistical Measures | Value (meters) |  |  |
|---------------------------------|----------------|--|--|
| RMSE                            | 0.17           |  |  |
| Standard Deviation              | 0.14           |  |  |
| Average                         | -0.10          |  |  |
| Minimum                         | -0.18          |  |  |
| Maximum                         | 0.50           |  |  |

#### 3.11 Integration of Bathymetric Data into the LiDAR Digital Terrain Model

For bathy integration, zigzag and centerline data were available for Caguray with 5,211 and 18,692 bathymetric survey points, respectively. The resulting raster surface produced was done by Inverse Distance Weighted (IDW) interpolation method. After burning the bathymetric data to the calibrated DTM, assessment of the interpolated surface is represented by the computed RMSE value of 0.63 meters. The extent of the bathymetric survey done by the Data Validation and Bathymetry Component (DVBC) in Caguray integrated with the processed LiDAR DEM is shown in Figure 26.

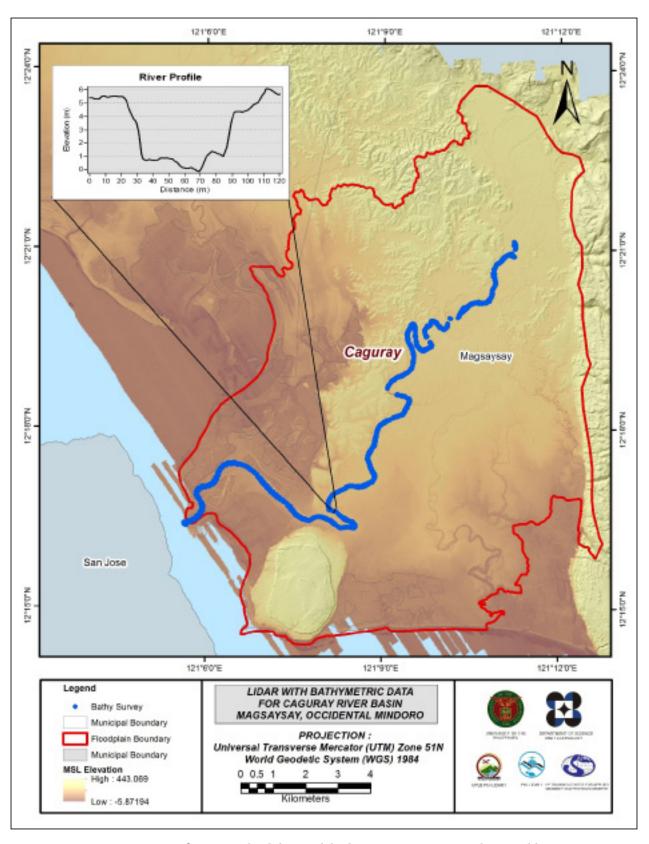



Figure 26. Map of Caguray Floodplain with bathymetric survey points shown in blue.

# CHAPTER 4: DATA VALIDATION SURVEY AND MEASUREMENTS IN THE CAGURAY RIVER BASIN

Engr. Louie P. Balicanta, Engr. Joemarie S. Caballero, Ms. Patrizcia Mae. P. dela Cruz, Engr. Dexter T. Lozano For. Dona Rina Patricia C. Tajora, Elaine Bennet Salvador, For. Rodel C. Alberto, Cybil Claire Atacador, Engr. Lorenz R. Taguse

The methods applied in this Chapter were based on the DREAM methods manual (Balicanta, et al., 2014) and further enhanced and updated in Paringit, et al. (2017).

# 4.1 Summary of Activities

The Data Validation and Bathymetry Component (DVBC) conducted field survey in Caguray River on November 3-24, 2015 with the following scope of work: reconnaissance to determine the viability of traversing the planned routes for bathymetric survey; courtesy call with UPLB, Rizal and San Jose LGUs and MDRRMC; control survey; cross-section survey, bridge as-built features determination and water level marking at Busuanga Bridge with coordinates Lat 12d18'07.55730"N and Long 121d09'08.74177"E; ground validation survey along the National Highway covering municipalities of Sta. Cruz, Sablayan, Calintaan, Rizal, San Jose and Magsaysay with an approximate distance of 191 km. Lastly, bathymetric survey from Brgy. Purnaga down to the mouth of the river in Brgy. Caguray, Magsaysay Municipality with an approximate length of 43.413 km using GNSS PPK survey technique. The entire survey extent is illustrated in Figure 27.

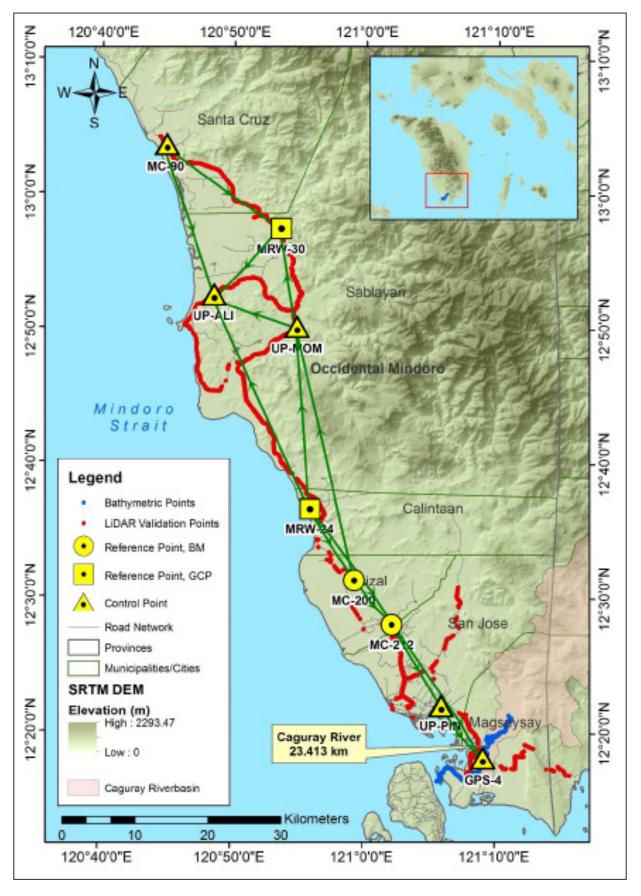



Figure 27. Caguray River Survey Extent

# 4.2 Control Survey

The GNSS network used for Caguray River Basin is composed of eight (8) loops established on November 5, 15 and 17, 2015 occupying the following reference points: MRW-24, a second order GCP in Brgy. Iriron, Municipality of Calintaan; MRW-30, a second order GCP in Bry. Pinagturilan, Municipality of Sta. Cruz; MC-200, a first order BM in Brgy. Magsikap, Municipality of Rizal; and MC-212, also a first order BM in Brgy. Sto. Niño in Rizal.

Three (3) control points were established along the approach of bridges, namely: UP-PIN at Pinamanaan Bridge in Brgy. Mapaya, Municipality of San Jose; UP-ALI at Alipid Bridge in Brgy. Sto. Niño, Municipality of Sablayan; and UP-MOM at Mompong Bridge in Brgy. Lumang Bato, also in Sablayan. The control point established by DPWH, GPS-4, in Brgy. Poblacion, Municipality of Magsaysay; and MC-90, established by NAMRIA, in Brgy. Barahan, Municipality of Sta. Cruz were also occupied to use as a marker for the network.

The summary of reference and control points and its location is summarized in Table 20 while the GNSS network established is in Figure 28.

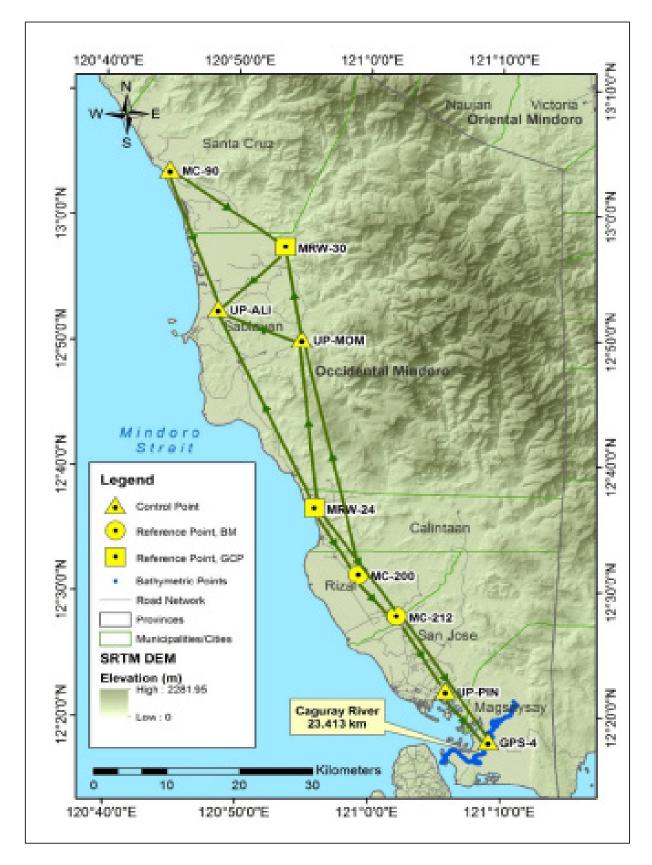



Figure 28. GNSS Network of Caguray Field Survey

Table 20. List of reference and control points used during the survey in Caguray River (Source: NAMRIA, UP-TCAGP)

|                  |                      |                    | Geographic Coordinates (WGS 84) |                                  |                                |                     |  |  |  |  |
|------------------|----------------------|--------------------|---------------------------------|----------------------------------|--------------------------------|---------------------|--|--|--|--|
| Control<br>Point | Order of<br>Accuracy | Latitude Longitude |                                 | Ellipsoidal<br>Height<br>(Meter) | Elevation<br>in MSL<br>(Meter) | Date<br>Established |  |  |  |  |
| MC-200           | 1st order,<br>BM     | -                  | -                               | 83.225                           | -                              | 2007                |  |  |  |  |
| MC-212           | 1st order,<br>BM     | -                  | -                               | 74.473                           | -                              | 2007                |  |  |  |  |
| MRW-24           | 2nd order,<br>GCP    | 12°36'38.03550"    | 120°55'54.08297"                | 53.435                           | 4.746                          | 2007                |  |  |  |  |
| MRW-30           | 2nd order,<br>GCP    | 12°57'27.19115"    | 120°53'33.54441"                | 88.823                           | 41.752                         | 2007                |  |  |  |  |
| MC-90            | UP<br>Established    | 1                  | -                               | -                                | -                              | 2007                |  |  |  |  |
| UP-ALI           | UP<br>Established    | 1                  | -                               | -                                | 1                              | 2015                |  |  |  |  |
| UP-MOM           | UP<br>Established    | -                  | -                               | -                                | -                              | 2015                |  |  |  |  |
| UP-PIN           | UP<br>Established    | -                  | -                               | -                                | -                              | 2015                |  |  |  |  |
| GPS-4            | DPWH<br>Established  | -                  | -                               | -                                | -                              | 2013                |  |  |  |  |

The GNSS set up in reference points and established control points in Occidental Mindoro survey are shown in Figure 29 to Figure 37.

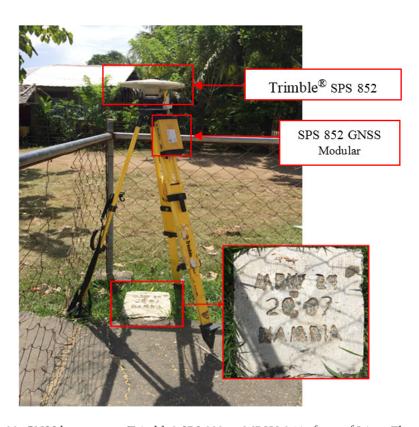



Figure 29. GNSS base set-up, Trimble® SPS 882, at MRW-24 in front of Iriron Elementary School in Brgy. Iriron, Municipality of Calintaan, Occidental Mindoro



Figure 30. GNSS receiver setup, Trimble® SPS 882, at MRW-30 Amnay Bridge approach in Sitio Kabangkalan, Brgy. Pinagturilan, Municipality of Santa Cruz, Occidental Mindoro



Figure 31. GNSS base receiver, Trimble® SPS 882, setup at UP-ILA in Ilaya Bridge, Brgy. Ilaya, Dapitan City

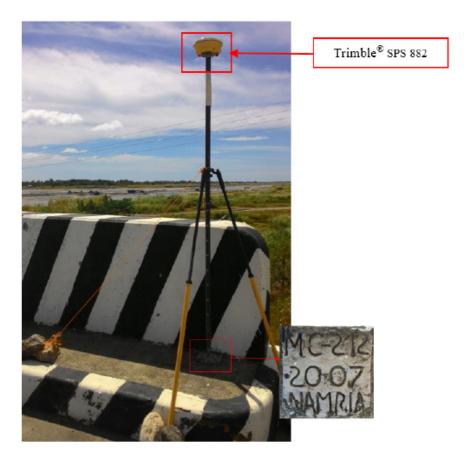



Figure 32. GNSS receiver set-up, Trimble® SPS 882, at MC-212, Busuanga Bridge approach in Bgry. Sto Niño, Municipality of Rizal, Occidental Mindoro



Figure 33. GNSS base, Trimble® SPS 852, at MC-90, used as marker, located at the Pola Bridge approach in Brgy.
Barahan, Municipality of Santa Cruz, Occidental Mindoro



Figure 34. GNSS receiver, Trimble® SPS 882, at GPS-4 on right side of the road abutment after Caguray Bridge going to Bulalacao in Brgy. Poblacion, Municipality of Magsaysay, Occidental Mindoro



Figure 35. GNSS base receiver set-up, Trimble® SPS 882, at UP-PIN Pinamanaan Bridge approach in Brgy. Mapaya, Municipality of San Jose, Occidental Mindoro



Figure 36. GNSS receiver set-up, Trimble® SPS 882, at UP-MOM, Mompong Bridge approached in Brgy. Lumang Bato, Municipality of Sablayan, Occidental Mindoro



Figure 37. GNSS receiver set up, Trimble® SPS 882, at UP-ALI, Alipid Bridge approach in Brgy. Sto. Niño, Municipality of Sablayan, Occidental Mindoro

# 4.3 Baseline Processing

GNSS Baselines were processed simultaneously in TBC by observing that all baselines have fixed solutions with horizontal and vertical precisions within +/-20cm and +/-10cm requirement, respectively. In case where one or more baselines did not meet all of these criteria, masking is performed. Masking is done by removing/masking portions of these baseline data using the same processing software. It is repeatedly processed until all baseline requirements are met. If the reiteration yields out of the required accuracy, resurvey is initiated. Baseline processing result of control points in Caguray River Basin is summarized in Table 21 using generated TBC software.

Table 21. Baseline Processing Report for Caguray River Static Survey (Source: NAMRIA, UP-TCAGP)

| (Source, NAMKIA, OP-TCAGP) |                     |                  |                     |                     |                 |                               |                    |  |
|----------------------------|---------------------|------------------|---------------------|---------------------|-----------------|-------------------------------|--------------------|--|
| Observation                | Date of Observation | Solution<br>Type | H. Prec.<br>(Meter) | V. Prec.<br>(Meter) | Geodetic<br>Az. | Ellipsoid<br>Dist.<br>(Meter) | ΔHeight<br>(Meter) |  |
| MC-212 GPS-4               | 11-05-2015          | Fixed            | 0.003               | 0.015               | 145°21'06"      | 22241.566                     | -11.807            |  |
| MRW-30 UP-<br>MOM          | 11-17-2015          | Fixed            | 0.011               | 0.017               | 170°24'13"      | 13704.513                     | 55.240             |  |
| MRW-30 UP-<br>MOM          | 11-17-2015          | Fixed            | 0.003               | 0.023               | 170°24'12"      | 13704.541                     | 55.249             |  |
| MRW-30 MC-<br>90           | 11-17-2015          | Fixed            | 0.010               | 0.018               | 305°24'12"      | 19473.086                     | -35.515            |  |
| UP-PIN MC-212              | 11-05-2015          | Fixed            | 0.003               | 0.007               | 328°11'40"      | 12856.399                     | 14.631             |  |
| UP-PIN GPS-4               | 11-05-2015          | Fixed            | 0.003               | 0.006               | 141°30'11"      | 9422.221                      | 2.872              |  |
| MC-200 UP-PIN              | 11-05-2015          | Fixed            | 0.003               | 0.022               | 144°37'57"      | 20841.368                     | -23.356            |  |
| MC-200 UP-<br>MOM          | 11-05-2015          | Fixed            | 0.009               | 0.014               | 346°57'26"      | 35544.301                     | 60.755             |  |
| MC-200 UP-<br>MOM          | 11-05-2015          | Fixed            | 0.004               | 0.014               | 346°57'27"      | 35544.309                     | 60.692             |  |
| MC-200 MC-<br>212          | 11-05-2015          | Fixed            | 0.003               | 0.006               | 138°58'31"      | 8048.668                      | -8.741             |  |
| UP-ALI UP-<br>MOM          | 11-15-2015          | Fixed            | 0.008               | 0.013               | 110°57'37"      | 12258.370                     | 88.024             |  |
| UP-MOM UP-<br>ALI          | 11-15-2015          | Fixed            | 0.004               | 0.036               | 110°57'37"      | 12258.373                     | 88.139             |  |
| UP-ALI MRW-<br>30          | 11-17-2015          | Fixed            | 0.009               | 0.012               | 45°05'52"       | 12929.488                     | 32.865             |  |
| MRW-30 UP-<br>ALI          | 11-17-2015          | Fixed            | 0.004               | 0.017               | 45°05'52"       | 12929.476                     | 32.850             |  |
| MRW-30 UP-<br>ALI          | 11-17-2015          | Fixed            | 0.004               | 0.007               | 45°05'51"       | 12929.529                     | 32.747             |  |
| MC-90 UP-ALI               | 11-17-2015          | Fixed            | 0.004               | 0.008               | 341°46'30"      | 21480.592                     | -2.784             |  |
| MRW-24 UP-<br>PIN          | 11-05-2015          | Fixed            | 0.003               | 0.006               | 145°50'52"      | 32317.096                     | 6.413              |  |
| MRW-24 MC-<br>200          | 11-05-2015          | Fixed            | 0.005               | 0.007               | 148°04'31"      | 11489.166                     | 29.777             |  |
| MRW-24 UP-<br>MOM          | 11-15-2015          | Fixed            | 0.009               | 0.015               | 355°30'36"      | 24950.818                     | 90.611             |  |
| MRW-24 UP-<br>MOM          | 11-15-2015          | Fixed            | 0.003               | 0.006               | 355°30'36"      | 24950.824                     | 90.574             |  |
| MRW-24 UP-<br>ALI          | 11-15-2015          | Fixed            | 0.006               | 0.007               | 335°24'00"      | 32186.124                     | 2.579              |  |

# 4.4 Network Adjustment

After the baseline processing procedure, network adjustment is performed using TBC. Looking at the Adjusted Grid Coordinates table of the TBC generated Network Adjustment Report, it is observed that the square root of the sum of the squares of x and y must be less than 20 cm and z less than 10 cm or in equation from:

$$\sqrt{((x_e)^2 + (y_e)^2)}$$
 <20cm and  $z_e < 10 \text{ cm}$ 

Where:

xe is the Easting Error, ye is the Northing Error, and ze is the Elevation Error

for each control point. See the Network Adjustment Report shown in Table 22 to Table 25 for complete details.

The nine (9) control points, MRW-24, MRW-30, MC-200, MC-212, MC-90, GPS-4, UP-PIN, UP-MOM, and UP-ALI were occupied and observed simultaneously to form a GNSS loop. All 14 baselines acquired fixed solutions and passed the required  $\pm 20$ cm and  $\pm 10$ cm for horizontal and vertical precisions, respectively as shown in Table 22.

East σ North σ Height σ Elevation σ **Point ID Type** (Meter) (Meter) (Meter) (Meter) MC-200 Grid Fixed MC-212 Grid Fixed MRW-24 Global Fixed Fixed MRW-30 Global Fixed Fixed

Table 22. Control Point Constraints

Fixed = 0.000001(Meter)

**UP-PIN** 

293256.669

0.031

The list of adjusted grid coordinates, i.e. Northing, Easting, Elevation and computed standard errors of the control points in the network is indicated in Table 23. The fixed controls ZGN-138 and Z-44 have no values for and elevation error.

|          |            |                             | ,                   |                              |                      |                               |            |
|----------|------------|-----------------------------|---------------------|------------------------------|----------------------|-------------------------------|------------|
| Point ID | Easting    | Easting<br>Error<br>(Meter) | Northing<br>(Meter) | Northing<br>Error<br>(Meter) | Elevation<br>(Meter) | Elevation<br>Error<br>(Meter) | Constraint |
| GPS-4    | 299069.894 | 0.039                       | 1360649.962         | 0.032                        | 12.062               | 0.068                         |            |
| MC-200   | 281320.527 | 0.022                       | 1385155.121         | 0.016                        | 34.024               | ?                             | е          |
| MC-212   | 286558.124 | 0.028                       | 1379041.958         | 0.022                        | 24.884               | ?                             | е          |
| MC-90    | 255607.924 | 0.039                       | 1444800.407         | 0.023                        | 8.195                | 0.095                         |            |
| MRW-24   | 275320.607 | ?                           | 1394955.913         | ?                            | 4.746                | 0.045                         | LL         |
| MRW-30   | 271390.777 | ?                           | 1433384.691         | ?                            | 41.752               | 0.091                         | LL         |
| UP-ALI   | 262152.459 | 0.020                       | 1424334.041         | 0.015                        | 9.503                | 0.071                         |            |
| UP-MOM   | 273564.872 | 0.015                       | 1419850.456         | 0.012                        | 96.192               | 0.055                         |            |

Table 23. Adjusted Grid Coordinates

0.024

9.659

0.045

1368066.413

The network is fixed at reference points. The list of adjusted grid coordinates of the network is shown in

Table 23. Using the equation  $\sqrt{((x_e)^2 + (y_e)^2)}$  <20cm and  $z_e < 10 \text{ cm}$  for horizontal and for the vertical, respectively; below is the computation for accuracy that passed the required precision:

a. GPS-4  $\sqrt{((3.9)^2 + (3.2)^2}$ Horizontal accuracy =  $\sqrt{(15.21 + 10.24)}$ 5.0 cm < 20 cm= Vertical accuracy 6.8 cm < 10 cm b. MC-200 Horizontal accuracy  $\sqrt{((2.2)^2 + (1.6)^2}$  $\sqrt{(4.84 + 2.56)}$ 7.4 cm < 20 cm Vertical accuracy Fixed MC-212 c.  $\sqrt{((2.8)^2 + (2.2)^2}$ Horizontal accuracy  $\sqrt{(7.84 + 4.84)}$ 3.6 cm < 20 cm = Vertical accuracy Fixed d. MC-90  $\sqrt{((3.9)^2 + (2.3)^2}$ Horizontal accuracy =  $\sqrt{(15.21 + 5.29)}$ 4.5 cm < 20 cm Vertical accuracy 9.5 cm < 10 cm e. MRW-24 Horizontal accuracy Fixed = Vertical accuracy 4.5 cm < 10 cm f. **MRW-30** Horizontal accuracy Fixed = Vertical accuracy 9.1 cm < 10 cm UP-ALI g. Horizontal accuracy  $\sqrt{((2.0)^2 + (1.5)^2}$ =  $\sqrt{(4.0 + 2.25)}$ 2.5 cm < 20 cm Vertical accuracy 7.1 cm < 10 cm h. **UP-MOM** Horizontal accuracy  $\sqrt{((1.5)^2 + (1.2)^2}$  $\sqrt{(2.25 + 1.44)}$ = 1.9 cm < 20 cm = 5.5 cm < 10 cm Vertical accuracy i. **UP-PIN**  $\sqrt{((3.1)^2 + (2.4)^2}$ Horizontal accuracy =  $\sqrt{(9.61 + 5.76)}$ = 3.9 cm < 20 cm 4.5 cm < 10 cm Vertical accuracy

Following the given formula, the horizontal and vertical accuracy result of the nine occupied control points are within the required accuracy of the program.

Table 24. Adjusted Geodetic Coordinates

| Point ID | Latitude Longitude |                   | Height<br>(Meter) | Height Error<br>(Meter) | Constraint |
|----------|--------------------|-------------------|-------------------|-------------------------|------------|
| GPS-4    | N12°18'07.55698"   | E121°09'08.74194" | 62.705            | 0.068                   |            |
| MC-200   | N12°31'20.68884"   | E120°59'15.31613" | 83.225            | ?                       | е          |
| MC-212   | N12°28'03.07503"   | E121°02'10.26310" | 74.473            | ?                       | е          |
| MC-90    | N13°03'34.14427"   | E120°44'46.70844" | 53.232            | 0.095                   |            |
| MRW-24   | N12°36'38.03549"   | E120°55'54.08296" | 53.435            | 0.045                   | LL         |
| MRW-30   | N12°57'27.19115"   | E120°53'33.54442" | 88.823            | 0.091                   | LL         |
| UP-ALI   | N12°52'30.24359"   | E120°48'29.69149" | 55.998            | 0.071                   |            |
| UP-MOM   | N12°50'07.47193"   | E120°54'49.30855" | 144.013           | 0.055                   |            |
| UP-PIN   | N12°22'07.54999"   | E121°05'54.64323" | 59.843            | 0.045                   |            |

The corresponding geodetic coordinates of the observed points are within the required accuracy as shown in Table 24. Based on the result of the computation, the equation is satisfied; hence, the required accuracy for the program was met.

The summary of reference and control points used is indicated in Table 25.

Table 25. Reference and control points used and its location (Source: NAMRIA, UP-TCAGP)

|                  |                      | Geographi                                                | ic Coordinates (WGS | 84)                          | UT          | M ZONE 51 N |                         |
|------------------|----------------------|----------------------------------------------------------|---------------------|------------------------------|-------------|-------------|-------------------------|
| Control<br>Point | Order of<br>Accuracy | Latitude                                                 | Longitude           | Ellipsoidal<br>Height<br>(m) | Northing    | Easting     | MSL<br>Elevation<br>(m) |
| MC-200           | 1st order,<br>BM     | 12°31'20.68883"                                          | 120°59'15.31614"    | 83.225                       | 1385155.121 | 281320.527  | 34.024                  |
| MC-212           | 1st order,<br>BM     | 12°28'03.07504"                                          | 121°02'10.26310"    | 74.473                       | 1379041.958 | 286558.124  | 24.884                  |
| MC-90            | 2nd order,<br>GCP    | 1 17°36'38 03550"   170°55'54 08797"   53 435   17394955 |                     | 1394955.913                  | 275320.607  | 4.746       |                         |
| MRW-24           | 2nd order,<br>GCP    | 12°57'27.19115"                                          | 120°53'33.54441"    | 88.823                       | 1433384.691 | 271390.777  | 41.752                  |
| MRW-30           | UP<br>Established    | 13°03'34.14426"                                          | 120°44'46.70845"    | 53.232                       | 1444800.407 | 255607.924  | 8.195                   |
| UP-ALI           | UP<br>Established    | 12°52'30.24358"                                          | 120°48'29.69148"    | 55.998                       | 1424334.041 | 262152.459  | 9.503                   |
| UP-<br>MOM       | UP<br>Established    | 12°50'07.47192"                                          | 120°54'49.30854"    | 144.013                      | 1419850.456 | 273564.872  | 96.192                  |
| UP-PIN           | UP<br>Established    | 12°22'07.55000"                                          | 121°05'54.64323"    | 59.843                       | 1368066.413 | 293256.669  | 9.659                   |
| GPS-4            | DPWH<br>Established  | 12°18'07.55700"                                          | 121°09'08.74194"    | 62.706                       | 1360649.962 | 299069.894  | 12.062                  |

# 4.5 Cross-section and Bridge As-Built survey and Water Level Marking

Cross-section survey and bridge as-built, as well as water level marking were conducted on November 19, 2015 at the downstream side of Caguray Bridge in Brgy. Poblacion, Magsaysay, Occidental Mindoro. A total of one hundred twenty-four (124) points were gathered from the survey of Caguray Bridge to determine the bridge as-built, and to elongate the cross section line.

Bridge cross section and As-built point gathering was executed using a Trimble® SPS 882 with base station GPS-4 (Figure 38). The location map, cross-section diagram, and the bridge data form are shown in Figure 39 to Figure 41, respectively.



Figure 38. As-built survey at Caguray Bridge, Brgy. Poblacion, Municipality of Magsaysay

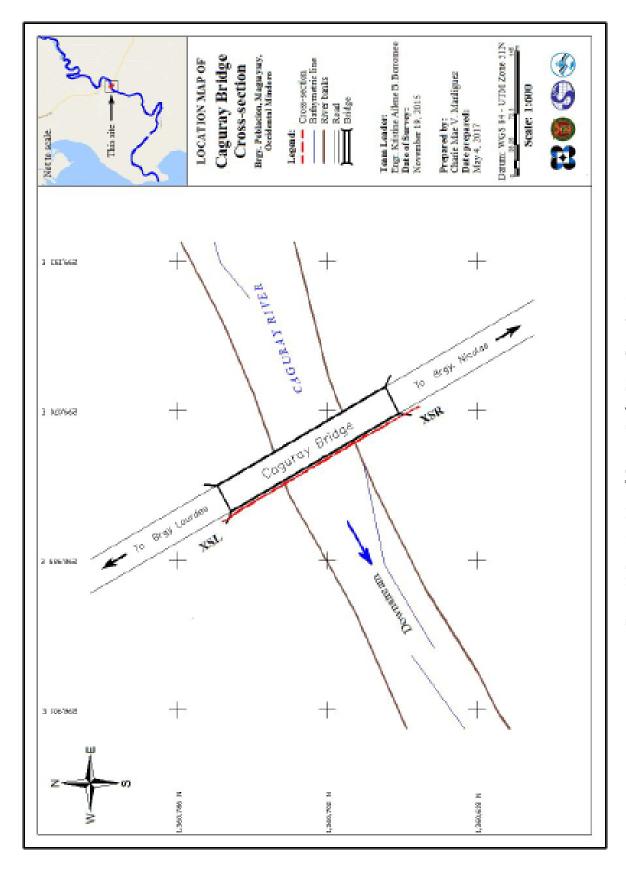
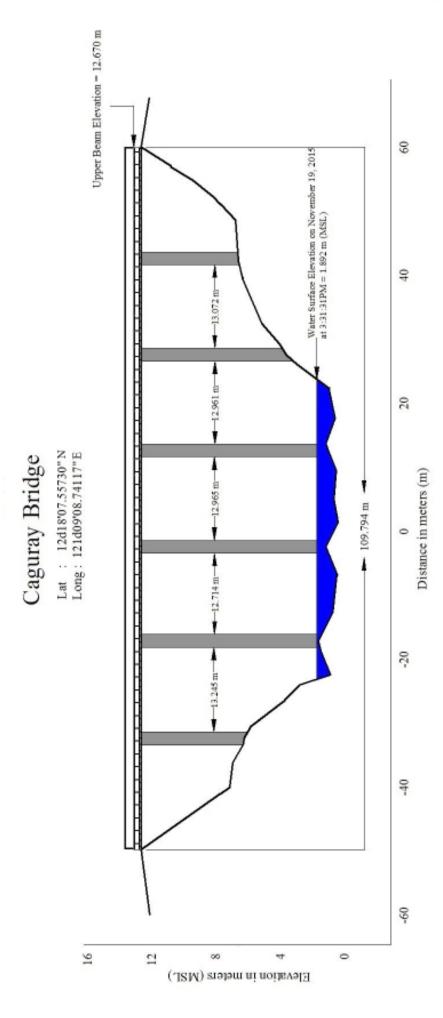




Figure 39. Location Map of Caguray Bridge River Cross-Section survey

Figure 40. Caguray Bridge cross-section diagram



47

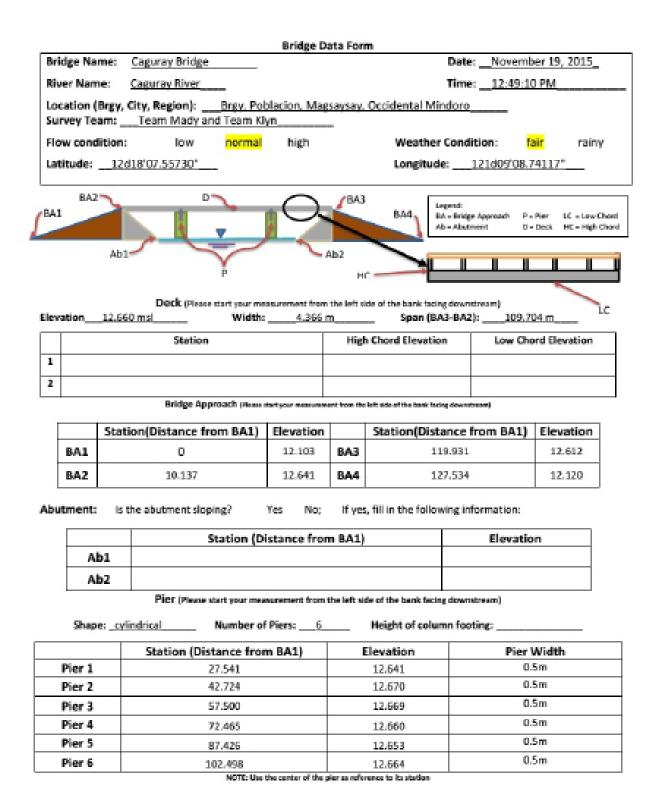



Figure 41. Bridge as-built form of Caguray Bridge

The water surface elevation in MSL of Caguray River was determined using Trimble® SPS 882 in PPK mode technique on November 23, 2015 at 04:25 PM with a value of 1.892 m in MSL. This was translated vertically onto marking on the bridge's deck using a meter tape. The value of 13.7 m is still an assumed elevation and yet to be changed to the computed 12.656 m in MSL by UP Los Baños. They shall update the marked deck to reflect its corresponding MSL value. The marked deck will serve as their reference for flow data gathering and depth gauge deployment for Caguray River. The finished water level marking in Caguray Bridge is shown in Figure 42.



Figure 42. Water level marking at Caguray Bridge deck, Brgy. Poblacion, Municipality of Magsaysay

#### 4.6 Validation Points Acquisition Survey

Validation points acquisition survey was conducted on November 6, 7, 8 14, 17, 18, and 21, 2015 using a survey-grade GNSS Rover receiver, Trimble® SPS 882, mounted on a pole which was attached either to the front or side of vehicle as shown in Figure 43. It was secured with a nylon rope to ensure that it was horizontally and vertically balanced. The antenna height was 2.460 and 1.91 m and measured from the ground up to the bottom of notch of the GNSS Rover receiver. The PPK technique utilized for the conduct of the survey was set to continuous topo mode with MC-212, GPS-4, MC-90 and MRW-30 occupied as the GNSS base stations in the conduct of the survey.

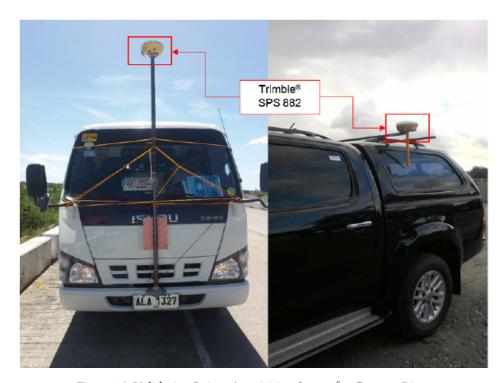



Figure 43. Validation Points Acquisition Set-up for Caguray River

The survey was along the National Highway covering municipalities of Sta. Cruz, Sablayan, Calintaan, Rizal, San Jose and Magsaysay with an approximate length of 191 km with 26,449 validation points gathered. The gaps in the validation line as shown in Figure 44 were due to road contractions and difficulties in receiving satellite signals because of the presence of obstructions such as dense canopy cover of trees along the roads.



Figure 44. Validation point acquisition survey of Caguray River Basin

#### 4.3.2 Bathymetric Survey

Bathymetric survey was performed on November 10, 11 and 14, 2015 using Hi-Target<sup>™</sup> echo sounder and a Trimble<sup>®</sup> SPS 882 attached on a boat as shown in Figure 45. The survey started from Brgy. Calawag with coordinates 12°16′20.64459″ 121°08′21.14222″, down to the mount of the river in Brgy. Caguray, both in Municipality of Magsaysay with coordinates 12°16′22.86990″ 121°05′40.63172″.




Figure 45. Bathymetric survey using Hi-Target™ Echo Sounder along Caguray River

On the other hand, manual bathymetric survey was executed on November 9, 10, 11, and 14 2015 carrying a Trimble bag with installed Trimble® SPS 882 using GNSS PPK survey technique as shown in Figure 46. The survey started at the upstream part of the river in Brgy. Purnaga with coordinates 12°21′06.41749″ 121°11′13.79163″, traversed down by foot and ended at the starting point of bathymetric survey using boat. The control points GPS 4 was used as base station on November 9, 10, and 14 while MC-200 was used on November 13, 2015.

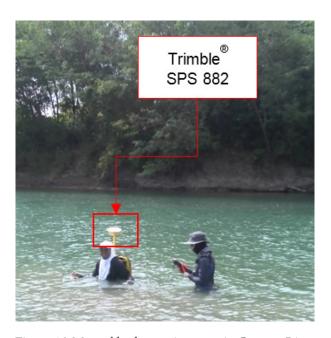



Figure 46. Manual bathymetric survey in Caguray River

The entire bathymetric data coverage for Caguray River is illustrated in the map in Figure 47. The gaps in the bathymetric survey was due to difficulties in acquiring satellite caused by obstructions such as dense canopy of trees and presence of rapids along the river.

A CAD drawing was also produced to illustrate the Caguray riverbed profile as illustrated in Figure 48 and Figure 49. An elevation drop of 15.39 meters in MSL was observed within the distance of approximately 23.413 km from the upstream in Brgy. Purnaga down to Brgy. Caguray with a total of 23,958 bathymetric points gathered. Gradual change in elevation can also be seen in the illustration with an average change elevation of about 0.327 for every 500-meter interval.

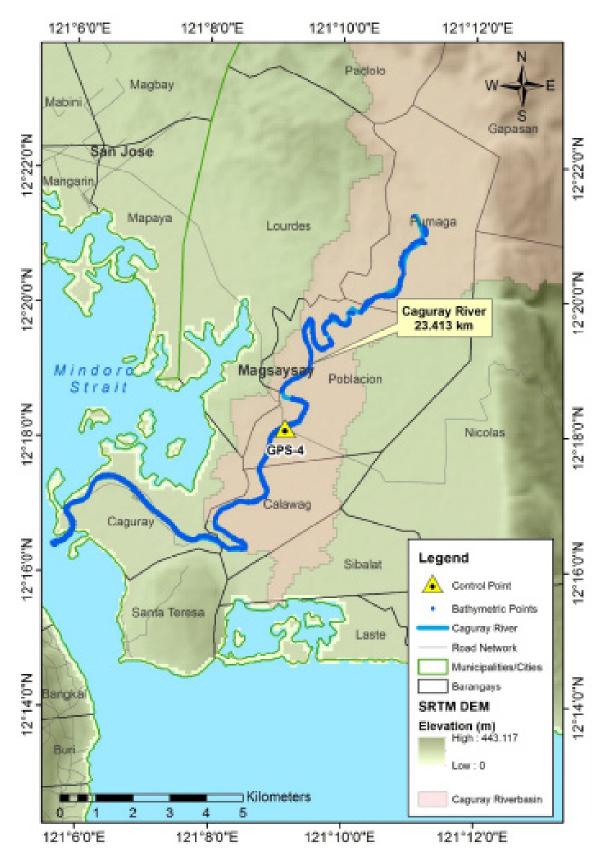
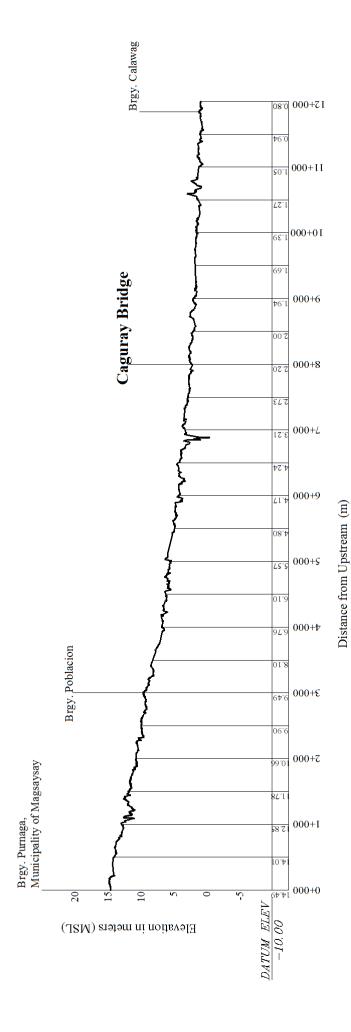




Figure 47. Bathymetric survey of Caguray River



Caguray Riverbed Profile

Figure 48. Caguray centerline riverbed profile (Upstream)

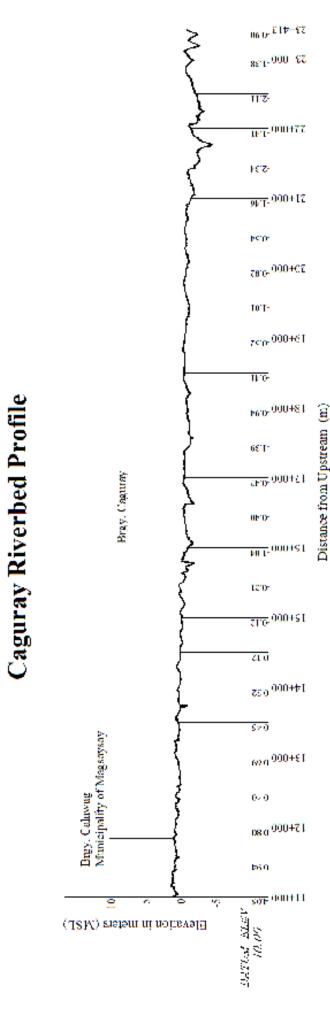



Figure 49. Caguray centerline riverbed profile (Downstream)

# **CHAPTER 5: FLOOD MODELING AND MAPPING**

Dr. Alfredo Mahar Lagmay, Christopher Uichanco, Sylvia Sueno, Marc Moises, Hale Ines, Miguel del Rosario, Kenneth Punay, Neil Tingin, Khristoffer Quinton, John Alvin B. Reyes, Alfi Lorenz B. Cura, Angelica T. Magpantay, Maria Michaela A. Gonzales Paulo Joshua U. Quilao, Jayson L. Arizapa, and Kevin M. Manalo

The methods applied in this Chapter were based on the DREAM methods manual (Lagmay, et al., 2014) and further enhanced and updated in Paringit, et al. (2017).

# 5.1 Data used for Hydrologic Modeling

# **5.1.1 Hydrometry and Rating Curves**

All components and data that affect the hydrologic cycle of the Caguray River Basin were monitored, collected, and analyzed. Rainfall, water level, and flow in a certain period of time, which may affect the hydrologic cycle of the Caguray River Basin were monitored, collected, and analyzed.

#### 5.1.2 Precipitation

Precipitation data was taken from a portable rain gauge (12.312039° N, 121.146231° E) deployed within the riverbasin. The location of the rain gauge is seen in Figure 50.

The total precipitation for this event is 24.0 mm. The peak rainfall is 7.40 mm on March 14, 2017 at 6:00 pm The lag time between the peak rainfall and discharge is 16 hours and 20 minutes, as seen in Figure 53.

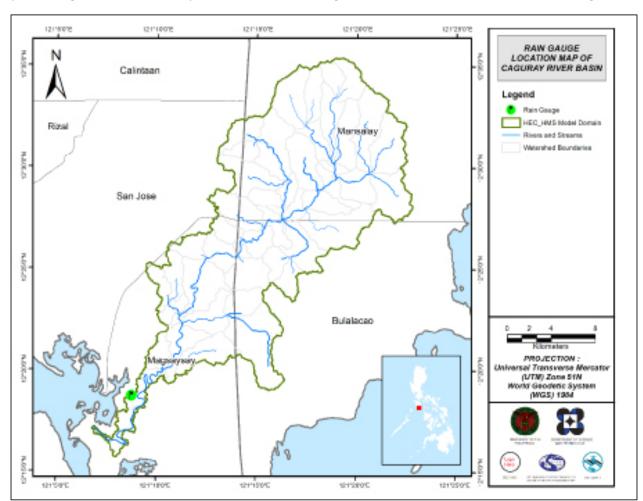



Figure 50. The location map of Caguray HEC-HMS model used for calibration

# 5.1.3 Rating Curves and River Outflow

A rating curve was developed at Caguray Bridge, Magsaysay, Occidental Mindoro (12.302542°N, 121.152133°E). It gives the relationship between the observed water levels from the Caguray Bridge and outflow of the watershed at this location using Bankfull Method in Manning's Equation.

For Caguray Bridge, the rating curve is expressed as Q = 4.1979x2.414 as shown in Figure 52.

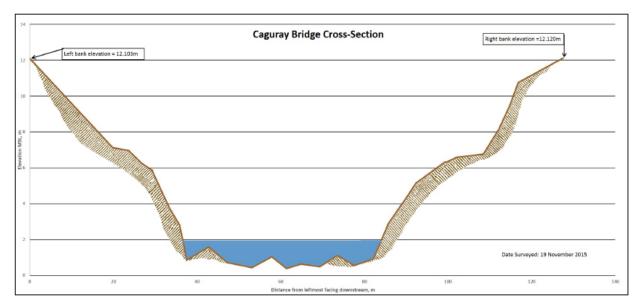



Figure 51. Cross-Section Plot of Caguray Bridge

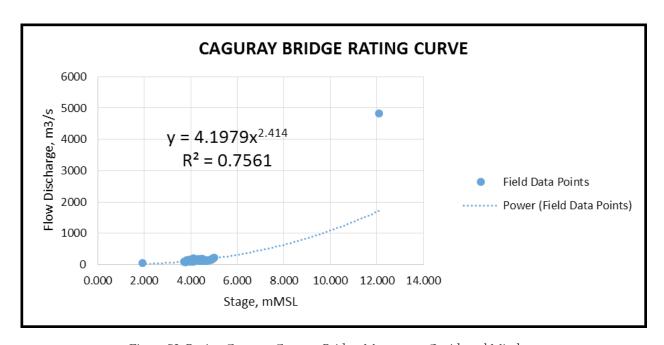



Figure 52. Rating Curve at Caguray Bridge, Magsaysay, Occidental Mindoro

For the calibration of the HEC-HMS model, shown in Figure 53, actual flow discharge during a rainfall event was collected in the Caguray Bridge. Peak discharge is 30.90 cu.m/s on March 15, 2017 at 10:20 pm.



Figure 53. Rainfall and outflow data at Caguray River Basin used for modeling

#### 5.2 RIDF Station

The Philippines Atmospheric Geophysical and Astronomical Services Administration (PAGASA) computed Rainfall Intensity Duration Frequency (RIDF) values for the Romblon Rain Gauge. The RIDF rainfall amount for 24 hours was converted to a synthetic storm by interpolating and re-arranging the values in such a way a certain peak value will be attained at a certain time. This station chosen based on its proximity to the Caguray watershed. The extreme values for this watershed were computed based on a 48-year record, with the computed extreme values shown in Table 26.

|         | COMPUTED EXTREME VALUES (in mm) OF PRECIPITATION |         |         |       |       |       |       |        |        |  |  |
|---------|--------------------------------------------------|---------|---------|-------|-------|-------|-------|--------|--------|--|--|
| T (yrs) | 10 mins                                          | 20 mins | 30 mins | 1 hr  | 2 hrs | 3 hrs | 6 hrs | 12 hrs | 24 hrs |  |  |
| 2       | 18.2                                             | 27      | 33.5    | 44.3  | 59.5  | 70.4  | 89.5  | 107    | 119.8  |  |  |
| 5       | 26                                               | 37.7    | 46.5    | 60.7  | 82.2  | 97.6  | 125.5 | 152.9  | 171.6  |  |  |
| 10      | 31.1                                             | 44.8    | 55      | 71.5  | 97.3  | 115.7 | 149.3 | 183.4  | 205.9  |  |  |
| 15      | 34                                               | 48.8    | 59.9    | 77.7  | 105.8 | 125.8 | 162.8 | 200.5  | 225.2  |  |  |
| 20      | 36                                               | 51.6    | 63.3    | 82    | 111.8 | 133   | 172.2 | 212.6  | 238.8  |  |  |
| 25      | 37.6                                             | 53.8    | 65.9    | 85.3  | 116.4 | 138.4 | 179.4 | 221.8  | 249.2  |  |  |
| 50      | 42.4                                             | 60.4    | 74      | 95.4  | 130.5 | 155.3 | 201.8 | 250.3  | 281.4  |  |  |
| 100     | 47.2                                             | 67      | 81.9    | 105.5 | 144.5 | 172.1 | 223.9 | 278.6  | 313.3  |  |  |

Table 26. RIDF values for Romblon Rain Gauge computed by PAGASA

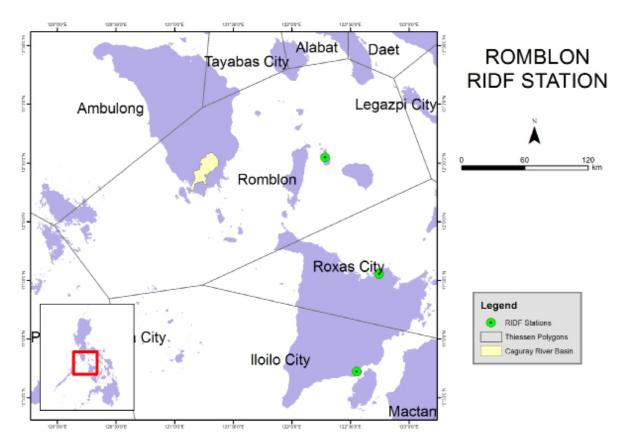



Figure 54. Location of Caguray RIDF station relative to Caguray River Basin

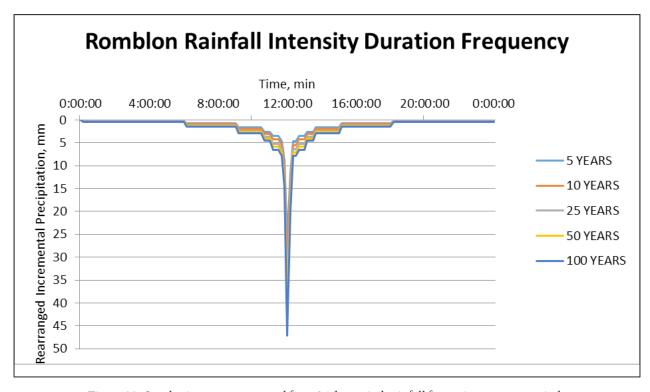



Figure 55. Synthetic storm generated for a 24-hr period rainfall for various return periods

#### 5.3 HMS Model

The soil dataset was generated before 2004 by the Bureau of Soils and Water Management under the Department of Agriculture (DA-BSWM). The land cover dataset is from the National Mapping and Resource information Authority (NAMRIA). The soil and land cover of the Caguray River Basin are shown in Figure 56 and Figure 57, respectively.

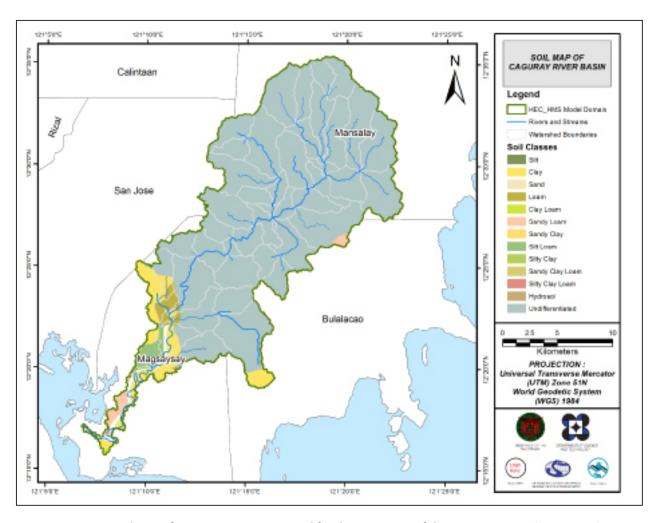



Figure 56. Soil map of Caguray River Basin used for the estimation of the CN parameter. (Source: DA)

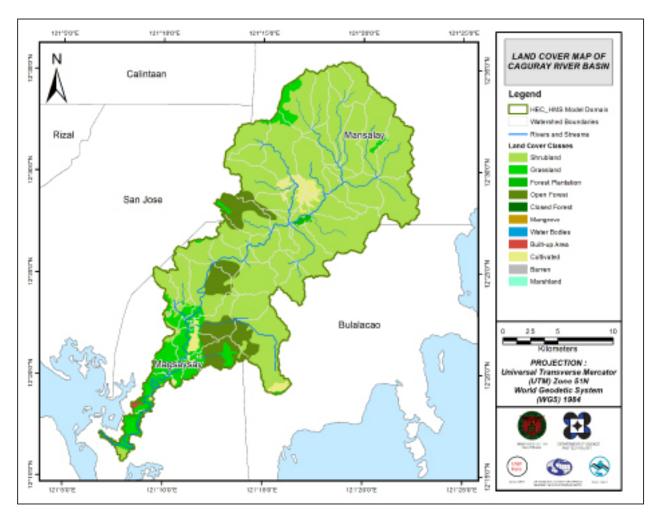



Figure 57. Land cover map of Caguray River Basin used for the estimation of the CN and watershed lag parameters of the rainfall-runoff model. (Source: NAMRIA)

For Caguray river basin, the six (6) soil classes identified were sandy clay, sandy loam, silt loam, clay loam, and hydrosol while the rest is undifferentiated. The six (6) land cover types identified were largely shrubland, with portions of grassland, forest plantation, open forest, cultivated land, and built-up area.

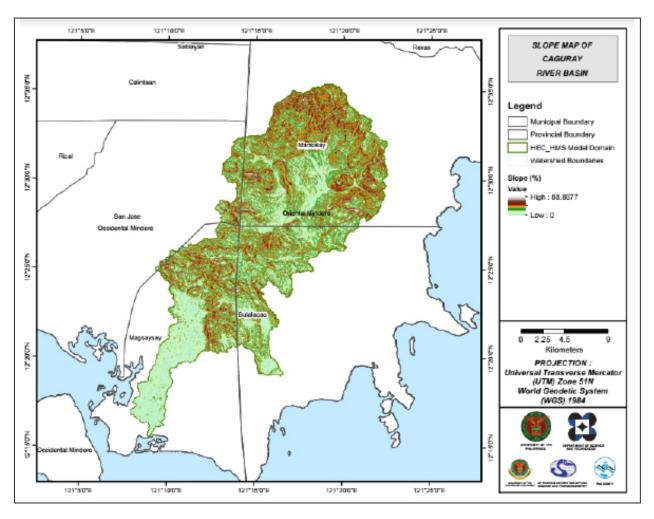



Figure 58. Slope map of Caguray River Basin

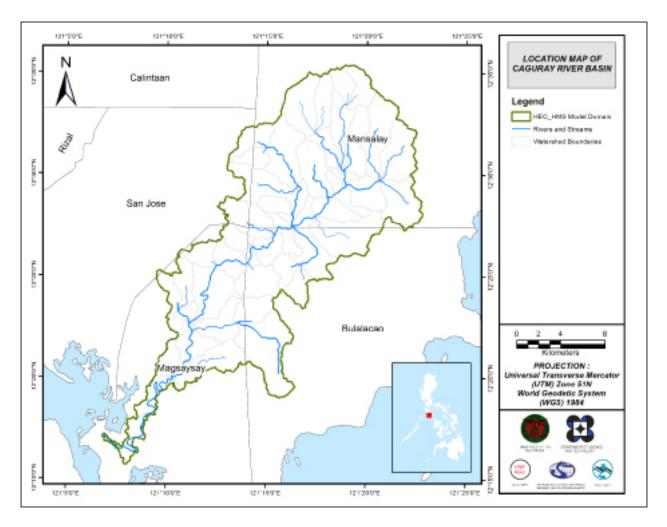



Figure 59. Stream Delineation Map of the Caguray River Basin

Using SAR-based DEM, the Caguray basin was delineated and further subdivided into subbasins. The model consists of 52 sub basins, 52 reaches, and 26 junctions as shown in Figure 60. The main outlet is Caguray Bridge, labelled as 166.

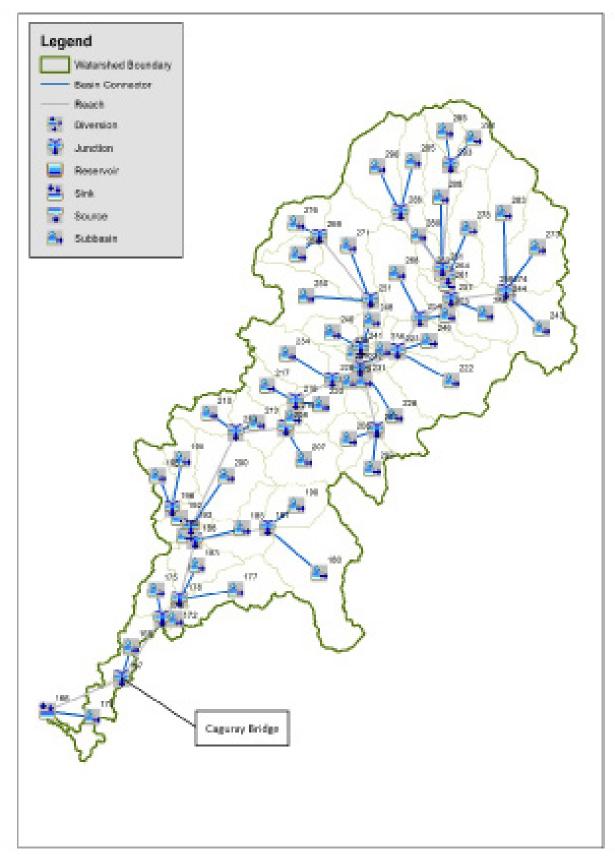



Figure 60. HEC-HMS generated Caguray River Basin Model.

# 5.4 Cross-section Data

Riverbed cross-sections of the watershed are crucial in the HEC-RAS model setup. The cross-section data for the HEC-RAS model was derived using the LiDAR DEM data. It was defined using the Arc GeoRAS tool and was post-processed in ArcGIS.

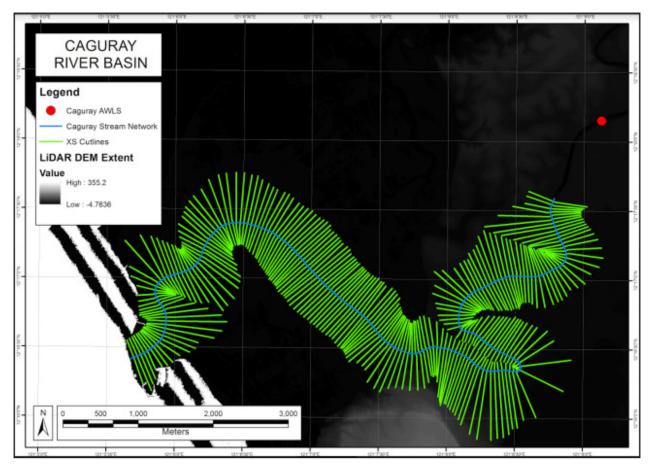



Figure 61. River cross-section of Baroc River generated through Arcmap HEC GeoRAS tool

#### 5.5 Flo 2D Model

The automated modelling process allows for the creation of a model with boundaries that are almost exactly coincidental with that of the catchment area. As such, they have approximately the same land area and location. The entire area is divided into square grid elements, 10 meter by 10 meter in size. Each element is assigned a unique grid element number which serves as its identifier, then attributed with the parameters required for modelling such as x-and y-coordinate of centroid, names of adjacent grid elements, Manning coefficient of roughness, infiltration, and elevation value. The elements are arranged spatially to form the model, allowing the software to simulate the flow of water across the grid elements and in eight directions (north, south, east, west, northeast, northwest, southeast, southwest).

Based on the elevation and flow direction, it is seen that the water will generally flow from the north of the model to the southwest, following the main channel. As such, boundary elements in those particular regions of the model are assigned as inflow and outflow elements respectively.

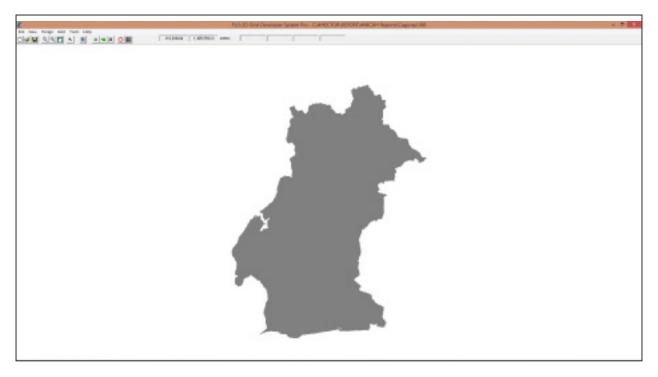



Figure 62. Screenshot of subcatchment with the computational area to be modeled in FLO-2D GDS Pro

The simulation is then run through FLO-2D GDS Pro. This particular model had a computer run time of 76.12183 hours. After the simulation, FLO-2D Mapper Pro is used to transform the simulation results into spatial data that shows flood hazard levels, as well as the extent and inundation of the flood. Assigning the appropriate flood depth and velocity values for Low, Medium, and High creates the following food hazard map. Most of the default values given by FLO-2D Mapper Pro are used, except for those in the Low hazard level. For this particular level, the minimum h (Maximum depth) is set at 0.2 m while the minimum vh (Product of maximum velocity (v) times maximum depth (h)) is set at 0 m2/s.

The creation of a flood hazard map from the model also automatically creates a flow depth map depicting the maximum amount of inundation for every grid element. The legend used by default in Flo-2D Mapper is not a good representation of the range of flood inundation values, so a different legend is used for the layout. In this particular model, the inundated parts cover a maximum land area of 93 534 700.00 m2.

There is a total of 110 547 670.67 m3 of water entering the model. Of this amount, 28 843 972.86 m3 is due to rainfall while 81 703 697.81 m3 is inflow from other areas outside the model. 16 263 753.00 m3 of this water is lost to infiltration and interception, while 42 912 305.10 m3 is stored by the flood plain. The rest, amounting up to 51 371 606.23 m3, is outflow.

#### 5.6 Results of HMS Calibration

After calibrating the Caguray HEC-HMS river basin model, its accuracy was measured against the observed values. Figure 63 shows the comparison between the two discharge data.

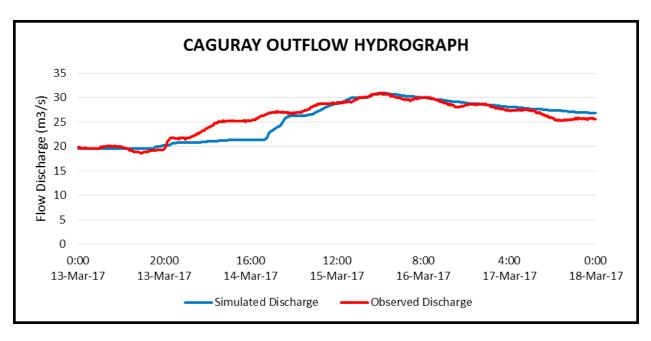



Figure 63. Outflow Hydrograph of Caguray produced by the HEC-HMS model compared with observed outflow.

Enumerated in Table 31 are the adjusted ranges of values of the parameters used in calibrating the model.

| Hydrologic<br>Element | Calculation<br>Type | Method                                        | Parameter                  | Range of Calibrated Values |
|-----------------------|---------------------|-----------------------------------------------|----------------------------|----------------------------|
|                       | Loss                | CCC Curvo numbor                              | Initial Abstraction (mm)   | 0.1 - 20                   |
| Loss                  | SCS Curve number    | Curve Number                                  | 43 - 99                    |                            |
| Basin Transfo         | Tue in of o une     | Transform Clark Unit<br>Hydrograph            | Time of Concentration (hr) | .07 - 3                    |
|                       | Iransiorm           |                                               | Storage Coefficient (hr)   | 15 - 457                   |
|                       | Desellem            | Decesion                                      | Recession Constant         | 1                          |
|                       | Baseflow Recession  |                                               | Ratio to Peak              | 0.2 – 0.5                  |
| Reach                 | Routing             | Routing Muskingum-Cunge Manning's Coefficient |                            | 0.04 - 0.5                 |

Table 27. Range of Calibrated Values for Caguray River Basin

Initial abstraction defines the amount of precipitation that must fall before surface runoff. The magnitude of the outflow hydrograph increases as initial abstraction decreases. The range of values from 0.1mm to 20mm means that the subbasins have a diverse soil and land cover characteristics wherein there is minimum to average amount of infiltration or rainfall interception by vegetation.

Curve number is the estimate of the precipitation excess of soil cover, land use, and antecedent moisture. The magnitude of the outflow hydrograph increases as curve number increases. The range of 43 to 99 for curve number is advisable for Philippine watersheds depending on the soil and land cover of the area. For Caguray, the land cover mostly consists of shrubland, and grassland.

Time of concentration and storage coefficient are the travel time and index of temporary storage of runoff in a watershed. The range of calibrated values from 0.07 to 457 hours determines the reaction time of the model with respect to the rainfall. The peak magnitude of the hydrograph also decreases when these parameters are increased.

Recession constant is the rate at which baseflow recedes between storm events and ratio to peak is the ratio of the baseflow discharge to the peak discharge. Recession constant of 1 indicates that the basin is unlikely to quickly go back to its original discharge and instead, will be higher. Ratio to peak of 0.2 to 0.5 indicates a steeper to relatively average receding limb of the outflow hydrograph.

Manning's roughness coefficient from 0.04 to 0.5 is high compared to the the common roughness of Philippine watersheds. This means that the riverbed is relatively rough and water will most likely flow slower. (Brunner, 2010).

Table 28. Summary of the Efficiency Test of Caguray HMS Model

| Accuracy Measure | Value |
|------------------|-------|
| RMSE             | 1.682 |
| r2               | 0.918 |
| NSE              | 0.782 |
| PBIAS            | 1.761 |
| RSR              | 0.467 |

The Root Mean Square Error (RMSE) method aggregates the individual differences of these two measurements. It was identified at 1.682.

The Pearson correlation coefficient (r2) assesses the strength of the linear relationship between the observations and the model. This value being close to 1 corresponds to an almost perfect match of the observed discharge and the resulting discharge from the HEC HMS model. Here, it measured 0.918.

The Nash-Sutcliffe (E) method was also used to assess the predictive power of the model. Here the optimal value is 1. The model attained an efficiency coefficient of 0.782.

A positive Percent Bias (PBIAS) indicates a model's propensity towards under-prediction. Negative values indicate bias towards over-prediction. Again, the optimal value is 0. In the model, the PBIAS is 1.761.

The Observation Standard Deviation Ratio, RSR, is an error index. A perfect model attains a value of 0 when the error in the units of the valuable a quantified. The model has an RSR value of 0.467.

# 5.7 Calculated outflow hydrographs and discharge values for different rainfall return periods

# 5.7.1 Hydrograph using the Rainfall Runoff Model

The summary graph (Figure 64) shows the Caguray outflow using the Romblon Rainfail Intensity-Duration-Frequency curves (RIDF) in 5 different return periods (5-year, 10-year, 25-year, 50-year, and 100-year rainfall time series) based on the Philippine Atmospheric Geophysical and Astronomical Services Administration (PAGASA) data. The simulation results reveal significant increase in outflow magnitude as the rainfall intensity increases for a range of durations and return periods.

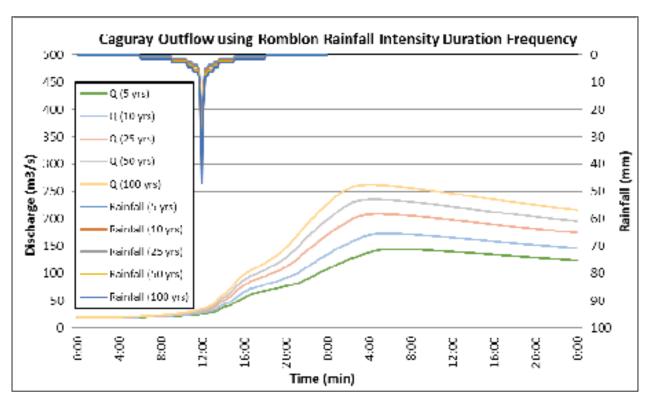



Figure 64. Outflow hydrograph at Caguray Station generated using Romblon RIDF simulated in HEC-HMS

A summary of the total precipitation, peak rainfall, peak outflow, time to peak and lag time of the Caguray discharge using the Romblon Rainfall Intensity-Duration-Frequency curves (RIDF) in five different return periods is shown in Table 33.

Table 29. Peak values of the Caguray HECHMS Model outflow using the Romblon RIDF 24-hour values

| RIDF Period | Total Precipitation (mm) | Peak rainfall<br>(mm) | Peak outflow (m<br>3/s) | Time to Peak           |
|-------------|--------------------------|-----------------------|-------------------------|------------------------|
| 5-Year      | 171.60                   | 26.0                  | 144.40                  | 18 hours 10<br>minutes |
| 10-Year     | 208.90                   | 31.10                 | 172.50                  | 17 hours 30<br>minutes |
| 25-Year     | 249.20                   | 37.60                 | 208.20                  | 16 hours 40<br>minutes |
| 50-Year     | 281.40                   | 42.40                 | 234.90                  | 16 hours 10<br>minutes |
| 100-Year    | 313.30                   | 47.20                 | 261.50                  | 15 hours 50<br>minutes |

# 5.7.2 Discharge data using Dr. Horritts's recommended hydrologic method

The river discharges for the two rivers entering the floodplain are shown in Figure 65 to Figure 66 and the peak values are summarized in Table 30 to Table 31.

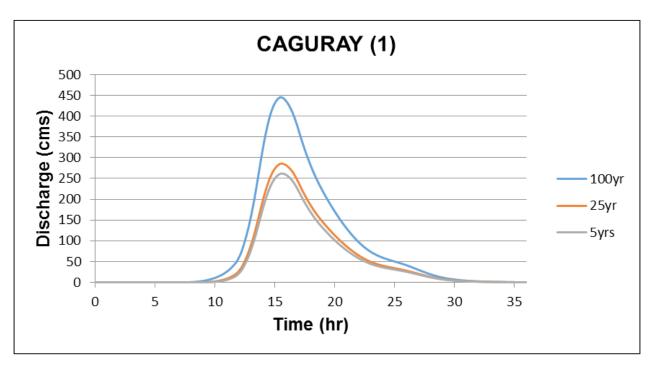



Figure 65. Caguray river (1) generated discharge using 5-, 25-, and 100-year Romblon rainfall intensity-duration-frequency (RIDF) in HEC-HMS

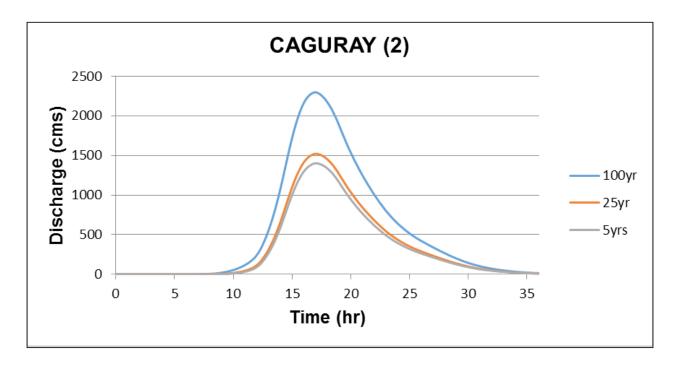



Figure 66. Caguray river (2) generated discharge using 5-, 25-, and 100-year Romblon rainfall intensity-duration-frequency (RIDF) in HEC-HMS

Table 31. Summary of Caguray river (1) discharge generated in HEC-HMS

| RIDF Period | Peak discharge (cms) | Time-to-peak         |
|-------------|----------------------|----------------------|
| 100-Year    | 445.6                | 15 hours, 30 minutes |
| 25-Year     | 285.7                | 15 hours, 30 minutes |
| 5-Year      | 261.9                | 15 hours, 40 minutes |

Table 32. Summary of Caguray river (2) discharge generated in HEC-HMS

| RIDF Period | Peak discharge (cms) | Time-to-peak |
|-------------|----------------------|--------------|
| 100-Year    | 2297.6               | 17 hours     |
| 25-Year     | 1521.5               | 17 hours     |
| 5-Year      | 1401.6               | 17 hours     |

Table 30. Validation of river discharge estimates

| Discharge          | ONAED(SCS)        | ODANIKELII       | OMED(SDEC)         | VALIDA'              | TION                  |
|--------------------|-------------------|------------------|--------------------|----------------------|-----------------------|
| Discharge<br>Point | QMED(SCS),<br>cms | QBANKFUL,<br>cms | QMED(SPEC),<br>cms | Bankful<br>Discharge | Specific<br>Discharge |
| Caguray (1)        | 305.95            | 305.95           | 305.95             | Pass                 | Pass                  |
| Caguray (2)        | 305.95            | 305.95           | 305.95             | Pass                 | Pass                  |

All two values from the HEC-HMS river discharge estimates were able to satisfy the conditions for validation using the bankful and specific discharge methods. The calculated values are based on theory but are supported using other discharge computation methods so they were good to use flood modeling. However, these values will need further investigation for the purpose of validation. It is therefore recommended to obtain actual values of the river discharges for higher-accuracy modeling.

# 5.8 River Analysis Model Simulation

The HEC-RAS Flood Model produced a simulated water level at every cross-section for every time step for every flood simulation created. The resulting model will be used in determining the flooded areas within the model. The simulated model will be an integral part in determining real-time flood inundation extent of the river after it has been automated and uploaded on the DREAM website. The sample map of Caguray River using the HMS base flow is shown on Figure 67 below.



Figure 67. Sample output of Caguray RAS Model

# 5.9 Flood Hazard and Flow Depth Map

The resulting hazard and flow depth maps have a 10m resolution. The flood hazard and flow depth maps for the 5-, 25-, and 100-year rain return scenarios of the Caguray floodplain are shown in Figure 68 to Figure 73. The floodplain covers two municipalities in Occidental Mindoro, namely Magsaysay and San Jose. Table 33 shows the percentage of area affected by flooding per municipality.

Table 33. Municipalities affected in Caguray Floodplain

| City / Municipality | Total Area<br>(sq.km.) | Area Flooded<br>(sq.km.) | % Flooded |
|---------------------|------------------------|--------------------------|-----------|
| Magsaysay           | 256.66                 |                          |           |
| San Jose            | 449.82                 |                          |           |

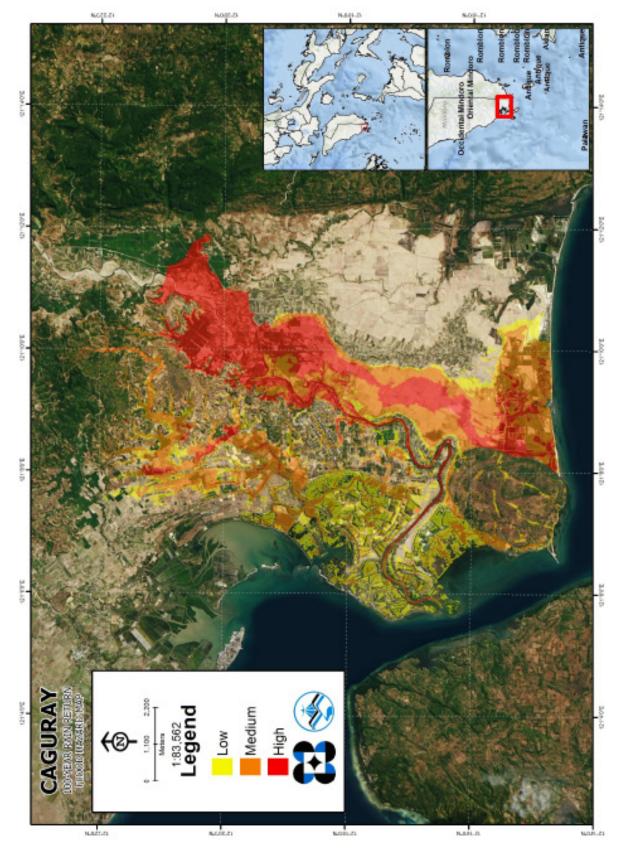



Figure 68. 100-year Flood Hazard Map for Caguray Floodplain overlaid in Google Earth imagery

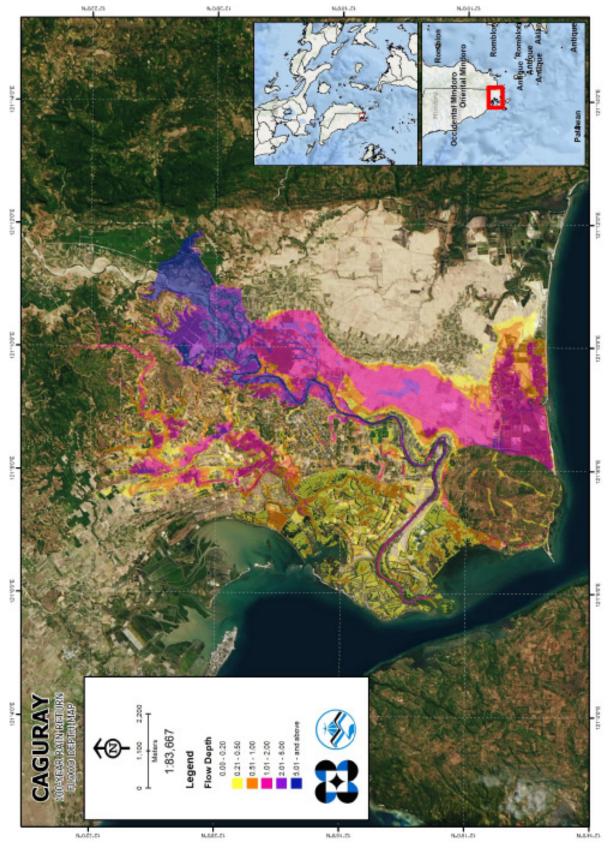



Figure 69. 100-year Flow Depth Map for Caguray Floodplain overlaid in Google Earth imagery

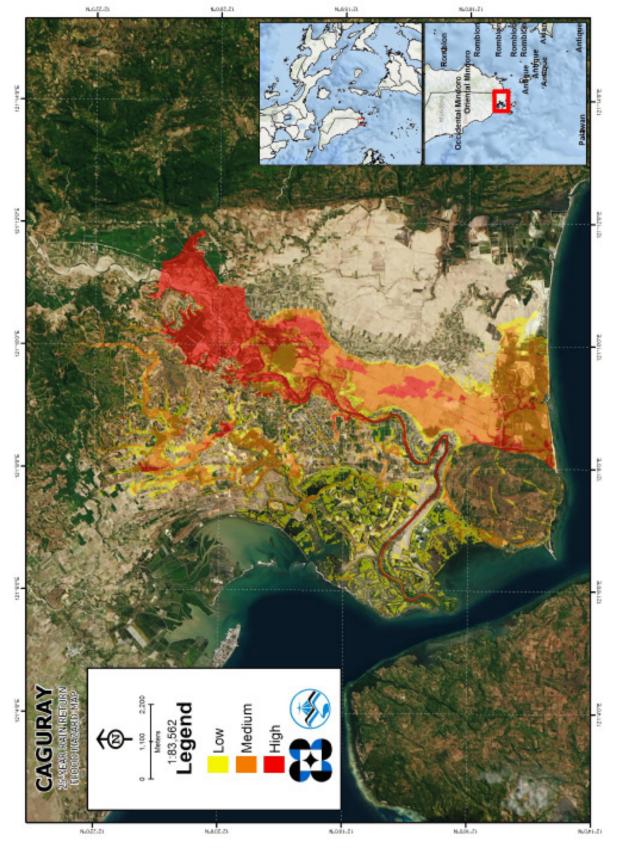



Figure 70. 25-year Flood Hazard Map for Caguray Floodplain overlaid in Google Earth imagery

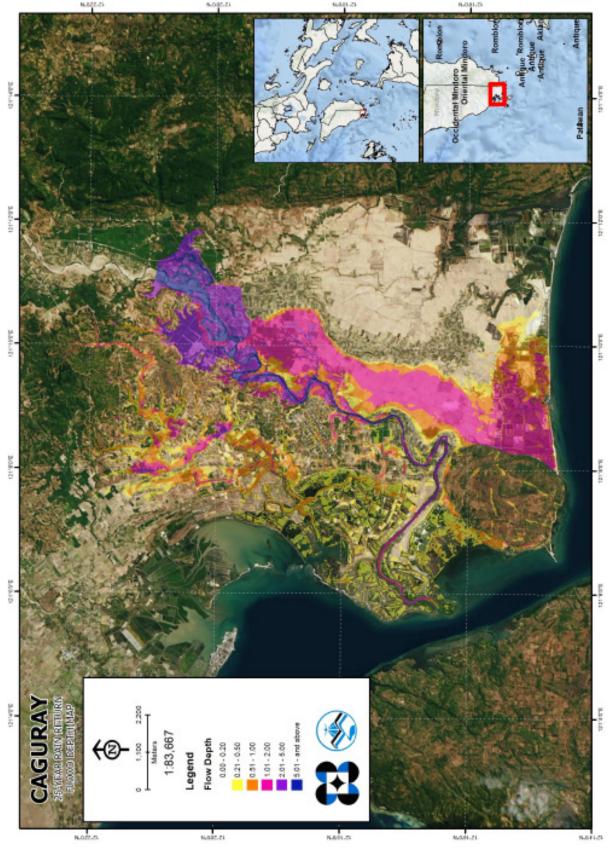



Figure 71. 25-year Flow Depth Map for Caguray Floodplain overlaid in Google Earth imagery

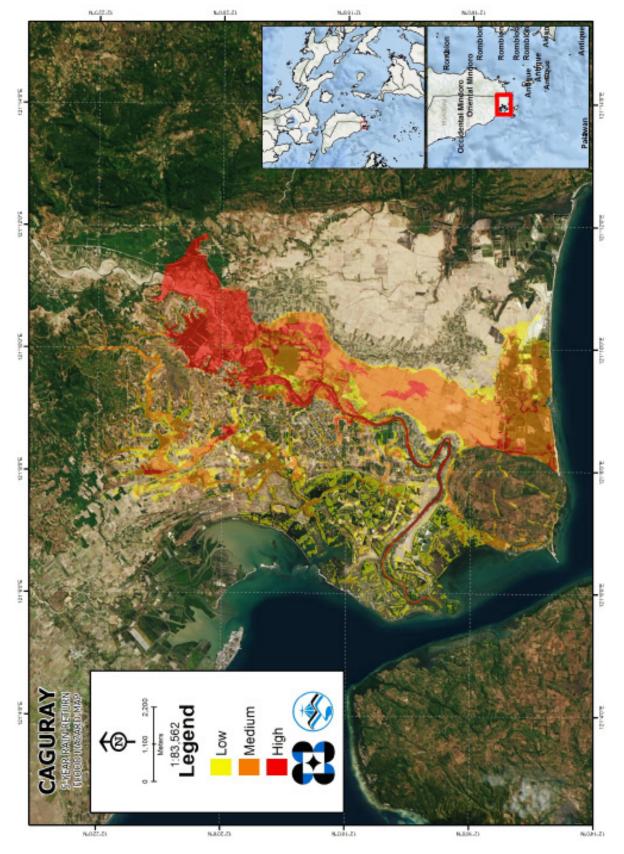



Figure 72. 5-year Flood Hazard Map for Caguray Floodplain overlaid in Google Earth imagery

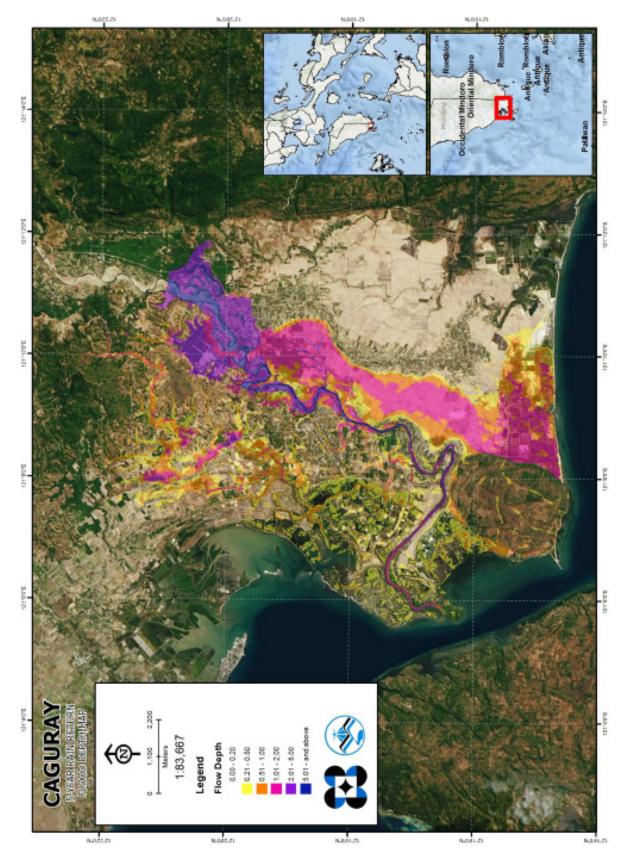



Figure 73. 5-year Flow Depth Map for Caguray Floodplain overlaid in Google Earth imagery

# 5.10 Inventory of Areas Exposed to Flooding

Affected barangays in Caguray river basin, grouped by municipality, are listed below. For the said basin, two municipalities consisting of 11 barangays are expected to experience flooding when subjected to 5-yr rainfall return period.

For the 5-year return period, 16.21% of the municipality of Magsaysay with an area of 256.56 sq. km. will experience flood levels of less 0.20 meters. 3.53% of the area will experience flood levels of 0.21 to 0.50 meters while 3.45%, 4.19%, 2.27%, and 0.76% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters and more than 5 meters, respectively. Listed in Table 34 and Table 35, and shown in Figure 74 are the affected areas in Magsaysay in square kilometres by flood depth per barangay.

| Affected area (sq.km.) | Area of affected barangays in Magsaysay (in sq. km.) |         |         |       |         |
|------------------------|------------------------------------------------------|---------|---------|-------|---------|
| by flood depth (in m.) | Alibog                                               | Caguray | Calawag | Laste | Lourdes |
| 0.03-0.20              | 0.017                                                | 7.99    | 2.04    | 1.46  | 18.46   |
| 0.21-0.50              | 0                                                    | 2.89    | 0.66    | 0.73  | 2.91    |
| 0.51-1.00              | 0                                                    | 0.63    | 1.43    | 1     | 2.82    |
| 1.01-2.00              | 0                                                    | 0.32    | 2.07    | 0.77  | 1.17    |
| 2.01-5.00              | 0                                                    | 0.13    | 0.2     | 0.017 | 1.14    |
| > 5.00                 | 0                                                    | 0       | 0.073   | 0     | 0.016   |

Table 34. Affected Areas in Magsaysay, Occidental Mindoro during 5-Year Rainfall Return Period

| Affected area (sq.km.) | Area of affected barangays in Magsaysay (in sq. km.) |           |         |              |         |  |
|------------------------|------------------------------------------------------|-----------|---------|--------------|---------|--|
| by flood depth (in m.) | Nicolas                                              | Poblacion | Purnaga | Santa Teresa | Sibalat |  |
| 0.03-0.20              | 0.00026                                              | 2.24      | 0.93    | 6.76         | 1.69    |  |
| 0.21-0.50              | 0                                                    | 0.92      | 0.044   | 0.47         | 0.44    |  |
| 0.51-1.00              | 0                                                    | 1.83      | 0.064   | 0.33         | 0.76    |  |
| 1.01-2.00              | 0                                                    | 4.51      | 0.35    | 0.055        | 1.5     |  |
| 2.01-5.00              | 0                                                    | 2.21      | 2.13    | 0.0038       | 0.011   |  |
| > 5.00                 | 0                                                    | 0         | 0       | 0            | 0       |  |

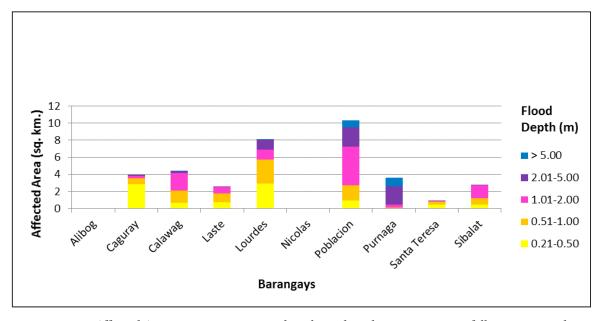



Figure 74. Affected Areas in Magsaysay, Occidental Mindoro during 5-Year Rainfall Return Period

For the municipality of San Jose, with an area of 449.82 sq. km., 0.35% will experience flood levels of less 0.20 meters. 0.8% of the area will experience flood levels of 0.21 to 0.50 meters while 0.01%, and 0.000008% of the area will experience flood depths of 0.51 to 1 meter, and 1.01 to 2 meters, respectively. Listed in Table 36 and shown in Figure 75 are the affected areas in square kilometres by flood depth per barangay.

Table 35. Affected Areas in San Jose, Occidental Mindoro during 5-Year Rainfall Return Period

| Affected area (sq.km.) | Area of affected barangays in San Jose (in sq. km.) |  |  |  |
|------------------------|-----------------------------------------------------|--|--|--|
| by flood depth (in m.) | Mapaya                                              |  |  |  |
| 0.03-0.20              | 1.56                                                |  |  |  |
| 0.21-0.50              | 0.35                                                |  |  |  |
| 0.51-1.00              | 0.06                                                |  |  |  |
| 1.01-2.00              | 0.000035                                            |  |  |  |
| 2.01-5.00              | 0                                                   |  |  |  |
| > 5.00                 | 0                                                   |  |  |  |

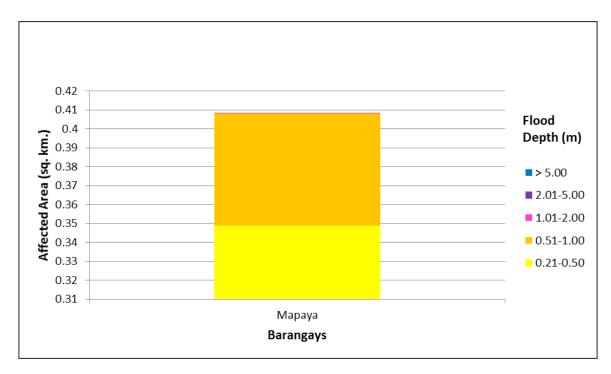



Figure 75. Affected Areas in San Jose, Occidental Mindoro during 5-Year Rainfall Return Period

For the 25-year return period, 15.82% of the municipality of Magsaysay with an area of 256.56 sq. km. will experience flood levels of less 0.20 meters. 3.46% of the area will experience flood levels of 0.21 to 0.50 meters while 3.39%, 4.55%, 2.31%, and 0.89% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meter, respectively. Listed in Table 37 and Table 38, and shown in Figure 76 are the areas affected in Magsaysay in square kilometers by flood depth per barangay.

Table 36. Affected Areas in Magsaysay, Occidental Mindoro during 25-Year Rainfall Return Period

| Affected area (sq.km.) | Area of affected barangays in Magsaysay (in sq. km.) |         |         |       |         |
|------------------------|------------------------------------------------------|---------|---------|-------|---------|
| by flood depth (in m.) | Alibog                                               | Caguray | Calawag | Laste | Lourdes |
| 0.03-0.20              | 0.017                                                | 7.73    | 1.92    | 1.34  | 18.22   |
| 0.21-0.50              | 0                                                    | 3.06    | 0.63    | 0.67  | 2.86    |
| 0.51-1.00              | 0                                                    | 0.72    | 1.2     | 1.06  | 2.93    |
| 1.01-2.00              | 0                                                    | 0.33    | 2.45    | 0.89  | 1.3     |
| 2.01-5.00              | 0                                                    | 0.13    | 0.21    | 0.024 | 1.18    |
| > 5.00                 | 0                                                    | 0       | 0.07    | 0     | 0.02    |

| Affected area (sq.km.) | Area of affected barangays in Magsaysay (in sq. km.) |           |         |              |         |
|------------------------|------------------------------------------------------|-----------|---------|--------------|---------|
| by flood depth (in m.) | Nicolas                                              | Poblacion | Purnaga | Santa Teresa | Sibalat |
| 0.03-0.20              | 0.00026                                              | 2.16      | 0.91    | 6.72         | 1.58    |
| 0.21-0.50              | 0                                                    | 0.69      | 0.041   | 0.49         | 0.45    |
| 0.51-1.00              | 0                                                    | 1.68      | 0.059   | 0.34         | 0.7     |
| 1.01-2.00              | 0                                                    | 4.78      | 0.23    | 0.061        | 1.65    |
| 2.01-5.00              | 0                                                    | 2.32      | 2.05    | 0.0044       | 0.018   |
| > 5.00                 | 0                                                    | 0.91      | 1.26    | 0            | 0       |

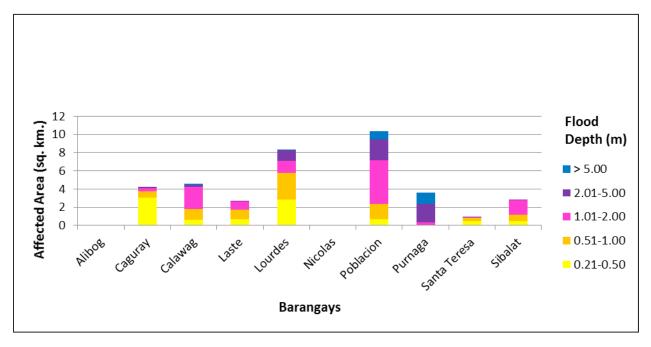



Figure 76. Affected Areas in Magsaysay, Occidental Mindoro during 25-Year Rainfall Return Period

For the municipality of San Jose, with an area of 449.82 sq. km., 0.34% will experience flood levels of less 0.20 meters. 0.08% of the area will experience flood levels of 0.21 to 0.50 meters while 0.02%, and 0.000008% of the area will experience flood depths of 0.51 to 1 meter, and more than 1 meter, respectively. Listed in Table 39 and shown in Figure 77 are the affected areas in square kilometres by flood depth per barangay.

Table 37. Affected Areas in San Jose, Occidental Mindoro during 25-Year Rainfall Return Period

| Affected area (sq.km.) | Area of affected barangays in San Jose (in sq. km.) |
|------------------------|-----------------------------------------------------|
| by flood depth (in m.) | Mapaya                                              |
| 0.03-0.20              | 1.53                                                |
| 0.21-0.50              | 0.37                                                |
| 0.51-1.00              | 0.071                                               |
| 1.01-2.00              | 0.000035                                            |
| 2.01-5.00              | 0                                                   |
| > 5.00                 | 0                                                   |

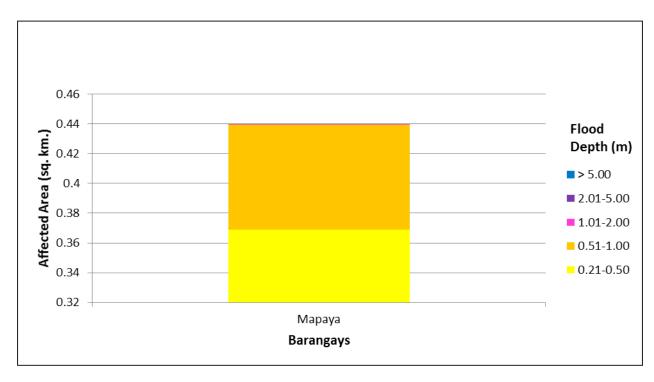



Figure 77. Affected Areas in San Jose, Occidental Mindoro during 25-Year Rainfall Return Period

For the 100-year return period, 14.27% of the municipality of Magsaysay with an area of 256.56 sq. km. will experience flood levels of less 0.20 meters. 3.57% of the area will experience flood levels of 0.21 to 0.50 meters while 3.38%, 5.31%, 2.28%, and 1.60% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 40 and Table 41, and shown in Figure 78 are the affected areas in square kilometres by flood depth per barangay.

Table 38. Affected Areas in Magsaysay, Occidental Mindoro during 100-Year Rainfall Return Period

| Affected area (sq.km.) | Area of affected barangays in Magsaysay (in sq. km.) |         |         |       |         |
|------------------------|------------------------------------------------------|---------|---------|-------|---------|
| by flood depth (in m.) | Alibog                                               | Caguray | Calawag | Laste | Lourdes |
| 0.03-0.20              | 0.017                                                | 6.42    | 1.62    | 0.98  | 17.04   |
| 0.21-0.50              | 0.00018                                              | 3.73    | 0.56    | 0.67  | 2.6     |
| 0.51-1.00              | 0                                                    | 1.29    | 0.84    | 1.03  | 3.19    |
| 1.01-2.00              | 0                                                    | 0.42    | 2.88    | 1.23  | 2.28    |
| 2.01-5.00              | 0                                                    | 0.092   | 0.5     | 0.069 | 1.19    |
| > 5.00                 | 0                                                    | 0       | 0.066   | 0     | 0.2     |

| Affected area (sq.km.) | Area of affected barangays in Magsaysay (in sq. km.) |           |         |              |         |  |
|------------------------|------------------------------------------------------|-----------|---------|--------------|---------|--|
| by flood depth (in m.) | Nicolas                                              | Poblacion | Purnaga | Santa Teresa | Sibalat |  |
| 0.03-0.20              | 0.00026                                              | 2.03      | 0.77    | 6.5          | 1.24    |  |
| 0.21-0.50              | 0                                                    | 0.4       | 0.032   | 0.61         | 0.55    |  |
| 0.51-1.00              | 0                                                    | 1.3       | 0.042   | 0.39         | 0.61    |  |
| 1.01-2.00              | 0                                                    | 4.67      | 0.081   | 0.12         | 1.95    |  |
| 2.01-5.00              | 0                                                    | 2.8       | 1.13    | 0.0069       | 0.065   |  |
| > 5.00                 | 0                                                    | 1.35      | 2.49    | 0            | 0       |  |

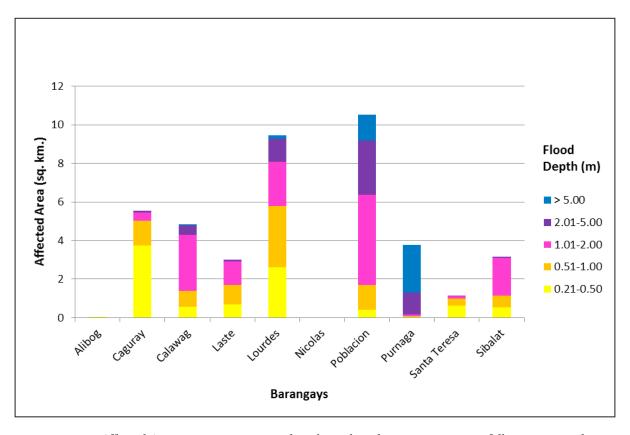



Figure 78. Affected Areas in Magsaysay, Occidental Mindoro during 100-Year Rainfall Return Period

For the municipality of San Jose, with an area of 449.82 sq. km., 0.29% will experience flood levels of less 0.20 meters. 0.11% of the area will experience flood levels of 0.21 to 0.50 meters while 0.04%, 0.00007%, and 0.000004% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, and more than 2 meters, respectively. Listed in Table 42 and shown in Figure 79 are the areas affected in San Jose in square kilometers by flood depth per barangay.

Table 39. Affected Areas in San Jose, Occidental Mindoro during 100-Year Rainfall Return Period

| Affected area (sq.km.) | Area of affected barangays in San Jose (in sq. km.) |
|------------------------|-----------------------------------------------------|
| by flood depth (in m.) | Mapaya                                              |
| 0.03-0.20              | 1.29                                                |
| 0.21-0.50              | 0.48                                                |
| 0.51-1.00              | 0.2                                                 |
| 1.01-2.00              | 0.0003                                              |
| 2.01-5.00              | 0.000002                                            |
| > 5.00                 | 0                                                   |

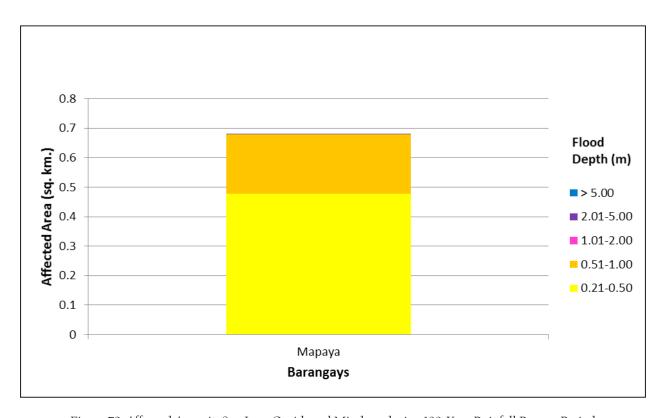



Figure 79. Affected Areas in San Jose, Occidental Mindoro during 100-Year Rainfall Return Period

Among the barangays in the municipality of Magsaysay, Poblacion is projected to have the highest percentage of area that will experience flood levels at 4.89%. Meanwhile, Caguray posted the second highest percentage of area that may be affected by flood depths at 4.66%.

Among the barangays in the municipality of San Jose, Mapaya is projected to have the highest percentage of area that will experience flood levels at 0.44%.

Moreover, the generated flood hazard maps for the Baroc floodplain were used to assess the vulnerability of the educational and medical institutions in the floodplain. Using the flood depth units of PAG-ASA for hazard maps - "Low", "Medium", and "High" - the affected institutions were given their individual assessment for each Flood Hazard Scenario (5 yr, 25 yr, and 100 yr).

#### 5.11 Flood Validation

In order to check and validate the extent of flooding in different river systems, there was a need to perform validation survey work. Field personnel gathered secondary data regarding flood occurrence in the area within the major river system in the Philippines.

From the Flood Depth Maps produced by Phil-LiDAR 1 Program, multiple points representing the different flood depths for different scenarios were identified for validation.

The validation personnel went to the specified points identified in a river basin and gathered data regarding the actual flood level in each location. Data gathering was done through a local DRRM office to obtain maps or situation reports about the past flooding events and through interviews with some residents who have knowledge of or have had experienced flooding in a particular area.

After which, the actual data from the field was compared to the simulated data to assess the accuracy of the Flood Depth Maps produced and to improve on what is needed. The points in the flood map versus its corresponding validation depths are shown in Figure 81.

The flood validation consists of 135 points randomly selected all over the Caguray floodplain. It has an RMSE value of 0.42. Table 40 shows a contingency matrix of the comparison.

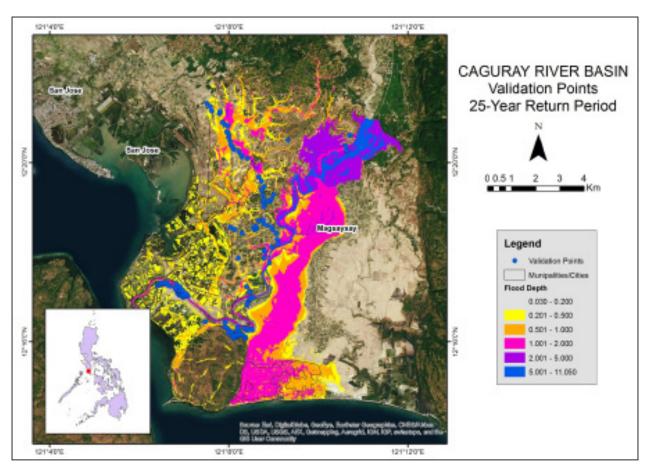



Figure 80. Validation points for 25-year Flood Depth Map of Caguray Floodplain

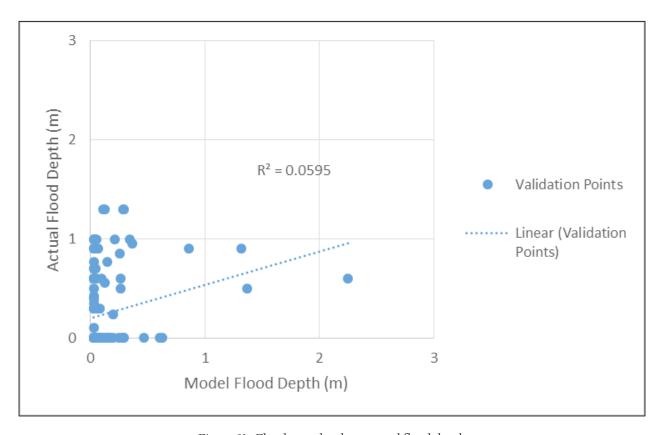



Figure 81. Flood map depth vs. actual flood depth

Table 40. Actual flood vs simulated flood depth at different levels in the Caguray River Basin.

| Actual Flood Depth | Modeled Flood Depth (m) |           |           |           |           |        |       |
|--------------------|-------------------------|-----------|-----------|-----------|-----------|--------|-------|
| (m)                | 0-0.20                  | 0.21-0.50 | 0.51-1.00 | 1.01-2.00 | 2.01-5.00 | > 5.00 | Total |
| 0-0.20             | 80                      | 6         | 2         | 0         | 0         | 0      | 88    |
| 0.21-0.50          | 13                      | 1         | 0         | 1         | 0         | 0      | 15    |
| 0.51-1.00          | 20                      | 5         | 1         | 1         | 1         | 0      | 28    |
| 1.01-2.00          | 2                       | 2         | 0         | 0         | 0         | 0      | 4     |
| 2.01-5.00          | 0                       | 0         | 0         | 0         | 0         | 0      | 0     |
| > 5.00             | 0                       | 0         | 0         | 0         | 0         | 0      | 0     |
| Total              | 115                     | 14        | 3         | 2         | 1         | 0      | 135   |

The overall accuracy generated by the flood model is estimated at 60.74%, with 82 points correctly matching the actual flood depths. In addition, there were 25 points estimated one level above and below the correct flood depths while there were 26 points and 2 points estimated two levels above and below, and three or more levels above and below the correct flood. A total of 11 points were overestimated while a total of 42 points were underestimated in the modelled flood depths of Caguray. Table 44 depicts the summary of the Accuracy Assessment in the Caguray River Basin Survey..

Table 41. Summary of Accuracy Assessment in Caguray River Basin Survey

|                | No. of Points | %     |
|----------------|---------------|-------|
| Correct        | 82            | 60.74 |
| Overestimated  | 11            | 8.15  |
| Underestimated | 42            | 31.11 |
| Total          | 135           | 100   |

# **REFERENCES**

Ang M.C., Paringit E.C., et al. 2014. DREAM Data Processing Component Manual. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry

Balicanta L.P, Paringit E.C., et al. 2014. DREAM Data Validation Component Manual. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Brunner, G. H. 2010a. HEC-RAS River Analysis System Hydraulic Reference Manual. Davis, CA: U.S. Army Corps of Engineers, Institute for Water Resources, Hydrologic Engineering Center.

Lagmay A.F., Paringit E.C., et al. 2014. DREAM Flood Modeling Component Manual. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry


Paringit, E.C., Balicanta, L.P., Ang, M.C., Lagmay, A.F., Sarmiento, C. 2017, Flood Mapping of Rivers in the Philippines Using Airborne LiDAR: Methods. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry

Sarmiento C.J.S., Paringit E.C., et al. 2014. DREAM Data Aquisition Component Manual. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry

UP TCAGP 2016. Acceptance and Evaluation of Synthetic Aperture Radar Digital Surface Model (SAR DSM) and Ground Control Points (GCP). Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

# Annex 1. Optech Technical Specification of the Sensor

# 1. AQUARIUS SENSOR

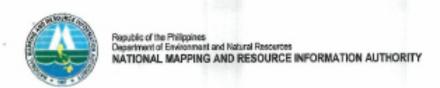


# 2. PARAMETERS AND SPECIFICATIONS OF THE AQUARIUS SENSOR

| Parameter                        | Specification                                                                   |
|----------------------------------|---------------------------------------------------------------------------------|
| Operational altitude             | 300-600 m AGL                                                                   |
| Laser pulse repetition rate      | 33, 50. 70 kHz                                                                  |
| Scan rate                        | 0-70 Hz                                                                         |
| Scan half-angle                  | 0 to ± 25 °                                                                     |
| Laser footprint on water surface | 30-60 cm                                                                        |
| Depth range                      | 0 to > 10 m (for k < 0.1/m)                                                     |
| Topographic mode                 |                                                                                 |
| Operational altitude             | 300-2500                                                                        |
| Range Capture                    | Up to 4 range measurements, including 1st, 2nd, 3rd, and last returns           |
| Intensity capture                | 12-bit dynamic measurement range                                                |
| Position and orientation system  | POS AVTM 510 (OEM) includes embedded 72-channel GNSS receiver (GPS and GLONASS) |
| Data Storage                     | Ruggedized removable SSD hard disk (SATA III)                                   |
| Power                            | 28 V, 900 W, 35 A                                                               |
| Image capture                    | 5 MP interline camera (standard); 60 MP full frame (optional)                   |
| Full waveform capture            | 12-bit Optech IWD-2 Intelligent Waveform Digitizer (optional)                   |
| Dimensions and weight            | Sensor:250 x 430 x 320 mm; 30 kg;<br>Control rack: 591 x 485 x 578 mm; 53 kg    |
| Operating temperature            | 0-35°C                                                                          |
| Relative humidity                | 0-95% no-condensing                                                             |
| Relative humidity                | 0-95% non-condensing                                                            |

# 3. PEGASUS SENSOR




# 4. PARAMETERS AND SPECIFICATIONS OF THE PEGASUS SENSOR

| Parameter                           | Specification                                                         |
|-------------------------------------|-----------------------------------------------------------------------|
| Operational envelope (1,2,3,4)      | 150-5000 m AGL, nominal                                               |
| Laser wavelength                    | 1064 nm                                                               |
| Horizontal accuracy (2)             | 1/5,500 x altitude, 1σ                                                |
| Elevation accuracy (2)              | < 5-20 cm, 1σ                                                         |
| Effective laser repetition rate     | Programmable, 100-500 kHz                                             |
| Position and orientation system     | POS AV ™AP50 (OEM)                                                    |
| Scan width (FOV)                    | Programmable, 0-75 °                                                  |
| Scan frequency (5)                  | Programmable, 0-140 Hz (effective)                                    |
| Sensor scan product                 | 800 maximum                                                           |
| Beam divergence                     | 0.25 mrad (1/e)                                                       |
| Roll compensation                   | Programmable, ±37° (FOV dependent)                                    |
| Vertical target separation distance | <0.7 m                                                                |
| Range capture                       | Up to 4 range measurements, including 1st, 2nd, 3rd, and last returns |
| Intensity capture                   | Up to 4 intensity returns for each pulse, including last (12 bit)     |
| Image capture                       | 5 MP interline camera (standard); 60 MP full frame (optional)         |
| Full waveform capture               | 12-bit Optech IWD-2 Intelligent Waveform Digitizer                    |
| Data storage                        | Removable solid state disk SSD (SATA II)                              |
| Power requirements                  | 28 V, 800 W, 30 A                                                     |
| Dimensions and weight               | Sensor: 630 x 540 x 450 mm; 65 kg;                                    |
|                                     | Control rack: 650 x 590 x 490 mm; 46 kg                               |
| Operating Temperature               | -10°C to +35°C                                                        |
| Relative humidity                   | 0-95% non-condensing                                                  |

- 1. Target reflectivity ≥20%
- $2. \quad \text{Dependent on selected operational parameters using nominal FOV of up to 40° in standard atmospheric conditions with 24-km visibility } \\$
- 3. Angle of incidence ≤20°
- 4. Target size ≥ laser footprint5 Dependent on system configuration

### Annex 2. NAMRIA Certificates of Reference Points Used

#### 1. MRW-18



December 11, 2015

#### CERTIFICATION

#### To whom it may concern:

This is to certify that according to the records on file in this office, the requested survey information is as follows -

Province: OCCIDENTAL MINDORO Station Name: MRW-18 Order: 2nd Barangay: Island: LUZON Municipality: MAGSAYSAY MSL Elevation: PRS92 Coordinates Longitude: 121° 8' 36.92441" Ellipsoidal Hgt: 21.29500 m. Latitude: 12° 18' 45.39463" WGS84 Coordinates Longitude: 121° 8' 42.01469" Ellipsoidal Hgt: 71.37500 m. Latitude: 12° 18' 40.53383" PTM / PRS92 Coordinates Easting: 515618.524 m. Zone: 3 Northing: 1361517.851 m. UTM / PRS92 Coordinates 298,113.89 Zone: 51 Easting: Northing: 1,361,734.74

Location Description

#### MRW-18

From Municipality of Magsaysay, located in front of statue of President Ramon Magsaysay, inside the Municipal Compound, about 40 m SE of Municipal Bldg. of Magsaysay. Station is located in Municipality of Magsaysay, Occ. Mindoro, Mark is the head of a 4 in, copper nail flushed in a cement block embedded in the ground with inscriptions, "MRW-18, 2007, NAMRIA".

Requesting Party: UP DREAM Purpose: Reference OR Number: 8088861 I T.N.: 2015-4114

RUEL DM, BELEN, MNSA Director, Mapping And Geodesy Branch





AMARIA (FFICE): Man | Lasten-Russea, Fat Banikaio, 1604 Taguig City, Philippines Tel. No.: 1503) 819-4531 in 41 Branch: 421 Banaca St. San Hissins, 1618 Blanks, Philippines, Tel. No. (503) 641-3404 to 198

www.samria.gov.ph

ISO 9001: 2008 CERTIFIED FOR HIAPPING AND GEOGRATIAL INFORMATION INVANAGEMENT

#### 2. MRW-22



March 04, 2014

#### CERTIFICATION

#### To whom it may concern:

This is to certify that according to the records on file in this office, the requested survey information is as follows -

|             |                  | Description Occur | DENTAL MINDODO     |           |         |             |
|-------------|------------------|-------------------|--------------------|-----------|---------|-------------|
|             |                  | Province: OCC     | DENTAL MINDORO     |           |         |             |
|             |                  | Station N         | ame: MRW-22        |           |         |             |
| Island: LUZ | ON CALINTAAN     | Order             | : 2nd              | Baranga   | y: TAN  | /AG         |
| yearq       |                  | PRS               | 92 Coordinates     |           |         |             |
| Latitude: 1 | 2° 31' 36.76881" | Longitude:        | 120° 59" 13.46492" | Ellipsoid | al Hgt: | 35.12700 m. |
|             |                  | was               | 84 Coordinates     |           |         |             |
| Latitude: 1 | 2° 31' 31.84278" | Longitude:        | 120° 59' 18.53734" | Ellipsoid | al Hgt: | 84.27100 m. |
|             |                  | PTK               | f Coordinates      |           |         |             |
| Northing: 1 | 385214.96 m.     | Easting:          | 498595.125 m.      | Zone:     | 3       |             |
|             |                  | UTN               | f Coordinates      |           |         |             |
| Northing: 1 | 1,385,563.72     | Easting:          | 281,265.62         | Zone:     | 51      |             |

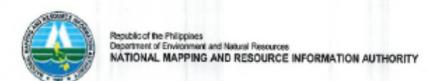
#### Location Description

#### MRW-22

From Abra de Ilog to San Jose, along Nat'l Road, approx. 9 Km. from Calintsan Town Proper, located Lumintao Bridge at Brgy. Tanyag, Sitio Marilao, Calintsan, Occ. Mindoro. Station is located at the N end of the catwalk of Lumintao Bridge. Mark is the head of a 4 in. copper nail flushed in a cement block embedded in the ground with inscriptions, "MRW-22, 2007, NAMRIA".

Requesting Party: UP-DREAM
Pupose: Reference
OR Number: 8795470 A
T.N.: 2014-446

RUEL DM. BELEN, MINSA Director Mapping And Geodesy Branch






MAMRIA OFFICES:

Plain: Lawton Svenue, Fort Benifado, 1834 Taguig City, Philippines. Tel. St.:: (627) 810-4821 to 41 Branch: 421 Service St. Sen Station, 1818 Plander, Philippines. Tel. So. (622) 241-3494 to 55 www.normia.gov.ph

#### 3. MRE-56



October 28, 2015

#### CERTIFICATION

#### To whom it may concern:

This is to certify that according to the records on file in this office, the requested survey information is as follows -

Province: ORIENTAL MINDORO

Station Name: MRE-56

Order: 2nd

Island: LUZON Municipality: MANSALAY

Barangay: MSL Elevation:

PRS92 Coordinates

Latitude: 12\* 31' 25.76362"

Longitude: 121° 26' 25.21109"

Elipsoidal Hgt: 7.87000 m.

WGS84 Coordinates

Latitude: 12° 31' 20.87629"

Longitude: 121° 26' 30.28143"

Ellipsoidal Hgt: 58.13600 m.

PTM / PRS92 Coordinates

Northing: 1384916.657 m.

Easting: 547857.861 m.

Zone: 3

Northing: 1,384,892.31

UTM / PRS92 Coordinates

Easting: 330,530.08

Zone: 51

Location Description

#### MIRE-56

From Calapan City to Bulalacco, along Nat'l Road approx. 4 Km. from Roxas Proper is an intersection of Roxas, Mansalay, Bongabong Road, turn left, approx. 14 Km. travel, right side of Nat'l Road located Mun. Hall of Mansalay, Oriental Mindoro, in front of Mansalay Hospital. Station is located in comer wall of Mun. Park in front of Mun. Hall. Mark is the head of a 4 in. copper nail flushed in a cement block embedded in the ground with inscrittions, "MRE-56, 2007, NAMRIA".

Requesting Party: ENGR. CHRISTOPHER CRUZ

Purpose: OR Number:

T.N.:

Reference 8088472 I

2015-3523

RUEL DM. BELEN, MNSA Director, Mapping And Geodesy Branch



stantion distribution:

Main: Lanton Invention, Flori Bondario, "Bills Tagging City, Philippones. Tel. No. (602) 519-4626 to 41 french: 451 filement St. Sannicosos, 1010 tantos, Philippones, Tel. No. (602) 511-5464 to 56 www.ministratific...g.ov..ph.

SO 901: 203 CERTIFIED FOR MAPPING AND CEOSPATIAL INFORMATION MANAGEMENT

#### 4. MRW-4203



March 25, 2014

#### CERTIFICATION

#### To whom it may concern:

This is to certify that according to the records on file in this office, the requested survey information is as follows -

Province: OCCIDENTAL MINDORO

Station Name: MRW-4203

Order: 3rd

Island: LUZON

Municipality: SAN JOSE

PRS92 Coordinates

Latitude: 12" 21' 24.45294"

Longitude: 121º 7' 26.92407"

Ellipsoidal Hgt:

Barangay: MAPAYA

7.40100 m.

WGS84 Coordinates

Latitude: 12° 21' 19.57973"

Longitude: 121° 7' 32.01059"

Ellipsoidal Hgt:

57.32000 m.

PTM Coordinates

Northing: 1366404.003 m.

Northing: 1,366,637.32

513501.246 m.

Zone: 3

Easting:

**UTM Coordinates** 

Easting: 296,032.79

51 Zone:

Location Description

#### MRW-4203

From San Jose Town Proper to Brgy, Mapaya, approx. 7.8 Km, travel to reach brgy, hall. The station is located inside the compound of brgy, plaza, beside the gate post, left side fronting brgy, hall about 40 m NE of brgy, hall, 200 m NW of post Km, post 228, along Naf1 Road, 7 Km, to San Jose, Station is located in Brgy, Mapaya, San Jose, Occ., Mindoro, Mark is the head of a 4 in, copper nail flushed in a cement block embedded in the ground with inscriptions, "MRW-4203, 2007, NAMRIA".

Requesting Party: UP DREAM Pupose: Reference OR Number: 8795829 A T.N.:

2014-643

RUEL DM. BELEN, MNSA Director, Mapping And Geodesy Branch





Print (Lands Awrus, Fut Beellois), 1934 Faguig Chy, Philippines Tel, No. (533) 810-4031 to 41 Banck: -931 Banca St. Ban Nissian, 1918 Werle, Philippines, Tel, No. (532) 241-3454 to 58 www.namria.gov.ph

ISO 9001: 2008 CERTIFIED FOR MAPPING AND GEOGRATIAL INFORMATION MANAGEMENT

#### 5. MRW-4205



March 04, 2014

#### CERTIFICATION

#### To whom it may concern:

This is to certify that according to the records on file in this office, the requested survey information is as follows -

Province: OCCIDENTAL MINDORO Station Name: MRW-4205 Order: 3rd Island: LUZON Barangay: CENTRAL Municipality: SAN JOSE PRS92 Coordinates Latitude: 12° 26" 8.33964" Longitude: 121º 2' 46.62783" Ellipsoidal Hgt: 12.56900 m. WGS84 Coordinates Latitude: 12° 26" 3.44072" Longitude: 121° 2" 51.70789" Ellipsoidal Hgt: 62.09500 m. PTM Coordinates Northing: 1375124 m. Easting: 505032.188 m. Zone: 3 **UTM Coordinates** Northing: 1,375,422.19 287,627.78 Easting: Zone: 51

Location Description

#### MRW-4205

From Abra de llog to San Jose, along Nat'l Road, approx. 10 Km, travel from San Jose Town Proper, 70 m E of Km, post 247 located Mabuhay Home Based ECCD Center for Health and Nutrition Bidg, located at Brgy. Central, Sitio Mabuhay, San Jose, Occ., Mindoro. Station is located beside fence, 2.0 m SW of Sitio Mabuhay Home Based ECCD Center of Health and Nutrition Post, 40 m NE of Nat'l Road, 70 m E of Km. post 247. Mark is the head of a 4 in. copper nail flushed in a cement block embedded in the ground with inscriptions, "MRW-4205, 2007, NAMRIA".

Requesting Party: UP-DREAM Pupose: Reference 0R Number: 8795470 A T.N.: 2014-448

RUEL DM. BELEN, MNSA Director, Mapping And Geodesy Branch





MARKA OFFICE:

Hain : Lewton Evenue, Fort Bonifodo, 1634 Topoig City, Philippines — Tel. So.: (633) 810-4831 to 41
Branch : 431 Borroox St. Son Nicolan, 1818 Manife, Philippines, Tel. No. (632) 241-3414 to 16
www.naturelia.gov.gib

## Annex 3. Baseline Processing Report of Reference Points Used

## Baseline Processing Report - A

| Project information |                                      | Coordinate System |                 |  |
|---------------------|--------------------------------------|-------------------|-----------------|--|
| Name:               | C:\Users\qwerty\D ocuments\S usiness | Name:             | UTM             |  |
|                     | Center - HCE (mrw18-mrw18a.vce       | Datumo            | PRS 82          |  |
| Size:               | 156 KB                               | Zone:             | 51 North (123E) |  |
| Modified:           | 12/21/2015 2:56:44 PM (UTC:8)        | Geold:            | EGMPH           |  |
| Time zone:          | Taipei Standard Time                 | Vertical datum:   | a server 11     |  |
| Reference number:   |                                      | ventical datam.   |                 |  |
| Description:        |                                      |                   |                 |  |

## Baseline Processing Report

## Processing Summary

| Observation             | From    | То      | Solution Type | H. Prec.<br>(Meter) | V. Prec.<br>(Meter) | Geodetic<br>Az. | Ellipsoid<br>Dist.<br>(Meter) | ∆Height<br>(Meter) |
|-------------------------|---------|---------|---------------|---------------------|---------------------|-----------------|-------------------------------|--------------------|
| MRW-18 MRW-<br>18a (B1) | MR.W-18 | MRW-18a | Fixed         | 0.001               | 0.002               | 312"48"54"      | 6.546                         | 0.551              |

## Acceptance Summary

| Processed | Passed | Flag | • | Fail | - |
|-----------|--------|------|---|------|---|
| 1         | 1      | 0    |   | 0    |   |

## MRW-18 - MRW-18a (6:38:43 AM-10:41:45 AM) (S1)

 Baseline observation:
 MRW-18 --- MRW-18a (B1)

 Processed:
 12/21/2015 3:00:47 PM

Solution type: Fixed

Frequency used: Dual Frequency (L1, L2)

Horizontal precision: 0.001 m

Vertical precision: 0.002 m

RMS: 0.000 m

Maximum PDOP: 2.035

Ephemeris used: Broadcast

Anterna model: NGS Absolute

 Processing start time:
 12/12/2015 0:38:51 AM (Local: UTC+8hr)

 Processing step time:
 12/12/2015 10:41:45 AM (Local: UTC+8hr)

Processing duration: 04:02:54
Processing interval: 1 second

## Baseline Processing Report - B

## Vector Components (Mark to Mark)

| From:     | MRW-18        |           | 200               |           |                   |
|-----------|---------------|-----------|-------------------|-----------|-------------------|
|           | Grid          |           | .ocal             | G         | lobal             |
| Easting   | 298113.895 m  | Latitude  | N12"18'45.39463"  | Latitude  | N12"18'40.53383"  |
| Northing  | 1361734.745 m | Longitude | E121'08'38.92444" | Longitude | E121'08'42.01469" |
| Elevation | 20.797 m      | Height    | 21.295 m          | Height    | 71.375 m          |

| Ta:       | MRW-18a       |           |                   |           |                   |
|-----------|---------------|-----------|-------------------|-----------|-------------------|
| 0         | rid           |           | Local             | G         | obal              |
| Easting   | 298109.109 m  | Latitude  | N12"18'45,53986"  | Latitude  | N12'18'40,67904'  |
| Northing  | 1361739.241 m | Longitude | E121'08'36.76504" | Longitude | E121'08'41.85529" |
| Elevation | 21.348 m      | Height    | 21.845 m          | Height    | 71.926 m          |

| Vector     |          |                 |            |    |         |
|------------|----------|-----------------|------------|----|---------|
| ΔEasting   | -4.786 m | NS Fwd Azimuth  | 312'48'54" | ΔX | 4.336 m |
| ΔNorthing  | 4.496 m  | Ellipsoid Dist. | 6.566 m    | ΔY | 2.137 m |
| ΔElevation | 0.551 m  | ΔHeight         | 0.551 m    | ΔZ | 4.477 m |

## Standard Errors

| Vector errors: |         |                   |          |      | 33      |
|----------------|---------|-------------------|----------|------|---------|
| σ ΔE asting    | 0.000 m | σ NS fwd Azimuth  | 0'00'11" | σ ΔΧ | 0.000 m |
| σ ΔNorthing    | 0.000 m | σ Ellipsoid Dist. | 0.000 m  | σ ΔΥ | 0.001 m |
| σ ΔΕ levation  | 0.001 m | σ ΔHeight         | 0.001 m  | σ ΔΖ | 0.000 m |

## Aposteriori Covariance Matrix (Meter\*)

|   | х             | Υ            | z            |
|---|---------------|--------------|--------------|
| x | 0.0000002319  |              |              |
| Υ | -0.0000003031 | 0.0000009420 |              |
| Z | -0.0000000578 | 0.0000001601 | 0.0000001302 |

# Annex 4. The LiDAR Survey Team Composition

| Data Acquisition<br>Component<br>Sub -Team | Designation                                 | Name                           | Agency / Affiliation |
|--------------------------------------------|---------------------------------------------|--------------------------------|----------------------|
| PHIL-LIDAR 1                               | Program Leader                              | ENRICO C. PARINGIT, D.ENG      | UP-TCAGP             |
| Data Acquisition<br>Component Leader       | Data Component<br>Project Leader – I        | ENGR. CZAR JAKIRI<br>SARMIENTO | UP-TCAGP             |
|                                            | Chief Science Research<br>Specialist (CSRS) | ENGR. CHRISTOPHER CRUZ         | UP-TCAGP             |
| Survey Supervisor                          | Supervising Science                         | LOVELY GRACIA ACUÑA            | UP-TCAGP             |
|                                            | Research Specialist<br>(Supervising SRS)    | LOVELYN ASUNCION               | UP-TCAGP             |

## FIELD TEAM

|                               | Senior Science<br>Research Specialist<br>(SSRS) | PAULINE JOANNE ARCEO            | UP-TACGP                                |
|-------------------------------|-------------------------------------------------|---------------------------------|-----------------------------------------|
|                               | Research Associate (RA)                         | PATRICIA YSABEL ALCANTARA       | UP-TCAGP                                |
| LiDAR Operation               | RA                                              | ENGR. LARAH KRISELLE<br>PARAGAS | UP-TCAGP                                |
|                               | RA                                              | ENGR. MILLIE SHANE REYES        | UP-TCAGP                                |
|                               | RA                                              | GRACE SINADJAN                  | UP-TCAGP                                |
| Ground Survey,                | RA                                              | ENGR. FRANK NICOLAS ILEJAY      | UP-TCAGP                                |
| Data Download and<br>Transfer | RA                                              | GRACE SINADJAN                  | UP-TCAGP                                |
|                               | Airborne Security                               | SSG. ERIC CACANINDIN            | PHILIPPINE AIR<br>FORCE (PAF)           |
|                               | , and seed not                                  | SSG. BENJAMIN CARBOLLEDO        | PAF                                     |
| LiDAR Operation               |                                                 | CAPT. JEFFREY JEREMY ALAAR      | ASIAN AEROSPACE<br>CORPORATION<br>(AAC) |
|                               | Pilot                                           | CAPT. JACKSON JAVIER            | AAC                                     |
|                               |                                                 | CAPT. SHERWIN ALFONSO III       | AAC                                     |
|                               |                                                 | CAPT. JUSTINE JOYA              | AAC                                     |

1日本の日本の1977年

# Annex 5. Data Transfer Sheet For Caguray Floodplain

| į         | Ē        | TOWNS OF    | 2001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Í        | 471.00         | 27.7  | 3         | ſ           | i    |        |             | REPORTED IN     | 1000 | DOT SCHOOLS |          | Salement.      | 7000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-----------|----------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------------|-------|-----------|-------------|------|--------|-------------|-----------------|------|-------------|----------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|           |          |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 33<br>33 | A process      |       |           |             | -    |        |             | Shakes and seed | のない事 | 100H01      | į        | É              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| HCC VE SH | YOU      | 33,000,000  | 00,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2        | 5              | 3     |           | ě           |      |        | 11 10 E     | 101             | 61   | ş           | 9        | ž,             | Occupant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| H8 73 84  | 776      | 300020000   | YEAR)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1        | 5              | ,     | 9         | 3000        | 2000 | 5      | 8009        | 1,540           | ₽1   | ă           | S I      | ž              | and the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| F2 8 74   | į        | 11.078Cm    | CONTRACTOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | į.       | 5              | ē     |           | 5           | 57   | N 101F | 8 108       |                 | 191  | 9           | 8        | 3              | POLICE MANAGEMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 20 E 20   | ş<br>Ş   | B BLOWARD   | MONOY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          | 5              | Den   | T = 31    | B (1)       | 5000 | 8 2    | 5           | 9               | 91   | ŝ           | <b>3</b> | 3              | AND PART OF STREET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 7.6 V 87  | ř        | CELOSCIET   | MENCY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | £        |                | 18.1  | 1         | 200         | 2    | 8      | 8           | 0.00            | 34   | 201         | 2000     | 10 M           | TOTAL DAy bear Part 1999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| H2C 1 40  | ą        | 9000×324000 | 00000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2        | 3              | 7,    | 7.6       | 8.7         | Ē    | 2000   | <b>8</b> 22 | 127             | 101  | ş           | 696-11   | 5777           | ACT COMPANY COMPANY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| main Same | View.    | A150 N. 250 | MERCY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ž        | 10             | Pur   | 1 1 1 1 1 | 20.00       | ê    | 5      | 5           | ş               | 9    | è           | nac.     | 900            | ACTIVATION DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 8839      | V. Marie | 10,09003    | MAKATON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4        | 5              | 5     | 8-30      | 1           | 1    | 35     | 3           | 0.00            | 0.1  | 2           | 9004     | 10000          | AND COMPANY OF THE PARTY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 11361     | (TE)     | 10025000    | 10 to | ą        | 5              | 0.000 | State of  | , in        | 5    | Š,     | 10.0        | нам             | 101  | 54          | 1991     | 900000<br>1000 | Communication of the Communica |
|           |          | - Line      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |                |       | Δ.        | Name (and   |      |        |             |                 |      |             |          |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|           |          | A. A.       | Ŋ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 18       | 137A           |       | 3         | 3           | Ě    | 4.     | 9-<br>14-   | mary 7 4000.    |      |             |          |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|           |          | 1           | 2 K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ٠, ا     |                |       | 91        | Comme       |      | 3      |             |                 |      |             |          |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|           |          |             | **   **   **   **   **   **   **   *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | हैं ।    | <del>7</del> - |       | 61        | :<br>1<br>2 | T.   | L      | 1           | 한<br>경<br>목     |      |             |          |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

| 0. MISSON NAME 2010/26<br>18LX28C340A propries<br>18LX28C3409 propries | Depart LAS |           |         |     |                        | -           |       |        | -           | -            |              | The second second        |    |                           |
|------------------------------------------------------------------------|------------|-----------|---------|-----|------------------------|-------------|-------|--------|-------------|--------------|--------------|--------------------------|----|---------------------------|
| 18LX20C340A propess<br>18LX20C3409 propess                             | 27 84 22   | The lands | 1000MI) | 904 | NAME OF TAXABLE PARTY. | PLEISON LOS | SAMO! | portor | 2000        | MAX Base and | 1000<br>1000 | 1                        | 10 | SUPVIR                    |
| 18.K290E348A                                                           | 8 8 3      |           |         | Ī   |                        | -           |       |        | 814,1998.B) | 000          |              |                          |    | -                         |
| 3030P 18L/230E3439                                                     | 00 75      | -         | 970     | 8   | 878                    | Z.          | 3790  | -81    | 154         | 1100         | 9            | 9                        | 2  | DATA                      |
| 0.000                                                                  | 7.00       | 10.       | o,      | F   | 8079                   | 4           | 87    | 2      | 10.6        | 9            | 100          | 29424426                 | 2  | Z: DACIRAN<br>DATA        |
| FEBRUARY TRUNCASSING DISCHARGE                                         |            | 107       | 918     | 502 | 300                    | 201         | 184   | 2      | 183         | 00,          | 101          | 10030478                 | 2  | Z-EAC-RAN<br>DATA         |
| 8-Dec-15/2009P 18LX29ACDG42A sepres                                    | 000        | 200       | 2.00    | 65  | a                      | 6           | 6.19  | 2      | 22          | 2            | 9            | 96108                    | 2  | Z.EACHAN<br>DATA          |
| 3-Dao-15 2068F 19LK220J3428 propriet                                   | 10         | 0         | 172     | 21  | 4.83                   | 25          | 27.0  | 2      | 2           | 100          | 200          | 80186                    | 2  | CIENCINAN<br>DATA         |
| 9-Dec-15 2000P (\$LK29594545A papers                                   | 659        | 287       | 2       | 9   | 3                      | 2           | 50.00 | 2      | 16.50       | 101          | 1909         | 246756                   | 2  | DESCRIPTION               |
| 4                                                                      | 1.00       | 202       | 20.6    | 9   | ege.                   | 102         | 202   | 2      | 14.1        | 0.1          | 2            | 563                      | 2  | DESCRIPTION OF THE PARTY. |
| 10-Dec 15 2076P 133-X2473458                                           | 20         | 22        | 2       | 2   | 257                    | 3.          | 2     | 2      | 187         | 9            | 9            | 2000 10000<br>3151 44150 | 2  | Z-EACTANT<br>DATA         |
| 11-Dec-15 SCORP 120-CCSWORS345A promiss                                | 139        | 5         | 823     | 167 | 12.9                   | 8           | 5.5   | 2      | 7.00        | 9.           | 190          | 13740                    | -  | 2-sacmer<br>pack          |
|                                                                        |            | 200       | 999     | 7   | 10                     | z           | 223   | 2      | 181         | 5            | 1941         | 47750                    | 2  | CHACHRA                   |

# Annex 6. Flight Logs

1. Flight Log for 3BLK29A59B Mission

| 1 UDAR Openies LASSICIA     | GAZO D MIN MOCK! HOW    | ALIDAR ODERSON L'ACCACACA D'ALIA MOCENT AUTA STAIRSION NAME SE KERPESTA STAIRS WER | ASS ATME WAR        | S Already Type: Cestma T206H                  | S Aircus (1 I dentification: |
|-----------------------------|-------------------------|------------------------------------------------------------------------------------|---------------------|-----------------------------------------------|------------------------------|
| 41/82/7                     | 12 Airport of Departure | 12 Airport of Departure (Airport, City/Province):                                  | 12 Amport of Annual | 12 Amport of Amiwal (Aisport, City/Province): |                              |
|                             | 185 gire Off:           | S fetal Engine Time:                                                               | L6Take off          | 12 Landing:                                   | 10 Total (Flight Tiers)      |
| 26 Remarks:                 | Completed               | 10 links in grace                                                                  | ** A                |                                               |                              |
| 25. Problems and Solutions: |                         |                                                                                    |                     |                                               |                              |
| Acadistra flather word b    |                         | Acay silves Right Conflect by TC: Canadian Paris                                   | Jefy/Jery Jefy      | A.A.m.                                        | Ustra Overalism              |

Flight Log for 3BLK29C60A Mission

| DAR Operator ( F. Forder)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 25 EALTM Model: AGUA                                      | RALTM Model: AGUA 3 Mission No mer 3 8 LK 35 6 A | A. 4 Type: VFR            | a Airca (LType: Ces nea 12064                 | 6 Alreatt Identifikations |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|--------------------------------------------------|---------------------------|-----------------------------------------------|---------------------------|
| A Limenson &                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Co-#1 bit: 1 4/4 10+                                      | 9 Roube:                                         |                           |                                               |                           |
| 41 1/4 inte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Obster 3/1 / 14 Damen of Departme (Mexcut, ObyVironince): | (Microid, Gly/frichings):                        | 12 Airport of Amina II    | 12 Airport of Arrival (Airport, ChyProvince): |                           |
| Strigtine Co., § 22.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (257)                                                     | 15 Total Engine Time:<br>4/235                   | 36 Take off:              | D canding:                                    | 18 Total Alight Times     |
| 9 Weather<br>0 Kemarks:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                           |                                                  |                           |                                               |                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                           | Mission comp                                     | (smploted                 |                                               |                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                           |                                                  |                           |                                               |                           |
| To see the see of the |                                                           |                                                  |                           |                                               |                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                           |                                                  |                           |                                               |                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                           |                                                  |                           |                                               |                           |
| Anguistin Hydroproved by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                           | Acception Figs Certified by                      | HathCongad                |                                               | Horopeans                 |
| Standfine Over Printed Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                           | DEC ON GALCHONI.                                 | Springer over Prince Name |                                               | Shouly's perferned varie  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                           | (FOF Representative)                             |                           |                                               |                           |

Flight Log for 3BLK29AS60B Mission

| Flight Log No.: 1/62 |                                                                                                                           |                                                                                  |                                |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                                                               |
|----------------------|---------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|--------------------------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-------------------------------------------------------------------------------|
| Flight Log No        | 6 Aircraft identification:                                                                                                |                                                                                  | 18 Total Flight Time:          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            | Lidar Operator Significare over Printed Name                                  |
|                      | S Aircraft Type: Cesnna T206H                                                                                             | 12 Airport of Arrival (Airport, City/Province):                                  | 17 Landing:                    |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            | ord<br>5 + 1 C/c                                                              |
|                      | COB 4 Type: VFR                                                                                                           | 12 Airport of Arrival                                                            | 16 Take off:                   |            | to the same of the |                            | Pilot-in-Comm                                                                 |
|                      | AM Data Acquisition Flight Log.  1 LiDAR Operator: L. ASUMCAON 2 ALTM Model: ACLD 3 Mission Name: 36LX29ASCOB 4 Type: VFR | 8 Co-Pilot: / Algjar 9 Route:<br>12 Aimort of Departure (Airport, Gty/Province): | 15 Total Engine Time:<br>3 +4/ |            | Mission complet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            | Acquisition Flight Certified by  Tec CACAASHADAA  Signature over Printed Name |
|                      | odel: ADUA                                                                                                                | of Departure (A                                                                  | mentrao                        |            | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                            | Acquisi                                                                       |
|                      | WINCHON 2 ALTM M                                                                                                          | 8 Co-Pilot: / A                                                                  | 1                              |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | tions:                     | 1,469 powed by                                                                |
|                      | REAM Data Acquisition Flight Log                                                                                          | 10 Date: 2 / / / / /                                                             | 13 Engine On: 14.38            | 19 Weather | 20 Remarks:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 21 Problems and Solutions: | Acquisition Flight Approved by Signature over Printed Name                    |

Flight Log for 3BLK29N61A Mission

4.

| Flight Log No.: 1/6 9           | on:                                                                                      |                                                |                                 |              |                            |                                                                                                     |
|---------------------------------|------------------------------------------------------------------------------------------|------------------------------------------------|---------------------------------|--------------|----------------------------|-----------------------------------------------------------------------------------------------------|
| H                               | 6 Aircraft Identification:                                                               |                                                | 18 Total Flight Time:           |              |                            | Lidar Operator  Signature over Printed Name                                                         |
|                                 | 5 Aircraft Type: Cesnna T206H                                                            | 12 Airport of Arrival (Airport, Gty/Province): | 17 Landing:                     |              |                            | HOWE                                                                                                |
|                                 | WELR 4 Type: VFR                                                                         | 12 Airport of Arrival                          | 16 Take off:                    | -            |                            | Pilot in Command  JC (1927) Signature Juget Printed Name                                            |
|                                 | 1 LIDAR Operator: LK Paragas 2 ALTM Model: ACLA 3 Mission Name: 38 LZ 9 16 4 4 Type: VFR | Airport, Gty/Province):                        | 15 Total Engine Time:<br>4 f 53 | in Completed |                            | Acquitation Flight Certified by  Ec. CA Onvalables Signature over Printed Name (PAF Representative) |
|                                 | 2 ALTM Model: AGUA                                                                       | 12 Airport of Departure (                      |                                 | Mission      |                            |                                                                                                     |
| EAM Data Acquisition Flight Log | R Operator: LK Paragus                                                                   | 10 Date: 3/2//4                                |                                 | 20 Remarks:  | 21 Problems and Solutions: | Acquisition Flight Septoned by Signature over Printed Name (End User Representative)                |

Flight Log for 3BLK29B61B Mission

5.

| Flight Log No.: // 66             | e.3642966/6 4 Type: VFR S Aircraft Type: CesnnaT206H 6 Aircraft Identification:                                                                                                               | Time: 16 Take off: 17 Landing: 18 Total Flight Time: |            | is then B       |                            | SEKEPET MENT BURNE              |
|-----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|------------|-----------------|----------------------------|---------------------------------|
|                                   | 1 UDAR Operator: LASAM Gon 2 ALTM Model AGUA 3 Mission Name: 3642964/8 4 Type: VFR 7 Pilot: JAJajar 8 Co-Pilot: Jayier 9 Route: 12 Aimort of Department Amort Challenging 12 Aimort of Arriva | 14 Engine Off: 15 Total Engine Time:                 |            | Completed lines |                            | Acquisition Flight Certified by |
| DREAM Data Acquisition Flight Log | 1 UDAR Operator: LASUNGO                                                                                                                                                                      | 13 Engine On: 1423 14En                              | 19 Weather | 20 Remarks:     | 21 Problems and Solutions: | Acquisition Flight Adgraved by  |

Flight Log for 3BLK29BS62A Mission

| # Mana R. Home Read on a State of the state  |              | Usar Operation  Higginum oner to mad huma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 12 Almost of Arthrel (Airport, Starbmannoe): 15 Almost of Arthrel (Airport, Starbmannoe): 15 Take off: 17 Landing: 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 100): 12 Almost of Arrival (ime: 25 Take off:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              | March Community                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Akulal: Algan 3 Mission Name: 30, Algans 10, | Somple for d | Acquallen Right Cerciled by TEC Charles Mana (M.F. Charles Mana (M.F. Mana)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| The Vision County of State of  | Mission.     | Paydithen II by Managad by Paydin and By Pay |

Flight Log for 1BLK29NQRS345A Mission

| 7 Mot: CS AUTOMOD 8 CO<br>10 Date:<br>DEC 11, 2015                                                                                                                  | 4                                                                                                     | 12 ALIM Model: 72.6754 3 Mission Name: 4 Type: VF (10t: 3 JD) 9 Route: Math 501720 K12.01 12 Aliport of Departure (Aliport, Gry/Province): 12 Aliport of Arichard Math 500,000 | UVOLO KIZOL<br>12 Arport of Arrya                                  | Mail Wild Rizal and Mary Saysay                      | 6 Aircraft Identification: 9/22                                        |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------------------------|
| 13 fingine on:<br>08/3<br>19 Weather                                                                                                                                | 14 Engine Off:                                                                                        | 15 Total Engine Time:<br>2747                                                                                                                                                  | 16 Take off:<br>08/8                                               | 17 Landing:                                          | 18 Total Flight Time:<br>27-37                                         |
| 20 Flight Classification 20a Billable 20 Acquisition Flight 20 Ferry Flight 20 System Test Flight 30 Calibration Flight 30 Calibration Flight 30 Calibration Flight | 20.b Non Billable  O Alicraft Test Flight  O AAC Admin Flight  O Others:                              | 20.c Others  O LIDAR System Maintenance O Aircraft Maintenance O Phil-LiDAR Admin Activities                                                                                   | -                                                                  | Survayed BUK 29 N, Q, R&S.                           | a,a,k&s.                                                               |
| 22 Problems and Solutions O Weather Problem O System Problem O Aircraft Problem O Pilot Problem O Others:                                                           |                                                                                                       | 1                                                                                                                                                                              |                                                                    |                                                      |                                                                        |
| Acquisition Flight Approved by Phouse mcgo                                                                                                                          | Acquisition Fight Certified by  Soft Certified by  Significant over Printed Name (PAF Representative) |                                                                                                                                                                                | Pilot-in-Consessed  (1, A F. O. M.S.)  Signature over Printed Name | Udar Operator  PROMIGAE Signature over Princial Name | Neront Mechanic/ Technician N.R. C.A. E.O. Signature over Printed Name |

Flight Log for 1BLK29R346A Mission

| Flight Log No.: 2046-2 COMM GArouth Identification: 7702 18Total Flight Tana 27-37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 29/2                                                                                                         |                                                                                                             | MAN P. CALEON BOTTON OF STREET SECURIORS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A Type: VFR S Arose II Type: Cornea Tobbi<br>AUCK D Soll JDS 6/<br>II Amport of Arisel (Amport, Obyfrowings)<br>IS Table off: ID Landing:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Sumayed BLK 29 R                                                                                             |                                                                                                             | Color Operators                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3 Mission Name 1846 296 25664  3 Mission Name 1846 296 25664  Airport, Clay, market place of 12 Airport of Arient of Arient of 12 Airport of 12  | 20.0 Chem  O LIDAR System Maintenance O Ancart: Maintenance O Pali-LibaR Admin Accumber                      |                                                                                                             | Syphical prop Profess Same                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| M Moset /55/5U/<br>T 30/7h<br>Port of Sesarare (<br>M/M/M/1970                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 20.0 Non Billion O Awardt Test Flgts O AWC Abree Right O Others.                                             |                                                                                                             | Acquestachight cortines by Complete Cortines by Complete Cortis Cortines by Significan cone it was from from the cone in was from the c |
| 1 UDAR Operator & SIRAD JAN 2 ALTS TO DEC 2, 2015 13 Decider On 14 Depter On 12 ALTS 13 Decider On 14 Depter On 15 ALTS 13 Decider On 15 ALTS 14 Depter On 15 ALTS 15 Decider On 15 ALTS 15 Decider On 15 ALTS 16 Decider On 15 ALTS 16 Decider On 15 ALTS 17 ALTS 17 ALTS 18 Decider On 15 AL | 20 flight Dessittation 20 sillable Acquistion Flight O Ferry Flight O System Flat Flight O Callbordon Flight | 22 Problems and Salutions O Westher President O Astront Problem O Alstroth Problem O Plet Problem O Others: | Ageistion Figir Jeproved by PALM (FLOP Division over Hones raise                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

# Annex 7. Flight Status

FLIGHT STATUS REPORT CAGURAY FLOODPLAIN February 28-March 3, 2014; December 11-12, 2015

| FLIGHT NO | AREA                              | MISSION                         | OPERATOR       | DATE FLOWN | REMARKS                                                                |
|-----------|-----------------------------------|---------------------------------|----------------|------------|------------------------------------------------------------------------|
| 1158A     | BLK29A                            | 3BLK29A59B                      | L.<br>ASUNCION | 28-Feb-14  | Covered 10 lines.                                                      |
| 1160A     | BLK29C                            | 3BLK29C60A                      | L. PARAGAS     | 01-Mar-14  | Mission completed.                                                     |
| 1162A     | BLK29A &<br>29D                   | 3BLK29AS+DV60B                  | L.<br>ASUNCION | 01-Mar-14  | Mission completed. Continuation of BLK29A and covered voids in BLK29D. |
| 1164A     | BLK29N &<br>29B                   | 3BLK29N+B61A                    | L. PARAGAS     | 02-Mar-14  | Mission completed.<br>Covered lines 10 and 11<br>of BLK29B.            |
| 1166A     | BLK29B                            | 3BLK29B61B                      | L.<br>ASUNCION | 02-Mar-14  | Covered gap in line 10 from the morning flight.                        |
| 1168A     | BLK29B,<br>29A, 29D,<br>29C & 29K | 3BLK29BS+<br>AB+DB+CV+<br>KV62B | L. PARAGAS     | 03-Mar-14  | Mission completed.                                                     |
| 3078P     | BLK 29N,<br>29Q, 29R<br>& 29S.    | 1BLK29NQRS345A                  | P. ARCEO       | 11-Dec-15  | Surveyed BLK 29N, Q, R<br>& S.                                         |
| 3082P     | BLK 29R                           | 1BLK29R346A                     | G.<br>SINADJAN | 12-Dec-15  | Surveyed BLK29R.                                                       |

## LAS/SWATH BOUNDARIES PER MISSION FLIGHT

FLIGHT LOG NO. 1158A AREA: BLK29A MISSION NAME: 3BLK29A59B

PARAMETERS: Alt: 550 Scan Freq: 40 kHz Scan Angle: 18 deg



FLIGHT LOG NO. 1160A AREA: BLK29C MISSION NAME: 3BLK29C60A

PARAMETERS: Alt: 650 Scan Freq: 40 kHz Scan Angle: 18 deg



FLIGHT LOG NO. 1162A

AREA: BLK29A AND BLK29D MISSION NAME: 3BLK29AS+DV60B

PARAMETERS: Alt: 600 Scan Freq: 40 kHz Scan Angle: 18 deg



FLIGHT LOG NO. 1164A

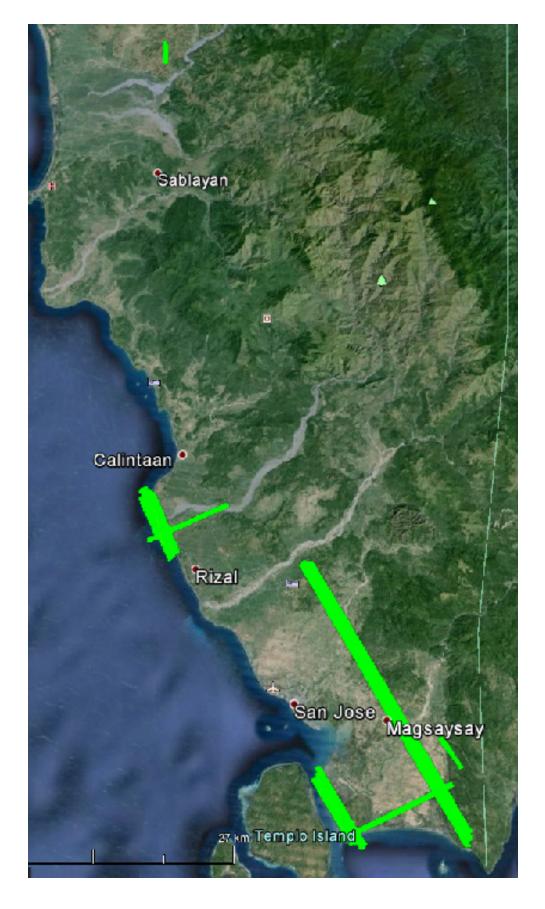
AREA: BLK29N AND BLK29B MISSION NAME: 3BLK29N+B61A

PARAMETERS: Alt: 600 Scan Freq: 40 kHz Scan Angle: 18 deg



FLIGHT LOG NO. 1166A AREA: BLK29B MISSION NAME: 3BLK29B61B

PARAMETERS: Alt: 600 Scan Freq: 40 kHz Scan Angle: 18 deg

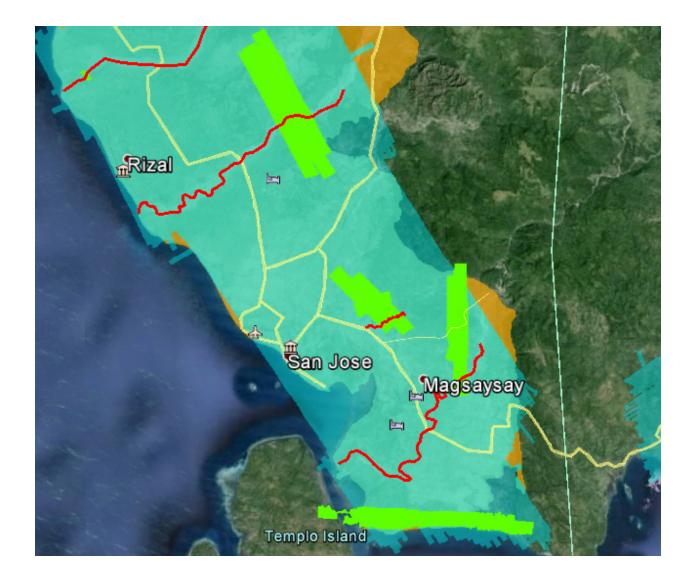



FLIGHT LOG NO. 1168A

AREA: BLK29B, BLK29A, BLK29D, BLK29C AND BLK29K

MISSION NAME: 3BLK29BS+AB+DB+CV+KV62B

PARAMETERS: Alt: 550 Scan Freq: 40 kHz Scan Angle: 18 deg




FLIGHT NO.: 3078P

AREA: BLK29N, BLK29Q, BLK29R & BLK29S

MISSION NAME: 1BLK29NQRS345A

PARAMETERS: Alt: 850 m Scan Freq: 32 Scan Angle: 25



FLIGHT NO.: 3082P AREA: BLK29R

MISSION NAME: 1BLK29R346A

PARAMETERS: Alt: 1100 m Scan Freq: 30 Scan Angle: 25



# **Annex 8. Mission Summary Reports**

Table A-8.1 Mission Summary Report for Mission Blk29A

| Table A-8.1 Mission Summary Rep                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                            |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|--|
| Flight Area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Davao Oriental                                                             |  |
| Mission Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Blk29A                                                                     |  |
| Inclusive Flights                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1158A. 1162A, 1168A                                                        |  |
| Range data size                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 29.98 GB                                                                   |  |
| POS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 677 MB                                                                     |  |
| Image                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 72.6 GB                                                                    |  |
| Transfer date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 04/23/2014                                                                 |  |
| Solution Status                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                            |  |
| Number of Satellites (>6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | No                                                                         |  |
| PDOP (<3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Yes                                                                        |  |
| Baseline Length (<30km)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Yes                                                                        |  |
| Processing Mode (<=1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | No                                                                         |  |
| The second secon |                                                                            |  |
| Smoothed Performance Metrics (in cm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                            |  |
| RMSE for North Position (<4.0 cm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.2                                                                        |  |
| RMSE for East Position (<4.0 cm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.1                                                                        |  |
| RMSE for Down Position (<8.0 cm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4.4                                                                        |  |
| Boresight correction stdev (<0.001deg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.000443                                                                   |  |
| IMU attitude correction stdev (<0.001deg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.002081                                                                   |  |
| GPS position stdev (<0.01m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0294                                                                     |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                            |  |
| Minimum % overlap (>25)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 43.28%                                                                     |  |
| Ave point cloud density per sq.m. (>2.0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.76                                                                       |  |
| Elevation difference between strips (<0.20 m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Yes                                                                        |  |
| Number of 1km x 1km blocks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 194                                                                        |  |
| Maximum Height                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 165.41 m                                                                   |  |
| Minimum Height                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 43.10 m                                                                    |  |
| Classification /# of a sixtel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                            |  |
| Cround                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 104 722 522                                                                |  |
| Ground                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 104,722,532                                                                |  |
| Low vegetation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 130,224,088                                                                |  |
| Medium vegetation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 60,206,940                                                                 |  |
| High vegetation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 16,625,237                                                                 |  |
| Building                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4,886,963                                                                  |  |
| Orthophoto                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Yes                                                                        |  |
| Processed by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Engr. Carlyn Ann Ibañez, Engr.<br>Harmond Santos, Engr. Gladys Mae<br>Apat |  |

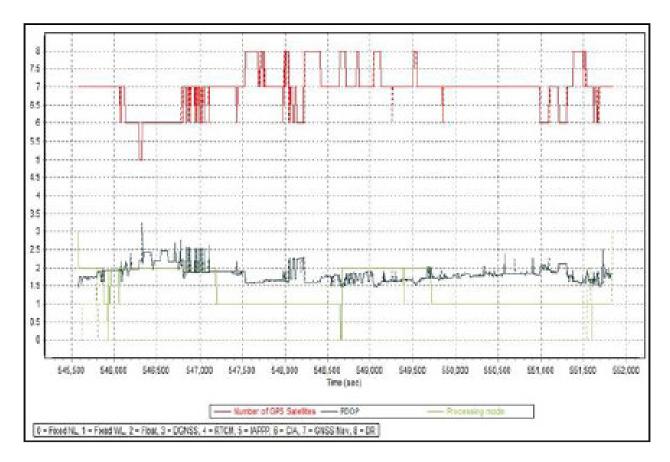



Figure A-8.1. Solution Status

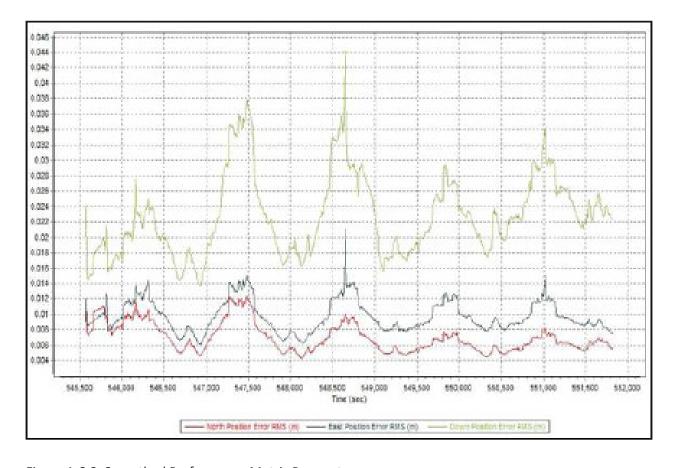



Figure A-8.2. Smoothed Performance Metric Parameters

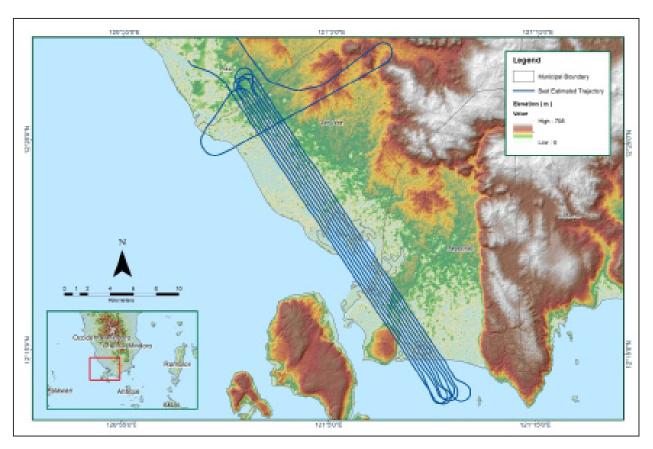



Figure A-8.3. Best Estimated Trajectory

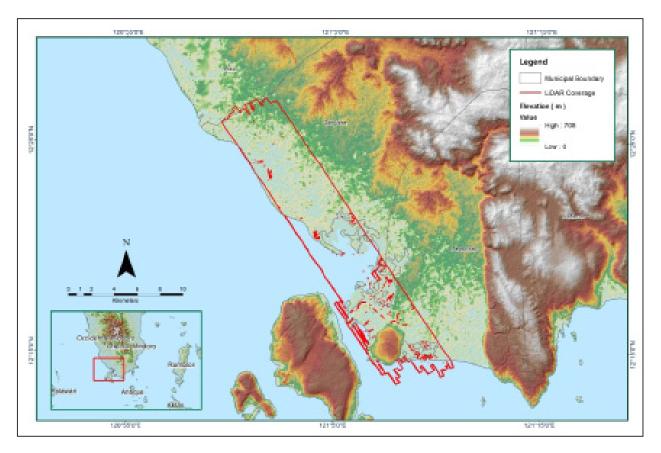



Figure A-8.4. Coverage of LiDAR data

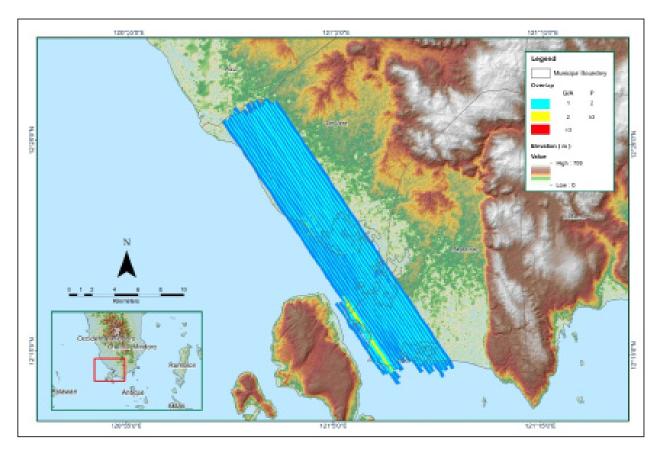



Figure A-8.5. Image of data overlap

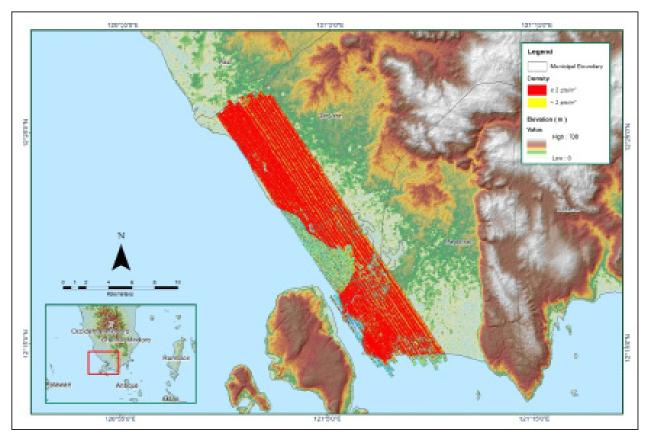



Figure A-8.6. Density map of merged LiDAR data

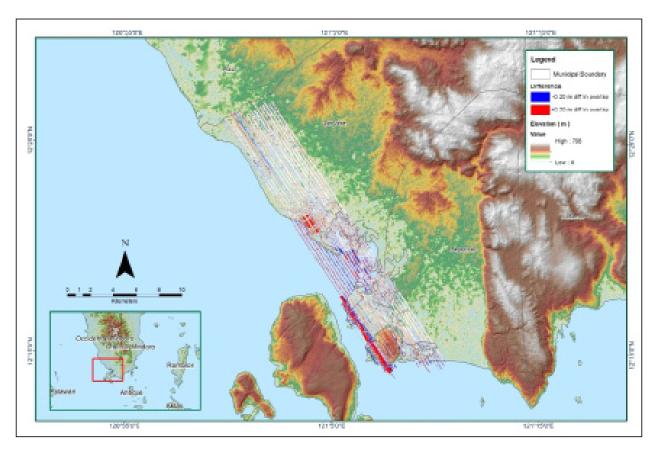



Figure A-8.7. Elevation difference between flight lines

Table A-8.2 Mission Summary Report for Mission Blk29B

| Flight Area                                   | Davao Oriental                                                          |
|-----------------------------------------------|-------------------------------------------------------------------------|
| Mission Name                                  | Blk29B                                                                  |
| Inclusive Flights                             | 1164A. 1166A, 1168A                                                     |
| Range data size                               | 38.4 GB                                                                 |
| POS                                           | 791 MB                                                                  |
| Image                                         | 22.5 GB                                                                 |
| Transfer date                                 | 04/23/2014                                                              |
| mansier date                                  | 04/23/2014                                                              |
| Solution Status                               |                                                                         |
| Number of Satellites (>6)                     | Yes                                                                     |
| PDOP (<3)                                     | Yes                                                                     |
| Baseline Length (<30km)                       | No                                                                      |
| Processing Mode (<=1)                         | Yes                                                                     |
| Smoothed Performance Metrics (in cm)          |                                                                         |
| RMSE for North Position (<4.0 cm)             | 1.3                                                                     |
| RMSE for East Position (<4.0 cm)              | 1.6                                                                     |
| RMSE for Down Position (<8.0 cm)              | 3.8                                                                     |
|                                               |                                                                         |
| Boresight correction stdev (<0.001deg)        | 0.000629                                                                |
| IMU attitude correction stdev (<0.001deg)     | 0.002510                                                                |
| GPS position stdev (<0.01m)                   | 0.0158                                                                  |
| Minimum % overlap (>25)                       | 43.01%                                                                  |
| Ave point cloud density per sq.m. (>2.0)      | 3.09                                                                    |
| Elevation difference between strips (<0.20 m) | Yes                                                                     |
|                                               |                                                                         |
| Number of 1km x 1km blocks                    | 197                                                                     |
| Maximum Height                                | 258.38 m                                                                |
| Minimum Height                                | 46.77 m                                                                 |
| Classification (# of points)                  |                                                                         |
| Ground                                        | 115,311,089                                                             |
| Low vegetation                                | 138,979,099                                                             |
| Medium vegetation                             | 95,318,939                                                              |
| High vegetation                               | 30,819,969                                                              |
| Building                                      | 2,104,153                                                               |
|                                               |                                                                         |
| Orthophoto                                    | Yes                                                                     |
| Processed by                                  | Ma. Victoria Rejuso, Engr. Harmond<br>Santos, Engr. John Dill Macapagal |

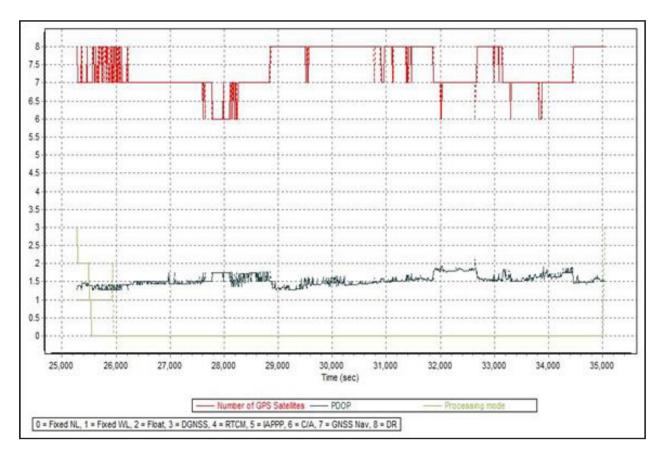



Figure A-8.8. Solution Status

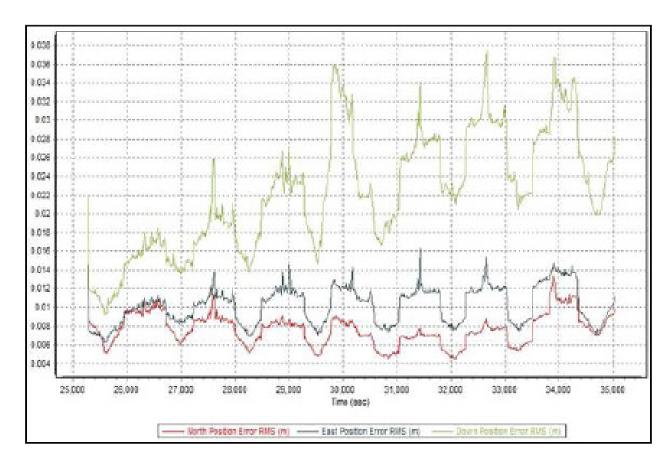



Figure A-8.9. Smoothed Performance Metric Parameters

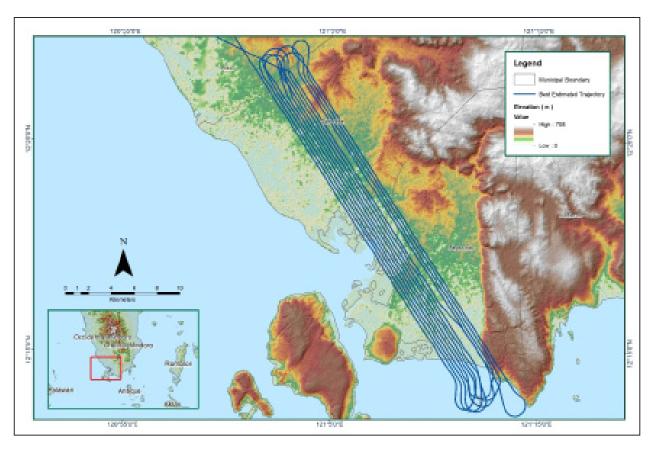



Figure A-8.10. Best Estimated Trajectory

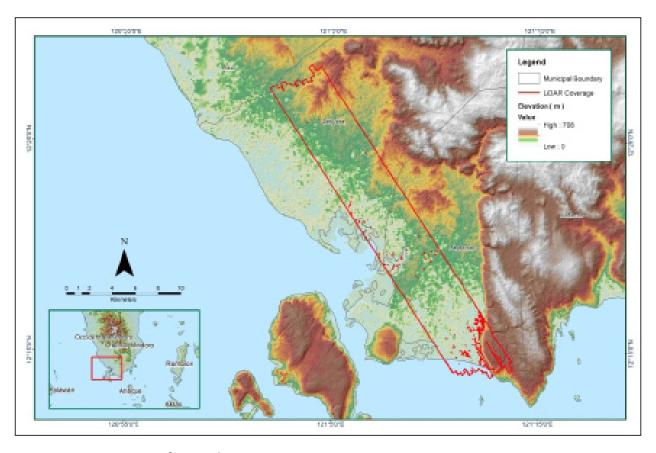



Figure A-8.11. Coverage of LiDAR data

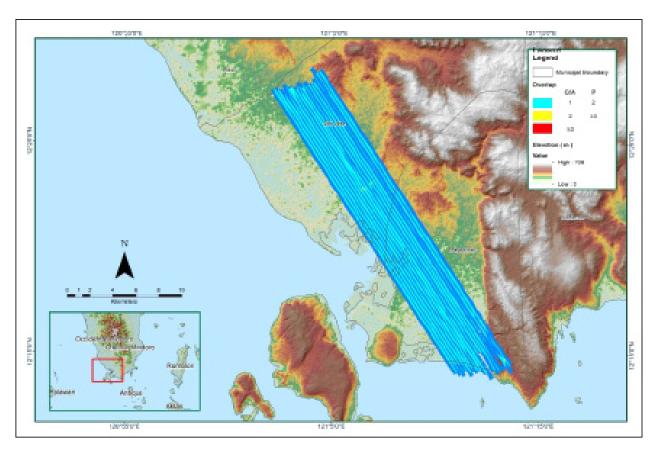



Figure A-8.12. Image of data overlap

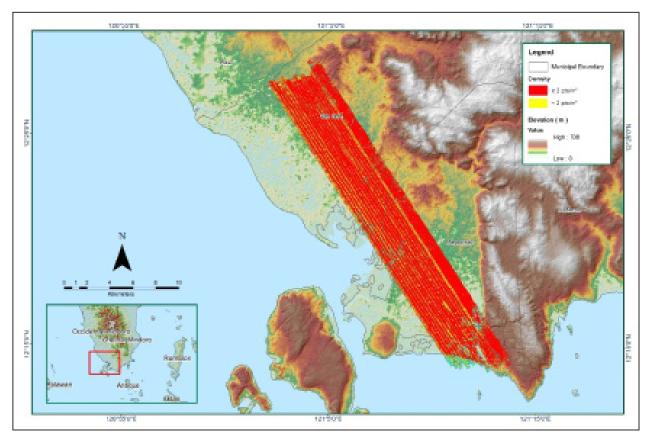



Figure A-8.13. Density map of merged LiDAR data

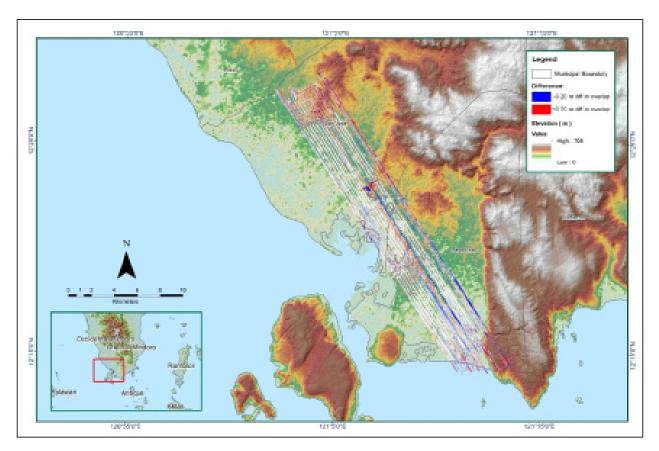



Figure A-8.14. Elevation difference between flight lines

Table A-8.3 Mission Summary Report for Mission Blk29C

| Flight Area                                   | Davao Oriental                                           |
|-----------------------------------------------|----------------------------------------------------------|
| Mission Name                                  | Blk29C                                                   |
|                                               | 1160A                                                    |
| Inclusive Flights                             |                                                          |
| Range data size POS                           | 14.1 GB                                                  |
|                                               | 268 MB                                                   |
| Image                                         | 13.5 GB                                                  |
| Transfer date                                 | 04/23/2014                                               |
| Solution Status                               |                                                          |
| Number of Satellites (>6)                     | No                                                       |
| PDOP (<3)                                     | No                                                       |
| Baseline Length (<30km)                       | Yes                                                      |
| Processing Mode (<=1)                         | Yes                                                      |
| Smoothed Performance Metrics (in cm)          |                                                          |
| RMSE for North Position (<4.0 cm)             | 4.8                                                      |
| RMSE for East Position (<4.0 cm)              | 2.2                                                      |
| RMSE for Down Position (<8.0 cm)              | 5.1                                                      |
| NVISE for Down Fosition (No.0 cm)             | 5.1                                                      |
| Boresight correction stdev (<0.001deg)        | 0.000373                                                 |
| IMU attitude correction stdev (<0.001deg)     | 0.001768                                                 |
| GPS position stdev (<0.01m)                   | 0.0032                                                   |
| Minimum % overlap (>25)                       | 44.16%                                                   |
| Ave point cloud density per sq.m. (>2.0)      | 3.59                                                     |
| Elevation difference between strips (<0.20 m) | Yes                                                      |
|                                               |                                                          |
| Number of 1km x 1km blocks                    | 143                                                      |
| Maximum Height                                | 481.99 m                                                 |
| Minimum Height                                | 51.54 m                                                  |
| Classification (# of points)                  |                                                          |
| Ground                                        | 100 156 029                                              |
|                                               | 109,156,938                                              |
| Low vegetation                                | 80,757,959                                               |
| Medium vegetation                             | 73,247,510                                               |
| High vegetation                               | 71,877,948                                               |
| Building                                      | 1,281,773                                                |
| Orthophoto                                    | Yes                                                      |
| Processed by                                  | Engr. Irish Cortez, Engr. Harmond<br>Santos, Ailyn Biñas |

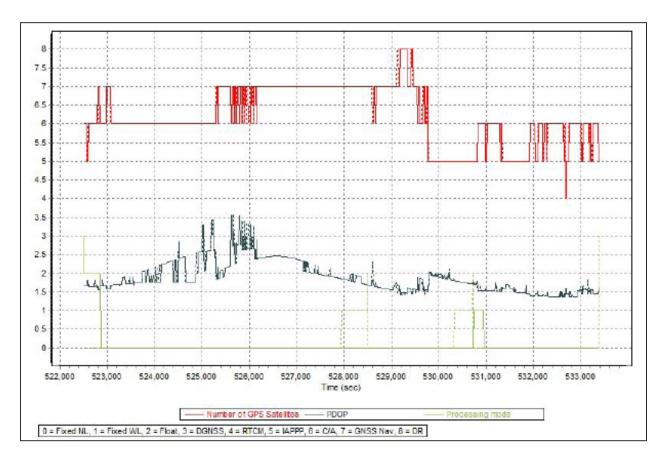



Figure A-8.15. Solution Status

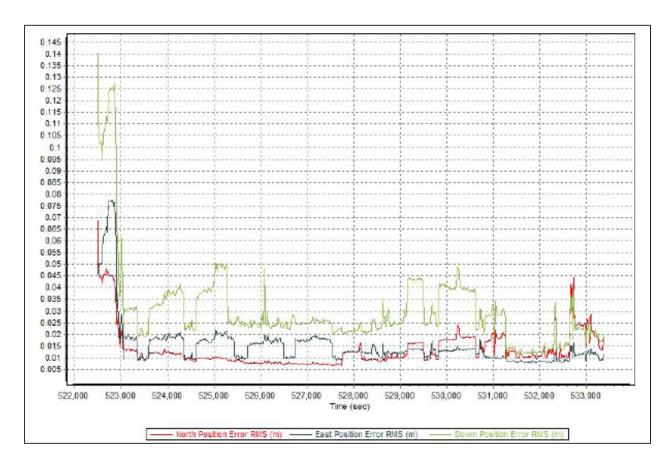



Figure A-8.16. Smoothed Performance Metric Parameters

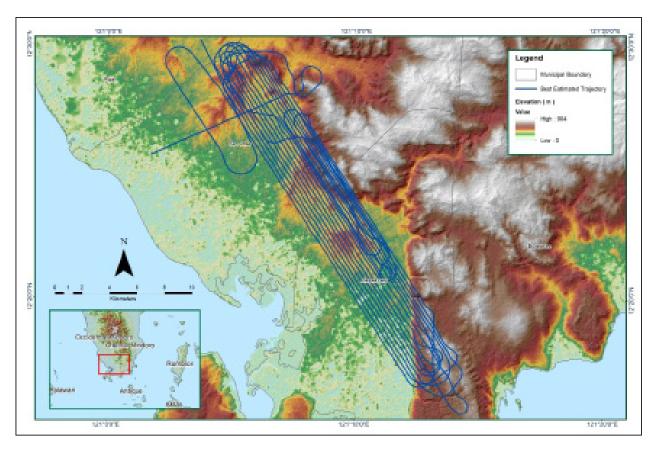



Figure A-8.17. Best Estimated Trajectory

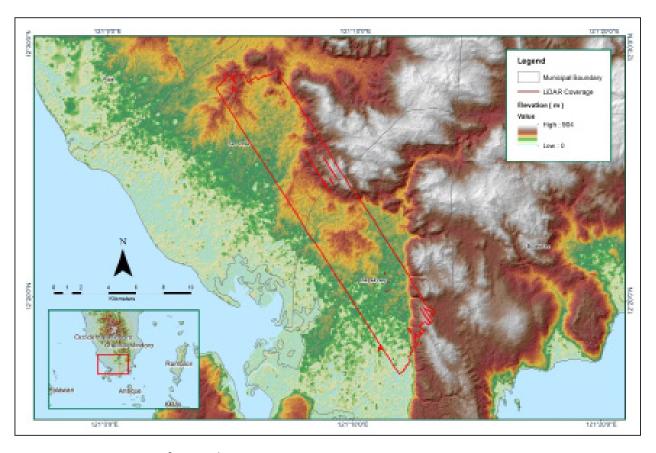



Figure A-8.18. Coverage of LiDAR data

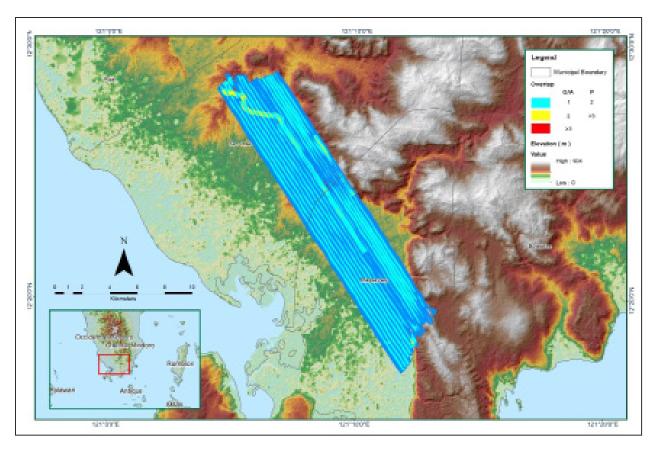



Figure A-8.19. Image of data overlap

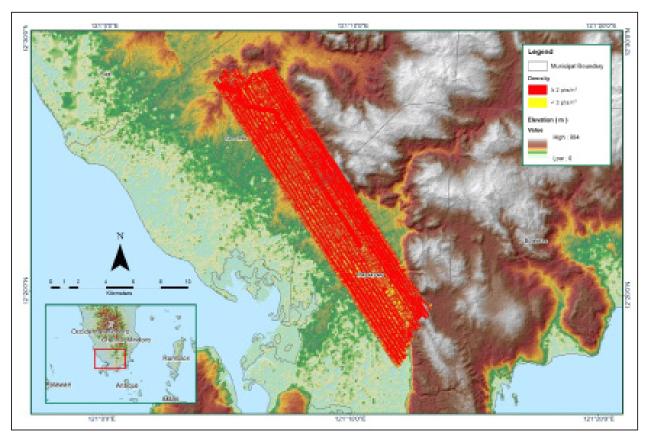



Figure A-8.20. Density map of merged LiDAR data

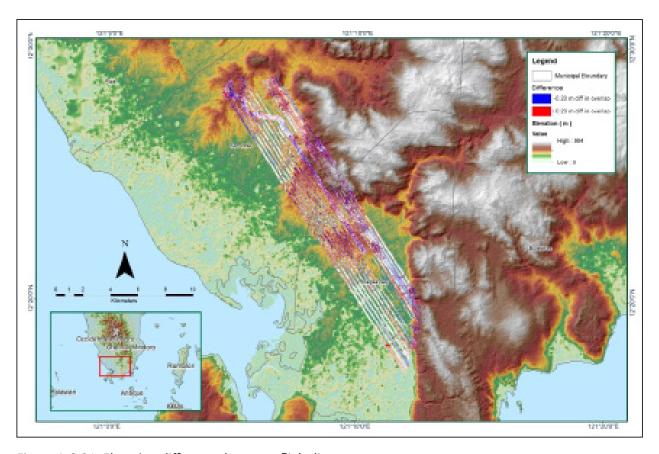



Figure A-8.21. Elevation difference between flight lines

Table A-8.4 Mission Summary Report for Mission Blk29A\_additional

| Flight Area                                   | Davao Oriental                                                        |  |  |
|-----------------------------------------------|-----------------------------------------------------------------------|--|--|
| -                                             |                                                                       |  |  |
| Mission Name                                  | Blk29A_additional                                                     |  |  |
| Inclusive Flights                             | 3078P                                                                 |  |  |
| Range data size                               | 6.2GB                                                                 |  |  |
| POS                                           | 167MB                                                                 |  |  |
| Image                                         | 12.9MB                                                                |  |  |
| Transfer date                                 | January 15, 2016                                                      |  |  |
| Solution Status                               |                                                                       |  |  |
| Number of Satellites (>6)                     | Yes                                                                   |  |  |
| PDOP (<3)                                     | Yes                                                                   |  |  |
| Baseline Length (<30km)                       | No                                                                    |  |  |
| Processing Mode (<=1)                         | No                                                                    |  |  |
| Smoothed Performance Metrics (in cm)          |                                                                       |  |  |
| RMSE for North Position (<4.0 cm)             | 1.01                                                                  |  |  |
| RMSE for East Position (<4.0 cm)              | 1.16                                                                  |  |  |
| RMSE for Down Position (<8.0 cm)              | 4.25                                                                  |  |  |
| RIVISE FOR DOWN POSITION (<8.0 CM)            | 4.25                                                                  |  |  |
| Boresight correction stdev (<0.001deg)        | 0.359804                                                              |  |  |
| IMU attitude correction stdev (<0.001deg)     | 0.083211                                                              |  |  |
| GPS position stdev (<0.01m)                   | 0.0024                                                                |  |  |
| Minimum % overlap (>25)                       |                                                                       |  |  |
| Ave point cloud density per sq.m. (>2.0)      |                                                                       |  |  |
| Elevation difference between strips (<0.20 m) | Yes                                                                   |  |  |
| Number of 1km x 1km blocks                    | 40                                                                    |  |  |
|                                               |                                                                       |  |  |
| Maximum Height                                | 231.12 m                                                              |  |  |
| Minimum Height                                | 50.50 m                                                               |  |  |
| Classification (# of points)                  |                                                                       |  |  |
| Ground                                        | 15,453,565                                                            |  |  |
| Low vegetation                                | 10,246,556                                                            |  |  |
| Medium vegetation                             | 13,004,794                                                            |  |  |
| High vegetation                               | 17,341,456                                                            |  |  |
| Building                                      | 271,742                                                               |  |  |
| Orthophoto                                    | Yes                                                                   |  |  |
| Processed by                                  | Engr. Abigail Ching, Engr. Harmond<br>Santos, Engr. Melissa Fernandez |  |  |

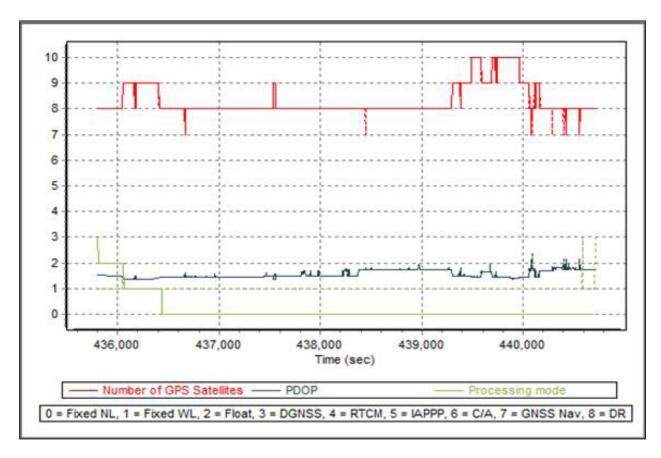



Figure A-8.22. Solution Status

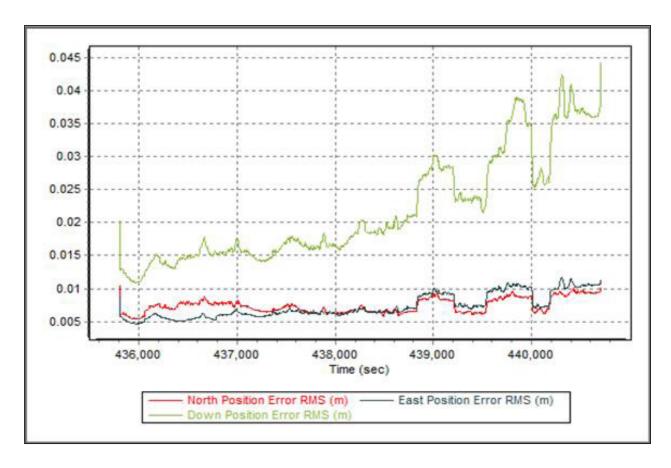



Figure A-8.23. Smoothed Performance Metric Parameters



Figure A-8.24. Best Estimated Trajectory

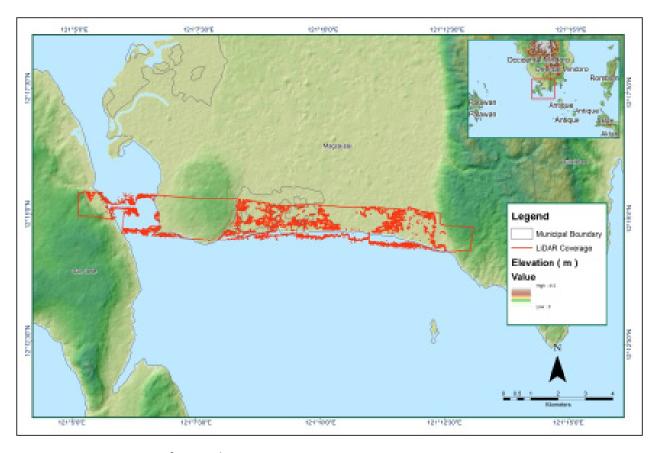



Figure A-8.25. Coverage of LiDAR data

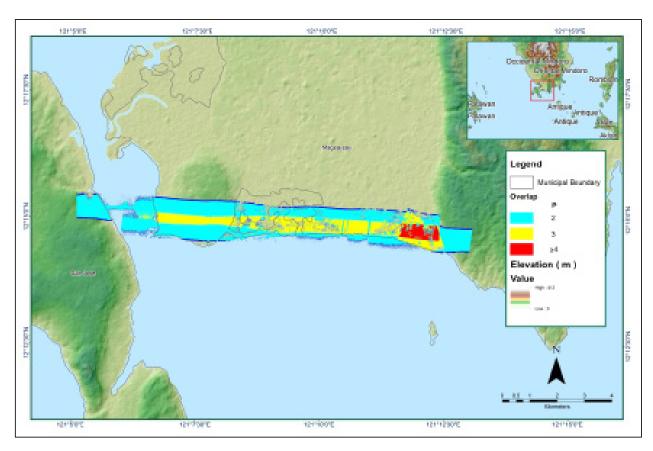



Figure A-8.26. Image of data overlap

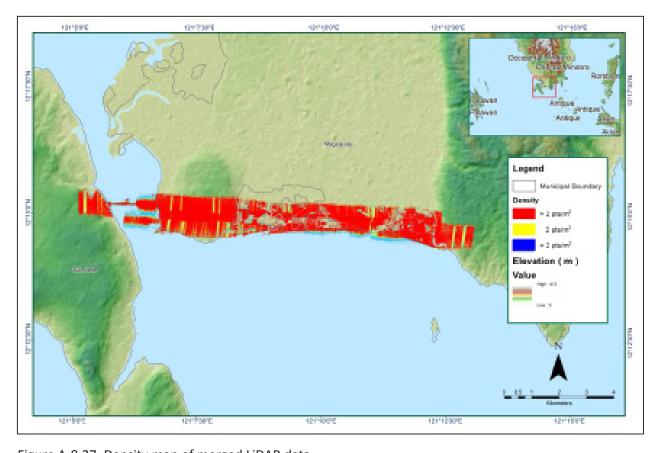



Figure A-8.27. Density map of merged LiDAR data

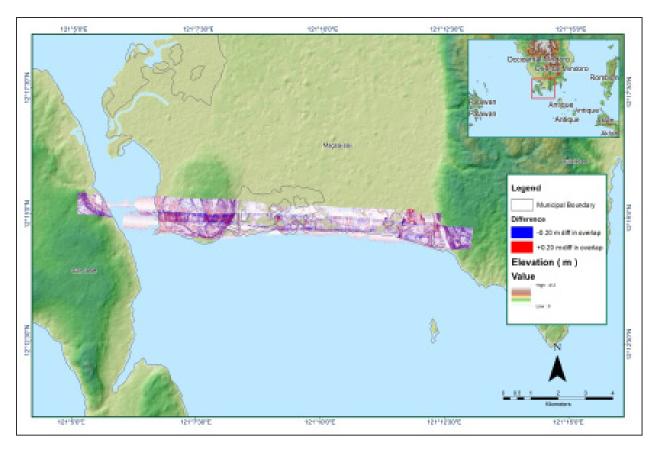



Figure A-8.28. Elevation difference between flight lines

Table A-8.5 Mission Summary Report for Mission Blk29B\_additional

|                                               | I                                                                     |  |  |
|-----------------------------------------------|-----------------------------------------------------------------------|--|--|
| Flight Area                                   | Davao Oriental                                                        |  |  |
| Mission Name                                  | Blk29B_additional                                                     |  |  |
| Inclusive Flights                             | 3078P                                                                 |  |  |
| Range data size                               | 6.2GB                                                                 |  |  |
| Base data size                                | 7.02MB                                                                |  |  |
| POS                                           | 167MB                                                                 |  |  |
| Image                                         | 12.9MB                                                                |  |  |
| Transfer date                                 | January 15, 2016                                                      |  |  |
|                                               |                                                                       |  |  |
| Solution Status                               |                                                                       |  |  |
| Number of Satellites (>6)                     | Yes                                                                   |  |  |
| PDOP (<3)                                     | Yes                                                                   |  |  |
| Baseline Length (<30km)                       | No                                                                    |  |  |
| Processing Mode (<=1)                         | No                                                                    |  |  |
|                                               |                                                                       |  |  |
| Smoothed Performance Metrics (in cm)          |                                                                       |  |  |
| RMSE for North Position (<4.0 cm)             | 1.01                                                                  |  |  |
| RMSE for East Position (<4.0 cm)              | 1.16                                                                  |  |  |
| RMSE for Down Position (<8.0 cm)              | 4.25                                                                  |  |  |
|                                               |                                                                       |  |  |
| Boresight correction stdev (<0.001deg)        | 0.359804                                                              |  |  |
| IMU attitude correction stdev (<0.001deg)     | 0.083211                                                              |  |  |
| GPS position stdev (<0.01m)                   | 0.0024                                                                |  |  |
|                                               |                                                                       |  |  |
| Minimum % overlap (>25)                       | 17.73%                                                                |  |  |
| Ave point cloud density per sq.m. (>2.0)      | 1.81                                                                  |  |  |
| Elevation difference between strips (<0.20 m) | Yes                                                                   |  |  |
|                                               |                                                                       |  |  |
| Number of 1km x 1km blocks                    | 18                                                                    |  |  |
| Maximum Height                                | 322.24 m                                                              |  |  |
| Minimum Height                                | 53.37 m                                                               |  |  |
|                                               |                                                                       |  |  |
| Classification (# of points)                  |                                                                       |  |  |
| Ground                                        | 13,137,914                                                            |  |  |
| Low vegetation                                | 6,256,653                                                             |  |  |
| Medium vegetation                             | 4,588,390                                                             |  |  |
| High vegetation                               | 8,091,371                                                             |  |  |
| Building                                      | 187,119                                                               |  |  |
|                                               |                                                                       |  |  |
| Orthophoto                                    | Yes                                                                   |  |  |
| Processed by                                  | Engr. Abigail Ching, Engr. Harmond<br>Santos, Engr. Melissa Fernandez |  |  |




Figure A-8.29. Solution Status

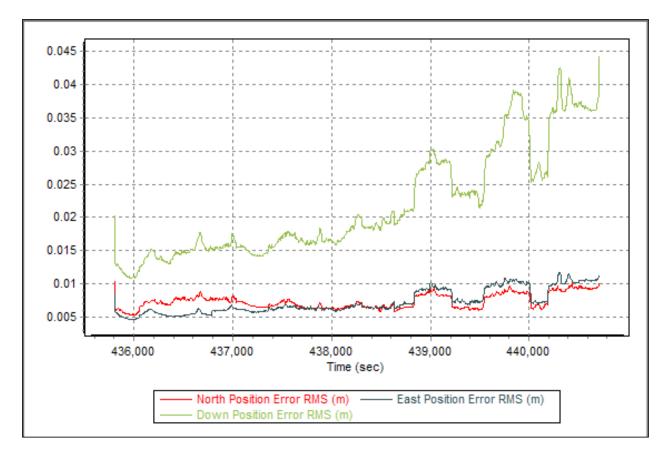



Figure A-8.30. Smoothed Performance Metric Parameters



Figure A-8.31. Best Estimated Trajectory

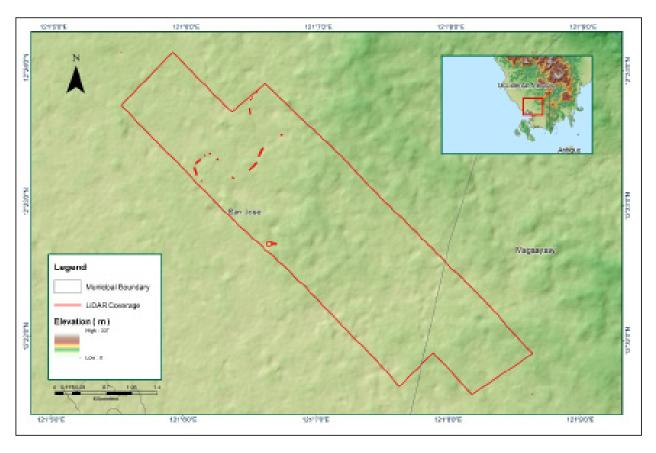



Figure A-8.32. Coverage of LiDAR data

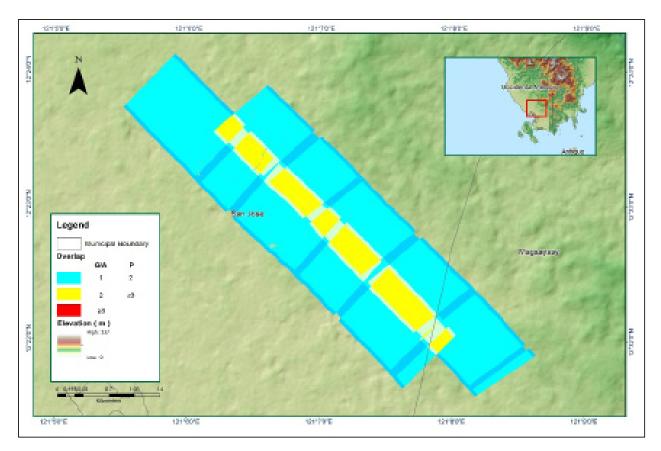



Figure A-8.33. Image of data overlap

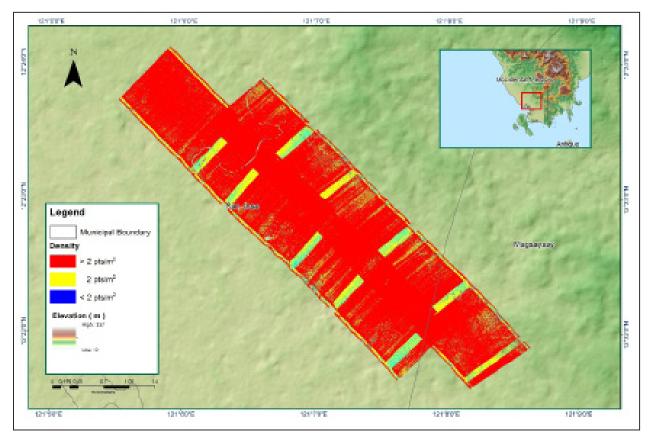



Figure A-8.34. Density map of merged LiDAR data

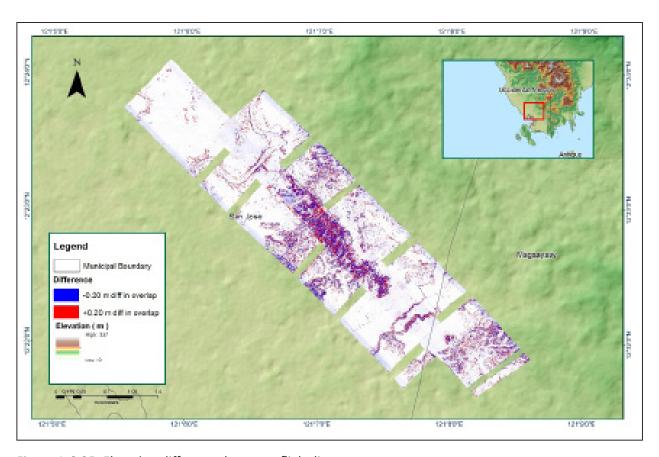



Figure A-8.35. Elevation difference between flight lines

Table A-8.6 Mission Summary Report for Mission Blk29C\_additional

| Flight Area                                   | Davao Oriental                     |  |  |  |
|-----------------------------------------------|------------------------------------|--|--|--|
| Mission Name                                  | Blk29C_additional                  |  |  |  |
|                                               | 3078P, 3082P                       |  |  |  |
| Inclusive Flights                             | ·                                  |  |  |  |
| Range data size                               | 15.42GB                            |  |  |  |
| POS                                           | 341MB                              |  |  |  |
| Image                                         | 26MB                               |  |  |  |
| Transfer date                                 | January 15, 2016                   |  |  |  |
| Solution Status                               |                                    |  |  |  |
| Number of Satellites (>6)                     | Yes                                |  |  |  |
| PDOP (<3)                                     | Yes                                |  |  |  |
| Baseline Length (<30km)                       | Yes                                |  |  |  |
| Processing Mode (<=1)                         | Yes                                |  |  |  |
| Smoothed Performance Metrics (in cm)          |                                    |  |  |  |
| RMSE for North Position (<4.0 cm)             | 0.79                               |  |  |  |
| RMSE for East Position (<4.0 cm)              | 0.78                               |  |  |  |
| RMSE for Down Position (<8.0 cm)              | 1.67                               |  |  |  |
|                                               |                                    |  |  |  |
| Boresight correction stdev (<0.001deg)        | 0.359804                           |  |  |  |
| IMU attitude correction stdev (<0.001deg)     | 0.083211                           |  |  |  |
| GPS position stdev (<0.01m)                   | 0.0024                             |  |  |  |
| Minimum % overlap (>25)                       | 40.31                              |  |  |  |
| Ave point cloud density per sq.m. (>2.0)      | 2.10                               |  |  |  |
| Elevation difference between strips (<0.20 m) | Yes                                |  |  |  |
| Number of 1km x 1km blocks                    | 108                                |  |  |  |
| Maximum Height                                | 521.55 m                           |  |  |  |
| Minimum Height                                | 51.07 m                            |  |  |  |
| William Telgin                                | 52107 111                          |  |  |  |
| Classification (# of points)                  |                                    |  |  |  |
| Ground                                        | 132,379,761                        |  |  |  |
| Low vegetation                                | 125,752,184                        |  |  |  |
| Medium vegetation                             | 199,077,351                        |  |  |  |
| High vegetation                               | 599,574,573                        |  |  |  |
| Building                                      | 15,255,571                         |  |  |  |
| Orthophoto                                    | Yes                                |  |  |  |
| Οιτιιοριιστο                                  | Engr. Abigail Ching, Engr. Harmond |  |  |  |
| Processed by                                  | Santos, Kathryn Claudyn Zarate     |  |  |  |

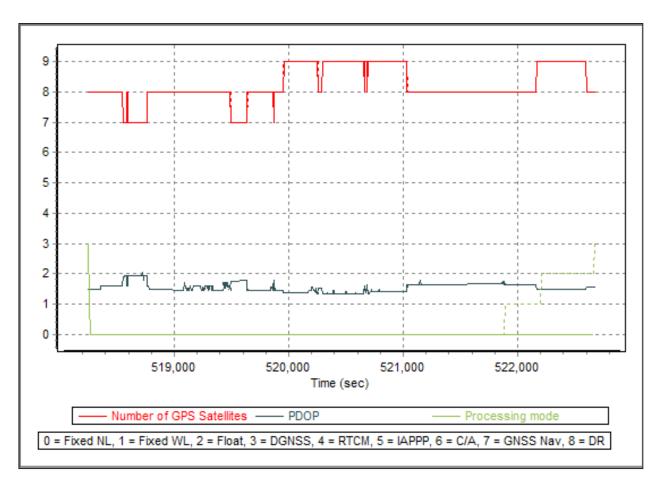



Figure A-8.36. Solution Status

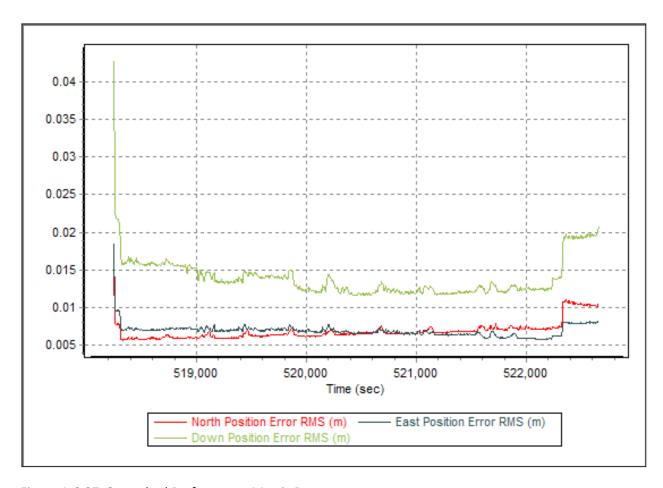



Figure A-8.37. Smoothed Performance Metric Parameters

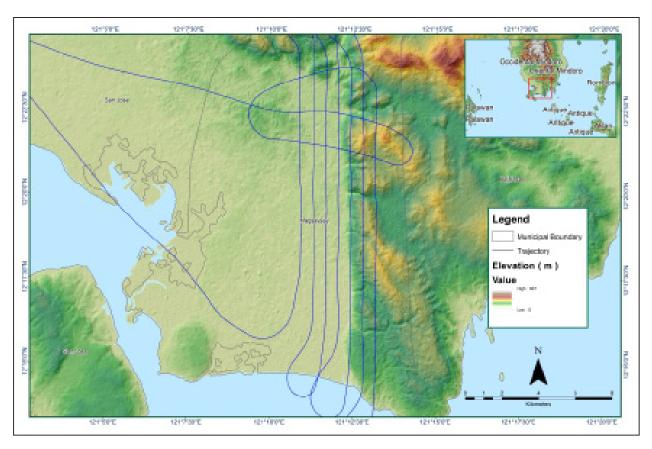



Figure A-8.38. Best Estimated Trajectory

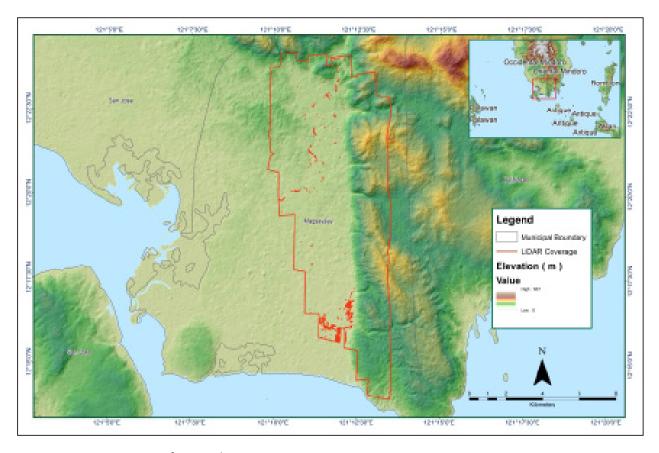



Figure A-8.39. Coverage of LiDAR data

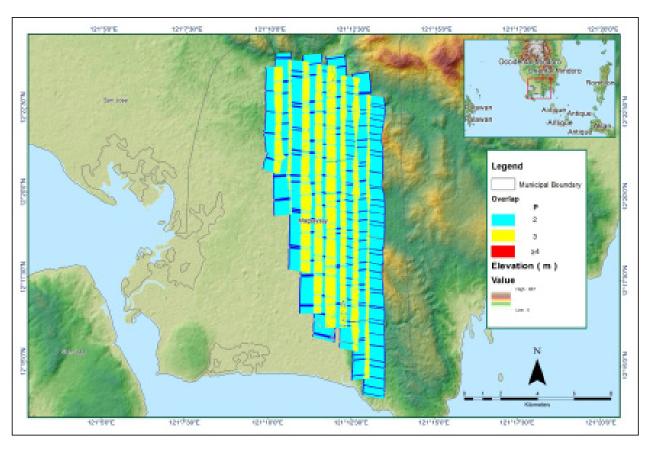



Figure A-8.40. Image of data overlap

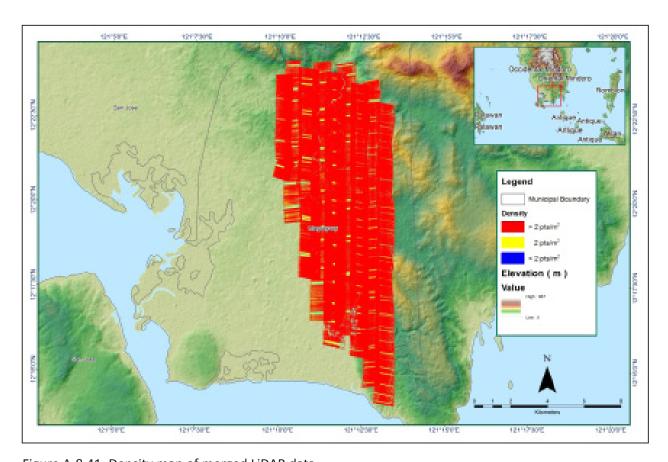



Figure A-8.41. Density map of merged LiDAR data

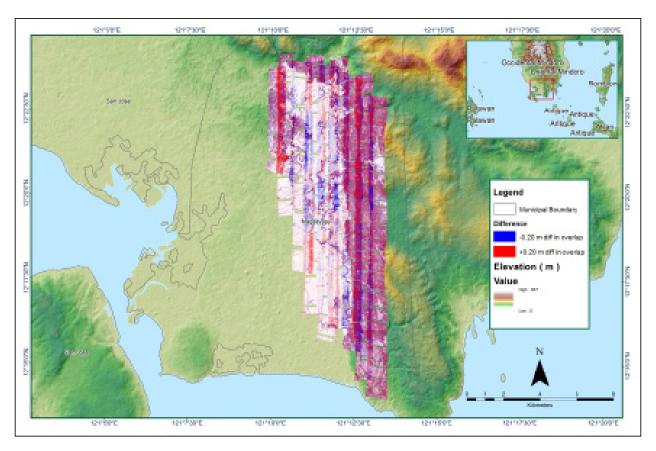



Figure A-8.42. Elevation difference between flight lines

Annex 9. Caguray Model Basin Parameters

|           | SCS Cur                     | SCS Curve Number Loss | (2)               | Clark Unit Hydrograph Transform | raph Transform              |                             |                       |               |
|-----------|-----------------------------|-----------------------|-------------------|---------------------------------|-----------------------------|-----------------------------|-----------------------|---------------|
| Sub-basin | Initial Abstraction<br>(mm) | Curve<br>Number       | Impervious<br>(%) | Time of<br>Concentration (HR)   | Storage<br>Coefficient (HR) | Initial Discharge<br>(M3/S) | Recession<br>Constant | Ratio to Peak |
| W1000     | 0.1458                      | 68.331                | 0.0               | 0.1253                          | 60.304                      | 0.27230                     | 1                     | 0.5000        |
| W1010     | 0.1294                      | 68.331                | 0.0               | 0.11321                         | 80.099                      | 0.10504                     | 1                     | 0.5000        |
| W1040     | 20.272                      | 61.1743               | 0.0               | 1.6278                          | 39.849                      | 0.31144                     | 1                     | 0.5000        |
| W1050     | 0.1964                      | 66                    | 0.0               | 0.54572                         | 345.89                      | 0.29530                     | 1                     | 0.5           |
| W520      | 0.5432                      | 92.532                | 0.0               | 0.42315                         | 60.121                      | 0.23650                     | 1                     | 0.5           |
| W530      | 1.2222                      | 92.532                | 0.0               | 0.92922                         | 88.414                      | 0.34808                     | 1                     | 0.5           |
| W540      | 0.472                       | 66                    | 0.0               | 0.65115                         | 138.48                      | 0.68559                     | 1                     | 0.5           |
| W550      | 0.5432                      | 92.532                | 0.0               | 3.1593                          | 89.84                       | 0.44300                     | 1                     | 0.5           |
| W560      | 0.5432                      | 94.421                | 0.0               | 1.3939                          | 102.05                      | 0.35383                     | 1                     | 0.5           |
| W570      | 0.816                       | 96.885                | 0.0               | 2.8                             | 174.69                      | 0.75110                     | 1                     | 0.5           |
| W580      | 0.5432                      | 92.532                | 0.0               | 1.8204                          | 116.46                      | 0.28501                     | 1                     | 0.5           |
| W590      | 0.5432                      | 93.802                | 0.0               | 2.9157                          | 124.93                      | 0.54392                     | 1                     | 0.5           |
| W600      | 1.2086                      | 96.965                | 0.0               | 0.64102                         | 92.767                      | 0.36002                     | 1                     | 0.5           |
| W610      | 0.5352                      | 97.234                | 0.0               | 2.2193                          | 141.25                      | 0.72187                     | 1                     | 0.5           |
| W620      | 0.5076                      | 95.826                | 0.0               | 1.3338                          | 127.79                      | 0.78438                     | 1                     | 0.5           |
| W630      | 0.5432                      | 97.208                | 0.0               | 0.80972                         | 76.951                      | 0.22689                     | 1                     | 0.5           |
| W640      | 2.334                       | 68.331                | 0.0               | 1.4139                          | 138.78                      | 0.61288                     | 1                     | 0.5           |
| W650      | 0.5432                      | 62.946                | 0.0               | 0.17336                         | 37.838                      | 0.0169690                   | 1                     | 0.5           |
| W660      | 0.5432                      | 62.946                | 0.0               | 0.64138                         | 94.004                      | 0.10105                     | 1                     | 0.5           |
| W670      | 0.7986                      | 92.532                | 0.0               | 0.094735                        | 22.522                      | .000663181                  | 1                     | 0.4802        |
| W680      | 0.5432                      | 92.532                | 0.0               | 0.86797                         | 84.578                      | 0.43717                     | 1                     | 0.5           |
| W690      | 0.5432                      | 66                    | 0.0               | 0.68016                         | 97.427                      | 0.26251                     | 1                     | 0.5           |
| W700      | 0.4816                      | 66                    | 0.0               | 1.0836                          | 155.19                      | 0.62682                     | 1                     | 0.5           |

|           | SCS Cui                     | SCS Curve Number Loss |                   | Clark Unit Hydrograph Transform | raph Transform              |                             |                           |               |
|-----------|-----------------------------|-----------------------|-------------------|---------------------------------|-----------------------------|-----------------------------|---------------------------|---------------|
| Sub-basin | Initial Abstraction<br>(mm) | Curve                 | Impervious<br>(%) | Time of<br>Concentration (HR)   | Storage<br>Coefficient (HR) | Initial Discharge<br>(M3/S) | <b>Recession Constant</b> | Ratio to Peak |
| W710      | 0.3454                      | 66                    | 0.0               | 0.21805                         | 45.486                      | 0.18063                     | 1                         | 0.5           |
| W720      | 0.4316                      | 66                    | 0.0               | 0.38721                         | 84.853                      | 0.35507                     | 1                         | 0.5           |
| W730      | 1.2222                      | 94.809                | 0.0               | 2.1907                          | 139.43                      | 0.65987                     | 1                         | 0.5           |
| W740      | 0.5106                      | 64.992                | 0.0               | 0.24921                         | 79.963                      | 0.21583                     | 1                         | 0.5           |
| M750      | 0.5432                      | 62.946                | 0.0               | 0.42364                         | 62.246                      | 0.0578862                   | 1                         | 0.5           |
| 09LM      | 0.3502                      | 66                    | 0.0               | 0.63613                         | 90.826                      | 0.17837                     | 1                         | 0.5           |
| 022M      | 0.3946                      | 66                    | 0.0               | 0.37577                         | 120.98                      | 0.58995                     | 1                         | 0.5           |
| 08/M      | 0.5432                      | 66                    | 0.0               | 0.09213                         | 66.172                      | 0.0154847                   | 1                         | 0.5           |
| 062M      | 0.5368                      | 66                    | 0.0               | 1.9798                          | 189.93                      | 0.55494                     | 1                         | 0.5           |
| 008M      | 1.1276                      | 65.607                | 0.0               | 0.70668                         | 102.24                      | 0.26565                     | 1                         | 0.5           |
| W810      | 0.5602                      | 91.079                | 0.0               | 1.1138                          | 159.5                       | 0.95204                     | 1                         | 0.5           |
| W820      | 1.2222                      | 62.946                | 0.0               | 0.4252                          | 93.245                      | 0.30553                     | 1                         | 0.5           |
| W830      | 1.1412                      | 65.211                | 0.0               | 0.34601                         | 75.888                      | 0.25639                     | 1                         | 0.5           |
| W840      | 2.75                        | 42.821                | 0.0               | 0.2935                          | 95.942                      | 0.0912979                   | 1                         | 0.5           |
| W850      | 0.4842                      | 66                    | 0.0               | 0.71624                         | 69.124                      | 0.36562                     | 1                         | 0.5           |
| W860      | 1.1498                      | 67.648                | 0.0               | 0.10129                         | 74.201                      | 0.28254                     | 1                         | 0.5           |
| W870      | 0.7656                      | 88.905                | 0.0               | 0.3824                          | 125.18                      | 0.52965                     | 1                         | 0.5           |
| W880      | 0.5432                      | 66                    | 0.0               | 0.54271                         | 116.51                      | 0.25141                     | 1                         | 0.5           |
| W890      | 0.7986                      | 66                    | 0.0               | 2.5252                          | 105.07                      | 0.27817                     | 1                         | 0.5           |
| 006M      | 0.9754                      | 66                    | 0.0               | 0.22251                         | 158.37                      | 0.79070                     | 1                         | 0.5           |
| W910      | 0.403                       | 66                    | 0.0               | 0.14794                         | 47.649                      | 0.32253                     | 1                         | 0.5           |
| W920      | 0.2732                      | 66                    | 0.0               | 0.07321                         | 15.632                      | 0.24728                     | 1                         | 0.2222        |
| W930      | 0.3444                      | 66                    | 0.0               | 0.25243                         | 287.16                      | 0.19742                     | 1                         | 0.5           |
| W940      | 0.5432                      | 66                    | 0.0               | 0.14816                         | 163.49                      | 0.37988                     | 1                         | 0.5           |
| W950      | 0.4394                      | 66                    | 0.0               | 0.15159                         | 32.425                      | 0.0517649                   | 1                         | 0.4917        |

|           | no sos cni                  | <b>SCS Curve Number Loss</b> | S                 | Clark Unit Hydrograph Transform | raph Transform              |                             |                       |               |
|-----------|-----------------------------|------------------------------|-------------------|---------------------------------|-----------------------------|-----------------------------|-----------------------|---------------|
| Sub-basin | Initial Abstraction<br>(mm) | Curve<br>Number              | Impervious<br>(%) | Time of<br>Concentration (HR)   | Storage<br>Coefficient (HR) | Initial Discharge<br>(M3/S) | Recession<br>Constant | Ratio to Peak |
| 096M      | 0.3936                      | 66                           | 0.0               | 0.14121                         | 100.67                      | 0.48522                     | 1                     | 0.5           |
| W970      | 0.6004                      | 66                           | 0.0               | 0.11528                         | 24.538                      | 0.37268                     | 1                     | 0.3333        |
| W980      | 0.8932                      | 66                           | 0.0               | 2.1041                          | 456.64                      | 1.2000                      | 1                     | 0.5           |
| 066M      | 0.6162                      | 66                           | 0.0               | 0.22157                         | 161.37                      | 06009:0                     | 1                     | 0.5           |

Annex 10. Caguray Model Reach Parameters

| Reach  |                          |            | Muskingum Cunge Channel Routing | l Routing   |           |       |               |
|--------|--------------------------|------------|---------------------------------|-------------|-----------|-------|---------------|
| Number | Time Step Method         | Length (m) | Slope                           | Manning's n | Shape     | Width | Side<br>Slope |
| R1060  | Automatic Fixed Interval | 8193.6     | 0.0046050                       | 0.0669292   | Trapezoid | 40    | 1             |
| R130   | Automatic Fixed Interval | 56.569     | 0.0141509                       | 0.5452      | Trapezoid | 40    | 1             |
| R140   | Automatic Fixed Interval | 1393.3     | 0.0067208                       | 0.36539     | Trapezoid | 40    | 1             |
| R150   | Automatic Fixed Interval | 5701.9     | 0.0133876                       | 0.54531     | Trapezoid | 40    | 1             |
| R160   | Automatic Fixed Interval | 3543.3     | 0.0141264                       | 0.2448      | Trapezoid | 40    | 1             |
| R190   | Automatic Fixed Interval | 2426.2     | 0.0077829                       | 0.35627     | Trapezoid | 40    | 1             |
| R220   | Automatic Fixed Interval | 3349.1     | 0.0091600                       | 0.16238     | Trapezoid | 40    | 1             |
| R230   | Automatic Fixed Interval | 2646.3     | 0.0061734                       | 0.24238     | Trapezoid | 40    | 1             |
| R240   | Automatic Fixed Interval | 2658.4     | 0.0065554                       | 0.15835     | Trapezoid | 40    | 1             |
| R250   | Automatic Fixed Interval | 1400.5     | 0.0110834                       | 0.16076     | Trapezoid | 40    | 1             |
| R260   | Automatic Fixed Interval | 118.28     | 0.0273725                       | 0.15836     | Trapezoid | 40    | 1             |
| R280   | Automatic Fixed Interval | 2263.1     | 0.0027761                       | 0.23221     | Trapezoid | 40    | 1             |
| R310   | Automatic Fixed Interval | 3547.5     | 0.0048115                       | 0.23274     | Trapezoid | 40    | 1             |
| R320   | Automatic Fixed Interval | 1758.5     | 0.0086590                       | 0.10772     | Trapezoid | 40    | 1             |

| Reach  |                          |            | Muskingum Cunge Channel Routing | el Routing  |           |       |               |
|--------|--------------------------|------------|---------------------------------|-------------|-----------|-------|---------------|
| Number | Time Step Method         | Length (m) | Slope                           | Manning's n | Shape     | Width | Side<br>Slope |
| R330   | Automatic Fixed Interval | 5530.8     | 0.0156066                       | 0.16029     | Trapezoid | 40    | 1             |
| R350   | Automatic Fixed Interval | 3248.8     | 0.0051373                       | 0.23636     | Trapezoid | 40    | 1             |
| R410   | Automatic Fixed Interval | 1738.2     | 0.0017449                       | 0.10244     | Trapezoid | 40    | 1             |
| R420   | Automatic Fixed Interval | 7732.6     | 0.0042001                       | 0.15442     | Trapezoid | 40    | 1             |
| R440   | Automatic Fixed Interval | 902.69     | 0.0042001                       | 0.10453     | Trapezoid | 40    | 1             |
| R450   | Automatic Fixed Interval | 4671.6     | 0.0305024                       | 0.0696889   | Trapezoid | 40    | 1             |
| R460   | Automatic Fixed Interval | 4474.2     | 0.0016455                       | 0.0696889   | Trapezoid | 40    | 1             |
| R500   | Automatic Fixed Interval | 1767.8     | 0.0046050                       | 0.0696889   | Trapezoid | 40    | 1             |
| R510   | Automatic Fixed Interval | 9161.4     | 0.0046050                       | 0.04        | Trapezoid | 40    | 1             |
| R70    | Automatic Fixed Interval | 4911.4     | 0.0201613                       | 0.54495     | Trapezoid | 40    | 1             |
| R80    | Automatic Fixed Interval | 7061.7     | 0.0330236                       | 0.36499     | Trapezoid | 40    | 1             |
| R90    | Automatic Fixed Interval | 683.55     | 0.0141509                       | 0.54533     | Trapezoid | 40    | 1             |

Annex 11. Caguray Field Validation Data

| Point  | Validation ( | Coordinates | Model   | Validation | Error | Event/Date          | Rain<br>Return / |
|--------|--------------|-------------|---------|------------|-------|---------------------|------------------|
| Number | Lat          | Long        | Var (m) | Points (m) | EIIOI | Event/ Date         | Scenario         |
| 1      | 12.2677593   | 121.139577  | 0.052   | 0.00       | -0.05 |                     | 25-Year          |
| 2      | 12.26808239  | 121.1359749 | 0.096   | 0.00       | -0.10 |                     | 25-Year          |
| 3      | 12.26811462  | 121.1353353 | 0.042   | 0.00       | -0.04 |                     | 25-Year          |
| 4      | 12.26817205  | 121.1348946 | 0.056   | 0.00       | -0.06 |                     | 25-Year          |
| 5      | 12.2683501   | 121.1396667 | 0.178   | 0.00       | -0.18 |                     | 25-Year          |
| 6      | 12.26855913  | 121.139096  | 0.067   | 0.00       | -0.07 |                     | 25-Year          |
| 7      | 12.26867158  | 121.1358332 | 0.056   | 0.00       | -0.06 |                     | 25-Year          |
| 8      | 12.2687375   | 121.1369316 | 0.097   | 0.00       | -0.10 |                     | 25-Year          |
| 9      | 12.26890997  | 121.1370532 | 0.06    | 0.00       | -0.06 |                     | 25-Year          |
| 10     | 12.26898759  | 121.136709  | 0.072   | 0.00       | -0.07 |                     | 25-Year          |
| 11     | 12.26906449  | 121.1348371 | 0.078   | 0.00       | -0.08 |                     | 25-Year          |
| 12     | 12.26918658  | 121.1388668 | 0.119   | 0.00       | -0.12 |                     | 25-Year          |
| 13     | 12.26918873  | 121.1377438 | 0.138   | 0.00       | -0.14 |                     | 25-Year          |
| 14     | 12.26942876  | 121.1364042 | 0.162   | 0.00       | -0.16 |                     | 25-Year          |
| 15     | 12.26947415  | 121.1384567 | 0.247   | 0.00       | -0.25 |                     | 25-Year          |
| 16     | 12.26948678  | 121.1375942 | 0.278   | 0.00       | -0.28 |                     | 25-Year          |
| 17     | 12.26983985  | 121.1342523 | 0.202   | 0.00       | -0.20 |                     | 25-Year          |
| 18     | 12.26990337  | 121.1332585 | 0.074   | 0.00       | -0.07 |                     | 25-Year          |
| 19     | 12.27053581  | 121.1343376 | 0.293   | 0.00       | -0.29 |                     | 25-Year          |
| 20     | 12.27085968  | 121.1369329 | 0.081   | 0.30       | 0.22  |                     | 25-Year          |
| 21     | 12.27101084  | 121.1333797 | 0.036   | 0.00       | -0.04 | Ruby / Dec.<br>2014 | 25-Year          |
| 22     | 12.27107064  | 121.1403548 | 0.035   | 0.60       | 0.57  |                     | 25-Year          |
| 23     | 12.27104627  | 121.1365413 | 0.268   | 0.60       | 0.33  | Ruby / Dec.<br>2014 | 25-Year          |
| 24     | 12.27130712  | 121.1420051 | 0.056   | 0.60       | 0.54  | Ruby / Dec.<br>2014 | 25-Year          |
| 25     | 12.27148638  | 121.1399971 | 0.067   | 0.90       | 0.83  | Ruby / Dec.<br>2014 | 25-Year          |
| 26     | 12.27155569  | 121.140664  | 0.032   | 0.60       | 0.57  | Ruby / Dec.<br>2014 | 25-Year          |
| 27     | 12.27181344  | 121.1391873 | 0.03    | 0.60       | 0.57  | Ruby / Dec.<br>2014 | 25-Year          |
| 28     | 12.27181687  | 121.1327829 | 0.061   | 0.00       | -0.06 | Ruby / Dec.<br>2014 | 25-Year          |
| 29     | 12.27199171  | 121.1365596 | 0.094   | 0.60       | 0.51  |                     | 25-Year          |
| 30     | 12.27237603  | 121.1318774 | 0.077   | 0.00       | -0.08 | Ruby / Dec.<br>2014 | 25-Year          |
| 31     | 12.27389698  | 121.1320439 | 0.03    | 0.50       | 0.47  |                     | 25-Year          |
| 32     | 12.27420119  | 121.1246051 | 0.216   | 1.00       | 0.78  | Ruby / Dec.<br>2014 | 25-Year          |

| Point  | Validation ( | Coordinates | Model   | Validation | Error  | Event/Date             | Rain<br>Return / |
|--------|--------------|-------------|---------|------------|--------|------------------------|------------------|
| Number | Lat          | Long        | Var (m) | Points (m) | EIIOI  | Event/Date             | Scenario         |
| 33     | 12.280456    | 121.140142  | 0.03    | 0.40       | 0.37   | Ruby / Dec.<br>2014    | 25-Year          |
| 34     | 12.280598    | 121.140319  | 0.03    | 0.35       | 0.32   | Ondoy / Sept.<br>2009  | 25-Year          |
| 35     | 12.2815      | 121.1406    | 0.199   | 0.24       | 0.04   | Yolanda / Nov.<br>2013 | 25-Year          |
| 36     | 12.2824      | 121.141125  | 0.03    | 0.42       | 0.39   | Glenda / July,<br>2014 | 25-Year          |
| 37     | 12.2826      | 121.1413    | 0.031   | 0.77       | 0.74   | Nona / Dec.<br>2015    | 25-Year          |
| 38     | 12.28291     | 121.14136   | 0.268   | 0.50       | 0.23   | Yolanda / Nov.<br>2013 | 25-Year          |
| 39     | 12.283027    | 121.142358  | 0.03    | 0.30       | 0.27   | Yolanda / Nov.<br>2013 | 25-Year          |
| 40     | 12.28324598  | 121.1163547 | 0.03    | 0.30       | 0.27   | Yolanda / Nov.<br>2013 | 25-Year          |
| 41     | 12.28343378  | 121.1168896 | 0.03    | 0.00       | -0.03  | Ruby / Dec.<br>2014    | 25-Year          |
| 42     | 12.28369153  | 121.1183253 | 0.03    | 0.00       | -0.03  |                        | 25-Year          |
| 43     | 12.28385491  | 121.1165601 | 0.03    | 0.30       | 0.27   |                        | 25-Year          |
| 44     | 12.283971    | 121.115485  | 0.037   | 0.30       | 0.26   | Ruby / Dec.<br>2014    | 25-Year          |
| 45     | 12.28404456  | 121.1149475 | 0.03    | 0.00       | -0.03  | Ruby / Dec.<br>2014    | 25-Year          |
| 46     | 12.2841044   | 121.1177292 | 0.056   | 0.30       | 0.244  |                        | 25-Year          |
| 47     | 12.28436415  | 121.1161775 | 0.03    | 0.60       | 0.57   | Ruby / Dec.<br>2014    | 25-Year          |
| 48     | 12.28454404  | 121.1174499 | 0.034   | 0.00       | -0.034 | Ruby / Dec.<br>2014    | 25-Year          |
| 49     | 12.28454459  | 121.1145975 | 0.075   | 0.00       | -0.075 |                        | 25-Year          |
| 50     | 12.28473556  | 121.1142957 | 0.054   | 0.00       | -0.054 |                        | 25-Year          |
| 51     | 12.28501068  | 121.1148755 | 0.038   | 0.00       | -0.038 |                        | 25-Year          |
| 52     | 12.28521985  | 121.1413016 | 0.03    | 0.90       | 0.87   |                        | 25-Year          |
| 53     | 12.2852526   | 121.1149556 | 0.044   | 0.00       | -0.044 | Frank / June,<br>2008  | 25-Year          |
| 54     | 12.28541714  | 121.1146135 | 0.03    | 0.60       | 0.57   |                        | 25-Year          |
| 55     | 12.28570751  | 121.1145189 | 0.049   | 0.70       | 0.651  | Ruby / Dec.<br>2014    | 25-Year          |
| 56     | 12.28584209  | 121.1142662 | 0.031   | 1.00       | 0.969  | Ruby / Dec.<br>2014    | 25-Year          |
| 57     | 12.28588312  | 121.1161351 | 0.048   | 0.30       | 0.252  | Ruby / Dec.<br>2014    | 25-Year          |
| 58     | 12.28590879  | 121.1146586 | 0.03    | 0.90       | 0.87   | Ruby / Dec.<br>2014    | 25-Year          |
| 59     | 12.28605087  | 121.1137754 | 0.054   | 1.00       | 0.946  | Ruby / Dec.<br>2014    | 25-Year          |

| Point  | Validation ( | Coordinates | Model   | Validation | Funan  | Fromt/Data             | Rain                 |
|--------|--------------|-------------|---------|------------|--------|------------------------|----------------------|
| Number | Lat          | Long        | Var (m) | Points (m) | Error  | Event/Date             | Return /<br>Scenario |
| 60     | 12.28619179  | 121.1143164 | 0.037   | 1.00       | 0.963  | Ruby / Dec.<br>2014    | 25-Year              |
| 61     | 12.286413    | 121.113646  | 0.03    | 0.70       | 0.67   | Ruby / Dec.<br>2014    | 25-Year              |
| 62     | 12.28662187  | 121.1137243 | 0.03    | 1.00       | 0.97   | Yolanda / Nov.<br>2013 | 25-Year              |
| 63     | 12.28713632  | 121.14006   | 0.03    | 0.00       | -0.03  | Ruby / Dec.<br>2014    | 25-Year              |
| 64     | 12.28713758  | 121.1152344 | 0.03    | 0.00       | -0.03  |                        | 25-Year              |
| 65     | 12.2874      | 121.1118    | 0.03    | 0.40       | 0.37   |                        | 25-Year              |
| 66     | 12.287451    | 121.106806  | 0.123   | 1.30       | 1.177  | Yolanda / Nov.<br>2013 | 25-Year              |
| 67     | 12.287451    | 121.106806  | 0.123   | 0.56       | 0.437  | Yolanda / Nov.<br>2013 | 25-Year              |
| 68     | 12.287712    | 121.110859  | 0.033   | 0.10       | 0.067  | Ruby / Dec.<br>2014    | 25-Year              |
| 69     | 12.2877      | 121.1076    | 0.149   | 0.77       | 0.621  | Ruby / Dec.<br>2014    | 25-Year              |
| 70     | 12.288088    | 121.107628  | 0.343   | 1.00       | 0.657  | Glenda / July,<br>2014 | 25-Year              |
| 71     | 12.288137    | 121.109273  | 0.259   | 0.85       | 0.591  | Ruby / Dec.<br>2014    | 25-Year              |
| 72     | 12.2881785   | 121.1140012 | 0.03    | 0.00       | -0.03  | Aug. 2015              | 25-Year              |
| 73     | 12.288228    | 121.108309  | 0.363   | 0.95       | 0.587  |                        | 25-Year              |
| 74     | 12.28826257  | 121.1078895 | 0.286   | 1.30       | 1.014  | Yolanda / Nov.<br>2013 | 25-Year              |
| 75     | 12.28846631  | 121.1084624 | 0.296   | 1.30       | 1.004  | Ruby / Dec.<br>2014    | 25-Year              |
| 76     | 12.288522    | 121.1095252 | 0.111   | 1.30       | 1.189  | Ruby / Dec.<br>2014    | 25-Year              |
| 77     | 12.2888      | 121.1101    | 0.03    | 0.7        | 0.67   | Ruby / Dec.<br>2014    | 25-Year              |
| 78     | 12.29604087  | 121.1485593 | 1.32    | 0.9        | -0.42  | Undang / 1984          | 25-Year              |
| 79     | 12.29769703  | 121.1368933 | 0.03    | 0          | -0.03  | Mario / Sept.<br>2014  | 25-Year              |
| 80     | 12.29790457  | 121.1465242 | 0.03    | 0          | -0.03  |                        | 25-Year              |
| 81     | 12.30016443  | 121.1466252 | 0.031   | 0          | -0.031 |                        | 25-Year              |
| 82     | 12.30080732  | 121.1466362 | 0.03    | 0          | -0.03  |                        | 25-Year              |
| 83     | 12.30216259  | 121.1493133 | 0.037   | 0          | -0.037 |                        | 25-Year              |
| 84     | 12.30300969  | 121.151692  | 0.858   | 0.9        | 0.042  |                        | 25-Year              |
| 85     | 12.30471438  | 121.1514492 | 0.03    | 0          | -0.03  | Mario / Sept.<br>2014  | 25-Year              |
| 86     | 12.30694932  | 121.1511363 | 0.03    | 0          | -0.03  |                        | 25-Year              |
| 87     | 12.30704819  | 121.138254  | 0.03    | 0          | -0.03  |                        | 25-Year              |
| 88     | 12.30837591  | 121.1497059 | 0.03    | 0          | -0.03  |                        | 25-Year              |

| Point  | Validation ( | Coordinates | Model   | Validation | Error  | Event/Date             | Rain<br>Return / |
|--------|--------------|-------------|---------|------------|--------|------------------------|------------------|
| Number | Lat          | Long        | Var (m) | Points (m) | EIIOI  | Event/ Date            | Scenario         |
| 89     | 12.30836425  | 121.1429956 | 0.03    | 0          | -0.03  |                        | 25-Year          |
| 90     | 12.3083822   | 121.1356902 | 0.03    | 0          | -0.03  |                        | 25-Year          |
| 91     | 12.30873982  | 121.1426897 | 0.036   | 0          | -0.036 |                        | 25-Year          |
| 92     | 12.30887093  | 121.1437328 | 0.031   | 0          | -0.031 |                        | 25-Year          |
| 93     | 12.30920466  | 121.1340459 | 0.03    | 0          | -0.03  |                        | 25-Year          |
| 94     | 12.30931966  | 121.1494876 | 0.031   | 0          | -0.031 |                        | 25-Year          |
| 95     | 12.30972792  | 121.1433471 | 0.031   | 0          | -0.031 |                        | 25-Year          |
| 96     | 12.30992565  | 121.147753  | 0.055   | 0          | -0.055 |                        | 25-Year          |
| 97     | 12.31063205  | 121.1464339 | 0.03    | 0          | -0.03  |                        | 25-Year          |
| 98     | 12.31175295  | 121.144631  | 0.03    | 0          | -0.03  |                        | 25-Year          |
| 99     | 12.31194925  | 121.1460993 | 0.03    | 0          | -0.03  |                        | 25-Year          |
| 100    | 12.31682036  | 121.1464441 | 0.03    | 0          | -0.03  |                        | 25-Year          |
| 101    | 12.31818137  | 121.1463399 | 0.03    | 0          | -0.03  |                        | 25-Year          |
| 102    | 12.31878966  | 121.1488838 | 0.03    | 0          | -0.03  |                        | 25-Year          |
| 103    | 12.31892575  | 121.1478403 | 0.03    | 0          | -0.03  |                        | 25-Year          |
| 104    | 12.31937536  | 121.1462643 | 0.03    | 0          | -0.03  |                        | 25-Year          |
| 105    | 12.31981115  | 121.1493826 | 0.03    | 0          | -0.03  |                        | 25-Year          |
| 106    | 12.3212637   | 121.1460699 | 0.031   | 0          | -0.031 |                        | 25-Year          |
| 107    | 12.32141748  | 121.1501692 | 0.03    | 0          | -0.03  |                        | 25-Year          |
| 108    | 12.3231649   | 121.1455786 | 0.03    | 0          | -0.03  |                        | 25-Year          |
| 109    | 12.32450852  | 121.1466509 | 0.03    | 0          | -0.03  |                        | 25-Year          |
| 110    | 12.32641608  | 121.1455303 | 0.031   | 0          | -0.031 |                        | 25-Year          |
| 111    | 12.32794347  | 121.1446483 | 0.03    | 0          | -0.03  |                        | 25-Year          |
| 112    | 12.33484516  | 121.1403739 | 0.631   | 0          | -0.631 |                        | 25-Year          |
| 113    | 12.33541404  | 121.1384496 | 0.03    | 0          | -0.03  |                        | 25-Year          |
| 114    | 12.33617703  | 121.1377899 | 0.066   | 0          | -0.066 |                        | 25-Year          |
| 115    | 12.337552    | 121.17735   | 2.251   | 0.6        | -1.651 |                        | 25-Year          |
| 116    | 12.3375274   | 121.137022  | 0.03    | 0          | -0.03  | Yolanda / Nov.<br>2013 | 25-Year          |
| 117    | 12.337885    | 121.17717   | 1.372   | 0.5        | -0.872 |                        | 25-Year          |
| 118    | 12.3382249   | 121.1352883 | 0.03    | 0          | -0.03  | Undang / 1984          | 25-Year          |
| 119    | 12.33915982  | 121.1346933 | 0.078   | 0          | -0.078 |                        | 25-Year          |
| 120    | 12.339481    | 121.17681   | 0.03    | 0          | -0.03  |                        | 25-Year          |
| 121    | 12.33981626  | 121.1342148 | 0.03    | 0          | -0.03  |                        | 25-Year          |
| 122    | 12.34130204  | 121.1338624 | 0.035   | 0          | -0.035 |                        | 25-Year          |
| 123    | 12.34160143  | 121.155423  | 0.03    | 0          | -0.03  |                        | 25-Year          |
| 124    | 12.342589    | 121.133367  | 0.036   | 0          | -0.036 |                        | 25-Year          |
| 125    | 12.343543    | 121.17839   | 0.03    | 0          | -0.03  |                        | 25-Year          |
| 126    | 12.34345954  | 121.133481  | 0.146   | 0          | -0.146 |                        | 25-Year          |
| 127    | 12.344377    | 121.1331039 | 0.03    | 0          | -0.03  |                        | 25-Year          |
| 128    | 12.34475837  | 121.1326007 | 0.089   | 0          | -0.089 |                        | 25-Year          |

| Point<br>Number | Validation Coordinates |             | Model   | Validation | Error  | Event/Date | Rain                 |
|-----------------|------------------------|-------------|---------|------------|--------|------------|----------------------|
|                 | Lat                    | Long        | Var (m) | Points (m) | EIIOI  | Event/Date | Return /<br>Scenario |
| 129             | 12.34692781            | 121.133061  | 0.288   | 0          | -0.288 |            | 25-Year              |
| 130             | 12.34747038            | 121.1319442 | 0.607   | 0          | -0.607 |            | 25-Year              |
| 131             | 12.34827659            | 121.1310979 | 0.467   | 0          | -0.467 |            | 25-Year              |
| 132             | 12.35144908            | 121.1298895 | 0.052   | 0          | -0.052 |            | 25-Year              |
| 133             | 12.3522015             | 121.1301683 | 0.284   | 0          | -0.284 |            | 25-Year              |
| 134             | 12.35250501            | 121.1270408 | 0.03    | 0          | -0.03  |            | 25-Year              |
| 135             | 12.35412972            | 121.1264919 | 0.031   | 0          | -0.031 |            | 25-Year              |
| 136             | 12.35536653            | 121.1252275 | 0.03    | 0          | -0.03  |            | 25-Year              |

# Annex 12. Phil-LiDAR 1 UPLB Team Composition

## **Project Leader**

Asst. Prof. Edwin R. Abucay (CHE, UPLB)

# **Project Staffs/Study Leaders**

Asst. Prof. Efraim D. Roxas (CHE, UPLB)
Asst. Prof. Joan Pauline P. Talubo (CHE, UPLB)
Ms. Sandra Samantela (CHE, UPLB)
Dr. Cristino L. Tiburan (CFNR, UPLB)
Engr. Ariel U. Glorioso (CEAT, UPLB)
Ms. Miyah D. Queliste (CAS, UPLB)
Mr. Dante Gideon K. Vergara (SESAM, UPLB)

#### Sr. Science Research Specialists

Gillian Katherine L. Inciong For. John Alvin B. Reyes

#### **Research Associates**

Alfi Lorenz B. Cura Angelica T. Magpantay Gemmalyn E. Magnaye Jayson L. Arizapa Kevin M. Manalo Leendel Jane D. Punzalan Maria Michaela A. Gonzales Paulo Joshua U. Quilao Sarah Joy A. Acepcion Ralphael P. Gonzales

## **Computer Programmers**

Ivan Marc H. Escamos Allen Roy C. Roberto

# **Information Systems Analyst**

Jan Martin C. Magcale

#### **Project Assistants**

Daisili Ann V. Pelegrina Athena Mercado Kaye Anne A. Matre Randy P. Porciocula