LiDAR Surveys and Flood Mapping of Bayawan River

University of the Philippines Training Center for Applied Geodesy and Photogrammetry University of San Carlos

PRIL 2017

© University of the Philippines Diliman and University of San Carlos 2017

Published by the UP Training Center for Applied Geodesy and Photogrammetry (TCAGP) College of Engineering University of the Philippines – Diliman Quezon City 1101 PHILIPPINES

This research project is supported by the Department of Science and Technology (DOST) as part of its Grants-in-Aid Program and is to be cited as:

E. C. Paringit and R. S. Otadoy (eds.) (2017), LiDAR Surveys and Flood Mapping of Bayawan River, Quezon City: University of the Philippines Training Center for Applied Geodesy and Photogrammetry-201pp.

The text of this information may be copied and distributed for research and educational purposes with proper acknowledgement. While every care is taken to ensure the accuracy of this publication, the UP TCAGP disclaims all responsibility and all liability (including without limitation, liability in negligence) and costs which might incur as a result of the materials in this publication being inaccurate or incomplete in any way and for any reason.

For questions/queries regarding this report, contact:

Dr. Roland Emerito S. Otadoy Project Leader, Phil-LiDAR 1 Program University of San Carlos Cebu City, Philippines 6000 E-mail: rolandotadoy2012@gmail.com

Enrico C. Paringit, Dr. Eng. Program Leader, Phil-LiDAR 1 Program University of the Philippines Diliman Quezon City, Philippines 1101 E-mail: ecparingit@up.edu.ph

National Library of the Philippines ISBN: 978-621-430-177-5

TABLE OF CONTENTS

LIST OF TABLES	IV
LIST OF FIGURES	VI
LIST OF ACRONYMS AND ABBREVIATIONS	Х
CHAPTER 1: OVERVIEW OF THE PROGRAM AND BAYAWAN RIVER	1
1.1 Background of the Phil-LIDAR 1 Program	1
1.2 Overview of the Bayawan River Basin	2
CHAPTER 2: LIDAR DATA ACQUISITION OF THE BAYAWAN FLOODPLAIN	4
2.1 Flight Plans	4
2.2 Ground Base Stations	5
2.3 Flight Missions	15
2.4 Survey Coverage	17
CHAPTER 3: LIDAR DATA PROCESSING OF THE BAYAWAN FLOODPLAIN	19
3.1 Overview of the LIDAR Data Pre-Processing	19
3.2 Transmittal of Acquired LiDAR Data	20
3.3 Trajectory Computation	20
3.4 LiDAR Point Cloud Computation	23
3.5 LiDAR Data Quality Checking	23
3.6 LiDAR Point Cloud Classification and Rasterization	28
3.7 LiDAR Image Processing and Orthophotograph Rectification	31
3.8 DEM Editing and Hydro-Correction	31
3.9 Mosaicking of Blocks	33
3.10 Calibration and Validation of Mosaicked LiDAR Digital Elevation Model	34
3.11 Integration of Bathymetric Data into the LiDAR Digital Terrain Model	38
3.12 Feature Extraction	40
3.12.1 Quality Checking (QC) of Digitized Features' Boundary	40
3.12.2 Height Extraction	40
3.12.3 Feature Attribution	41
3.12.4 Final Quality Checking of Extracted Features	42
CHAPTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS	
OF THE BAYAWAN RIVER BASIN	44
4.1 Summary of Activities	44
4.2 Control Survey	45
4.3 Baseline Processing	49
4.4 Network Adjustment	50
4.5 Cross-section and Bridge As-Built Survey and Water Level Marking	55
4.6 Validation Points Acquisition Survey	57
4.7 Bathymetric Survey	59
CHAPTER 5: FLOOD MODELING AND MAPPING	63
5.1 Data Used for Hydrologic Modeling	63
5.1.1 Hydrometry and Rating Curves	63
5.1.2 Precipitation	63
5.1.3 Rating Curves and River Outflow	64
5.2 RIDF Station	65
5.3 HMS Model	67
5.4 Cross-section Data	70
5.5 Flo 2D Model	71
5.6 Results of HMS Calibration	73
5.7 Calculated Outflow hydrographs and Discharge values for different Rainfall Return periods	s75
5./.1 Hydrograph using the Rainfall Runoff Model	75
5.8 River Analysis Model Simulation	76

5.9 Flood Hazard and Flow Depth Map	77
5.10 Inventory of Areas Exposed to Flooding	
5.11 Flood Validation	
REFERENCES	
ANNEXES	
Annex 1 Technical Specifications of the LiDAR Sensors used in the Bayawan Floodplair	າ Survey 94
Annex 2. NAMRIA Certification of Reference Points used in the LiDAR Survey	
Annex 3. Baseline Processing Reports of Control Points used in the LiDAR Survey	
Annex 4. The LiDAR Survey Team Composition	
Annex 5. Data Transfer Sheets for the Bayawan Floodplain Flights	
Annex 6. Flight Logs for the Flight Missions	112
Annex 7. Flight Status Reports	
Annex 8. Mission Summary Reports	
Annex 9. Bayawan Model Basin Parameters	
Annex 10. Bayawan Model Reach Parameters	
Annex 11. Bayawan Field Validation Points	
Annex 12. Educational Institutions Affected by Flooding in Bayawan Floodplain	
Annex 13. Medical Institutions Affected by Flooding in Bayawan Floodplain	

LIST OF TABLES

Table 1. Flight planning parameters for Gemini LiDAR	4
Table 2. Flight planning parameters for Aquarius LiDAR	5
Table 3. Details of the recovered NAMRIA horizontal control point NGE-94 used	
as base station for the LiDAR Acquisition	7
Table 4. Details of the recovered NAMRIA horizontal control point NGE-97used	
as base station for the LiDAR Acquisition	8
Table 5. Details of the recovered NAMRIA horizontal control point NGE-100 used	
as base station for the LiDAR Acquisition	9
Table 6. Details of the recovered NAMRIA horizontal control point NGE-105 used	
as base station for the LiDAR acquisition.	10
Table 7. Details of the recovered NAMRIA horizontal control point NGE-107 used	
as base station for the LiDAR acquisition.	11
Table 8. Details of established ground control point NE-90 used as vertical reference	
point and established base station for the LiDAR acquisition	12
Table 9. Details of established ground control point NE-21 used as vertical reference	
point and established base station for the LiDAR acquisition.	13
Table 10. Details of established ground control point NE-08used as vertical reference	
point and established base station for the LiDAR acquisition	14
Table 11. Ground Control points used during LiDAR data acquisition	14
Table 12. Flight missions for LiDAR data acquisition in Bayawan floodplain.	15
Table 13. Actual parameters used during LiDAR data acquisition	16
Table 14. List of municipalities and cities surveyed during Bayawan floodplain LiDAR	17
Table 15. Self-Calibration Results values for Bayawan flights	
Table 16. List of LiDAR blocks for Bayawan floodplain	
Table 17. Bayawan classification results in TerraScan	
Table 18. LiDAR blocks with its corresponding area.	
Table 19. Shift Values of each LiDAR Block of Bayawan floodplain	
Table 20. Calibration Statistical Measures.	
Table 21. Validation Statistical Measures.	
Table 22. Quality Checking Ratings for Bayawan Building Features.	40
Table 23. Building Features Extracted for Bayawan Floodplain.	41
Table 24. Total Length of Extracted Roads for Bayawan Floodplain.	42
Table 25. Number of Extracted Water Bodies for Bayawan Floodplain	42
Table 26.List of reference and control points occupied for Bayawan River survey	
(Source: NAMRIA; UP-TCAGP)	46
Table 27. Baseline Processing Report for Bayawan River Basin Static Survey	50
Table 28. Control Point Constraints.	51
Table 29. Adjusted Grid Coordinates	51
Table 30. Adjusted Geodetic Coordinates	53
Table 31. Reference and control points and its location (Source: NAMRIA, UP-TCAGP)	54
Table 32. RIDF values for Dumaguete Point Rain Gauge computed by PAGASA.	65
Table 33. Range of Calibrated Values for Bayawan	73
Table 34. Summary of the Efficiency Test of Bayawan HMS Model	74
Table 35. Peak values of the Bayawan HECHMS Model outflow using the Dumaguete RIDF	75

Table 36. Municipalities affected in Bislig floodplain	. 77
Table 37. Area covered by each warning level with respect to the rainfall scenario	. 77
Table 38. Affected Areas in Bayawan City, Negros Oriental during 5-Year Rainfall Return Period	. 85
Table 39. Affected Areas in Bayawan City, Negros Oriental during 25-Year Rainfall Return Period	. 87
Table 40. Affected Areas in Bayawan City, Negros Oriental during 100-Year Rainfall Return Period	. 89
Table 41. Actual Flood Depth vs Simulated Flood Depth in Bayawan.	. 92
Table 42. Summary of Accuracy Assessment in Bayawan.	. 92

LIST OF FIGURES

Figure 1. Map of Bayawan River Basin	2
Figure 2. Flight plan used for Bayawan Floodplain	6
Figure 3. GPS set-up over NGE-94at the south approach of Tiabanan's bridge wing wall sidewalk	
in barangay Bal-Os, Municipality of Basay (a) and NAMRIA reference point NGE-94	
(b) as recovered by the field team	7
Figure 4. GPS set-up over NGE-97on the SE corner concrete sidewalk of Bayawan Bridge in	
Barangay Suba under the municipality of Bayawan (a) and NAMRIA reference point NGE-97	
(b) as recovered by the field team	8
Figure 5. GPS set-up over NGE-100on the SW of Cawitan Bridge, along Dumaguete-Bayawan national	
highway (a) and NAMRIA reference point NGE-100 (b) as recovered by the field team	9
Figure 6. GPS set-up over NGE-105at top of the bridge wingwall SW of the Bridge main span on the lef	ft
side of the 1st approach coming from Siaton on the way to Sta. Catalina. The station is located	Ł
in Barangay Nagbalayen under the municipality of Sta. Catalina(a) and NAMRIA reference poir	nt
NGE-105 (b) as recovered by the field team.	10
Figure 7. GPS set-up over NGE-107on a concrete sidewalk on a bridge at KM. 80+569over Manalongor	า
River in Barangay Manalongon under the municipality of Sta. Catalina (a) and NAMRIA referer	nce
point NGE-107 (b) as recovered by the field team.	11
Figure 8. Set-up over NE-90on a concrete sidewalk of Guinsuan Bridge, 4 meters from the road center	line
in Barangay Poblacion under the municipality of Zamboanguita (a) and NAMRIA benchmark N	IE-
90 (b) as recovered by the field team	12
Figure 9. GPS set-up over NE-21 on concrete sidewalk of Camaya-an Bridge about 0.30 meters above t	the
ground and 4 meters from the road centerline. The station is located on barangay Malabogas	
under the municipality of Bayawan (a) and NAMRIA benchmark NE-21 (b) as recovered by the	ì
field team.	13
Figure 10. Actual LiDAR survey coverage for Bayawan floodplain	18
Figure 11. Schematic Diagram for Data Pre-Processing Component	19
Figure 12. Smoothed Performance Metric Parameters of Bayawan Flight 7578G.	20
Figure 13.Solution Status Parameters of Bayawan Flight 7578G	21
Figure 14.Best Estimated Trajectory for Bayawan Floodplain	22
Figure 15. Boundary of the processed LiDAR data over Bayawan Floodplain.	23
Figure 16. Image of data overlap for Bayawan floodplain	. 25
Figure 17. Density map of merged LiDAR data for Bayawan floodplain.	26
Figure 18. Elevation difference map between flight lines for Bayawan floodplain.	27
Figure 19. Quality checking for Bayawan flight 7578G using the Profile Tool of QT Modeler	28
Figure 20. Tiles for Bayawan floodplain (a) and classification results (b) in TerraScan	29
Figure 21. Point cloud before (a) and after (b) classification	29
Figure 22. The production of last return DSM (a) and DTM (b) first return DSM (c) and secondary DTM	
(d) in some portion of Bayawan floodplain.	. 30
Figure 23. Portions in the DTM of Bayawan floodplain – an interpolated mountain before (a) and after	
(b) data retrieval; (c) before and (d) after filling data gaps	32
Figure 24. Map of Processed LiDAR Data for Bayawan Flood Plain.	34
Figure 25. Map of Bayawan Flood Plain with validation survey points in green.	35
Figure 26. Correlation plot between calibration survey points and LiDAR data	36
Figure 27. Correlation plot between validation survey points and LiDAR data.	37
Figure 28. Map of Bayawan Flood Plain with bathymetric survey points shown in blue.	39
Figure 29. Blocks (in blue) of Bayawan building features that were subjected to QC.	40
Figure 30. Extracted features for Bayawan floodplain	43

Figure 31. Extent of the bathymetric survey (blue) in Bayawan River and the LiDAR data validation	
survey (red)	. 44
Figure 32. GNSS Network covering Bayawan River	45
Figure 33. GNSS receiver set-up, Trimble [®] SPS 882, at NGE-107 at the approach of Manalongon Bridge	e in
Brgy. Manalongon, Municipality of Santa Catalina, Negros Oriental	47
Figure 34. GNSS receiver setup, Trimble®SPS 852, at NGE-98 in Brgy. Kabulacan, Sitio Danao, Municipa	ility
of Santa Catalina, Negros Oriental	47
Figure 35. GNSS receiver set-up, Trimble [®] Zephyr [™] Model 2, at NE-358 in Brgy. Poblacion, Bayawan C	ity,
Negros Oriental.	. 48
Figure 36. GNSS receiver set-up, Trimble [®] Zephyr [™] Model 2, at NGE-94 in Brgy. Bal-os, Municipality o	f
Basay, Negros Oriental.	48
Figure 37. GNSS receiver set-up, Trimble®SPS 882 at control point UP-SIA atSiaton Bridge, Brgy. Caticul	gan,
Municipality of Slaton, Negros Oriental.	49
Figure 38. Cross-section survey conducted on Bawayan River in Brgy. Calabhugan,	
Figure 20. Leastion Man of Bayawan bridge cross section	
Figure 39. Location Map of Bayawall bluge closs-section	50
Figure 40. Bayawall liver closs-section	. 50
Figure 41. Validation points acquisition survey for Payawan Piver Pasin	
Figure 42. LIDAR valuation points acquisition survey for Bayawan River Basin.	50
Figure 43. Manual Bathymetric survey using the OHMEY Echosounder	60
Figure 44. Bathymetric points gathered from Bayawan River	61
Figure 46. BayawanRiverbed Profile	62
Figure 47. The location man of Bayawan HEC-HMS model used for calibration	63
Figure 48. Cross-Section Plot of Bayawan Bridge	. 64
Figure 49. Rating Curve at Sitio Mantani, Brey, Nangka, Bayawan City,	64
Figure 50. Rainfall and outflow data at Sitio Mantapi. Brgv. Nangka. Bavawanused for modeling.	65
Figure 51. Dumaguete Point RIDF location relative to Bavawan River Basin	66
Figure 52. Synthetic storm generated for a 24-hr period rainfall for various return periods.	66
Figure 53. The soil map of the Bayawan River Basin used for the estimation of the CN parameter.	
(Source of data: Digital soil map of the Philippines published by the Bureau of Soil and Water	
Management – Department of Agriculture)	67
Figure 54. The land cover map of the Bayawan River Basin used for the estimation of the CN and	
watershed lag parameters of the rainfall-runoff model. (Source of data: National Mapping and	ł
Resource Information Authority)	68
Figure 55. Slope map of Bayawan River Basin.	69
Figure 56. Stream delineation map of Bayawan River Basin.	69
Figure 57. The Bayawan River Basin Model Domain generated using HEC-HMS	70
Figure 58. River cross-section of Bayawan River generated through Arcmap HEC GeoRAS tool	71
Figure 59. Screenshot of subcatchment with the computational area to be modeled	
in FLO-2D GDS Pro	. 72
Figure 60. Outflow Hydrograph of Bayawan produced by the HEC-HMS model compared with observe	d
outflow	. 73
Figure 61. Outflow hydrograph at Sitio Mantapi, Brgy. Nangka, BayawanCity generated using Dumague	ete
PointRIDF simulated in HEC-HMS.	. 75
Figure 62. Sample output of BayawanRAS Model.	76
Figure 63. 100-year Flood Hazard Map for Bayawan Floodplain	78
Figure 64. 100-year Flow Depth Map for BayawanFloodplain.	79
Figure 65. 25-year Flood Hazard Map for BayawanFloodplain	80

Figure 66. 25-year Flow Depth Map for Bayawan Floodplain	. 81
Figure 67. 5-year Flood Hazard Map for Bayawan Floodplain	. 82
Figure 68. 5-year Flow Depth Map for Bayawan Floodplain	. 83
Figure 69. Affected Areas in Bayawan City, Negros Oriental during 5-Year Rainfall Return Period	.86
Figure 70. Affected Areas in Bayawan City, Negros Oriental during 25-Year Rainfall Return Period	. 88
Figure 71. Affected Areas in Bayawan City, Negros Oriental during 100-Year Rainfall Return Period	.90
Figure 72. Validation points for 5-year Flood Depth Map of Bayawan Floodplain.	.91

LIST OF ACRONYMS AND ABBREVIATIONS

AAC	Asian Aerospace Corporation
Ab	abutment
ALTM	Airborne LiDAR Terrain Mapper
ARG	automatic rain gauge
ATQ	Antique
AWLS	Automated Water Level Sensor
BA	Bridge Approach
BM	benchmark
CAD	Computer-Aided Design
CN	Curve Number
CSRS	Chief Science Research Specialist
DAC	Data Acquisition Component
DEM	Digital Elevation Model
DENR	Department of Environment and Natural Resources
DOST	Department of Science and Technology
DPPC	Data Pre-Processing Component
DREAM	Disaster Risk and Exposure Assessment for Mitigation [Program]
DRRM	Disaster Risk Reduction and Management
DSM	Digital Surface Model
DTM	Digital Terrain Model
DVBC	Data Validation and Bathymetry Component
FMC	Flood Modeling Component
FOV	Field of View
GiA	Grants-in-Aid
GCP	Ground Control Point
GNSS	Global Navigation Satellite System
GPS	Global Positioning System
HEC-HMS	Hydrologic Engineering Center - Hydrologic Modeling System
HEC-RAS	Hydrologic Engineering Center - River Analysis System
HC	High Chord
IDW	Inverse Distance Weighted [interpolation method]

IMU	Inertial Measurement Unit				
kts	knots				
LAS	LiDAR Data Exchange File format				
LC	Low Chord				
LGU	local government unit				
Lidar	Light Detection and Ranging				
LMS	LiDAR Mapping Suite				
m AGL	meters Above Ground Level				
MMS	Mobile Mapping Suite				
MSL	mean sea level				
NSTC	Northern Subtropical Convergence				
PAF	Philippine Air Force				
PAGASA	Philippine Atmospheric Geophysical and Astronomical Services Administration				
PDOP	Positional Dilution of Precision				
РРК	Post-Processed Kinematic [technique]				
PRF	Pulse Repetition Frequency				
PTM	Philippine Transverse Mercator				
QC	Quality Check				
QT	Quick Terrain [Modeler]				
RA	Research Associate				
RIDF	Rainfall-Intensity-Duration-Frequency				
RMSE	Root Mean Square Error				
SAR	Synthetic Aperture Radar				
SCS	Soil Conservation Service				
SRTM	Shuttle Radar Topography Mission				
SRS	Science Research Specialist				
SSG	Special Service Group				
ТВС	Thermal Barrier Coatings				
UPC	University of the Philippines Cebu				
UP-TCAGP	University of the Philippines – Training Center for Applied Geodesy and Photogrammetry				
UTM	Universal Transverse Mercator				
WGS	World Geodetic System				

CHAPTER 1: OVERVIEW OF THE PROGRAM AND BAYAWAN RIVER

Enrico C. Paringit, Dr. Eng., Dr. Roland S. Otadoy, and Engr. Aure Flo Oraya

1.1 Background of the Phil-LIDAR 1 Program

The University of the Philippines Training Center for Applied Geodesy and Photogrammetry (UP-TCAGP) launched a research program entitled "Nationwide Hazard Mapping using LiDAR" in 2014 or Phil-LiDAR 1, supported by the Department of Science and Technology (DOST) and the Grant-in-Aid (GiA) Program. The program was primarily aimed at acquiring a national elevation and resource dataset at sufficient resolution to produce information necessary to support the different phases of disaster management. Particularly, it targeted to operationalize the development of flood hazard models that would produce updated and detailed flood hazard maps for the major river systems in the country.

Also, the program was aimed at producing an up-to-date and detailed national elevation dataset suitable for 1:5,000 scale mapping, with 50 cm and 20 cm horizontal and vertical accuracies, respectively. These accuracies were achieved through the use of the state-of-the-art Light Detection and Ranging (LiDAR) airborne technology procured by the project through DOST. The methods applied in this report are thoroughly described in a separate publication entitled "Flood Mapping of Rivers in the Philippines Using Airborne LiDAR: Methods" (Paringit, et. al. 2017) available separately.

The implementing partner university for the Phil-LiDAR 1 Program is the University of San Carlos (USC). USC is in charge of processing LiDAR data and conducting data validation reconnaissance, cross section, bathymetric survey, validation, river flow measurements, flood height and extent data gathering, flood modeling, and flood map generation for the seventeen (17) river systems in the Central Visayas Region. The university is located in Cebu City, Visayas.

1.2 Overview of the Bayawan River Basin

Figure 1. Map of Bayawan River Basin

The Bayawan River Basin lies in the City of Bayawan, the Agricultural Capital of Negros Oriental, located southwest of Negros Island at coordinates 9°22'00.14″ N and 122°47'59.01″ E. Bayawan Cityis a secondclass component city of the third (3rd) Congressional District of the province of Negros Oriental (Wikipedia). Based on the 2015 census, it has a population of 117,900 (Bersales, 2016). It has a land area of 699.08 sq. km. Bayawan is bounded in the north by the municipality of Mabinay, in the east by the Cities of Tanjay and Bais, in the southeast by Sta. Catalina, and Basay in the northwest. It is a coastal city with a coastline of 15 km and 7 coastal barangays facing the Sulu Sea in the southwest. Bayawan City is subdivided into three development zones: i) urban area, which constitutes 2.3% (15.73 sq. km) of the total land area; ii) suburban, which is about 14.7% (102.60 sq. km) of the city's land area and consists of agro-industrial zones; and iii) rural area, consisting of the remaining 83.1% of the land area and is mostly agricultural. The Bayawan River Basin coversBayawan City in Negros Oriental City, and three (3) Municipalities in Negros Occidental. The DENR River Basin Control Office identified the basinto have a drainage area of 434 km² and

an estimated 260 million cubic meter annual run-off (RBCO, 2015).

Its main stem, Bayawan River, passes along Bayawan City. It is part of the nineteen (19) river systems in Central Visayas Region under the PHIL-LIDAR 1.A total of 18,664people are residing within the immediate vicinity of the river, which is distributed among three (3) barangays, namely:Nangka, Ubos, and Banga(NSO, 2015).Sources of livelihood of the population of Negros Oriental are focused on agriculture, particularly on the production of sugarcane, corn, and coconut. The population in the coast, on the other hand, cultivates extensive marine resources (Islands Web, 2015).

Flooding is a serious problem in Bayawan City. Sandwiched between the Bayawan and Sicopong Rivers, Bayawan City is highly susceptible to flooding during rainy days In October 13, 2013, three days of successive torrential rains brought Bayawan City to its knees. P50.9M and P40M worth of agriculture and infrastructure, respectively, were destroyed by floods. Damage to business establishments was pegged at P8M and another P1.8M for textbooks for a total of P100.1M. Six persons, including a policeman rescuer, were killed by the rampaging floodwaters. Thirty-six families lost their homes and about 20,000 people were evacuated¹.In December 2011, Typhoon Washi (local name *"Sendong"*) caused massive damages, including 37 casualties and 200 injuries. The Municipalities of Sibulan, Valencia, Pamplona, San Jose, Bacong, Amlan, Siaton, Dauin, San Jose and Tanjay Citywere the most affected during the calamity (The Negros Chronicle, 2011).

¹ This account was based on the report of Alex Rey V. Pal of Metro Post dated December 13, 2013 (Pal, 2013).

CHAPTER 2: LIDAR DATA ACQUISITION OF THE BAYAWAN FLOODPLAIN

Engr. Louie P. Balicanta, Engr. Christopher Cruz, Lovely Acuña, Engr. Gerome Hipolito, For. Ma. Verlina

Tonga and Jasmine Alviar

The methods applied in this Chapter were based on the DREAM methods manual (Sarmiento, et al., 2014) and further enhanced and updated in Paringit, et al. (2017).

2.1 Flight Plans

To initiate the LiDAR acquisition survey of the Bayawan Floodplain, the Data Acquisition Component (DAC) created flight plans within the delineated priority area for BayawanFloodplain in Negros Oriental province. These missions were planned for 10 lines that run for at most four and a half (4.5) hours including take-off, landing and turning time. The flight planning parameters for the LiDAR system are found in Table 1 and Table 2. Figure 1shows the flight plan for Bayawan floodplain.

Block Name	Flying Height (m AGL)	Overlap (%)	Field of View (θ)	Pulse Repetition Frequency (PRF) (kHz)	Scan Frequency (Hz)	Average Speed (kts)	Average Turn Time (Minutes)
BLK53F	1000	30	40	100	50	130	5
BLK53G	1000	30	40	100	50	130	5
BLK 53H	1000	30	40	100	50	130	5
BLK 53I	1000	30	40	100	50	130	5
BLK 53J	1000	30	40	100	50	130	5
BLK 53K	1000	30	40	100	50	130	5
BLK 53O	1000	30	40	100	50	130	5
BLK53V	1000	30	40	100	50	130	5
BLK55A	1000	30	40	100	50	130	5
BLK56A	1000	30	40	100	50	130	5
BLK 56B	1000	30	40	100	50	130	5
BLK 56C	1000	30	40	100	50	130	5
BLK56D	1000	30	40	100	50	130	5
BLK56E	1000	30	40	100	50	130	5

Table 1. Flight planning parameters for Gemini LiDAR

Block Name	Flying Height (m AGL)	Overlap (%)	Field of View (θ)	Pulse Repetition Frequency (PRF) (kHz)	Scan Frequency (Hz)	Average Speed (kts)	Average Turn Time (Minutes)
BLK56F	550	30	36	50	45	130	5

Table 2. Flight planning parameters for Aquarius LiDAR

2.2 Ground Base Stations

The field team was able to recover five (5) NAMRIA horizontal ground control points of second (2nd) order accuracy, NGE-94, NGE-97, NGE-100, NGE-105 and NGE-107. Three (3) NAMRIA benchmarks were recovered: NE-90, NE-21 and NE-08 which are all of second (2nd) order accuracy. These benchmarks were used as vertical reference points and were also established as ground control points. The certification for the base station is found in Annex 2, while the baseline processing reports for established ground control points are found in Annex 3. These wereused as base stations during flight operations for the entire duration of the survey (September 20 – November 15, 2014 and January 21 – February 1, 2016), especially on the days that flight missions were conducted. Base stations were observed using dual frequency GPS receivers: TRIMBLE SPS 882, SPS 985, and SPS 852. Flight plans and location of base stations used during the aerial LiDAR acquisition in Bayawan floodplain are shown in Figure 1.

Figure 2. Flight plan used for Bayawan Floodplain

Figure 2 to Figure 8 show the recovered NAMRIA reference points within the area. In addition, Table 3 to Table 10 show the details about the following NAMRIA control stations and established points, while Table 11 shows the list of all ground control points occupied during the acquisition with the corresponding dates of utilization.

The list of project team members can be seen in ANNEX D.

Figure 3. GPS set-up over NGE-94at the south approach of Tiabanan's bridge wing wall sidewalk in barangay Bal-Os, Municipality of Basay (a) and NAMRIA reference point NGE-94 (b) as recovered by the field team.

Table 3. Details of the recovered NAMRIA horizontal control point NGE-94 used as base station for the LiDAR
Acquisition.

Station Name	NGE-94	
Order of Accuracy	2 nd	
Relative Error (horizontal positioning)	1 in 50,000	
	Latitude	9°25′41.58333″ North
Geographic Coordinates, Philippine Reference of	Longitude	122°37'17.78349" East
1992 Datum (113 92)	Ellipsoidal Height	8.56700 meters
Grid Coordinates, Philippine Transverse Mercator Zone 4 (PTM Zone 4 PRS 92)	Easting	458444.003 meters
	Northing	1042517.096 meters
	Latitude	9°25'37.57296" North
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Longitude	122°37'23.11929" East
	Ellipsoidal Height	69.14100 meters
Grid Coordinates, Universal Transverse Mercator Zone 51 North (UTM 51N PRS 92)	Easting	458458.55 meters
	Northing	1042152.20 meters

(a)

Figure 4. GPS set-up over NGE-97on the SE corner concrete sidewalk of Bayawan Bridge in Barangay Suba under the municipality of Bayawan (a) and NAMRIA reference point NGE-97 (b) as recovered by the field team.

Table 4. Details of the recovered NAMRIA horizontal control point NGE-97used as base station for the
LiDAR Acquisition.

Station Name	NGE-97	
Order of Accuracy	2 nd	
Relative Error (horizontal positioning)	1 : 50,000	
	Latitude	9°22'10.68255" North
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Longitude	122°48'1.35582" East
	Ellipsoidal Height	9.65300 meters
Grid Coordinates, Philippine Transverse Mercator Zone 4 (PTM Zone 4 PRS 92)	Easting	478073.348 meters
	Northing	1035659.36 meters
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Latitude	9°22'6.70304" North
	Longitude	122°48'6.69563" East
	Ellipsoidal Height	70.79700 meters
Grid Coordinates, Universal Transverse Mercator Zone 51 North (UTM 51N PRS 92)	Easting	478081.02 meters
	Northing	1035659.36 meters

Figure 5. GPS set-up over NGE-100on the SW of Cawitan Bridge, along Dumaguete-Bayawan national highway (a) and NAMRIA reference point NGE-100 (b) as recovered by the field team.

Table 5. Details of the recovered NAMRIA horizontal control point NGE-100 used as base station for the
LiDAR Acquisition.

Station Name	NGE-100	
Order of Accuracy	2 nd	
Relative Error (horizontal positioning)	1 in 50,000	
	Latitude	9° 18′ 11.02881″
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Longitude	122° 52′ 26.45331″
	Ellipsoidal Height	8.14800 meters
Grid Coordinates, Philippine Transverse	Easting	486159.164 meters
Mercator Zone 4 (PTM Zone 4 PRS 92)	Northing	1028656.115 meters
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Latitude	9° 18′ 7.07298″
	Longitude	122° 52′ 31.79856″
	Ellipsoidal Height	69.61900 meters
Grid Coordinates, Universal Transverse Mercator Zone 51 North (UTM 51N PRS 92)	Easting	486164.01 meters
	Northing	1028296.07 meters

(a)

Figure 6. GPS set-up over NGE-105at top of the bridge wingwall SW of the Bridge main span on the left side of the 1st approach coming from Siaton on the way to Sta. Catalina. The station is located in Barangay Nagbalayen under the municipality of Sta. Catalina(a) and NAMRIA reference point NGE-105 (b) as recovered by the field team.

Table 6. Details of the recoveredNAMRIA horizontal control point NGE-105 used as base station for the LiDAR acquisition.

Station Name	NGE-105	
Order of Accuracy	3 rd	
Relative Error (horizontal positioning)	1:20,000	
	Latitude	9°15′23.79985″
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Longitude	122°52′24.36983″
	Ellipsoidal Height	8.89200 m
Grid Coordinates, Philippine Transverse Mercator Zone 4 (PTM Zone 4 PRS 92)	Easting	486093.752 m
	Northing	1023160.66 m
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Latitude	9°15'19.85595"
	Longitude	122°52'29.71925"
	Ellipsoidal Height	70.46200m
Grid Coordinates, Universal Transverse Mercator Zone 51 North (UTM 51N PRS 92)	Easting	486098.62 m
	Northing	1023160.66 m

Figure 7. GPS set-up over NGE-107on a concrete sidewalk on a bridge at KM. 80+569over Manalongon River in Barangay Manalongon under the municipality of Sta. Catalina (a) and NAMRIA reference point NGE-107 (b) as recovered by the field team.

Table 7. Details of the recovered NAMRIA horizontal control point NGE-107 used as base station for the LiDAR acquisition.

Station Name	NGE-107	
Order of Accuracy	2 nd	
Relative Error (horizontal positioning)	1:50,000	
	Latitude	9°13'23.69730" North
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Longitude	122°52'53.67884" East
	Ellipsoidal Height	8.08400 meters
Grid Coordinates, Philippine Transverse Mercator Zone 4 (PTM Zone 4 PRS 92)	Easting	486987.067 meters
	Northing	1019829.085 meters
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Latitude	9°13'19.76274" North
	Longitude	122°52'59.03119" East
	Ellipsoidal Height	69.74600 meters
Grid Coordinates, Universal Transverse Mercator Zone 51 North (UTM 51N PRS 92)	Easting	486991.62 meters
	Northing	1019472.13 meters

Figure 8. Set-up over NE-90on a concrete sidewalk of Guinsuan Bridge, 4 meters from the road centerline in Barangay Poblacion under the municipality of Zamboanguita (a) and NAMRIA benchmark NE-90 (b) as recovered by the field team.

Table 8. Details of established ground control point NE-90 used as vertical reference point
and established base station for the LiDAR acquisition.

Station Name	NE-90	
Order of Accuracy	2 nd	
Elevation	6.6968	
Relative Error (horizontal positioning)	1:50,000	
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Latitude	9°6'42.32060" North
	Longitude	123°12'04.93455" East
	Ellipsoidal Height	7.358 meters
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Latitude	9°6'38.44322" North
	Longitude	123°12'10.29457" East
	Ellipsoidal Height	70.052 meters
Grid Coordinates, Universal Transverse Mercator Zone 51 North (UTM 51N PRS 92)	Easting	522126.927 meters
	Northing	1007150.356 meters

Figure 9. GPS set-up over NE-21 on concrete sidewalk of Camaya-an Bridge about 0.30 meters above the ground and 4 meters from the road centerline. The station is located on barangay Malabogas under the municipality of Bayawan (a) and NAMRIA benchmark NE-21 (b) as recovered by the field team.

Table 9. Details of established ground control point NE-21 used as vertical reference point and established base station for the LiDAR acquisition.

Station Name	NE-21	
Order of Accuracy	2 nd	
Elevation	5.4216	
Relative Error (horizontal positioning)	1:5	50,000
	Latitude	9°22'18.89002" North
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Longitude	122°45'39.02590" East
	Ellipsoidal Height	7.040 meters
	Latitude	9°22'14.90643" North
Geographic Coordinates, World Geodetic System	Longitude	122°45'44.36578" East
	Ellipsoidal Height	68.081 meters
Grid Coordinates, Universal Transverse Mercator	Easting	473740.044 meters
Zone 51 North (UTM 51N PRS 92)	Northing	1035914.112 meters

Table 10. Details of established ground control point NE-08used as vertical reference point and established base station for the LiDAR acquisition.

Station Name	NE-08	
Order of Accuracy	2 nd	
Elevation	2.6097	
Relative Error (horizontal positioning)	1:50,000	
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Latitude	9°25′12.20140″ North
	Longitude	122°38'00.55785" East
	Ellipsoidal Height	8.582 meters
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Latitude	9°25′08.19418″ North
	Longitude	122°38'05.89430" East
	Ellipsoidal Height	69.203 meters
Grid Coordinates, Universal Transverse Mercator Zone 51 North (UTM 51N PRS 92)	Easting	449762.045 meters
	Northing	1041248.495 meters

Table 11. Ground Control points used during LiDAR data acquisition

Date Surveyed	Flight Number	Mission Name	Ground Control Points
30-Sep-14	7526G	2BLK53O55A273A	NGE-105, NGE-107
7-Oct-14	7540G	2BLK55AS53KS280A	NGE-105, NGE-107
17-Oct-14	7560G	2BLK55A290A	NGE-105, NGE-107
18-Oct-14	7562G	2BLK53I291A	NE-21, NGE-97
20-Oct-14	7566G	2BLK53JK293A	NE-21, NGE-97
21-Oct-14	7568G	2BLK53KS294A	NE-21, NGE-97
22-Oct-14	7570G	2BLK53H295A	NE-08, NGE-94
25-Oct-14	7576G	2BLK53H298A	NE-08, NGE-94
26-Oct-14	7578G	2BLK53HSGF299A	NE-08, NGE-94
30-Jan-16	10076AC	3BLK53V030A	NE-90, NGE-97, NGE-100

2.3 Flight Missions

Nine(9) missions were conducted to complete the LiDAR data acquisition in Bayawanfloodplain, for a total of thirty seven hours and forty minutes (37+40)of flying time for RP-C9322. All missions were acquired using the Geminiand Aquarius LiDAR systems. Table 12 shows the total area of actual coverage and the corresponding flying hours per mission, while

Table13 presents the actual parameters used during the LiDAR data acquisition.

Date	Flight	Flight Plan Area	Surveyed	Area Surveyed within	Area Surveyed Outside	No. of Images	Flying Hours	
Surveyed Numbe		(km²)	Area (km²)	Floodplain (km²)	Floodplain (km²)	(Frames)	Ŧ	Min
30-Sep-14	7526G	263.24	65.53	11.63	53.90	-	2	35
7-Oct-14	7540G	381.81	107.06	19.94	87.12	-	3	29
17-Oct-14	7560G	143.39	164.21	-	164.21	-	3	47
18-Oct-14	7562G	125.11	162.44	0.25	162.18	-	4	11
20-Oct-14	7566G	238.42	156.75	30.85	125.91	-	3	35
21-Oct-14	7568G	381.81	171.88	36.04	135.84	-	4	11
22-Oct-14	7570G	126.75	148.87	5.19	143.68	-	4	23
25-Oct-14	7576G	128.58	118.46	-	118.46	-	3	53
26-Oct-14	7578G	221.47	252.32	-	252.32	-	4	23
30-Jan-16	10076AC	17.92	26.19	6.15	20.04	-	3	13
TOTAL		2028.49	1373.71	110.05	1263.66	_	37	40

Table 12. Flight missions for LiDAR data acquisition in Bayawan floodplain.

Flight Number	Flying Height (m AGL)	Overlap (%)	FOV (θ)	PRF (kHz)	Scan Frequency (Hz)	Average Speed (kts)	Average Turn Time (Minutes)
7526G	1000	30	40	100	50	130	5
7540G	1100	30	40	100	50	130	5
7560G	1000	30	40	100	50	130	5
7562G	1000	30	40	100	50	130	5
7566G	1000	30	40	100	50	130	5
7568G	1100	30	40	100	50	130	5
7570G	1000	30	40	100	50	130	5
7576G	1000	30	40	100	50	130	5
7578G	1100	30	40	100	50	130	5
10076AC	550	30	36	50	45	130	5

Table 13. Actual parameters used during LiDAR data acquisition

2.4 Survey Coverage

This certain LiDAR acquisition survey covered the BayawanFloodplain (Refer to ANNEX G for the flight status reports). It is located in the province of Negros orientalwith majority of the floodplain situated within the city of Dumaguete and municipality of Bacong. The list of municipalities and cities surveyed, with at least one (1) square kilometer coverage, is shown inTable 14. The actual coverage of the LiDAR acquisition for Bayawanfloodplain is presented in Figure 9.

Province	Municipality/City	Area of Municipality/City (km²)	Total Area Surveyed (km²)	Percentage of Area Surveyed
	Bayawan City	683.21	388.38	57%
	Basay	132.3	72.91	55%
Negros Oriental	Santa Catalina	542.62	186.48	34%
	Siaton	312.75	41.16	13%
	Pamplona	215.09	10.5	5%
Negros Occidental	Hinoba-An	464.36	229.68	49%

Table 14. List of municipalities	s and cities surveyed d	luring Bayawan flo	odplain LiDAR
1		0 /	1

Figure 10. Actual LiDAR survey coverage for Bayawan floodplain.

CHAPTER 3: LIDAR DATA PROCESSING OF THE BAYAWAN FLOODPLAIN

Engr. Ma. Rosario Concepcion O. Ang, Engr. John Louie D. Fabila, Engr. Sarah Jane D. Samalburo, Engr. Joida F. Prieto , Ailyn G. Biñas , Engr. Jennifer B. Saguran, Engr. Monalyne C. Rabino, Engr. Velina Angela S. Bemida , Engr. Ma. Joanne I. Balaga and Engr. Erica Erin E. Elazegui

The methods applied in this Chapter were based on the DREAM methods manual (Ang, et al., 2014) and further enhanced and updated in Paringit, et al. (2017).

3.1 Overview of the LIDAR Data Pre-Processing

The data transmitted by the Data Acquisition Component (DAC) are checked for completeness based on the list of raw files required to proceed with the pre-processing of the LiDAR data. Upon acceptance of the LiDAR field data, georeferencing of the flight trajectory is done in order to obtain the exact location of the LiDAR sensor when the laser was shot. Point cloud georectification is performed to incorporate the correct position and orientation for each point acquired. The georectified LiDAR point clouds are subject for quality checking to ensure that the required accuracies of the program, which are the minimum point density, vertical and horizontal accuracies, are met. The point clouds are then classified into various classes before generating Digital Elevation Models such as Digital Terrain Model and Digital Surface Model.

Using the elevation of points gathered in the field, the LiDAR-derived digital models are calibrated. Portions of the river that are barely penetrated by the LiDAR system are replaced by the actual river geometry measured from the field by the Data Validation and Bathymetry Component. LiDAR acquired temporally are then mosaicked to completely cover the target river systems in the Philippines. Orthorectification of images acquired simultaneously with the LiDAR data is done through the help of the georectified point clouds and the metadata containing the time the image was captured.

These processes are summarized in the flowchart shown in Figure 11.

Figure 11. Schematic Diagram for Data Pre-Processing Component.

3.2 Transmittal of Acquired LiDAR Data

The data transfer sheets for all the LiDAR missions for Bayawan floodplain can be found in ANNEXE. Missions flown during the first survey conducted on September 2014 used the Airborne LiDAR Terrain Mapper (ALTM[™] Optech Inc.)Gemini system, while missions acquired during the second survey on January 2016 were flown using the Aquarius system over Bayawan City, Negros Oriental. TheDAC transferred a total of155.25 Gigabytes of Range data, 2.15 Gigabytes of POS data, 68.49 Megabytes of GPS base station data, and 220.10 Gigabytes of raw image data to the data server on November 6, 2014 for the first survey and February 9, 2016 for the second survey. TheData Pre-processing Component (DPPC)verified the completeness of the transferred data. The whole dataset for Bayawan was fully transferred on February 9, 2016, as indicated on the Data Transfer Sheets for Bayawan floodplain.

3.3 Trajectory Computation

The *Smoothed Performance Metrics* of the computed trajectory for flight 7578G, one of the Bayawanflights, whichare the North, East, and Down position RMSE values are shown in Figure 12. The x-axis corresponds to the time of flight, which is measured by the number of seconds from the midnight of the start of the GPS week, which fell onOctober 25, 2014 00:00AMon that week. The y-axis is the RMSE value for that particular position.

Figure 12. Smoothed Performance Metrics of Bayawan Flight 7578G.

The time of flight was from 601500 seconds to 609000 seconds, which corresponds to morning of October 25, 2014. The initial spike reflected on the data corresponds to the time that the aircraft was getting into position to start the acquisition, and the POS system was starting to compute for the position and orientation of the aircraft. Redundant measurements from the POS system quickly minimized the RMSE value of the positions. The periodic increase in RMSE values from an otherwise smoothly curving RMSE values correspond to the turn-around period of the aircraft, when the aircraft makes a turn to start a new flight line.Figure 13 shows that the North position RMSE peaks at 1.05centimeters, the East position RMSE peaks at 1.45centimeters, and the Down position RMSE peaks at 2.90centimeters, which are within the prescribed accuracies described in the methodology.

Figure 13. Solution Status Parameters of Bayawan Flight 7578G.

The Solution Statusparameters offlight 7578G, one of the Bayawanflights, which are the number of GPS satellites, Positional Dilution of Precision (PDOP), and the GPS processing mode used, are shown inFigure 12The graphs indicate that the number of satellites during the acquisition did not go down to 7. Majority of the time, the number of satellites tracked was between 7 and 10. The PDOP value also did not go above the value of 2, which indicates optimal GPS geometry. The processing mode stayed at the value of 0 for majority of the survey with some peaks up to 2 attributed to the turns performed by the aircraft. The value of 0 corresponds to a Fixed, Narrow-Lane mode, which is the optimum carrier-cycle integer ambiguity resolution technique available for POSPAC MMS. All of the parameters adhered to the accuracy requirements for optimal trajectory solutions, as indicated in the methodology. The computed best estimated trajectory for all Bayawan flights is shown in Figure 13.

Figure 14. Best Estimated Trajectory for Bayawan Floodplain.

3.4 LiDAR Point Cloud Computation

The generatedLAS data contains 156flight lines, with each flight line containing one channel, since both the Gemini and Aquarius systemscontain one channel only. The summary of the self-calibration results obtained from LiDAR processing in LiDAR Mapping Suite (LMS) software for all flights over Bayawan floodplain are given in Table 15.

Parameter	Acceptable Value
Boresight Correction stdev (<0.001degrees)	0.000168
IMU Attitude Correction Roll and Pitch Corrections stdev (<0.001degrees)	0.000941
GPS Position Z-correction stdev (<0.01meters)	0.0099

Table 15. Self-Calibration Results values for Bayawan flights.

The optimum accuracy is obtained for all Bayawan flights based on the computed standard deviations of the orientation parameters. Standard deviation values for individual blocks are available in the ANNEXH, Mission Summary Reports.

3.5 LiDAR Data Quality Checking

The boundary of the processed LiDAR data on top of a SAR Elevation Data over Bayawan Flood plain is illustrated in Figure 14. The map shows gaps in the LiDAR coverage that are attributed to cloud coverage.

Figure 15. Boundary of the processed LiDAR data over Bayawan Floodplain.
The total area covered by the Bayawan missions is 1,186.90 sq.km, which is comprised of fourteen (14) flight acquisitions grouped and merged into seven (7) blocks, as shown in Table 16.

LiDAR Blocks	Flight Numbers	Area (sq. km)	
	7570G		
Dumaguete_Blk53H	7576G	375.64	
	7578G		
Dumaguete_Blk53J	7566G	152.57	
	7540G		
Dumaguete_Blk53K	7566G	109.53	
	7568G		
	7526G	52.64	
Dumaguete_BIK53KS	7540G	52.64	
Dumaguete_Blk53I	7562G	304.1	
	7526G		
Dumaguete_Blk55A	55A 7540G		
	7560G		
Dumaguete_reflights_Blk53O	10076AC	23.32	
	TOTAL	1,186.90	

Table 16. List of LiDAR blocks for Bayawan floodplain.

The overlap data for the merged LiDAR blocks, showing the number of channels that pass through a particular location is shown in Figure 15. Since the Geminiand Aquarius systems both employ one channel, it is expected to have an average value of 1 (blue) for areas where there is limited overlap, and a value of 2 (yellow) or more (red) for areas with three or more overlapping flight lines.

Figure 16. Image of data overlap for Bayawan floodplain.

The overlap statistics per block for the Bayawan floodplain can be found in ANNEXH. One pixel corresponds to 25.0 square meters on the ground. For this area, the minimum and maximum percent overlapsare30.01% and 47.63% respectively, which passed the 25% requirement.

The density map for the merged LiDAR data, with the red parts showing the portions of the data that satisfy the 2 points per square meter criterion is shown in Figure 16. It was determined that all LiDAR data for Bayawan floodplain satisfy the point density requirement, and the average density for the entire survey area is 4.06 points per square meter.

Figure 17. Density map of merged LiDAR data for Bayawan floodplain.

The elevation difference between overlaps of adjacent flight lines is shown in Figure 17. The default color range is from blue to red, where bright blue areas correspond to portions where elevations of a previous flight line, identified by its acquisition time, are higher by more than 0.20m relative to elevations of its adjacent flight line. Bright red areas indicate portions where elevations of a previous flight line are lower by more than 0.20m relative to elevations of its adjacent flight line. Areas with bright red or bright blue need to be investigated further using Quick Terrain Modeler software.

Figure 18. Elevation difference map between flight lines for Bayawan floodplain.

A screen capture of the processed LAS data from a Bayawan flight 7578G loaded in QT Modeler is shown in Figure 18. The upper left image shows the elevations of the points from two overlapping flight strips traversed by the profile, illustrated by a dashed yellow line. The x-axis corresponds to the length of the profile. It is evident that there are differences in elevation, but the differences do not exceed the 20-centimeter mark. This profiling was repeated until the quality of the LiDAR data becomes satisfactory. No reprocessing was done for this LiDAR dataset.

Figure 19. Quality checking for Bayawan flight 7578G using the Profile Tool of QT Modeler.

3.6 LiDAR Point Cloud Classification and Rasterization

Pertinent Class	Total Number of Points
Ground	550,953,235
Low Vegetation	546,998,873
Medium Vegetation	1,387,866,731
High Vegetation	1,818,739,692
Building	38,282,474

Table 17. Bayawan classification results in TerraScan.

The tile system that TerraScan employed for the LiDAR data and the final classification image for a block in Bayawan floodplain is shown in Figure 19. A total of 1,691 1km by 1km tiles were produced. The number of points classified to the pertinent categories is illustrated in Table 17. The point cloud has a maximum and minimum height of 718.69 meters and 57.34 meters, respectively.

Figure 20. Tiles for Bayawan floodplain (a) and classification results (b) in TerraScan.

An isometric view of an area before and after running the classification routines is shown in Figure 20. The ground points are in orange, the vegetation is in different shades of green, and the buildings are in cyan. It can be seen that residential structures adjacent or even below canopy are classified correctly, due to the density of the LiDAR data.

Figure 21. Point cloud before (a) and after (b) classification.

The production of last return (V_ASCII) and the secondary (T_ ASCII) DTM, first (S_ ASCII) and last (D_ ASCII) return DSM of the area in top view display are shown in Figure 21. It reflects that DTMs are the representation of the bare earth, while on the DSMs, all features are present such as buildings and vegetation.

Figure 22. The production of last return DSM (a) and DTM (b) first return DSM (c) and secondary DTM (d) in some portion of Bayawan floodplain.

3.7 LiDAR Image Processing and Orthophotograph Rectification

There are no available orthophotographs for the Bayawan floodplain.

3.8 DEM Editing and Hydro-Correction

Seven (7) mission blocks were processed for the Bayawan flood plain. These blocks are composed of Dumaguete and Dumaguete_reflights blocks with a total area of 1,186.90 square kilometers. Table 18 shows the name and corresponding area of each block in square kilometers.

LiDAR Blocks	Area (sq. km)
Dumaguete_Blk53H	375.64
Dumaguete_Blk53J	152.57
Dumaguete_Blk53K	109.53
Dumaguete_Blk53Ks	52.64
Dumaguete_Blk53I	304.1
Dumaguete_Blk55A	169.1
Dumaguete_reflights_Blk53O	23.32
TOTAL	1,186.90

Table 18. LiDAR blocks with its corresponding area.

Portions of DTM before and after manual editing are shown in Figure 22. The interpolated mountain (Figure 22a) has been misclassified and removed during classification process and had to be retrieved to complete the surface (Figure 22b) Also, unfilled data during processing (Figure 22c) were filled during further processing (Figure 22d). These are shown in the following figure.

Figure 23. Portions in the DTM of Bayawan floodplain – an interpolated mountain before (a) and after (b) data retrieval; (c) before and (d) after filling data gaps.

3.9 Mosaicking of Blocks

Dumaguete_Blk53H was used as the reference block at the start of mosaicking due to the presence of more fixed built-up areas like roads on the flight block compared to the other. Table 19 shows the shift values applied to each LiDAR block during mosaicking.

Mosaicked LiDAR DTM for Bayawan floodplain ispresented in Figure 23. It can be seen that the entire Bayawan floodplain is 100% covered by LiDAR data.

Missien Dieske	Shift Values (meters)			
	х	У	z	
Dumaguete_Blk53H	0.00	0.00	0.00	
Dumaguete_Blk53J	0.00	0.00	-0.20	
Dumaguete_Blk53K	0.00	0.00	-0.63	
Dumaguete_Blk53K_supplement	0.00	0.00	-0.15	
Dumaguete_Blk53I	0.00	0.00	-0.26	
Dumaguete_Blk55A	0.00	0.00	-0.53	
Dumaguete_reflights_Blk53O	0.00	0.00	0.00	

Table 19. Shift Values of each LiDAR Block of Bayawan floodplain.

Figure 24. Map of Processed LiDAR Data for Bayawan Flood Plain.

3.10 Calibration and Validation of Mosaicked LiDAR Digital Elevation Model

The extent of the validation survey done by the Data Validation and Bathymetry Component (DVBC) in Bayawan to collect points with which the LiDAR dataset is validated is shown in Figure 25. A total of 14,047 survey points were gathered for all the flood plains within the provinces of Negros Oriental and Negros Occidental wherein the Bayawan floodplain is located. Random selection of 80% of the survey points, resulting to 11,237 points, was used for calibration. A good correlation between the uncalibrated mosaicked LiDAR DTM and ground survey elevation values is shown in Figure 26. Statistical values were computed from extracted LiDAR values using the selected points to assess the quality of data and obtain the value for vertical adjustment. The computed height difference between the LiDAR DTM and calibration points is 0.35 meters with a standard deviation of 0.18 meters. Calibration of the LiDAR data was done by subtracting the height difference value, 0.35 meters, to the mosaicked LiDAR data. Table 20 shows the statistical values of the compared elevation values between the LiDAR data and calibration data.

Figure 25. Map of Bayawan Flood Plain with validation survey points in green.

Figure 26. Correlation plot between calibration survey points and LiDAR data

Calibration Statistical Measures	Value (meters)
Height Difference	0.35
Standard Deviation	0.18
Average	-2.30
Minimum	-0.57
Maximum	0.30

Table 20. Calibration Statistical Measures.

The remaining 20% of the total survey points that are near Bayawan flood plain, resulting to 113 points, were used for the validation of calibrated Bayawan DTM. A good correlation between the calibrated mosaicked LiDAR elevation values and the ground survey elevation, which reflects the quality of the LiDAR DTM, is shown in Figure 27. The computed RMSE between the calibrated LiDAR DTM and validation elevation values is 0.15 meters with a standard deviation of 0.07 meters, as shown in Table 21.

Figure 27. Correlation plot between validation survey points and LiDAR data.

Validation Statistical Measures	Value (meters)
RMSE	0.15
Standard Deviation	0.07
Average	-0.13
Minimum	-0.22
Maximum	0.09

Table 21. Validation Statistical Measures.

3.11 Integration of Bathymetric Data into the LiDAR Digital Terrain Model

For bathy integration, centerline and zigzag data were available for Bayawan with 17,686 bathymetric survey points. The resulting raster surface produced was accomplished through the Krigging interpolation method. After burning the bathymetric data to the calibrated DTM, assessment of the interpolated surface is represented by the computed RMSE value of 1.05 meters. The extent of the bathymetric survey done by the Data Validation and Bathymetry Component (DVBC) in Bayawan integrated with the processed LiDAR DEM is shown in Figure 27.

Figure 28. Map of Bayawan Flood Plain with bathymetric survey points shown in blue.

3.12 Feature Extraction

The features salient in flood hazard exposure analysis include buildings, road networks, bridges and water bodies within the floodplain area with a 200-meter buffer zone. Mosaicked LiDAR DEM with 1 m resolution was used to delineate footprints of building features, consisting of residential buildings, government offices, medical facilities, religious institutions, and commercial establishments, among others. Road networks comprise of main thoroughfares such as highways and municipal and barangay roads essential for routing of disaster response efforts. These features are represented by a network of road centerlines.

3.12.1 Quality Checking (QC) of Digitized Features' Boundary

Bayawan floodplain, including its 200-m buffer, has a total area of 68.05 sq. km. For this area, a total of 5.00 sq. km, corresponding to a total of 998 building features, are considered for QC. Figure 28 shows the QC blocks for the Bayawan floodplain.

Figure 29. Blocks (in blue) of Bayawan building features that were subjected to QC.

Quality checking of the building features extracted for the Bayawan River Basin resulted in the ratings shown in Table 22.

Table 22.	Quality C	hecking F	Ratings for	Bayawan	Building Features	3.
-----------	-----------	-----------	-------------	---------	--------------------------	----

FLOODPLAIN	COMPLETENESS	CORRECTNESS	QUALITY	REMARKS
Bayawan	95.23	100.00	94.89	PASSED

3.12.2 Height Extraction

Height extraction was done for 11,291 building features in theBayawan floodplain. Of these building features, 960 were filtered out after height extraction, resulting in10,331 buildings with height attributes. The lowest building height is at 2.00 m, while the highest building is at 16.37 m.

3.12.3 Feature Attribution

In attribution, a combination of participatory mapping and actual field validation was undertaken. Representatives from the LGU were invited to assist in the determination of the features. The remaining unidentified features were then validated on the field.

Table 23 summarizes the number of building features per type. Table 24 shows the total length of each road type, while Table 25 shows the number of water features extracted per type.

Facility Type	No. of Features
Residential	9,629
School	140
Market	32
Agricultural/Agro-Industrial Facilities	0
Medical Institutions	15
Barangay Hall	8
Military Institution	3
Sports Center/Gymnasium/Covered Court	13
Telecommunication Facilities	0
Transport Terminal	2
Warehouse	4
Power Plant/Substation	0
NGO/CSO Offices	3
Police Station	0
Water Supply/Sewerage	0
Religious Institutions	13
Bank	8
Factory	0
Gas Station	7
Fire Station	0
Other Government Offices	135
Other Commercial Establishments	319
Total	10,331

Table	23. Bui	lding	Features	Extracted	for Bay	yawan	Floodplai	n.
						/	1	

Table 24.	. Total Ler	ngth of Extr	acted Road	ds for Bayaw	an Floodplain.
		0			1

		Road Netw	vork Length (kn	n)		
Floodplain	Barangay Road	City/Municipal Road	Provincial Road	National Road	Others	Total
Bayawan	186.10	23.79	9.43	7.13	0.00	226.50

Table 25. Number of Extracted Water Bodies for Bayawan Floodplain.

Floodalain		v	Vater Body Typ	e		Total
Floodplain	Rivers/ Streams	Lakes/Ponds	Sea	Dam	Fish Pen	IOtal
Bayawan	1	0	0	0	0	1

A total of 4 bridges and culverts over small channels, which are part of the river network, were also extracted for the floodplain.

3.12.4 Final Quality Checking of Extracted Features

All extracted ground features were completely given the required attributes. All these output features comprise the flood hazard exposure database for the floodplain. This completes the feature extraction phase of the project.

Figure 29 shows the Digital Surface Model (DSM) of the Bayawan floodplain overlaid with its ground features.

Figure 30. Extracted features for Bayawan floodplain.

CHAPTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE BAYAWAN RIVER BASIN

Engr. Ma. Rosario Concepcion O. Ang, Engr. John Louie D. Fabila, Engr. Sarah Jane D. Samalburo, Engr. Joida F. Prieto , Ailyn G. Biñas , Engr. Jennifer B. Saguran, Engr. Monalyne C. Rabino, Engr. Velina Angela S. Bemida , Engr. Ma. Joanne I. Balaga and Engr. Erica Erin E. Elazegui

The methods applied in this Chapter were based on the DREAM methods manual (Balicanta, et al., 2014) and further enhanced and updated in Paringit, et al. (2017).

4.1 Summary of Activities

Field surveys in the Bayawan River were conducted on March 9 – 23, 2016 with the following scope of work: (i) reconnaissance; (ii) control survey; (iii) cross-section and water level marking in MSL of the depth gauge deployment site located in Barangay Calabnugan, Municipality of Sibulan, Negros Oriental, with validation points data acquisition of about 30.14 km for the areas traversing Bayawan City and the Municipality of Santa Catalina; and (iv) bathymetric survey from Brgy. Nangka, down to Brgy. Banga, both in Bayawan City, with an estimated length of 12.510 km usingOHMEX[™] Sonarmite echo sounder and Trimble^{*}SPS 882 GNSS PPK survey technique (see Figure 30).

Figure 31. Extent of the bathymetric survey (blue) in Bayawan River and the LiDAR data validation survey (red).

4.2 Control Survey

The GNSS network used for this survey is composed of three (3) loops established on March 11, 2016 occupying the following reference points: NGE-107, a second order GCP located in Brgy. Manalongon, Municipality of Santa Catalina; NGE-98, a second order GCP located in Brgy. Kabulacan, Sitio Danao, Municipality of Santa Catalina; and NE-358, a first order BM in Brgy. Poblacion, Bayawan City.

One (1) control point was established namely, UP-SIA at Siaton Bridge in Brgy. Caticugan, Municipality of Siaton. The control pointNGE-94, in Brgy. Bongalonan, Municipality of Basay, established by NAMRIA, was also occupied to use as a marker for the network.

The summary of reference and control points and its location issummarized in Table 26 while the GNSS network established is illustrated in Figure 31.

Figure 32. GNSS Network covering Bayawan River.

E
\mathcal{A}
õ
\simeq
·
E E
÷
T
R
\geq
Ā
Ż
S
- T
5
ଁର୍
\sim
e)
2
n
ŝ
er
IZ.
Ř
, L
73
E
y2
g
<u>н</u>
ō
ы С
-j
Ē
3
ŏ
ŝ
nt
-Ü
ğ
-
ĽO
ц Ц
OL
õ
Ъ
ЯD
0
ŭ
SD
Σ
fe
re
Я
Ļ
ÌS1
Ľ
Q
Ñ
le
-Q
Ë,
`

			Geographic Coc	ordinates (WGS 84)		
Control Point	Order of Accuracy	Latitude	Longitude	Ellipsoidal Height (m)	MSL Elevation (m)	Date Established
NGE-107	2nd Order, GCP	9°13′19.76274″N	122°52′59.03199″E	69.527	I	2007
NGE-98	2 nd Order, GCP	9°22′16.41564″N	122°53′48.54064″E	132.087	7.414	2007
NE-358	1st Order, BM	I	ı	67.723	5.116	2008
NGE-94	used as marker	ı	ı	ı	r	2007
UP-SIA	Used as marker	I	I	I	T	March 2016

The GNSS set-ups on recovered reference points and established control points in the Bayawan River areshown in Figure 32 to Figure 36.

Figure 33. GNSS receiver set-up, Trimble® SPS 882, at NGE-107 at the approach of Manalongon Bridge in Brgy. Manalongon, Municipality of Santa Catalina, Negros Oriental.

Figure 34. GNSS receiver setup, Trimble®SPS 852, at NGE-98 in Brgy. Kabulacan, Sitio Danao, Municipality of Santa Catalina, Negros Oriental.

Figure 35. GNSS receiver set-up, Trimble® Zephyr ™ Model 2, at NE-358 in Brgy. Poblacion, Bayawan City, Negros Oriental.

Figure 36. GNSS receiver set-up, Trimble® Zephyr ™ Model 2, at NGE-94 in Brgy. Bal-os, Municipality of Basay, Negros Oriental.

Figure 37. GNSS receiver set-up, Trimble®SPS 882 at control point UP-SIA at Siaton Bridge, Brgy. Caticugan, Municipality of Siaton, Negros Oriental.

4.3 Baseline Processing

GNSS Baselines were processed simultaneously in TBC by observing that all baselines have fixed solutions with horizontal and vertical precisions within +/- 20 cm and +/- 10 cm requirement, respectively. In cases where one or more baselines did not meet all of these criteria, masking isperformed. Masking is done by removing portions of these baseline data using the same processing software. It is repeatedly processed until all baseline requirements are met. If the reiteration yields out of the required accuracy, a resurvey is initiated. Baseline processing results of control points in the Bayawan River Basin is summarized in Table 27 generated by TBC software.

Observation	Date of Observation	Solution Type	H. Prec. (Meter)	V. Prec. (Meter)	Geodetic Az.	Ellipsoid Dist. (Meter)	∆Height (Meter)
NE-358 NGE-98	03-11-2016	Fixed	0.004	0.020	276°04'18"	-64.370	-64.370
NGE-98 UP-SIA	03-11-2016	Fixed	0.003	0.019	157°29'24"	-61.895	-61.895
NGE-98 NGE-107	03-11-2016	Fixed	0.003	0.020	185°14'15"	-62.546	-62.546
NE-358 NGE-94	03-11-2016	Fixed	0.005	0.021	103°45'37"	-1.108	-1.108
NE-358 NGE-107	03-11-2016	Fixed	0.005	0.032	337°54'15"	-1.830	1.830
UP-SIA NGE-107	03-11-2016	Fixed	0.004	0.023	318°46′17″	-0.673	-0.673
NGE-94 NGE-107	03-11-2016	Fixed	0.003	0.029	128°25'03″	0.653	0.653

Table 27. Baseline Processing Report for Bayawan River Basin Static Survey.

As shown in Table 27, a total of seven (7) baselines were processed with reference points NE-358 fixed for elevation; and NGE-98 and NGE 107 held fixed for grid values. All of them passed the required accuracy.

4.4 Network Adjustment

After the baseline processing procedure, network adjustment is performed using TBC. Looking at the Adjusted Grid Coordinates table of the TBC generated Network Adjustment Report, it is observed that the square root of the sum of the squares of x and y must be less than 20 cm and z less than 10 cm, or in equation form:

$$\sqrt{((x_0)^2 + (x_0)^2)} < 20$$
 cm and

Where:

x_e is the Easting Error,

y is the Northing Error, and

*z_*is the Elevation Error

for each control point. See the Network Adjustment Report shown in Table 28 toTable 30 for the complete details.

The five (5) control points, NGE-93, NE-119, NE-309, UP-OCOand UP-TANwere occupied and observed simultaneously to form a GNSS loop. Coordinates of points NGE-93 and NGE-107, and elevation value of NE-358 were held fixed during the processing of the control points, as presented in Table 28. Through these reference points, the coordinates and elevation of the unknown control points will be computed.

Point ID	Туре	East σ (Meter)	North σ (Meter)	Height σ (Meter)	Elevation σ (Meter)
NE-358	Grid				Fixed
NGE-107	Global	Fixed	Fixed		
NGE-98	Global	Fixed	Fixed		
Fixed = 0.000001(Meter)					

Table 28. Control Point Constraints.

The list of adjusted grid coordinates; i.e., Northing, Easting, Elevation and computed standard errors of the control points in the network is indicated inTable 29. The fixed control points NE-358, NGE-107, and NGE-98have no values for grid errors and elevation error, respectively.

Point ID	Easting (Meter)	Easting Error (Meter)	Northing (Meter)	Northing Error (Meter)	Elevation (Meter)	Elevation Error (Meter)	Constraint
NGE- 107	487155.076	?	1019415.410	?	7.670	0.058	LLh
NGE-98	488670.521	?	1035896.031	?	69.180	0.054	LLh
NE-358	480099.830	0.009	1036810.192	0.008	5.116	?	е
NGE-94	458621.676	0.015	1042094.324	0.013	7.244	0.058	
UP-SIA	502963.760	0.013	1001378.367	0.011	8.267	0.070	

Table 29. Adjusted Grid Coordinates.

The network isfixed at reference points NGE-107 and NGE-98 with known coordinates, and NE-358 with known elevation. As shown in Table 29, the standard errors (xe and ye) of NE-358 are 0.9 cm and 0.8 cm, NGE-94 are 1.5 cm and, and 1.3, UP-SIA are 1.3 and 1.1, respectively. With the mentioned equation, for horizontal and for the vertical, the computations for the accuracy are as follows:

a.	NGE-107 Horizontal Accuracy Vertical Accuracy	= Fixed = 5.8 < 10 cm
b.	NGE-98 Horizontal Accuracy Vertical Accuracy	= Fixed = 5.4 < 10 cm
C.	NE-358 Horizontal Accuracy Vertical Accuracy	= $\sqrt{((0.9)^2 + (0.8)^2)^2}$ = $\sqrt{(0.81 + 0.64)}$ = 1.20cm < 20 cm = Fixed
d.	NGE-94 horizontal accuracy vertical accuracy	= $\sqrt{((1.5)^2 + (1.3)^2)}$ = $\sqrt{(2.25 + 1.69)}$ = 1.98 cm < 20 cm = 5.8< 10 cm
e.	UP-SIA Horizontal Accuracy	$= \sqrt{((1.3)^2 + (1.1)^2)^2}$ = $\sqrt{(1.69 + 1.21)^2}$ = 1.70 cm < 20 cm = 7.0< 10 cm
	vertical Accuracy	

Following the given formula, the horizontal and vertical accuracy results of the two occupied control points are within the required precision.

Point ID	Latitude	Longitude	Ellipsoidal Height (Meter)	Height Error (Meter)	Constraint
NGE-107	N9°13'19.76274"	E122°52'59.03199"	69.527	0.058	LL
NGE-98	N9°22'16.41564″	E122°53′48.54064″	132.087	0.054	LL
NE-358	N9°22'46.06928″	E122°49'07.51892"	67.723	?	е
NGE-94	N9°25′37.57022″	E122°37'23.12090"	68.846	0.058	
UP-SIA	N9°03'32.50400″	E123°01'37.08746"	70.195	0.070	

Table 30. Adjusted Geodetic Coordinates.

The corresponding geodetic coordinates of NAMRIA established reference points, NGE-107, NGE-98, and NE-358 are within the required accuracy, as shown in Table 30. Based on the result of the computation, the accuracy conditions satisfied; hence, the required accuracy for the program was met.

The summary of reference and control points used is indicated in Table 31.

	in C					
	BM Orth MSL (m	7.670	69.18(5.116	7.244	
UTM ZONE 51 N	Easting (m)	487155.076	488670.521	480099.830	458621.676	
	Northing (m)	1019415.410	1035896.031	1036810.192	1042094.324	
84)	Ellipsoidal Height (m)	69.527	132.087	67.723	68.846	
ohic Coordinates (WGS	Longitude	122d52'59.03199"E	122d53′48.54064″E	122d49′07.51892″E	122d37'23.12090"E	
Geogral	Latitude	9d13'19.76274"N	9d22'16.41564"N	9d22'46.06928"N	9d25'37.57022"N	
	Order of Accuracy	2nd order GCP	2nd order GCP	1st order BM	Used as Marker	
	Control Point	NGE-107	NGE-98	NE-358	NGE-94	

54

Table 31. Reference and control points and its location (Source: NAMRIA, UP-TCAGP).

4.5 Cross-section and Bridge As-Built Survey and WaterLevel Marking

The cross-section survey was conducted on March 14, 2016 at the upstream portion of Bayawan Riverin Brgy. Nangka, Bayawan City using GNSS receiver Trimble[®] SPS 882 in PPK survey technique, as shown inFigure 37.Water surface elevation in MSL of the Bayawan River was determined on March 14, 2016 at 2:37 PM using Trimble[®] SPS 882 in PPK mode with a value of 3.068 m in MSL. A structure for the installation of an AWLS and water level marking shall be constructed along the non-bridge flow measuring site identified by USC.

Figure 38. Cross-section survey conducted on Bawayan River in Brgy. Calabnugan, Municipality of Sibulan.

The length of cross-sectional line of the upstream portion of the Bayawan River is about 134 m with 36 cross-sectional points acquired using NE-358 as the GNSS base station. The cross section diagram and planimetric map are shown in Figure 38 and Figure 39.

Figure 39. Location Map of Bayawan bridge cross-section

Figure 40. Bayawan river cross-section

4.6 Validation Points Acquisition Survey

The validation points acquisition survey was conducted on March 14, 2016 using a survey-grade GNSS rover receiver, Trimble^{*}SPS 882, mounted on a pole attached to the side of the vehicle as shown inFigure 40. It was secured with cable ties to ensure that it was horizontally and vertically balanced. The antenna height was 2.265 m, measured from the ground up to the bottom of notch of the GNSS rover receiver. The PPK technique utilized for the conduct of the survey was set to continuous topo mode withNE-358 occupied as the GNSS base station all throughout the conduct of the survey.

Figure 41. Validation points acquisition survey set-up.

The validation points acquisition survey for the Bayawan River Basin traversed Bayawan City and the Municipality of Santa Catalina. The route of the survey aims to traverse LiDAR flight strips perpendicularly for the basin. A total of 43,714 points with an approximate length of 30.14 km was acquired for the validation point acquisition survey as shown in the map in Figure 41.

Figure 42. LiDAR Validation points acquisition survey for Bayawan River Basin.

4.7 Bathymetric Survey

A manual bathymetric survey using a Trimble[®] SPS 882 GNSS PPK technique was executed on March 14, 2016 as shown in Figure 42. The survey began in the upstream in Brgy. Nangka, Bayawan City, with coordinates 9°25'22.71489"N 122°48'23.41123"E, until reaching the deep portion of the river in the same barangay, with coordinates 9°24'03.03715"N 122°48'33.27275"E.

Figure 43. Manual Bathymetric Survey in Bayawan River.

On the second day of Bathymetric Survey, March 16, 2016, the survey team utilized the OHMEX[™] Sonarmite echosounder and Trimble[®] SPS 882 GNSS PPK technique which was attached to a pole on a fishing boat for the remaining deep portions of the river as shown in Figure 43. The survey started from Brgy. Nangka, Bayawan City with coordinates 9°23'41.06839"N 122°48'59.35114"E, going to the mouth of the river to Brgy. Banga with coordinates 9°21'38.71269"N 122°47'38.10705"E. It was conducted with the assistance of personnel from the University of San Carlos.The control point NE-358 was used as base station for the whole conduct of the survey.
Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

Figure 44. Bathymetric survey using the OHMEX Echosounder.

The bathymetric survey coverage for the Bayawan River is illustrated in Figure 44. Approximately 200 m of the delineated target bathymetric line was not covered in the upstream areadue to its inaccessibility because of very thick bushes. A CAD drawing was also produced to illustrate the Bayawan riverbed centerline profile as shown in Figure 45. There is about a 9-m change in elevation observed within the entire scope of the bathymetric data from its upstream in Brgy. Nangka, Bayawan City down to the mouth of the river in Brgy. Banga. The highest elevation observed was 2.821 m in Brgy Nangka, and the lowest elevation was -6.521 m in Brgy. Banga. The bathymetric survey gathered a total of 17,828 points covering 12.510 km of the river traversing the river upstream in Brgy. Nangka, Bayawan, Negros Oriental, down to its mouth in Brgy. Banga, also in Bayawan City, Negros Occidental.

Figure 45. Bathymetric points gathered from Bayawan River.

Bayawan Riverbed Profile

CHAPTER 5: FLOOD MODELING AND MAPPING

Engr. Louie P. Balicanta, Engr. Joemarie S. Caballero, Patrizcia Mae. P. dela Cruz, Engr. Dexter T. Lozano, For. Dona Rina Patricia C. Tajora, Elaine Bennet Salvador and For. Rodel C. Alberto

The methods applied in this Chapter were based on the DREAM methods manual (Lagmay, et al., 2014) and further enhanced and updated in Paringit, et al. (2017)

5.1 Data Used for Hydrologic Modeling

5.1.1 Hydrometry and Rating Curves

All components and data that affect the hydrologic cycle of the Bayawan River Basin weremonitored, collected, and analyzed. Rainfall, water level, and flow in a certain period of time, which may affect the hydrologic cycle of the Bayawan River Basin were monitored, collected, and analyzed.

5.1.2 Precipitation

Precipitation data was taken from a data logging rain gauge installed through the efforts of the local Disaster Risk Reduction Management Office of the City of Bayawan. The data was also reflected in the Predict website through coordination with the Department of Science and Technology – Advanced Science and Technology Institute (DOST-ASTI). The rain gauge was installed in Brgy. Kalumbuyan, Bayawan with geographic coordinates of 9°27′5.08″N and 122°48′37.26″E. The rain gauge records data every 10 minutes. The precipitation data used in the calibration of the model started at 6:00 PM on January 15, 2017 and ended at 10:50 PM of the same day. The location of the rain gage used in calibration in the watershed in presented in Figure 46.

The total precipitation in Brgy. Kalumbuyan Station is 25 mm. It has a peak rainfall rate of 6.5 mm at 6:50 PM on January 15, 2017. The lag time between the peak discharge and the peak rainfall is 14 hours and 10 minutes.

Figure 47. The location map of Bayawan HEC-HMS model used for calibration.

5.1.3 Rating Curves and River Outflow

A rating curve was developed at Sitio Mantapi, Brgy. Nangka, Bayawan (9.423081°, 122.807481°E). This is also the location of the water level sensor to be installed by the City of Bayawan. The rating curve gives the relationship between the observed water levels and outflow of the watershed at this location.

For Sitio Mantapi, Brgy. Nangka, the rating curve is expressed as:as shown in Figure 48.

Figure 48. Cross-Section Plot of Bayawan Bridge.

Figure 49. Rating Curve at Sitio Mantapi, Brgy. Nangka, Bayawan City.

This rating curve equation was used to compute for the river outflow atSitio Mantapi, Nangka for the calibration of the HEC-HMS model shown in Figure 49.Peak discharge is 15.4m³/s at 15:20 on August 12, 2016.

Figure 50. Rainfall and outflow data at Sitio Mantapi, Brgy. Nangka, Bayawanused for modeling.

5.2 RIDF Station

The Philippine Atmospheric Geophysical and Astronomical Services Administration (PAGASA) computed for the Rainfall Intensity Duration Frequency (RIDF) values for the Dumaguete Point Gauge, as shown in Table 32. This station was chosen based on its proximity to the Bayawan watershed. The extreme values for this watershed were computed based on a 35-year record.

	COMPUTED EXTREME VALUES (in mm) OF PRECIPITATION									
T (yrs)	10 mins	20 mins	30 mins	1 hr	2 hrs	3 hrs	6 hrs	12 hrs	24 hrs	
2	16.2	24.8	30.6	39.7	50	55.3	63.4	69.1	76	
5	21.8	33.6	42.3	57.1	76.5	87.3	100	109.5	116.5	
10	25.6	39.4	50	68.6	94	108.5	124.3	136.3	143.3	
15	27.7	42.7	54.3	75.1	103.9	120.5	138	151.4	158.4	
20	29.1	45	57.4	79.7	110.8	128.9	147.5	162	169	
25	30.3	46.8	59.7	83.2	116.1	135.3	154.9	170.2	177.2	
50	33.8	52.3	66.9	94	132.5	155.2	177.6	195.3	202.4	

Table 32. RIDF values for Dumaguete Point Rain Gauge computed by PAGASA.

Figure 51. Dumaguete Point RIDF location relative to Bayawan River Basin.

Figure 52. Synthetic storm generated for a 24-hr period rainfall for various return periods.

5.3 HMS Model

The soil shapefile in Figure 52was taken in 2004 from the Bureau of Soils and Water Management (BSWW), under the Department of Agriculture. The land cover datasetin Figure 53 is from the National Mapping and Resource Information Authority (NAMRIA).

Figure 53. The soil map of the Bayawan River Basin used for the estimation of the CN parameter. (Source of data: Digital soil map of the Philippines published by the Bureau of Soil and

Water Management - Department of Agriculture).

Figure 54. The land cover map of the Bayawan River Basin used for the estimation of the CN and watershed lag parameters of the rainfall-runoff model. (Source of data: National Mapping and Resource Information Authority).

Figure 55. Slope map of Bayawan River Basin.

Figure 56. Stream delineation map of Bayawan River Basin.

After preprocessing of the watershed's hydrologic properties, the basin model of the watershed is then processed in HEC-HMS 3.5. HEC-HMS aims to generate the rainfall-runoff relationship in the watershed. Figure 56 shows the basin model in HEC-HMS of Bayawan River. It is composed of seventeen (17) sub-basins and eight (8) reaches.

Figure 57. The Bayawan River Basin Model Domain generated using HEC-HMS.

5.4 Cross-section Data

The riverbed cross-sections of the watershed, presented in Figure 57, were necessary in the HEC-RAS model setup. The cross-section data for the HEC-RAS model was derived from the LiDAR DEM data. It was defined using the Arc GeoRAS tool and was post-processed in ArcGIS.

Figure 58. River cross-section of Bayawan River generated through Arcmap HEC GeoRAS tool.

5.5 Flo 2D Model

The automated modeling process allows for the creation of a model with boundaries that are almost exactly coincidental with that of the catchment area. As such, they have approximately the same land area and location. The entire area is divided into square grid elements, 10 meters by 10 meters in size. Each element is assigned a unique grid element number which serves as its identifier, then attributed with the parameters required for modeling such as x-and y-coordinate of centroid, names of adjacent grid elements, Manning coefficient of roughness, infiltration, and elevation value. The elements are arranged spatially to form the model, allowing the software to simulate the flow of water across the grid elements and in eight directions (north, south, east, west, northeast, northwest, southeast, southwest).

Based on the elevation and flow direction, it is seen that the water will generally flow from the northeast of the model to the south, following the main channel. As such, boundary elements in those particular regions of the model are assigned as inflow and outflow elements, respectively.

D 🖝 🖬 🔍 🔍 💌 ≢ 🖷 💥 O 📰 🛛 486.646.63 1.045.077.75

- o ×

Figure 59. Screenshot of subcatchment with the computational area to be modeled in FLO-2D GDS Pro.

The simulation is then run through FLO-2D GDS Pro (Figure 58). This particular model had a computer run time of 42.24756 hours. After the simulation, FLO-2D Mapper Pro is used to transform the simulation results into spatial data that shows flood hazard levels, as well as the extent and inundation of the flood. Assigning the appropriate flood depth and velocity values for Low, Medium, and High creates the following food hazard map. Most of the default values given by FLO-2D Mapper Pro are used, except for those in the Low hazard level. For this particular level, the minimum h (Maximum depth) is set at 0.2 m while the minimum vh (Product of maximum velocity (v) times maximum depth (h)) is set at 0 m2/s.The generated hazard maps for Bayawan are in Figures 62, 64, and 66.

The creation of a flood hazard map from the model also automatically creates a flow depth map depicting the maximum amount of inundation for every grid element. The legend used by default in Flo-2D Mapper is not a good representation of the range of flood inundation values, so a different legend is used for the layout. In this particular model, the inundated parts cover a maximum land area of 51079100.00 m².The generated flood depth maps for Bayawan are in Figures 63, 65, and 67.

There is a total of 80278004.37 m³ of water entering the model. Of this amount, 12582220.91 m³ is due to rainfall while 67695783.46 m³ is inflow from other areas outside the model. 5354857.00 m³ of this water is lost to infiltration and interception, while 15370132.92 m³ is stored by the flood plain. The rest, amounting up to 59553011.77 m³, is outflow.

5.6 Results of HMS Calibration

After calibrating the Bayawan HEC-HMS river basin model, its accuracy was measured against the observed values. Figure 59shows the comparison between the two discharge data. The Bayawan Model Basin Parameters are seen on ANNEXI.

Figure 60. Outflow Hydrograph of Bayawan produced by the HEC-HMS model compared with observed outflow.

Enumerated in Table 33 are the adjusted ranges of values of the parameters used in calibrating the model.

Hydrologic Element	Calculation Type	Method	Parameter	Range of Calibrated Values
	Loca	CCC Curve number	Initial Abstraction (mm)	1.3 - 3.2
	LUSS	SCS Curve number	Curve Number	68 - 90
Decin	Transform	Clark Unit	Time of Concentration (hr)	1 - 14
Basin	Iransform	Hydrograph	Storage Coefficient (hr)	0.8 - 12
	Deceflow	Decession	Recession Constant	0.5
	Basenow	Recession	Ratio to Peak	0.0007 – 0.001
Reach	Routing	Muskingum-Cunge	Manning's Coefficient	0.05 – 0.12

Table 33. Range of Calibrated Values for Bayawan.

Initial abstraction defines the amount of precipitation that must fall before surface runoff. The magnitude of the outflow hydrograph increases as initial abstraction decreases. The range of values from 5mm to 20mm means that there is minimal to average amount of infiltration or rainfall interception by vegetation.

The curve number is the estimate of the precipitation excess of soil cover, land use, and antecedent moisture. The magnitude of the outflow hydrograph increases as curve number increases. The range of 65 to 90 for curve number is advisable for Philippine watersheds, depending on the soil and land cover of the area. For Bayawan, the basin mostly consists of brushland, cultivated area, and grassland, and the soil consists of clay, clay loam, fine sandy loam, and siltloam.

The time of concentration and storage coefficient are the travel time and index of temporary storage of runoff in a watershed. The range of calibrated values from 2 hours to 12 hours determines the reaction time of the model with respect to the rainfall. The peak magnitude of the hydrograph also decreases when these parameters are increased.

Recession constant is the rate at which baseflow recedes between storm events, whileratio to peak is the ratio of the baseflow discharge to the peak discharge. Recession constant of 0.5 indicates that the basin is unlikely to quickly go back to its original discharge and instead, will be higher. Ratio to peak of 0.0007 - 0.001 indicates a steeper receding limb of the outflow hydrograph.

Manning's roughness coefficient of 0.04 corresponds to the common roughness of Philippine watersheds (Brunner, 2010). With this coefficient, the Bayawan river basin is determined to be cultivated with mature field crops and mangrove forest.

Table 34 presents the summary of the efficiency test of the Bayawan HMS Model.

RMSE	4.859
r ²	0.9335
NSE	0.823
PBIAS	-9.642
RSR	0.420

Table 34. Summary of the Efficiency Test of Bayawan HMS Model.

The Root Mean Square Error (RMSE) method aggregates the individual differences of these two measurements. It was identified at 4.859.

The Pearson correlation coefficient (assesses the strength of the linear relationship between the observations and the model. This value being close to 1 corresponds to an almost perfect match of the observed discharge and the resulting discharge from the HEC HMS model. Here, it measured 0.9335.

The Nash-Sutcliffe (E) method was also used to assess the predictive power of the model. Here the optimal value is 1. The model attained an efficiency coefficient of 0.823.

A positive Percent Bias (PBIAS) indicates a model's propensity towards under-prediction. Negative values indicate bias towards over-prediction. Again, the optimal value is 0. In the model, the PBIAS is -9.642.

The Observation Standard Deviation Ratio, RSR, is an error index. A perfect model attains a value of 0 when the error in the units of the valuable a quantified. The model has an RSR value of 0.420.

5.7 Calculated Outflow hydrographs and Discharge Values for Different Rainfall Return periods

5.7.1 Hydrograph using the Rainfall Runoff Model

The summary graph in Figure 60shows the Bayawan outflow using the Dumaguete Rainfall Intensity-Duration-Frequency curves (RIDF) in five (5) different return periods (5-, 10-, 25-, 50-, and 100-year rainfall time series) based on the PAGASA) data. The simulation results reveal significant increase in outflow magnitude as the rainfall intensity increases for a uniform duration of 24 hours and varying return periods.

Figure 61. Outflow hydrograph at Sitio Mantapi, Brgy. Nangka, BayawanCity generated using Dumaguete PointRIDF simulated in HEC-HMS.

A summary of the total precipitation, peak rainfall, peak outflow and time to peak of the BayawanRiver discharge using the Dumaguete Point Rainfall Intensity-Duration-Frequency curves (RIDF) in five different return periods is shown in Table 35.

RIDF Period	Total Precipitation (mm)	Peak Rainfall (mm)	Peak Outflow	Time to Peak
5-year RIDF	116.5	21.8	553.398	08:30
10-year RIDF	143.3	25.6	731.152	08:20
25-year RIDF	177.2	30.3	962.23	08:10
50-year RIDF	202.4	33.8	1136.746	08:00
100-year RIDF	227.3	37.2	1311.509	08:00

Table 35. Peak values of the Bayawan HECHMS Model outflow using the Dumaguete RIDF.

5.8 River Analysis Model Simulation

The HEC-RAS Flood Model produced a simulated water level at every cross-section for every time step for every flood simulation created. The resulting model will be used in determining the flooded areas within the model. The simulated model will be an integral part in determining real-time flood inundation extent of the river after it has been automated and uploaded on the DREAM website. For this publication, only a sample output map river is shown. The sample generated map of the Bayawan River using the calibrated event flow is shown in Figure 61.

Figure 62. Sample output of BayawanRAS Model.

5.9 Flood Hazard and Flow Depth Map

The resulting hazard and flow depth maps have a 10m resolution. Figures62 to Figure67show the 5-, 25-, and 100-year rain return scenarios of the BayawanFloodplain, with an area of 50.72 sq. km. Table 36 shows the percentage of area affected by flooding per municipality.

Table 36. Municipalities affected in	Bislig floodplain.
--------------------------------------	--------------------

Municipality	Total Area	Area Flooded	% Flooded
Bayawan City	683.21	50.63	7.41

Moreover, the generated flood hazard maps for the Bayawan Floodplain were used to assess the vulnerability of the educational and medical institutions in the floodplain. Using the flood depth units of PAGASA for hazard maps - "Low", "Medium", and "High" - the affected institutions were given individual assessments for each Flood Hazard Scenario (5-yr, 25-yr, and 100-yr), as presented in Table 37.

		Area Covered in sq. km.	
warning Level	5 year	25 year	100 year
Low	5.99	5.65	5.43
Medium	0.77	0.80	0.90
High	0.65	0.95	1.07

Table 37. Area covered by each warning level with respect to the rainfall scenario.

Figure 65. 25-year Flood Hazard Map for BayawanFloodplain.

Figure 67. 5-year Flood Hazard Map for Bayawan Floodplain.

Figure 68. 5-year Flow Depth Map for BayawanFloodplain.

5.10 Inventory of Areas Exposed to Flooding

Affected barangays in the Bayawan river basin, grouped by municipality, are listed below. For the said basin, one (1) city consisting of fourteen (14) barangays are expected to experience flooding when subjected to 5-year rainfall return period.

For the 5-year return period, 5.46% of Bayawan City with an area of 683.21 sq. km. will experience flood levels of less 0.20 meters. 0.53% of the area will experience flood levels of 0.21 to 0.50 meters; while 0.30%, 0.47%, 0.53%, and 0.12% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 – 5 meters, and above 5 meters, respectively. Listed in Table 38 are the affected areas in square kilometers by flood depth per barangay.

The list of Educational Institutions and Health Institutions affected by flooding in the Bayawan Floodplain are presented on ANNEXES L and M.

Table 38. Affected Areas in Bayawan City, Negros Oriental during 5-Year Rainfall Return Period

	Villareal	4.07	0.75	0.20	0.012	0.006	0.0003
	Ubos	0.25	0.10	0.13	0.44	0.35	0.019
	Tinago	0.26	0.064	0.013	0.0018	0	0
	Suba	0.36	0.048	0.0015	0.00018	0.00086	0
	San Roque	7.39	0.28	0.19	0.10	0.064	0.004
an City	San Miguel	0.052	0.00047	0.000053	0.0002	0	0
s in Bayaw	Poblacion	0.072	0.021	0.023	0.0086	0	0
d Barangay	Pagatban	1.15	0.051	0.02	0.011	0.0081	0.0045
Affecte	Nangka	8.15	0.62	0.56	1.29	1.70	0.41
	Minaba	2.79	0.079	0.058	0.066	0.051	0.010
	Maninihon	1.04	0.053	0.04	0.067	0.096	0.025
	Malabugas	9.33	1.16	0.50	0.19	0.08	0.0029
	Воусо	0.23	0.042	0.0044	0	0	0
	Banga	2.15	0.38	0.31	0.99	1.24	0.38
Affected Area	(sq. km.)	0.03-0.20	0.21-0.50	0.51-1.00	1.01-2.00	2.01-5.00	> 5.00

Figure 69. Affected Areas in Bayawan City, Negros Oriental during 5-Year Rainfall Return Period.

For the 25-year return period, 5.02% of Bayawan City with an area of 683.21 sq. km. will experience flood levels of less 0.20 meters. 0.63% of the area will experience flood levels of 0.21 to 0.50 meters; while 0.43%, 0.38%, 0.77%, and 0.19% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 – 5 meters, and above 5 meters, respectively. Listed in Table 39 are the affected areas in square kilometers by flood depth per barangay.

Table 39. Affected Areas in Bayawan City, Negros Oriental during 25-Year Rainfall Return Period.

				Africa	Affect	ed Baranga	ys in Baya	wan City		5 1			
Воу	9	Malabugas	Manininon	Minaba	Nangka	Pagatoan	Poblacion	san Miguei	san koque	eans	linago	soan	Villareal
0.17		8.73	1.02	2.75	7.52	1.13	0.028	0.052	7.28	0.32	0.20	0.11	3.21
0.075		1.36	0.056	0.08	0.58	0.056	0.037	0.00074	0.28	0.074	0.092	0.1	1.14
0.033		0.78	0.035	0.06	0.52	0.031	0.037	0.00018	0.21	0.0085	0.043	0.16	0.60
0.0006		0.26	0.06	0.076	1.01	0.011	0.022	0.0002	0.14	0.00018	0.0069	0.30	0.086
0		0.12	0.12	0.07	2.31	0.011	0	0	0.097	0.00096	0	0.61	0.0046
0		0.0061	0.029	0.025	0.77	0.0096	0	0	0.011	0	0	0.019	0.0019

Figure 70. Affected Areas in Bayawan City, Negros Oriental during 25-Year Rainfall Return Period.

For the 100-year return period, 5.02% of Bayawan City with an area of 683.21 sq. km. will experience flood levels of less 0.20 meters. 0.63% of the area will experience flood levels of 0.21 to 0.50 meters; while 0.43%, 0.38%, 0.77%, and 0.19% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 – 5 meters, and above 5 meters, respectively. Listed in Table 40 are the affected areas in square kilometers by flood depth per barangay.

Table 40. Affected Areas in Bayawan City, Negros Oriental during 100-Year Rainfall Return Period.

	Villareal	2.68	1.16	0.95	0.24	0.0044	0.0025
	Nbos	0.067	0.083	0.17	0.28	69.0	0.019
	Tinago	0.17	0.093	0.065	0.0095	0	0
	Suba	0.29	0.091	0.022	0.00018	96000.0	0
	San Roque	7.2	0.29	0.22	0.17	0.13	0.019
an City	San Miguel	0.052	0.00095	0.00024	0.0002	0	0
s in Bayaw	Poblacion	0.015	0.034	0.041	0.033	0.00031	0
d Barangay	Pagatban	1.11	0.059	0.036	0.013	0.012	0.015
Affecte	Nangka	7.27	0.55	0.52	0.87	2.63	0.87
	Minaba	2.71	60.0	0.063	0.078	0.083	0.037
	Maninihon	1	0.058	0.033	0.047	0.15	0.032
	Malabugas	8.36	1.45	96.0	0.32	0.16	0.0081
	Воусо	0.14	0.079	0.062	0.0014	0	0
	Banga	1.64	0.38	0.40	0.55	2.07	0.41
Affected	Area (sq. km.)	0.03-0.20	0.21-0.50	0.51-1.00	1.01-2.00	2.01-5.00	> 5.00

Figure 71. Affected Areas in Bayawan City, Negros Oriental during 100-Year Rainfall Return Period.

Among the Barangays of Bayawan City, Nangka is projected to have the highest percentage of area that will experience flood levels at 1.86%. Meanwhile, Malabugas posted the second highest percentage of area that may be affected by flood depths, at 1.65%.

Of the twenty-one (21) identified Education Institutes in the Bayawan Floodplain, three (3) schools were assessed to be exposed to low level flooding during a 5-year scenario, while three (3) schools are exposed to medium level, and another two (2) are exposed to high level flooding in the same scenario. In the 25-year scenario, three (3) schools were assessed to be exposed to low level flooding, while one (1) and five (5) schools were assessed to be exposed to medium and high levels of flooding, respectively. For the 100-year scenario, five (5) schools were assessed to be exposed to low level flooding, and three (3) schools exposed medium level of flooding. In the same scenario, five (5) schools were assessed to be exposed to high level flooding. These schools are located in Brgy. Banga, Brgy. Nangka, and Brgy. Ubos.

Four (4) Medical Institutions were identified in the Bayawan Floodplain.Only one (1) was assessed to be exposed to medium level flooding in the 25- and 100-year scenarios in Brgy. Banga.Ubos Barangay Health Center, which is also located in Brgy. Banga in Bayawan Citywas assessed to be beexposed to high level of flooding in the three different scenarios.

5.11 Flood Validation

In order to check and validate the extent of flooding in different river systems, there is a need to perform validation survey work. Field personnel gathered secondary data regarding flood occurrence in the area within the major river system in the Philippines.

From the flood depth maps produced by Phil-LiDAR 1 Program, multiple points representing the different flood depths for different scenarios are identified for validation.

The validation personnel visited the specified points identified in theriver basin to gather data regarding the actual flood level in each location. Data gathering was done through the assistance of local DRRM offices in obtaining maps or situation reports about the past flooding events, or through the conduct of interviews with some residents with knowledge or experience of flooding in the particular area.

The actual data from the field were compared to the simulated data to assess the accuracy of the Flood Depth Maps produced, and to improve on the results of the flood map.

During validation, the team was assisted by the local Disaster Risk Reduction and Management representative from the City of Bayawan. Residents along the floodplain were interviewed on the historical flood events that they have experienced.

Actual flood depth acquired from the ground validation were then computed and compared to the flood depth simulated by the model. An RMSE value of 2.137 was obtained.

Figure 72. Validation points for 5-year Flood Depth Map of Bayawan Floodplain.

				Modele	ed Flood De	pth (m)		
DATA	0-0.20	0.21- 0.50	0.51- 1.00	1.01- 2.00	2.01- 5.00	> 5.00	Total	
	0-0.20	3	1	2	4	2	0	12
) (î	0.21-0.50	9	1	1	3	3	2	19
epth (0.51-1.00	5	1	3	4	7	2	22
0 D	1.01-2.00	1	6	3	9	11	3	33
tual Fl	2.01-5.00	3	1	0	1	1	0	6
AC	> 5.00	0	0	0	0	0	0	0
	Total	21	10	9	21	24	7	92

Table 41. Actual Flood Depth vs Simulated Flood Depth in Bayawan.

The overall accuracy generated by the flood model is estimated at 18.48%, with 17 points correctly matching the actual flood depths. In addition, there were 31 points estimated one (1) level above and below the correct flood depths while there were 26 points and 18 points estimated two (2) levels above and below, and three (3) or more levels above and below the correct flood. A total of 45 points were overestimated, while a total of 30 points were underestimated in the modeled flood depths of Bayawan.

Table 42. Summary of Accuracy Assessment in Bayawan.

	No. of Points	%
Correct	17	18.48
Overestimated	45	48.91
Underestimated	30	32.61
Total	92	100.00

REFERENCES

ANNEXES

Annex 1. Technical Specifications of the LiDAR Sensors used in the Bayawan Floodplain Survey

GEMINI SENSOR

Control Rack

Laptop

Parameter	Specification
Operational envelope (1,2,3,4)	150-4000 m AGL, nominal
Laser wavelength	1064 nm
Horizontal accuracy (2)	1/5,500 x altitude, (m AGL)
Elevation accuracy (2)	<5-35 cm, 1 σ
Effective laser repetition rate	Programmable, 33-167 kHz
Position and orientation system	POS AV™ AP50 (OEM); 220-channel dual frequency GPS/GNSS/Galileo/ L-Band receiver
Scan width (WOV)	Programmable, 0-50°
Scan frequency (5)	Programmable, 0-70 Hz (effective)
Sensor scan product	1000 maximum
Beam divergence	Dual divergence: 0.25 mrad (1/e) and 0.8 mrad (1/e), nominal
Roll compensation	Programmable, ±5° (FOV dependent)
Range capture	Up to 4 range measurements, including 1st, 2nd, 3rd, and last returns

Parameter	Specification
Intensity capture	Up to 4 intensity returns for each pulse, including last (12 bit)
Video Camera	Internal video camera (NTSC or PAL)
Image capture	Compatible with full Optech camera line (optional)
Full waveform capture	12-bit Optech IWD-2 Intelligent Waveform Digitizer (optional)
Data storage	Removable solid state disk SSD (SATA II)
Power requirements	28 V; 900 W;35 A(peak)
Dimensions and weight	Sensor: 260 mm (w) x 190 mm (l) x 570 mm (h); 23 kg Control rack: 650 mm (w) x 590 mm (l) x 530 mm (h); 53 kg
Operating temperature	-10°C to +35°C (with insulating jacket)
Relative humidity	0-95% no-condensing

AQUARIUS SENSOR

Parameter	Specification
Operational altitude	300-600 m AGL
Laser pulse repetition rate	33, 50. 70 kHz
Scan rate	0-70 Hz
Scan half-angle	0 to ± 25 °
Laser footprint on water surface	30-60 cm
Depth range	0 to > 10 m (for k < 0.1/m)
Topographic mode	
Operational altitude	300-2500
Range Capture	Up to 4 range measurements, including 1st, 2nd, 3rd, and last returns
Intensity capture	12-bit dynamic measurement range
Position and orientation system	POS AVTM 510 (OEM) includes embedded 72-channel GNSS receiver (GPS and GLONASS)
Data Storage	Ruggedized removable SSD hard disk (SATA III)
Power	28 V, 900 W, 35 A
Image capture	5 MP interline camera (standard); 60 MP full frame (optional)
Full waveform capture	12-bit Optech IWD-2 Intelligent Waveform Digitizer (optional)
Dimensions and weight	Sensor:250 x 430 x 320 mm; 30 kg; Control rack: 591 x 485 x 578 mm; 53 kg
Operating temperature	0-35°C
Relative humidity	0-95% no-condensing
Annex 2. NAMRIA Certification of Reference Points used in the LiDAR Survey

NGE-94

October 30, 2014

CERTIFICATION

To whom it may concern:

This is to certify that according to the records on file in this office, the requested survey information is as follows -

	Province: NEGROS ORIENTAL					
Station Name: NGE-94						
	Order: 2nd					
Island: VISAYAS Municipality: BASAY	Barangay: BAL-OS MSL Elevation:					
	PRS92 Coordinates					
Latitude: 9º 25' 41.58333"	Longitude: 122º 37' 17.78349"	Ellipsoidal Hgt:	8.56700 m.			
	WGS84 Coordinates					
Latitude: 9º 25' 37.57296"	Longitude: 122º 37' 23.11929"	Ellipsoidal Hgt:	69.14100 m.			
	PTM / PRS92 Coordinates					
Northing: 1042517.096 m.	Easting: 458444.003 m.	Zone: 4				
UTM / PRS92 Coordinates						
Northing: 1,042,152.20	Easting: 458,458.55	Zone: 51				

NGE-94

Location Description

The station is located on the SE of south approach of the Tiabanan's bridge wingwall sidewalk. It is about 6.4 km from the provincial boundary of Negros Oriental & Occidental, along the Sipalay-Dumaguete national road. Mark is the head of a 4" copper nail drilled and grouted at the center of a 30 x 30 cm. cement putty embedded on the concrete pavement of the bridge sidewalk with inscriptions "NGE-94; 2007; NAMRIA".

 Requesting Party:
 PHIL-LIDAR I

 Purpose:
 Reference

 OR Number:
 8075910 I

 T.N.:
 2014-2594

RUEL DM. BELEN, MNSA Director, Mapping And Geodesy Branch 0

NAMRIA OFFICES: Main : Lawton Avenue, Fort Bonlfacio, 1634 Taguig City, Philippines Tel. No.: (632) 810-4831 to 41 Branch : 421 Brancas XI: San Nicolas, 1010 Manila, Philippines, Tel. No. (632) 241-3494 to 98 www.namria.gov.ph

Republic of the Philippines Department of Environment and Natural Resources NATIONAL MAPPING AND RESOURCE INFORMATION AUTHORITY

October 15, 2014

CERTIFICATION

To whom it may concern:

This is to certify that according to the records on file in this office, the requested survey information is as follows -

	Province	NEGROS ORIENTAL		
	Stati	on Name: NGE-97		
	0	rder: 2nd		
Island: VISAYAS Municipality: BAYAV	NAN MSL E	ay: SUBA evation: PRS92 Coordinates		
Latitude: 9º 22' 10	0.68255" Longitu	de: 122º 48' 1.35582"	Ellipsoidal Hg	t: 9.65300 m.
	v	GS84 Coordinates		
Latitude: 9º 22º 6	.70304" Longitu	de: 122º 48' 6.69563"	Ellipsoidal Hg	pt: 70.79700 m
	PTN	/ PRS92 Coordinates		
Northing: 1036021	.986 m. Easting	478073.348 m.	Zone: 4	
	UTN	/ PRS92 Coordinates		
Northing: 1,035,65	59.36 Easting	478,081.02	Zone: 5	1

NGE-97

Location Description

The station is located on the SE corner of Bayawan Bridge which is at KM 102+198. Mark is the head of 4" copper nail flushed at the center of a 30cm x 30cm cement putty embedded on the bridge's concrete sidewalk with inscription "NGE-97 2007 NAMRIA."

Requesting Party: Phil-LIDAR I Purpose: Reference OR Number: 8075810 I T.N.: 2014-2468

RUEL DM. BELEN, MNSA Director, Mapping And Geodesy Branch G

NAVIRIA OFFICES:

Main Lawley Awrus, Fert Benflick, 1934 Tagsig City, Philippines Tel. No. (102) 010-4831 to 45 Briech : 421 Bernes St. San Nooles, 1910 Marile, Philippines, Tel. No. (602) 241-3434 to 99 www.namria.gov.ph

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

NGE-100

CERTIFICATION

To whom it may concern:

This is to certify that according to the records on file in this office, the requested survey information is as follows -

	Province: NEGROS ORIENTAL		
	Station Name: NGE-100		
	Order: 2nd		
Island: VISAYAS Municipality: STA CATALINA	Barangay: CAWITAN MSL Elevation: PRS92 Coordinates		
Latitude: 9º 18' 11.02881"	Longitude: 122º 52' 26.45331"	Ellipsoidal Hgt:	8.14800 m.
	WGS84 Coordinates		
Latitude: 9º 18' 7.07298"	Longitude: 122º 52' 31.79856"	Ellipsoidal Hgt:	69.61900 m
	PTM / PRS92 Coordinates		
Northing: 1028656.115 m.	Easting: 486159.164 m.	Zone: 4	
	UTM / PRS92 Coordinates		
Northing: 1,028,296.07	Easting: 486,164.01	Zone: 51	

Location Description

NGE-100 The station is located on the SW corner of Cawitan Bridge, along the Dumaguete- Bayawan national highway. Mark is the head of a 4" copper nail drilled and grouted at the center of 30 x 30 cm. cement putty embedded on the concrete sidewalk with inscriptions "NGE-100; 2007; NAMRIA". The station is about 7 km. from Sta Catalina heading to Siaton.

Requesting Party:	UP DREAM
Purpose:	Reference
OR Number:	8089687 I
T.N.:	2016-0242

RUEL DM. BELEN, MNSA Director, Mapping And Geodesy Branch

6

NAMRIA OFFICES:

Main : Lawton Avenue, Fort Bonilacio, 1834 Taguig City, Philippines Tel. No: (632) 810-4831 to 41 Beanch : 421 Bernica St. San Nicolas, 1010 Manila, Philippines, Tel. No: (632) 241-3494 to 98 www.namria.gov.ph

October 15, 2014

CERTIFICATION

To whom it may concern:

This is to certify that according to the records on file in this office, the requested survey information is as follows -

	Province: NE	GROS ORIENTAL			
	Station N	ame: NGE-105			
	Order	2nd			
Island: VISAYAS Municipality: STA CATALINA	Barangay: MSL Eleva PRS	NAGBALAYEN tion: 92 Coordinates			
Latitude: 9º 15' 23.79985"	Longitude:	122° 52' 24.36983"	Ellipsoid	ial Hgt	8.89200 m.
	WGS	84 Coordinates			
Latitude: 9º 15' 19.85595"	Longitude:	122° 52' 29.71925"	Ellipsoid	ial Hgt	70.46200 m.
	PTM / P	RS92 Coordinates			
Northing: 1023518.905 m.	Easting:	486093.752 m.	Zone:	4	
	UTM / P	RS92 Coordinates			
Northing: 1,023,160.66	Easting:	486,098.62	Zone:	51	

NGE-105 The station is located on top of the bridge wingwall SW of the Bridge main span. It is on the left side of the 1st approach coming from Siaton on the way to Sta Catalina. The helpht of the wingwall is about 1.00 m. from the road pavement. The bridge is at Km. 84+627. The station is along the Dumaguete-Bayawan national highway. Mark is the head of a 4" copper nail drilled and grouted at the center of a 30 x 30 cm. cement putty embedded on concrete bridge's wingwall with inscriptions "NGE-105; 2007; NAMRIA".

Location Description

 Requesting Party:
 Phil-LIDAR I

 Purpose:
 Reference

 OR Number:
 8075810 I

 T.N.:
 2014-2462

RUEL DM. BELEN, MNSA

Director, Mapping And Geodesy Branch

IAAMUA OFFICES: Hain : Lawton Avenue, Pot Bombola, 1634 Tagvig Gity, Philippines Tel. No.: (632) 810-4831 to 41 Bench: 421 Banaca St. San Nicolas, 1018 Hanila, Philippines, Tel. No.. (632) 241-3454 to 98 www.namria.gov.ph

NGE-107

NGE-107

Location Description

The bridge is at Km.80+569 over Manalongon river. The barangay hall complex is on the NE of the bridge, about 60 m. from the station. The station is located on top of the sidewalk of Manalongon bridge, near the Manalongon barangay complex. It is located on the left approach of the bridge coming from Sta Catalina heading to Dumaguete City. Mark is the head of a 4" copper nail drilled and grouted at the center of a 30 x 03 cm. cement putty embedded on concrete bridge's sidewalk with inscriptions "NGE-107; 2007; NAMRIA".

 Requesting Party:
 Phil-LIDAR I

 Purpose:
 Reference

 OR Number:
 8075810 I

 T.N.:
 2014-2464

RUEL DM. BELEN, MNSA Director, Mapping And Geodesy Branch 9

NAMRUA OFFICES: Main : Lawton Avenue, Fort Bonifacio, 1634 Taguig City, Philippines Tel. No.: (632) 810-4831 to 41 Branch : 421 Barraca St. San Nicolas, 1010 Manila, Philippines, Tel. No. (632) 241-3494 to 98 www.namria.gov.ph

Republic of the Philippines Department of Environment and Natural Resources NATIONAL MAPPING AND RESOURCE INFORMATION AUTHORITY

October 15, 2014

CERTIFICATION

To whom it may concern:

This is to certify that according to the records on file in this office, the requested survey information is as follows -

	Province: NEGROS ORIENTAL Station Name: NE-90	
Island: VISAYAS	Municipality: ZAMBOANGUITA	Barangay: POBLACION
Elevation: 6.6968 m.	Order: 1st Order	Datum: Mean Sea Level
Latitude: 9° 6' 38.50000"	Longitude: 123° 12' 10.10000"	

Location Description

NE – 90, is in the Province of Negros Oriental, Municipality of Zamboanguita, Barangay Poblacion, along National road.

Station is located on concrete sidewalk, Southeast end of Guinsuan bridge, 0.30 meter above the ground, 4 meters East of the road centerline, 180 meters North of KM Post 27.

Mark is the head of a 4" copper nail, set on a drilled hole and flushed to a 6" x 6" cement putty with inscription "NE - 90, 2007, NAMRIA".

Requesting Party:	Phil-LIDAR I
Purpose:	Reference
OR Number:	8075810 I
T.N.:	2014-2469

RUEL DM. BELEN, MNSA Director, Mapping And Geodesy Branch G

NAMRIA OFFICES:

Main : Lawton Avenue, Fort Bonitacia, 1634 Taguig City, Philippines Tel. No. (632) 810-4831 to 45 Branch : 421 Bonaca St. San Nastao, 1010 Manila, Philippines, Tal. No. (632) 241-3494 to 98 www.namria.gov.ph

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

NE-21

Republic of the Philippines Department of Environment and Natural Resources NATIONAL MAPPING AND RESOURCE INFORMATION AUTHORITY

October 15, 2014

CERTIFICATION

To whom it may concern:

This is to certify that according to the records on file in this office, the requested survey information is as follows -

	Province: NEGROS ORIENTAL Station Name: NE-21	
Island: VISAYAS	Municipality: BAYAWAN	Barangay: MALABOGAS
Elevation: 5.4216 m.	Order: 1st Order	Datum: Mean Sea Level
Latitude: 9° 22' 14.90000"	Longitude: 122° 45' 44.30000"	

Location Description

NE – 21 is in the Province of Negros Oriental, City of Bayawan, Barangay Malabogas, Sitio Camaya-an, along Basay – Bayawan Highway.

Station is located on concrete sidewalk, Southwest end of Camaya-an bridge, 0.30 meter above the ground, 4 meters South of the road centerline, 440 meters East of KM Post 107, about 500 meters West of KM Post 106, and 150 meters Southwest of barangay hall of Malabogas.

Mark is the head of a 4" copper nail, set on a drilled hole and flushed to a 6" x 6" cement putty with inscription "NE - 21, 2007, NAMRIA".

Requesting Party:	Phil-LIDAR I
Purpose:	Reference
OR Number:	80758101
T.N.:	2014-2472

RUEL DM. BELEN, MNSA Director, Mapping And Geodesy Branch G

AB -101.0 CHARTER CO. CO. MAN

NAMELA OFFICES:

Main : Lawton Avenue, Fort Bonibolo, 1634 Taguig City, Philippines Tal. No. (632) 810-8831 to 41 Brench : 421 Bonosa St. San Nasalan, 1010 Manila, Philippines, Tel. No. (632) 261-3494 to 98 www.namfia.gov.ph

NE-08

Republic of the Philippines Department of Environment and Natural Resources NATIONAL MAPPING AND RESOURCE INFORMATION AUTHORITY

December 09, 2014

CERTIFICATION

To whom it may concern:

This is to certify that according to the records on file in this office, the requested survey information is as follows -

	Province: NEGROS ORIENTAL Station Name: NE-08	
Island: VISAYAS	Municipality: BASAY	Barangay: NAGBO-ALAO
Elevation: 2.6097 m.	Order: 1st Order	Datum: Mean Sea Level
Latitude: 9° 24' 22.00000"	Longitude: 122° 38' 55.30000"	

Location Description

NE-08 is in the Province of Negros Oriental, Municipality of Basay, Barangay Nagbualao, Sitio Daro, along Hinobaan – Bayawan road.

Station is located on top center of reinforced concrete pipe culvert railing, leveled on the ground, 7 meters Southwest of the road centerline, 100 meters Northwest of KM Post 121.

Mark is the head of a 4" copper nail, set on a drilled hole and flushed to a 6" x 6" cement putty with inscription "NE-08, 2007, NAMRIA".

Requesting Party: Christopher Cruz Purpose: Reference OR Number: 8077396 I T.N.: 2014-2976

RUEL DM. BELEN, MNSA Director, Mapping And Geodesy Branch 6

NAMBIA OFFICES:

Main: Lawton Avenue, Fot Bonifacto, 1534 Tagaig City, Philippines Tel, No.: (632) 810-4831 to 41 Dramh : 421 Barraos St. Ban Nicolas, 1018 Manila, Philippines, Tal. No. (632) 241-3494 to 58 www.namria.gov.ph

Annex 3. Baseline Processing Reports of Control Points used in the LiDAR Survey

1. NE-90

NE-90 - NGE-111 (7:40:35 AM-11:39:53 AM) (S1)				
Baseline observation:	NE-90 NGE-111 (B1)			
Processed:	11/3/2014 11:10:47 AM			
Solution type:	Fixed			
Frequency used:	Dual Frequency (L1, L2)			
Horizontal precision:	0.003 m			
Vertical precision:	0.011 m			
RMS:	0.003 m			
Maximum PDOP:	1.667			
Ephemeris used:	Broadcast			
Antenna model:	Trimble Relative			
Processing start time:	9/25/2014 7:40:39 AM (Local: UTC+8hr)			
Processing stop time:	9/25/2014 11:39:49 AM (Local: UTC+8hr)			
Processing duration:	03:59:10			
Processing interval:	5 seconds			

Vector Components (Mark to Mark)

From:	NGE-111						
G	rid	Local			Global		
Easting	527290.613 m	Latitude	N9°10'3	0.25228"	Latitude		N9°10'26.36267"
Northing	1014153.117 m	Longitude	E123°14'5	4.26711"	Longitude		E123°14'59.62110"
Elevation	12.583 m	Height		13.116 m	Height		75.791 m
To:	NE-90						
G	rid	Local		Global			
Easting	522126.927 m	Latitude	N9°06'4	2.32060"	Latitude		N9°06'38.44322"
Northing	1007150.356 m	Longitude	E123°12'0	4.93455"	Longitude		E123°12'10.29457"
Elevation	7.044 m	Height		7.358 m Height		leight	
Vector							
∆Easting	-5163.68	5 m NS Fwd Azimu	uth		216°26'37"	ΔX	3718.151 m
∆Northing	-7002.76	2 m Ellipsoid Dist.			8704.123 m	ΔY	3758.805 m
∆Elevation	-5.53	8 m <mark>∆Height</mark>			-5.758 m	ΔZ	-6914.376 m

Vector errors:							
σ ΔEasting	0.001 m	σ NS fwd Azimuth	0°00'00"	σΔΧ	0.003 m		
$\sigma \Delta Northing$	0.001 m	σ Ellipsoid Dist.	0.001 m	σΔΥ	0.005 m		
$\sigma \Delta Elevation$	0.006 m	σΔHeight	0.006 m	σΔΖ	0.001 m		

2. NE-21

NGE-97 - NE-21 (6:29:33 AM-9:38:04 AM) (S1)

	10E-97 - 11E-21 (0.28.55 AM-8.50.04 AM) (01)
Baseline observation:	NGE-97 NE-21 (B1)
Processed:	11/3/2014 11:39:15 AM
Solution type:	Fixed
Frequency used:	Dual Frequency (L1, L2)
Horizontal precision:	0.006 m
Vertical precision:	0.016 m
RMS:	0.019 m
Maximum PDOP:	1.766
Ephemeris used:	Broadcast
Antenna model:	Trimble Relative
Processing start time:	10/20/2014 6:29:39 AM (Local: UTC+8hr)
Processing stop time:	10/20/2014 9:38:04 AM (Local: UTC+8hr)
Processing duration:	03:08:25
Processing interval:	5 seconds

Vector Components (Mark to Mark)

From:	NGE-97	NGE-97							
Grid		Local		Global					
Easting	478081.022 m	Latitude	N9°22'10.68255"	Latitude	N9°22'06.70304"				
Northing	1035659.360 m	Longitude	E122°48'01.35582"	Longitude	E122°48'06.69563"				
Elevation	8.347 m	Height	9.653 m	Height	70.797 m				
To:	NE-21								

10.	INE-21								
G	irid		Loca	l I		Global			
Easting	473740.044 m	Latitude	•	N9°22'18.89	002" Latitude		N9°22'14.90643"		
Northing	1035914.112 m	Longitud	de	E122°45'39.02	590" Longitude		E122°45'44.36578"		
Elevation	5.801 m	Height		7.04	40 m Height		68.081 m		
Vector									
ΔEasting	-4340.97	'9 m NS	Fwd Azimuth		273°19'34'	ΔX	3674.857 m		
ΔNorthing	254.75	2 m Ellip	psold Dist.		4350.156 m	ΔY	2314.666 m		
∆Elevation	-2.54	6 m ΔHe	eight		-2.613 m	ΔZ	248.233 m		

Vector errors:								
σ ΔEasting	0.002 m	σ NS fwd Azimuth	0°00'00"	σΔΧ	0.005 m			
σΔNorthing	0.002 m	σ Ellipsold Dist.	0.002 m	σΔΥ	0.007 m			
σ ΔElevation	0.008 m	σΔHeight	0.008 m	σΔZ	0.002 m			

3. NE-08

NE-08 - NGE-94 (6:17:24 AM-10:26:38 AM) (S1)

Baseline observation:	NE-08 NGE-94 (B1)
Processed:	11/3/2014 11:50:43 AM
Solution type:	Fixed
Frequency used:	Dual Frequency (L1, L2)
Horizontal precision:	0.004 m
Vertical precision:	0.004 m
RMS:	0.001 m
Maximum PDOP:	2.470
Ephemeris used:	Broadcast
Antenna model:	Trimble Relative
Processing start time:	10/22/2014 6:17:34 AM (Local: UTC+8hr)
Processing stop time:	10/22/2014 10:26:34 AM (Local: UTC+8hr)
Processing duration:	04:09:00
Processing interval:	5 seconds

Vector Components (Mark to Mark)

From:	NGE-94						
G	rid	Lo	ocal			Glo	bal
Easting	458458.548 m	Latitude	N9°25'41	.58333"	Latitude		N9°25'37.57296"
Northing	1042152.197 m	Longitude	E122°37'17	7.78349"	Longitude		E122°37'23.11929"
Elevation	7.540 m	Height		8.568 m	Height		69.141 m
To: NE-08							
G	Grid		Local		Global		
Easting	459762.045 m	Latitude	N9°25'12	2.20140"	Latitude		N9°25'08.19418"
Northing	1041248.495 m	Longitude	E122°38'00.55785"		Longitude		E122°38'05.89430"
Elevation	7.528 m	Height		8.582 m			69.203 m
Vector							
∆Easting	1303.49	7 m NS Fwd Azimuth	1		124°40'16"	ΔX	-1178.739 m
∆Northing	-903.70	2 m Ellipsoid Dist.			1586.723 m	ΔY	-579.131 m
∆Elevation	-0.01	2 m <mark>∆Heigh</mark> t			0.015 m	ΔZ	-890.435 m

Vector errors:							
σ ΔEasting	0.002 m	σ NS fwd Azimuth	0°00'00"	σΔΧ	0.002 m		
σ ΔNorthing	0.001 m	σ Ellipsoid Dist.	0.002 m	σΔΥ	0.002 m		
$\sigma \Delta Elevation$	0.002 m	σ ΔHeight	0.002 m	σΔZ	0.001 m		

4. NE-90A

NE 90 - NE 90A1 (4:33:53 PM-6:08:49 PM) (S1)

Baseline observation:	NE 90 NE 90A1 (B1)
Processed:	2/23/2016 5:58:20 PM
Solution type:	Fixed
Frequency used:	Dual Frequency (L1, L2)
Horizontal precision:	0.004 m
Vertical precision:	0.007 m
RMS:	0.001 m
Maximum PDOP:	2.945
Ephemeris used:	Broadcast
Antenna model:	NGS Absolute
Processing start time:	1/30/2016 4:33:54 PM (Local: UTC+8hr)
Processing stop time:	1/30/2016 6:08:49 PM (Local: UTC+8hr)
Processing duration:	01:34:55
Processing interval:	1 second

Vector Components (Mark to Mark)

From:	NE 90							
Grid		Local		Global				
Easting	522126.927 m	Latitude	N9°06'42.32060"	Latitude	N9°06'38.44322"			
Northing	1007150.356 m	Longitude	E123°12'04.93454"	Longitude	E123°12'10.29457"			
Elevation	7.044 m	Height	7.358 m	Height	70.052 m			

To:	NE 90A1	E 90A1							
G	rid		Local		Global				
Easting	522130.430 m	Latit	ude	N9°06'44	4.56131"	Latitude		N9°06'40.68377"	
Northing	1007219.167 m	Long	gitude	E123°12'08	5.05055"	Longitude		E123°12'10.41052"	
Elevation	6.278 m	Heig	iht		6.597 m	Height		69.290 m	
Vector									
∆Easting	3.50)2 m	NS Fwd Azimuth			2°56'44"	ΔX	3.419 m	
∆Northing	68.81	2 m	Ellipsoid Dist.			68.928 m	ΔY	-11.689 m	
∆Elevation	-0.76	6 m	∆Height			-0.761 m	ΔZ	67.848 m	

Vector errors:							
σ∆Easting	0.002 m	σ NS fwd Azimuth	0°00'05"	σΔX	0.003 m		
σ∆Northing	0.001 m	σ Ellipsoid Dist.	0.001 m	σΔΥ	0.002 m		
$\sigma \Delta Elevation$	0.003 m	σ ∆Height	0.003 m	σΔZ	0.001 m		

Annex 4. The LiDAR Survey Team Composition

Data Acquisition Component Sub-Team	Designation	Name	Agency/ Affiliation
PHIL-LIDAR 1	Program Leader	ENRICO C. PARINGIT, D.ENG	UP-TCAGP
Data Acquisition Component Leader	Data Component Project Leader – I	ENGR. LOUIE P. BALICANTA	UP-TCAGP
	Chief Science Research Specialist (CSRS)	ENGR. CHRISTOPHER CRUZ	UP-TCAGP
Survey Supervisor	Supervising Science	LOVELY GRACIA ACUÑA	UP-TCAGP
	(Supervising SRS)	LOVELYN ASUNCION	UP-TCAGP
	FIE	LD TEAM	
LiDAD Operation	Senior Science	GEROME HIPOLITO	UP-TCAGP
LIDAR Operation	(SSRS)	AUBREY MATIRA-PAGADOR	UP-TCAGP
		MA. VERLINA E. TONGA	
LiDAR Operation		MA. REMEDIOS VILLANUEVA	UP-TCAGP
	Research Associate (RA)	JONALYN GONZALES	
Ground Survey,		JONATHAN ALMALVEZ	
Transfer		GEF SORIANO	UP-ICAGP
	Airborno Coqurity	SSG. RAYMUND DOMINI	PHILIPPINE AIR
	Airborne Security	SSG ERWIN DELOS SANTOS	FORCE (PAF)
	Pilot	CAPT. RAUL CZ SAMAR II	
LiDAR Operation	Pilot	CAPT. BRYAN DONGUINES	
		CAPT. NEIL ACHILLES AGAWIN	ASIAN AEROSPACE CORPORATION
		CAPT. MARK TANGONAN	
	Pilot	CAPT. JEROME MOONEY	

				DAUR	1.42				and the second second			DASE ST.	ATTOM(S)	OPERATOR	FUGHT	PLAN	CUNCIO
DATE	FUGHT NO.	MISSION NAME	SENSOR	Output LAB	KML (swath)	LOGSIMBI	POS	RAW IMAGENCASI	FILECAAS	NANGE	ратсск	BASE STATION(S)	Date hts (bel)	(00H00)	Actual	KML	LOCATION
	100	AD NECENCLA	COMING.	13	196	199	2	Ŷ	AN	8	NA	12	103	IKB	•	7/8	ZYDNC/RAW DATA
(4-3ep-14	+++		Cemer	ā	611	12	ŝ	NA	MA	12.7	W	12	1,68	100	W	=	ZIDACRAW DATA
tr-dac-tr		0/0714CV107			and the	6.00	546	WN	W	58.5	NA	7.82	1KB	143	9	F	Z:DACRAW
25-Sep-14	7516	281K56UC258A	COMIN	981							1	4.44	1KB	163			ZYDACRAW
16-Sep-14	7518	2BLK568269A	COMINI	14.1	193	121	125	¥.	ę	ret	2	Le'n	2				ZADACIRAU
19. Spn. 14	7524	2BLK54C272A	CEMIN	16.0	303	222	248	άN	MA	22	NA	6.07	1108	1K/b	+	60	DATA
		ANI MEDICE ANTINA	OCNEN	414	15	173	ž	٩	ž	7.8	Ń	3.6	TKB	103	38	R	ZIDADRAW
su-sep-14	0701																ZXDACPRAN
1-0-1-14	7528	2BLK54B274A	GEMINI	7.91	115	219	122	¥	ž	92 64	MA	3.91	1KB	ike	8	2	DATA
2-0ct-14	7530	2BLICS4BS56E275	NINSO	7.09	415	80	122	đ	M	8.74	Ŷ	3.7	1KB	ikis	WE	12/7	ZYDACRAW

DATA TRANSFER SHEET

AGIOA

Name

- - - aton

Received from

flos los loj F. PRIET Roceired by

Annex 5. Data Transfer Sheets for the Bayawan Floodplain Flights

Hazard Mapping of t	he Philippines Using	LIDAR (Phil-LIDAR 1)
---------------------	----------------------	----------------------

			14.150	COLD IN	Contra -	Citra C	Units.	Days.	U LAND	1000	Halle	CALO -	N IN	ALM.	TATA I		
	SUPPER LOCATION		the state of the s	A lot of the second secon	Contraction of the later of the second	Water Des an dentry and which and a set	A second state of the second sec	(b) and the state of the state	Carterings for design upon adv. of April 2000	A little design of the second s	the second	A structure of the radio structure of the structure of th	A series in a series of the second	Lateral break from the short of the second se	the second second second up a data of the second seco		
		INS	N/N	6.76 KB	MM	7.6 88	N/W	20.3 (0)	7.84 63	N.G.	1.45 2.8	10.0 50	1 201 212	10/10	L B Kh		70
	TUBHT 6	ACTUM.	4 69	116 80	366 68	216	372 65	196 88	352 000	353 103	151 601 121	672.600	141 69	193.60	N/A		06 2
	CREATOR	[B0140]	2.88	1 88	1 835	1 KB	1 100	103	1 103	103	100	1 (3)	100	1 09	81		NON
	ON(S) ASE INFO	(100)	1.49	1.00	163	2 103	1 133	1 109	1 13	1 (3	1 13	1 85	1 18	1.63	1.KB		
	BASE STAT	STATIONS	3.61	4.90	24.0	6.40	6.05	6.01	6.57	12.78	4.91	6.13	5.16	19.65	3.47		AVETO -
-	CHEITLOGR		MAG	M/M	N/M	N/N	N/A	N/A	N/A	MA	M/M	N/A	N/A	N/N	N/A	5	- Ibina
10/06/201	ILANGE (SB)		2.50	13.1	20	741	2	0.80	212	20.2	17.1	181	808	16.7	3 88	COMED 8	OSTON:
OUMAGUETE	MISSION 1005 RULE /	C431 (058	M/A	M/M	16/A	14/A	113 83	101 88	106×8	N.G.	M.CA	N/N	N/A	63.3 69	N/W		
	NAUN INVIGES /	689	W/W	N/S	N/A	MA	0.508	2168	202	N.A	NA	NA	NA	7.62 08	NW		
	SQ (MM)		81	200	177	24	220	i i	ŧ	8	202	8	677	165	145		
	5001		116.00	2016/07	1010 M	241.88	1911 - 1912 - 1913 - 19	146.55	100000	100 000	EN MAR	01110	1000	23	302 XB		
	N LAS	(chever)	84.5 KB	ALC: NO	2010 640	242.00	No. No.	200 MB	0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	And the	09.93	4.00 7.00	122.805	610 MB	82.1 MD		
	Output	2		100	100	10.100	2,4,620	10.00	10 0 0 M	10000	100 000	00.420	10.000	100.110	N/A		Lu
	SEMSOR 1	Although Party		CONTRACTOR AND	GCMINI-CaVI	CUMPTOR CAS	GEMINI-CAS	CDMML CAS	GBMINI-CAS	C.C. States of a design of a d	CAN IN MARK	COMPANY AND A	CALCULATION CONTRACTOR	COLUMN COLUMN	ALCHING LAN		Marak
	MESSON WAME	2000 Kapestree	SPECIAL STREET STREET STOLEN	28005542934	ZBLIGSLOBLA	2600010200A	281,653452.544	28002H3906A	2800381230.4	The account of a	THE INSTRUCTION	2010562501 243925000	2 PLANE CARRENT AND A DECIMAL OF A	28125664 003010	Service and the service states of	ECENTID FROM:	DATE C.U.
1	RUGHT NO.	0000	Of the lot	1940	1562	19666	25,08	9570	75.74	34.94	12.24	0.0 miles	1000	30.63	1	æ	82.9
	DATE	A. 64.4.4.4	PLANET.	Truest.	18-Autold	30.00+144	21-04-14	23.04444	24-0ct-14	D.C. Count of	20.000 10	AT AUGUST	10 00 0 0 V	10.000	10-102144		

	Support D	LOCATION	ZHDACNAW DATA,	Z104CRAW DATA	Z-UMCRAW DATA	Z-UNCREWN DAIX	Z (DADVEAN) DADA	ZMACKAW DATA		
	PLAN .	NML	10401	64.0	0.400	2002	2943	3776		
	LIGHT	Actual	1040	1040	1243	12/3	1948	24/6		
	OPENNOR	10000 0001	16.0	100	Ha.	NY.	NA.	NN		
	VIIONUSI	Base hele. (440)	16.0	162	162	110	160	(MI)		
	TANK BANK	INDE 61ATTONI61	3.67	0.80	8	-	10.4	12.4		
		DOUTIN	2	20	81	8	10	z		
		NAMES	22	14.6	3.74	4	609	5,40		
	MISSION LOG	1009	211	44.5	190	42.3156	15042-20166	14000/1002		ton the
PER SHEET		PARE NO.	21.5	6.5	8	8	63.1	22	Received by	Nama A
DATA TRAN		52	ŝ	53	242	315	8	138	e zie	
		LOGS[MB]	342	200	SUE	30	202	105		
	1.45	KORL (SHARD)	114	331	St.	28	88	63		
	RMR	Curput LAS	NN	12	KA,	N.N.	NN	KN		
		SUNSOR	Aquatics	Aquatrius	Aquanta	Aquarius	Aquarka	Aquarius -		sector sector
		AREA SHOWN NAME.	SEL PORADOSA.	28LK20BOURA	3.84. 9450343284	381.42380208	350.KS0v@00A	561,45674300B	taseived from	anna Ginthin S. (sama Tabani, h sama Disangin
		RLOHT NO. A	TODBANC	100240	CONTRACTOR -	DMR0004	1009LAC	1407740		a. (66 (16
		DA,TE	Z9-Jim	20-400	20-166	29-Jan	30-Jan	30-4an		

L

Annex 6. Flight Logs for the Flight Missions

1. Flight Log for 7526G Mission

Flight Log No.:

1	1							and the second se		
6 Aircraft Identification: 9322		18 Total Flight Time:								Lidar Operator Signature over Printed Name
pe: Cesnna T206H	nowince):	20		BLK SEA.						
S A roraft Ty	ival (Airport, City/F	17 Landing:		lines of						R-COMMAN
OSI5A 24 Bares VEI	12 Airport of Arr	16 Take off:		and 4						Pilot-
3 Mission Name:281K53 9 Route:	Airport, City/Province):	15 Total Engine Time: 0.0 3.5		f BLK530						istion Fight Certified by Investment Community Annual Name Representative)
M Model: Casi	Inport of Departure (Minu guan	1	lines 0						Acqu
AR OPERATOR NVE TONGO 2 AL	ate: N. WITRAY 12A	NH 04 14 Engine C	reather Cloud	Emarks: Gurueyed 3			Problems and Solutions:			Acquisition Flight Approved by U.S. A
	IDAR Operator: NVE TONOO 2 ALTM Model: Casi 3 Mission Name: 20163-0519-024 24 24 24 24 24 24 24 24 24 24 24 24 2	IDAR Operator: MVE TONOL 2 ALTM Model: Casi 3 Mission Name: OKK53O5HA 247046: VFR 5 A rotal: Type: Cesnal 206H 6 Alteral: Identification: 33-2 Illot: R. Sarnory 8-do-Pilot: M. Agrium 9 Route: Date: A. O.M. 12 Altport of Departure (Airport, City/Province): 12 Airport of Anrival (Airport, City/Province):	IDAR Operator: MVE TOHOR 2 ALTM Model: Casi 3 Mission Name: <u>251(53:05)A 29(30)</u> = VFR 5 Alroaft Type: Ces mail 206H fo Alroaft Identification: 33-2 Hot: R. Sarroy, 8-do-Pilot: N. Agruun 9 Route: Date: 2. Sarroy, 12 Alroat of Beparture (Airport, City/Province): 12 Airport of Airival (Airport, City/Province): 2. D. 2. D. 2. D/ D. Mirnor of Beparture (Airport, City/Province): 12 Airport of Airival (Airport, City/Province): 2. D. 2. D. 2. D/ 112 Alroat of Beparture (Airport, City/Province): 12 Airport of Airival (Airport, City/Province): 2. D. 2. D. 2. D/ 114 Engine Off: 12 Fotal Engine Time: 16 Take off: 17 Landing: 18 Total Flight Time: 0. 0. 2. D. 2. D	IDAR Operator: NVE TOHOR 2 ALTM Model: Cay 3 Mission Name: NLK53O5HA 24 Super: VFR 5 Alrovalt Type: Cesima 1206H 16 Alroral II demunication: 33- Ilot: R. Sarroux 8-do-Pilot: N. Agauation Browei: Date: 2014 12 Alroon of Departure (Airport, Ctty/Province): 12 Airport of Arrival (Airport, Cty/Province): 2017 2014 14 Engine Off: 13 Figure Off: 15 Total Engine Time: 16 Take off: 17 Landing: 18 Total Filight Time: 0943 001: 0044 01: 15 Total Engine Time: 16 Take off: 17 Landing: 18 Total Filight Time: Veather U.Ondy	10ar Operator: NVF TOHOR 2 ALTM Model: Casi 3 Mission Name: SKK5305HA 24 24 24 24 24 24 24 24 24 24 24 24 24	10ar Operator MVF Tong 2 Arm Model: Cari 3 Mission Name 284653054A247348; VFR 5 Arman 12004 6 Arman 10041 0 12 Arm Model: Cari 3 Mission Name 284653054A247348; VFR 5 Arman 12041 Post cannal 2004 6 Arman 12 Arma	10ar Operator: NWE TONOR 2 ALTMMODEL: Caj a Mission Name: Skik 5505hA 298046: VER SMITCATTYPE: CESTINATED HONOR 2 ALTMODEL: 212 ALTONIC OF ANTIALIA PONCATTION CONTRACT AND ALTMODEL: 22 ALTONIC OF ANTIALIA PONCATTION CONTRACT AND ALTMODEL: 22 ALTONIC OF ANTIALIA PONCATTYPE: CESTINATED HONOR CESTINATE ANTIALIA PONCATTION CONTRACT AND ALTMODEL: 22 ALTONIC OF ANTIAL ALTONIC	10 ar Operator MVF Thingh Rathmodel: Casi 3 muston Name 201652034A 297948: VFR SArcart Type: Cesana 12044 BANGATTYPe: Ces	I point R. Sancer Bechning 2 and Model: Cost 3 Mission Name SNU (5530) 5 A 1704 H. Mora H. Mercan Hadron: 50- 10 ar. R. Sancer Bechning Mission Name SNU (5300 and A lipe) a mora in the canan 2004 be ware the and 12 Mission of Bautes. 28 ph. 30, 20 M. Mission of Beater and a lipe a lipe and a lipe and a lipe and a lipe a lipe a lipe and a lipe a lipe a lipe and a lipe a li	Date of the ling part of the off and the contract of the off and t

2. Flight Log for 7540G Mission

754 6 Aircraft Identification: RP- 932 Flight Log No.: Printed Name NURSA PA 18 Total Flight Time: Lidar Operator Signature pve 5 Aircraft Type: Cesnna T206H 12 Airport of Arrival (Airport, City/Province) 17 Landing: er Pri Signature othin 3 Mission Name: 2BLK55AC57023004e: VFR 16 Take off: 12 Airport of Departure (Airport, City/ Province): Total Engine Time: Signature over Printed Name (PAF Representative) Acquisition Flight Certified Rayporting 1370 8 Co-Pilot: F. De. Drawn 9 Route: T ICHTAC lives. 1 LIDAR OPERATOR NK VINDAN VAR ALTM MODEL: CASI 14 Dumogue -026 Duciy byrreyed Acquisition Flight Approved by Acura Signature over Printed Name PHIL-LIDAR 1 Data Acquisition Flight Log ۱ (End User Representative) 2014 21 Problems and Solutions: 71-P ser Pacimin 1 Octoberv 13 Engine On: Dusz 20 Remarks: 19 Weather 7 Pilot: N 10 Date:

1. Flight Log for 7560G Mission

		A DAY OF A	Le A			0.0 0.0	_
IAR Operator: INE TOMA 2 ALTM	Model: CH-SI	3 Mission Name: 264604	worr 4 Type: VFR	5 Aircraft Type: CesnnaT206H	6 Aircraft Identification:	201	
ot: R. Samar 8 Co-Pilot:	N. Aqawin	9 Route:					
ate: Def 17, 2014 12 Airp	ort of Departure	Airport, City/Province): uc/c	12 Airport of Arrival	l (Airport, City/Province):			
ngine On: 2 3 14 Engine Off: //	1 20	15 Total Engine Time:	16 Take off:	17 Landing:	18 Total Flight Time:		
Veather Fair							_
emarks: Mi [*] 5s ⁱ an co	py al d us	with minimu	i voids				
							_
Problems and Solutions:							
Acquisition Flight Approved by H-M-T- L-V E-M-T- L-V E-M-M- Signature over Printed Name (End User Representative)	Acq.	uisition Flight Contined by 1	Pilot-In-Co	Sver Printed Name	Litiar Operator	χ.	

R Operator: MR Vill	powered 2 ALTM Model	: CASI	3 Mission Name:	4 Type: VFR	5 Aircraft Type: Cesnna T206	H 6 Aircraft Identification:	2006
K-Sanar	8 Co-Pillot: N . Age	auin	9 Route:				
e: Det 19, 2014	12 Airport of C	Departure	(Airport, City/Province):	12 Airport of Arriva	l (Airport, City/Province):		
ine On: 1 5	14 Engine Off: 14 : 4	3	15 Total Engine Time: 4 +/1	16 Take off:	17 Landing:	18 Total Flight Time:	
ather <i>fair</i>							
mi fsi an	completed	but	voids were en	countered d	unio the surrey		
oblems and Solutions							
Acquisition Flight A	pproved by	a Gas	ulsition Flight Certified by A	Pilot-in-C	ammand And A over Printed Name	Udar Operation 1 MAR VIII and UK	

2. Flight Log for 7562G Mission

Flight Log No.: 7576 L 22 86 6 Aircraft Identification: over Printed Name 18 Total Flight Time: Lidar Operato gnature 5 Aircraft Type: Cesnna T206H 12 Airport of Arrival (Airport, City/Province): 17 Landing: rinted Name OWER Pilot-in-Com Signature 4 Type: VFR 16 Take off: ABUK SOM ZOBA CASI SUMB 12 Airport of Departure (Airport, City/Province): Ourseguette 15 Total Engine Time: まずまら 3 Mission Name: Signature over Printed Nam C with Acquisition Flight Certif (PAF Representative) 9 Route: Gem + 1 UDAR Operator: MVE Tonga 2 ALTM Model: CASI CONPREN 8 Co-Pilot: N - Agawir 14 Engine Off: 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - - - 0 - -Acuust Acquisition Flight Approved by PHIL-LIDAR 1 Data Acquisition Flight Log Signature over Printed Name (End User Representative) hissi an 102 1 at 21 Problems and Solutions: HUR NON 25 Tair 68 33 7 Pilot: K. Samar pa 13 Engine On: 20 Remarks: 19 Weather 10 Date:

3. Flight Log for 7566G Mission

Flight Log No.: 7528 5032 VITONMEVG 6 Aircraft Identification: 18 Total Flight Time: Lidar Operator 5 Aircraft Type: Cesnna T206H 12 Airport of Arrival (Airport, City/Province): 17 Landing: r Printed Name OV/0 P Pilot-in-Com 4 Type: VFR Sign 16 Take off: 2 Brk 5305 249 B mission completed (with CASI -- fire in) 15 Total Engine Time: ダナバ 12 Airport of Departure (Airport, City/Province): Signature over Printed Nam (PAF Representative) 3 Mission Name: Acquisition Flight Cert 9 Route: Laut man ben t cast 8 Co-Pilot: 0 - Agamin 10:44 1 LIDAR Operator: Mr. villenurve 2 ALTM Model: 14 Engine Off: Acura Acquisition Flight Approved by PHIL-LIDAR 1 Data Acquisition Flight Log Signature over Printed Name (End User Representative) 21 Problems and Solutions: Lover ろち plaz, 10 ba 6:33 Tint R. Garry 13 Engine On: 19 Weather 20 Remarks: 10 Date: 7 Pilot:

5. Flight Log for 7570G Mission

70 Flight Log No.: 75 Jounding connection) 9323 6 Aircraft (dent) fication: Indeva over Printed Name 18 Total Flight Time: intermittent 5 Aircraft Type: Cesnna T206H 12 Airport of Arrival (Airport, City/Province): 17 Landing: SAMA R over Printed Name P Pllot-in-Command BLKEBH (without CASI due Signature 3 Mission Name: 28 K53 H29844 Type: VFR 16 Take off: rport of Departure (Airport, City/Province): 15 Total Engine Time: Acquisition Flight Certified by 9 Route: (PAF in the second Villanueves ALTM Model: GC ACCIMIN 5 Aumaque Imer 000 8 Co-Pilot: N 14 Engine, Of 3 tal (Acquisition Flight Approved by PHIL-LIDAR 1 Data Acquisition Flight Log Signature over Printed Namo 4190 (End User Representative) Surveyed ŝ 21 Problems and Solutions: JANHAL 1 LIDAR Operator: MK 25. Ì 3 10 Date: 13 Engine on 20 Remarks: 19 Weather 7 Pilot:

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

7. Flight Log for 7578G Mission

D K E A M Data Acquisition F	light Log CHCI 7	2814 58V	0.100 /6		Flight Log No.: 101 JL
LIDAR Operator: U. 60/1	series 2 ALTM Model: A glunes	3 Mission Name:	4 Type: VFR	5 Aircraft Type: Cosnna 7206H	6 Alrectaft Identification 95.2.2
7 Pilot: 81 - Tangenen	8 Co-Pilot: U. Marty	9 Route:			
10 Date: January 30, 2	6/L 12 Airport of Departure	(Airport, City/Province):	12 Airport of Arrivel	(Airport, City/Province):	
i3 Engine On: چريخ	14 Engine Off: g:46	15 Total Engine Time: <i>Gオレヨ</i>	16 Take off: c:/o	17 Landing: 17-93	18 Total Flight Time:
19 Weather Fine					22/9
20 Flight classification			21 Bemark	23	
0 Billable	20.b Non Bilable	20.c Others	(Per	and 21 lines Louids)	AF 816 53
Acquisition Flight Acquisition Flight System Test Flight System Test Flight Collbration Flight	 Aircraft Test Flight AAC Admin Flight Others: 	 LIDAR System Mainten Aircraft Maintenance DREAM Admin Activiti 	iance es		
2 Problems and Solutions					
O Westher Problem O Sottem Problem					
o Airtraft Problem					
o Others:					
Acquisition Flight Appreved by	Acquisition (hight Cert)	fieldy Pilotin-C	Dumand	UDAR Operator	Aircraft Mechanic/ LiDAR Technician
Signature over Prifilps Interes End Uber Representative)	Set ERWIN Server Printed	tame Sugnature	M MOULEY	TARKIN ECHIPAL	N/A Signature over Printed Name

8. Flight Log for 10076AC Mission

121

Annex 7. Flight Status Reports

Negros Oriental Mission

September 20 – November 15, 2014 and January 21–February 1, 2016

FLIGHT NO.	AREA	MISSION	OPERATOR	DATE FLOWN	REMARKS
7526 G	BLK 53O & BLK 55A	2BLK53O55A273A	MVE Tonga	9/30/14	Surveyed 3 line of BLK53O and 4 lines of BLK55A
7540 G	BLK 55A & BLK 53K	2BLK55AS53KS280A	MR Villanueva	10/7/14	Surveyed 11 lines
7560 G	BLK 55A	2BLK55A290A	MVE Tonga	10/17/14	Mission completed with minimal voids
7562 G	BLK 531	2BLK53I291A	MR Villanueva	10/18/14	Mission completed but there were voids encountered during the survey
7566 G	BLK 53K & BLK 53J	2BLK53JK293A	MVE Tonga	10/20/14	Mission completed with CASI
7568 G	BLK 53K	2BLK53KS294A	MR Villanueva	10/21/14	Mission completed
7570 G	BLK 53H	2BLK53H295A	MVE Tonga	10/22/14	Mission completed (with CASI)
7576 G	BLK53H	2BLK53H298A	MR Villanueva	10/25/14	Surveyed lines of BLK53H
7578 G	BLK53H & BLK53FG	2BLK53HSGF299A	MVE Tonga	10/26/14	Completed the rest of BLK53H and whole plan of BLK53G and surveyed lines of BLK53F
10076 G	BLK53 Voids	3BLK53V030A	J. Gonzales	1/30/16	Covered voids over BLK 53 CDEF

SWATH PER FLIGHT MISSION

Flight No. :7526Area:BLK530 & BLK55AMission Name:2BLK53055A273A (BLK53K)

Flight No. :7540Area:BLK 55A and BLK 53KMission Name:2BLK55AS53KS280A

Flight No. : Area: Mission Name:

Flight No. : 7562 Area: BLK 531 Mission Name: 2BLK531291A

Flight No: Area: Mission Name:

Flight No. :

Flight No. :7570Area:BLK 53HMission Name:2BLK53H295A

Flight No. : 7 Area: B Mission Name: 2

Flight No. :7578Area:BLK 53F, BLK 53E, BLK53DMission Name:2BLK53FSED299A

Flight No.:10076Area:BLK53 VOIDSMission Name:3BLK53V030A

Flight Area	Dumaguete
Mission Name	Blk53H
Inclusive Flights	7570G,7576G,7578G
Range data size	56.7 GB
POS	733 MB
Image	na
Base data size	17.66 MB
Transfer date	November 6, 2014
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	Yes
Processing Mode (<=1)	Yes
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	0.095
RMSE for East Position (<4.0 cm)	1.25
RMSE for Down Position (<8.0 cm)	2.4
Boresight correction stdev (<0.001deg)	0.000168
IMU attitude correction stdev (<0.001deg)	0.000941
GPS position stdev (<0.01m)	0.0163
Minimum % overlap (>25)	42.05%
Ave point cloud density per sq.m. (>2.0)	4.00
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	513
Maximum Height	566.13 m
Minimum Height	60.29
Classification (# of points)	
Ground	160,627,756
Low vegetation	155,917,160
Medium vegetation	429,917,645
High vegetation	622,384,647
Building	15,103,346
Orthophoto	No
Processed by	Engr. Jennifer Saguran, Engr. Velina Angela Bemida, Engr. Jeffrey Delica

Annex 8. Mission Summary Reports

Figure 1.1.1 Solution Status

Figure 1.1.2 Smoothed Performance Metric Parameters

Figure 1.1.3 Best Estimated Trajectory

Figure 1.1.4 Coverage of LiDAR data

Figure 1.1.5 Image of Data Overlap

Figure 1.1.6 Density map of merged LiDAR data

Figure 1.1.7 Elevation Difference between Flight Lines

Flight Area	Dumaguete
Mission Name	Blk53J
Inclusive Flights	7566G
Range data size	19.0 GB
POS	210 MB
Image	na
Base data size	6.05 MB
Transfer date	November 6, 2014
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	Yes
Processing Mode (<=1)	Yes
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	1.25
RMSE for East Position (<4.0 cm)	3.0
RMSE for Down Position (<8.0 cm)	5.0
Boresight correction stdev (<0.001deg)	0.000126
IMU attitude correction stdev (<0.001deg)	0.000301
GPS position stdev (<0.01m)	0.0012
Minimum % overlap (>25)	30.01%
Ave point cloud density per sq.m. (>2.0)	3.60
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	233
Maximum Height	440.16 m
Minimum Height	62.84 m
Classification (# of points)	
Ground	70,438,370
Low vegetation	63,300,697
Medium vegetation	166,611,886
High vegetation	213,423,896
Building	2,735,569
Orthophoto	No
Processed by	Engr. Irish Cortez, Engr. Chelou Prado, Engr. Jeffrey Delica

Figure 1.2.1 Solution Status

Figure 1.2.2 Smoothed Performance Metric Parameters

Figure 1.2.3 Best Estimated Trajectory

Figure 1.2.4 Coverage of LiDAR Data

Figure 1.2.5 Image of Data Overlap

Figure 1.2.6 Density map of merged LiDAR data

Figure 1.2.7 Elevation difference between flight lines

Flight Area	Dumaguete
Mission Name	BIk53K
Inclusive Flights	7540G,7566G,7568G
Range data size	41.99 GB
POS	610 MB
Image	na
Base data size	17.0 MB
Transfer date	November 6, 2014
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	Yes
Processing Mode (<=1)	Yes
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	1.0
RMSE for East Position (<4.0 cm)	1.6
RMSE for Down Position (<8.0 cm)	3.2
Boresight correction stdev (<0.001deg)	0.000194
IMU attitude correction stdev (<0.001deg)	0.157208
GPS position stdev (<0.01m)	0.0132
Minimum % overlap (>25)	46.62%
Ave point cloud density per sq.m. (>2.0)	3.78
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	156
Maximum Height	442.28 m
Minimum Height	62.23 m
Classification (# of points)	
Ground	52,875,981
Low vegetation	63,446,538
Medium vegetation	142,908,519
High vegetation	123,701,134
Building	3,086,316
Orthophoto	No
Processed by	Engr. Analyn Naldo, Engr. Christy Lubiano, Jovy Narisma

Figure 1.3.1 Solution Status

Figure 1.3.2 Smoothed Performance Metric Parameters

Figure 1.3.3 Best Estimated Trajectory

Figure 1.3.4 Coverage of LiDAR Data

Figure 1.3.5 Image of Data Overlap

Figure 1.3.6 Density map of merged LiDAR data

Figure 1.3.7 Elevation difference between flight lines

Flight Area	Dumaguete
Mission Name	Blk53Ks
Inclusive Flights	7526G,7540G
Range data size	20.9 GB
POS	352 MB
Image	na
Base data size	8.85 MB
Transfer date	November 6, 2014
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	Yes
Processing Mode (<=1)	Yes
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	0.082
RMSE for East Position (<4.0 cm)	1.05
RMSE for Down Position (<8.0 cm)	1.9
Boresight correction stdev (<0.001deg)	0.000571
IMU attitude correction stdev (<0.001deg)	0.001794
GPS position stdev (<0.01m)	0.0102
Minimum % overlap (>25)	47.63%
Ave point cloud density per sq.m. (>2.0)	4.08
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	93
Maximum Height	383.29 m
Minimum Height	64.07 m
Classification (# of points)	
Ground	21,234,446
Low vegetation	22,518,129
Medium vegetation	75,022,634
High vegetation	65,449,423
Building	801,385
Orthophoto	No
Processed by	Engr. Jommer Medina, Engr. Mark Joshua Salvacion, Ailyn Biňas

Figure 1.4.1 Solution Status

Figure 1.4.2 Smoothed Performance Metric Parameters

Figure 1.4.3 Best Estimated Trajectory

Figure 1.4.4 Coverage of LiDAR data

Figure 1.4.5 Image of data overlap

Figure 1.4.6 Density map of merged LiDAR data

Figure 1.4.7 Elevation difference between flight lines

Flight Area	Dumaguete
Mission Name	Blk53I
Inclusive Flights	7562G, 7574G
Range data size	44.3 GB
POS	506 MB
Image	na
Base data size	12.27 MB
Transfer date	November 6, 2014
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	Yes
Processing Mode (<=1)	Yes
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	2.6
RMSE for East Position (<4.0 cm)	2.1
RMSE for Down Position (<8.0 cm)	3.7
Boresight correction stdev (<0.001deg)	0.000167
IMU attitude correction stdev (<0.001deg)	0.000962
GPS position stdev (<0.01m)	0.0024
Minimum % overlap (>25)	36.98%
Ave point cloud density per sq.m. (>2.0)	4.22
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	419
Maximum Height	583.91 m
Minimum Height	61.34 m
Classification (# of points)	
Ground	142,510,622
Low vegetation	138,131,902
Medium vegetation	387,773,870
High vegetation	480,080,109
Building	9,091,742
Orthophoto	No
Processed by	Engr. Irish Cortez, Engr. Edgardo Gubatanga, Jr., Engr. Jeffrey Delica

Figure 1.5.1 Solution Status

Figure 1.5.2 Smoothed Performance Metric Parameters

Figure 1.5.3 Best Estimated Trajectory

Figure 1.5.4 Coverage of LiDAR data

Figure 1.5.5 Image of data overlap

Figure 1.5.6 Density map of merged LiDAR data

Figure 1.5.7 Elevation difference between flight lines

Flight Area	Dumaguete
Mission Name	BIk55A
Inclusive Flights	7526G,7540G,7560G
Range data size	59.7 GB
POS	667 MB
Image	na
Base data size	13.88 MB
Transfer date	November 6, 2014
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	Yes
Processing Mode (<=1)	Yes
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	0.088
RMSE for East Position (<4.0 cm)	1.32
RMSE for Down Position (<8.0 cm)	2.2
Boresight correction stdev (<0.001deg)	0.000170
IMU attitude correction stdev (<0.001deg)	0.001080
GPS position stdev (<0.01m)	0.0066
Minimum % overlap (>25)	47.00%
Ave point cloud density per sq.m. (>2.0)	3.83
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	225
Maximum Height	719.03 m
Minimum Height	60.3 m
Classification (# of points)	
Ground	84661907
Low vegetation	80144926
Medium vegetation	161689840
High vegetation	275799941
Building	5058695
Orthophoto	No
Processed by	Engr. Jommer Medina, Engr. Edgardo Gubatanga, Jr., Engr. Ellaine Lopez

Figure 1.6.1 Solution Status

Figure 1.6.2 Smoothed Performance Metric Parameters

Figure 1.6.3 Best Estimated Trajectory

Figure 1.6.4 Coverage of LiDAR data

Figure 1.6.5 Image of data overlap

Figure 1.6.6 Density map of merged LiDAR data

Figure 1.6.7 Elevation difference between flight lines

Flight Area	Dumaguete Reflights
Mission Name	Blk53O
Inclusive Flights	10076AC
Range data size	5.06 GB
POS	193 MB
Image	53.1 MB
Base data size	18.4 MB
Transfer date	February 15, 2016
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	No
Baseline Length (<30km)	Yes
Processing Mode (<=1)	Yes
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	0.99
RMSE for East Position (<4.0 cm)	1.40
RMSE for Down Position (<8.0 cm)	3.10
Boresight correction stdev (<0.001deg)	0.003474
IMU attitude correction stdev (<0.001deg)	0.023343
GPS position stdev (<0.01m)	0.0152
Minimum % overlap (>25)	36.44%
Ave point cloud density per sq.m. (>2.0)	4.90
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	52
Maximum Height	371.94 m
Minimum Height	57.34 m
Classification (# of points)	
Ground	18,604,153
Low vegetation	23,569,521
Medium vegetation	23,942,337
High vegetation	37,900,542
Building	2,405,421
Orthophoto	No
Processed by	Engr. Kenneth Solidum, Engr. Velina Angela Bemida, Engr. Krisha Marie Bautista

Figure 1.7.1. Solution Status

Figure 1.7.2. Smoothed Performance Metric Parameters

Figure 1.7.3 Best Estimated Trajectory

Figure 1.7.4 Coverage of LiDAR data

Figure 1.7.5 Image of data overlap

Figure 1.7.6 Density map of merged LiDAR data

Figure 1.7.7 Elevation difference between flight lines
Annex 9. Bayawan Model Basin Parameters

	SCS Curv	ve Number	Loss	Clark Unit Hy	drograph			ecession Bas	eflow	
Initial Curve Abstraction Numbe	Curve Numbei	<u> </u>	Impervious (%)	Time of Concentration	Storage Coefficient	Initial Type	Initial Discharge	Recession Constant	Threshold Type	Ratio to Peak
1.291491 84.515	84.515		0	7.3546	5.1714	Discharge	1.07	0.49	Ratio to Peak	0.000697
1.439826 84.084	84.084		0	7.5672	1.8007	Discharge	0.63713	0.49	Ratio to Peak	0.000995
2.275059 75.129	75.129		0	13.52	7.7881	Discharge	2.9928	0.49	Ratio to Peak	0.001
1.622664 82.285	82.285		0	6.9142	6.6993	Discharge	0.63551	0.49	Ratio to Peak	0.00098
3.08388 67.831	67.831		0	14.172	12.144	Discharge	1.4997	0.49	Ratio to Peak	0.001
2.552199 72.467	72.467		0	6.4973	1.6394	Discharge	0.11462	0.49	Ratio to Peak	0.000941
3.212871 76.922	76.922		0	5.7149	3.2105	Discharge	1.2725	0.49	Ratio to Peak	0.001
2.229396 75.031	75.031		0	8.1193	4.492	Discharge	1.3627	0.49	Ratio to Peak	0.001
1.586766 83.198	83.198		10	7.3044	4.1069	Discharge	0.66658	0.49	Ratio to Peak	0.001
1.372587 85.836	85.836		10	5.7394	3.2544	Discharge	1.1195	0.49	Ratio to Peak	0.00096
1.398534 90.106	90.106		10	6.0097	3.4064	Discharge	0.84449	0.49	Ratio to Peak	0.000956
1.499346 83.797	83.797		10	6.9007	2.5602	Discharge	0.1155	0.49	Ratio to Peak	0.000667
1.728498 81.931	81.931		10	10.708	5.9269	Discharge	1.3665	0.49	Ratio to Peak	0.001
1.696041 83.063	83.063		10	11.306	6.41	Discharge	2.0498	0.49	Ratio to Peak	0.001
1.495068 83.853	83.853		10	0.9606	0.78421	Discharge	0.15746	0.5	Ratio to Peak	0.001015
1.634568 82.05	82.05		10	13.801	3.4805	Discharge	1.3291	0.49	Ratio to Peak	0.001
1.540824 83.657	83.657		10	1.4596	0.81256	Discharge	0.077404	0.49	Ratio to Peak	0.001015

Reach Number			Muskingum Cu	nge Channel Routing			
	Time Step Method	Length (m)	Slope	Manning's n	Shape	Width	Side Slope
R110	Automatic Fixed Interval	353.55	0.0001	0.12075	Trapezoid	30	1
R120	Automatic Fixed Interval	8021.9	0.003818	0.092575	Trapezoid	30	1
R140	Automatic Fixed Interval	9126.8	0.00478	0.07889	Trapezoid	30	1
R160	Automatic Fixed Interval	2644.4	0.002442	0.07889	Trapezoid	30	1
R170	Automatic Fixed Interval	589.56	0.0001	0.12075	Trapezoid	30	Τ
R40	Automatic Fixed Interval	13327	0.002838	0.080378	Trapezoid	30	1
R50	Automatic Fixed Interval	2134.5	0.025959	0.053667	Trapezoid	30	1
R90	Automatic Fixed Interval	6644.4	0.004614	0.07889	Trapezoid	30	1

Annex 10. Bayawan Model Reach Parameters

Annex 11. Bayawan Field Validation Points

Point	Validation Coordinates		Model Var	Validation	Error (m)	Event / Date	Return Period
Number	Longitude	Latitude	(m)	Points (m)	Error (m)	Event / Date	of Event
1	122.833	9.40621	0.03	0.35	-0.32	Ramil	5 - Year
2	122.8328	9.406069	0.03	0.5	-0.47	Ramil	5 - Year
3	122.8334	9.406215	0.08	1.8	-1.72	Ramil	5 - Year
4	122.8335	9.406197	3.05	0.6	2.45	Ruping	100-Year
5	122.8335	9.406282	2.407	1.3	1.107	Ramil	5 - Year
6	122.8318	9.405238	2.407	0.4	2.007	Ramil	5 - Year
7	122.8318	9.405258	2.14	0.4	1.74	Zoraida	100-Year
8	122.8319	9.405208	2.94	1	1.94	Ruping	100-Year
9	122.8318	9.405199	1.91	0.4	1.51	Ursula	100-Year
10	122.8323	9.40445	0.03	0	0.03	Ramil	5 - Year
11	122.8324	9.404544	0.03	0.2	-0.17	Ramil	5 - Year
12	122.8238	9.400413	0.03	0.8	-0.77	Ramil	5 - Year
13	122.8238	9.400428	0.54	0.3	0.24	Ursula	100-Year
14	122.8238	9.400429	0.54	0.1	0.44	Milenyo	100-Year
15	122.8239	9.400447	0.162	0.8	-0.638	Ramil	5 - Year
16	122.8237	9.400467	0.238	0.65	-0.412	Ramil	5 - Year
17	122.8226	9.400078	0.238	1.6	-1.362	Ramil	5 - Year
18	122.8226	9.400082	1.28	1.2	0.08	Ruping	100-Year
19	122.8226	9.400032	1.4	0.75	0.65	Ursula	100-Year
20	122.8224	9.400033	0.669	1.45	-0.781	Ramil	5 - Year
21	122.8224	9.399894	2.03	0.71	1.32	Milenyo	100-Year
22	122.8224	9.400015	1.39	0.05	1.34	Yolanda	100-Year
23	122.822	9.399892	0.481	2.17	-1.689	Ramil	5 - Year
24	122.822	9.399945	0.481	0.46	0.021	Ramil	5 - Year
25	122.822	9.399941	1.45	1.6	-0.15	Ursula	100-Year
26	122.8212	9.399879	1.163	1.7	-0.537	Ramil	5 - Year
27	122.8212	9.399884	1.85	1.3	0.55	Ruping	100-Year
28	122.8212	9.399862	1.85	0.9	0.95	Ursula	100-Year
29	122.8212	9.399732	1.026	2.2	-1.174	Ramil	5 - Year
30	122.8192	9.398831	1.026	2	-0.974	Ramil	5 - Year
31	122.8191	9.398806	2.63	1.8	0.83	Ruping	100-Year
32	122.8192	9.398833	2.38	1.25	1.13	Ursula	100-Year
33	122.8186	9.398527	2.371	0.67	1.701		100-Year
34	122.8182	9.398235	2.371	2.6	-0.229	Ramil	5 - Year
35	122.8182	9.398269	2.94	1.9	1.04	Ursula	100-Year
36	122.8182	9.398275	2.94	1.1	1.84		100-Year
37	122.8183	9.398291	2.97	1.4	1.57	Ruping	100-Year
38	122.8183	9.398238	2.97	0.7	2.27	Yolanda	100-Year
39	122.8182	9.398337	0.03	2.5	-2.47	Ramil	5 - Year
40	122.8172	9.398286	0.03	0.3	-0.27	Ramil	5 - Year
41	122.817	9.398448	0.03	0.9	-0.87	Ramil	5 - Year
42	122.8166	9.398349	0.194	0.5	-0.306	Ramil	5 - Year
43	122.8163	9.398357	0.149	0.9	-0.751	Ramil	5 - Year
44	122.8162	9.398358	1.8	0.1	1.7	Ruping	100-Year
45	122.8161	9.398288	0.234	1.3	-1.066	Ramil	5 - Year

Point	Validation C	oordinates	Model Var	Validation	Бинон (на)	Event / Data	Return Period
Number	Longitude	Latitude	(m)	Points (m)	Error (m)	Event / Date	of Event
46	122.8162	9.398307	1.64	0.6	1.04	Ursula	100-Year
47	122.8144	9.398494	0.429	1.1	-0.671	Ramil	5 - Year
48	122.8106	9.399881	3.377	0	3.377	Ramil	5 - Year
49	122.8101	9.400416	3.377	1.35	2.027	Ramil	5 - Year
50	122.8101	9.400393	5.03	0.5	4.53	Ursula	100-Year
51	122.8096	9.401095	10.089	1.3	8.789	Ramil	5 - Year
52	122.8096	9.401149	7.97	1	6.97	Ursula	100-Year
53	122.8098	9.402281	4.967	1.7	3.267	Ramil	5 - Year
54	122.8098	9.402316	7.65	0.7	6.95	Ursula	100-Year
55	122.8183	9.378414	1.122	0.05	1.072	Ramil	5 - Year
56	122.817	9.37597	0.719	0.8	-0.081	Ramil	5 - Year
57	122.8153	9.372595	0.03	0.5	-0.47	Ramil	5 - Year
58	122.8128	9.367491	0.182	0.4	-0.218	Ramil	5 - Year
59	122.8095	9.363436	0.03	0.5	-0.47	Ramil	5 - Year
60	122.8073	9.364295	0.03	0.3	-0.27	Ramil	5 - Year
61	122.8071	9.364292	0.34	0.2	0.14	Ursula	100-Year
62	122.8062	9.364717	0.621	0.2	0.421	Ramil	5 - Year
63	122.7972	9.376079	1.796	0.6	1.196	Ramil	5 - Year
64	122.8082	9.387355	1.796	1.9	-0.104	Ramil	5 - Year
65	122.8082	9.387403	4.12	0.5	3.62	Ursula	100-Year
66	122.8081	9.387311	2.23	0.6	1.63	Ruping	100-Year
67	122.8101	9.396187	1.426	0.15	1.276	Ramil	5 - Year
68	122.8098	9.396551	1.426	0.5	0.926	Ramil	5 - Year
69	122.8098	9.396621	1.425	1.4	0.025	Ramil	5 - Year
70	122.8098	9.396586	4.03	0	4.03	Ursula	100-Year
71	122.81	9.397053	1.425	2	-0.575	Ramil	5 - Year
72	122.81	9.397014	2.56	0.9	1.66	Quedan	100-Year
73	122.8099	9.397087	0.032	1	-0.968	Ramil	5 - Year
74	122.8066	9.384342	0.03	0.1	-0.07	Ramil	5 - Year
75	122.807	9.383022	0.03	2.2	-2.17	Ramil	5 - Year
76	122.807	9.383007	0.6	0.9	-0.3	Ursula	100-Year
77	122.8069	9.383034	0.35	1.2	-0.85		100-Year
78	122.8069	9.383025	0.48	1.75	-1.27	Ruping	100-Year
79	122.8066	9.382842	0.03	2.47	-2.44	Ramil	5 - Year
80	122.8066	9.382801	2.28	1.62	0.66	Ursula	100-Year
81	122.8069	9.38317	0.878	1	-0.122	Ramil	5 - Year
82	122.8035	9.380547	0.878	1.8	-0.922	Ramil	5 - Year
83	122.8034	9.380486	0.92	1.5	-0.58	Ursula	100-Year
84	122.7978	9.376722	0.251	1.8	-1.549	Ramil	5 - Year
85	122.7978	9.376732	1.38	1.34	0.04	Ursula	100-Year
86	122.7964	9.371751	0.03	0.3	-0.27	Ramil	5 - Year
87	122.803	9.368325	1.566	0.4	1.166	Ramil	5 - Year
88	122.8026	9.368673	6.489	1.7	4.789	Ramil	5 - Year
89	122.8024	9.368781	6.489	1.85	4.639	Ramil	5 - Year
90	122.8024	9.368764	2.499	2	0.499	Ramil	5 - Year
91	122.8021	9.368735	3.45	1.89	1.56	Ramil	5 - Year
			-			1	

RMSE 2.13729

Annex 12. Educational Institutions Affected by Flooding in Bayawan Floodplain

Bayaw	an City			
Building Name	Barangay		Rainfall Scenario)
	Darangay	5-year	25-year	100-year
BANGA CENTRAL SCHOOL	Banga			
BAYAWAN COLLEGE	Banga	Medium	High	High
CANGSI-ID ELEMENTARY SCHOOL	Banga			Low
ST. AUGUSTINE ACADEMY	Banga			
UBOS DAYCARE ENTER	Banga	High	High	High
BAYAWAN CITY SCIENCE AND TECHNOLOGY CENTER	Malabugas			
BULI-BULI PRIMARY SCHOOL	Malabugas			
Telesforo Gargantiel Memorial Elementary School	Malabugas			Low
GUISOCON ELEMENTARY SCHOOL	Nangka			
NANGKA ELEMENTARY SCHOOL	Nangka	Medium	High	High
BULI-BULI PRIMARY SCHOOL	San Roque	Low	Low	Medium
Asian College of Science and Technology (Acsat)	Suba			
EARLY READERS MONTESSORIANS SCHOOL	Suba	Low	Medium	Medium
GAMAO ELEMENTARY SCHOOL	Suba			
SDY CENTRAL PHILIPPINES COMPETENCY	Suba			Low
BAYAWAN NATIONAL HIGH SCHOOL	Tinago			
KALAMTUKAN ELEMENTARY SCHOOL	Tinago		Low	Low
BAYAWAN COLLEGE	Ubos	Medium	High	High
BRGY. MOBILE VOCATIONAL SCHOOL	Ubos		Low	Medium
HOLY FAMILY ELEMENTARY SCHOOL	Ubos	High	High	High
BAYAWAN NATIONAL HIGH SCHOOL	Villareal	Low	Low	Low

Baya	wan City			
Ruilding Name	Parangay	F	Rainfall Scenari	0
	Daialigay	5-year	25-year	100-year
BAYAWAN DISTRICT HOSPITAL	Banga			
SUBA HEALTH CENTER	Banga		Medium	Medium
UBOS BARANGAY HEALTH CENTER	Banga	High	High	High
MALABUGAS BARANGAY HEALTH CENTER	Malabugas			

Annex 13. Medical Institutions Affected by Flooding in Bayawan Floodplain