Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

LiDAR Surveys and Flood Mapping of Guinabasan River

University of the Philippines Training Center for Applied Geodesy and Photogrammetry University of San Carlos

APRIL 2017

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

© University of the Philippines Diliman and University of San Carlos 2017

Published by the UP Training Center for Applied Geodesy and Photogrammetry (TCAGP) College of Engineering University of the Philippines – Diliman Quezon City 1101 PHILIPPINES

This research project is supported by the Department of Science and Technology (DOST) as part of its Grants-in-Aid Program and is to be cited as:

E. C. Paringit and R. S. Otadoy (eds.) (2017), LiDAR Surveys and Flood Mapping of Guinabasan River, Quezon City: University of the Philippines Training Center for Applied Geodesy and Photogrammetry-170pp.

The text of this information may be copied and distributed for research and educational purposes with proper acknowledgement. While every care is taken to ensure the accuracy of this publication, the UP TCAGP disclaims all responsibility and all liability (including without limitation, liability in negligence) and costs which might incur as a result of the materials in this publication being inaccurate or incomplete in any way and for any reason.

For questions/queries regarding this report, contact:

Dr. Roland Emerito S. Otadoy Project Leader, Phil-LiDAR 1 Program University of San Carlos Cebu City, Philippines 6000 E-mail: rolandotadoy2012@gmail.com

Enrico C. Paringit, Dr. Eng. Program Leader, Phil-LiDAR 1 Program University of the Philippines Diliman Quezon City, Philippines 1101 E-mail: ecparingit@up.edu.ph

National Library of the Philippines ISBN: 978-621-430-179-9

TABLE OF CONTENTS

LIST OF TABLES	iv
LIST OF FIGURES	v
LIST OF ACRONYMS AND ABBREVIATIONS	. vii
CHAPTER 1: OVERVIEW OF THE PROGRAM AND GUINABASAN RIVER	1
1.1 Background of the Phil-LIDAR 1 Program	1
1.2 Overview of the Guinabasan River Basin	1
CHAPTER 2: LIDAR DATA ACQUISITION OF THE GUINABASAN FLOODPLAIN	3
2.1 Flight Plans	3
2.2 Ground Base Stations	5
2.3 Flight Missions	12
2.4 Survey Coverage	13
CHAPTER 3: LIDAR DATA PROCESSING OF THE GUINABASAN FLOODPLAIN	. 15
3.1 Overview of the LIDAR Data Pre-Processing	15
3.2 Transmittal of Acquired LiDAR Data	16
3.3 Trajectory Computation	16
3.4 LiDAR Point Cloud Computation	19
3.5 LiDAR Quality Checking	20
3.6 LiDAR Point Cloud Classification and Rasterization	24
3.7 LiDAR Image Processing and Orthophotograph Rectification	26
3.8 DEM Editing and Hydro-Correction	28
3.9 Mosaicking of Blocks	29
3.10 Calibration and Validation of Mosaicked LiDAR DEM	31
3.11 Integration of Bathymetric Data into the LiDAR Digital Terrain Model	34
3.12 Feature Extraction	36
3.12.1 Quality Checking (QC) of Digitized Features' Boundary	36
3.12.2 Height Extraction	37
3.12.3 Feature Attribution	37
3.12.4 Final Quality Checking of Extracted Features	38
CHAPTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE GUINABASAN RIVER	
CHAPTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE GUINABASAN RIVER BASIN	. 39
CHAPTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE GUINABASAN RIVER BASIN	. 39 39
CHAPTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE GUINABASAN RIVER BASIN 4.1 Summary of Activities	. 39 39 40
CHAPTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE GUINABASAN RIVER BASIN 4.1 Summary of Activities	39 39 40 47
CHAPTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE GUINABASAN RIVER BASIN 4.1 Summary of Activities	39 39 40 47 48
CHAPTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE GUINABASAN RIVER BASIN 4.1 Summary of Activities	39 39 40 47 48
CHAPTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE GUINABASAN RIVER BASIN 4.1 Summary of Activities. 4.2 Control Survey 4.3 Baseline Processing 4.4 Network Adjustment 4.5 Cross-section and Bridge As-Built survey and Water Level Marking 4.6 Validation Points Acquisition Survey	39 40 47 48
CHAPTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE GUINABASAN RIVER BASIN 4.1 Summary of Activities. 4.2 Control Survey	39 40 47 48 58 60
CHAPTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE GUINABASAN RIVER BASIN 4.1 Summary of Activities. 4.2 Control Survey 4.3 Baseline Processing 4.4 Network Adjustment 4.5 Cross-section and Bridge As-Built survey and Water Level Marking 4.6 Validation Points Acquisition Survey 4.7 River Bathymetric Survey CHAPTER 5: FLOOD MODELING AND MAPPING.	39 40 47 48 58 60 64
CHAPTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE GUINABASAN RIVER BASIN 4.1 Summary of Activities. 4.2 Control Survey 4.3 Baseline Processing 4.4 Network Adjustment 4.5 Cross-section and Bridge As-Built survey and Water Level Marking 4.6 Validation Points Acquisition Survey 4.7 River Bathymetric Survey 5.1 Data Used for Hydrologic Modeling	39 40 47 48 58 60 64 64
CHAPTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE GUINABASAN RIVER BASIN 4.1 Summary of Activities. 4.2 Control Survey 4.3 Baseline Processing 4.4 Network Adjustment 4.5 Cross-section and Bridge As-Built survey and Water Level Marking 4.6 Validation Points Acquisition Survey 4.7 River Bathymetric Survey CHAPTER 5: FLOOD MODELING AND MAPPING. 5.1 Data Used for Hydrologic Modeling 5.1.1 Hydrometry and Rating Curves.	39 40 47 48 58 60 64 64
CHAPTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE GUINABASAN RIVER BASIN 4.1 Summary of Activities. 4.2 Control Survey 4.3 Baseline Processing 4.4 Network Adjustment 4.5 Cross-section and Bridge As-Built survey and Water Level Marking 4.5 Cross-section and Bridge As-Built survey and Water Level Marking 4.6 Validation Points Acquisition Survey 4.7 River Bathymetric Survey CHAPTER 5: FLOOD MODELING AND MAPPING. 5.1 Data Used for Hydrologic Modeling 5.1.1 Hydrometry and Rating Curves 5.1.2 Precipitation	39 40 47 48 58 60 64 64 64
CHAPTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE GUINABASAN RIVER BASIN 4.1 Summary of Activities. 4.2 Control Survey 4.3 Baseline Processing 4.4 Network Adjustment 4.5 Cross-section and Bridge As-Built survey and Water Level Marking 4.5 Cross-section and Bridge As-Built survey and Water Level Marking 4.6 Validation Points Acquisition Survey 4.7 River Bathymetric Survey 6.1 Data Used for Hydrologic Modeling 5.1.1 Hydrometry and Rating Curves. 5.1.2 Precipitation 5.1.3 Rating Curves and River Outflow.	39 40 47 48 58 60 64 64 64 64
CHAPTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE GUINABASAN RIVER BASIN 4.1 Summary of Activities. 4.2 Control Survey 4.3 Baseline Processing 4.4 Network Adjustment 4.5 Cross-section and Bridge As-Built survey and Water Level Marking 4.5 Cross-section and Bridge As-Built survey and Water Level Marking 4.6 Validation Points Acquisition Survey 4.7 River Bathymetric Survey 4.7 River Bathymetric Survey 5.1 Data Used for Hydrologic Modeling 5.1.1 Hydrometry and Rating Curves 5.1.2 Precipitation 5.1.3 Rating Curves and River Outflow. 5.2 RIDF Station	39 40 47 48 58 60 64 64 64 65 65
CHAPTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE GUINABASAN RIVER BASIN	39 39 40 47 48 60 64 64 64 64 65 67 69
CHAPTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE GUINABASAN RIVER BASIN	39 39 40 47 48 63 64 64 64 65 65 67 69 73
CHAPTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE GUINABASAN RIVER BASIN	39 40 47 48 60 64 64 64 64 65 67 69 73 74
CHAPTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE GUINABASAN RIVER BASIN 4.1 Summary of Activities	39 40 47 48 60 64 64 64 64 64 65 67 69 73 74 74
CHAPTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE GUINABASAN RIVER BASIN 4.1 Summary of Activities. 4.2 Control Survey 4.3 Baseline Processing 4.4 Network Adjustment 4.5 Cross-section and Bridge As-Built survey and Water Level Marking 4.6 Validation Points Acquisition Survey 4.7 River Bathymetric Survey CHAPTER 5: FLOOD MODELING AND MAPPING 5.1 Data Used for Hydrologic Modeling 5.1.1 Hydrometry and Rating Curves. 5.1.2 Precipitation 5.1.3 Rating Curves and River Outflow 5.2 RIDF Station 5.3 HMS Model. 5.4 Cross-section Data 5.5 Flo 2D Model 5.6 Results of HMS Calibration 5.7 Calculated Outflow hydrographs and Discharge Values for different Rainfall Return Periods.	39 40 47 48 64 64 64 64 64 64 65 67 73 74 76
CHAPTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE GUINABASAN RIVER BASIN 4.1 Summary of Activities. 4.2 Control Survey 4.3 Baseline Processing 4.4 Network Adjustment 4.5 Cross-section and Bridge As-Built survey and Water Level Marking 4.6 Validation Points Acquisition Survey 4.7 River Bathymetric Survey 4.7 River Bathymetric Survey CHAPTER 5: FLOOD MODELING AND MAPPING 5.1 Data Used for Hydrologic Modeling 5.1.1 Hydrometry and Rating Curves. 5.1.2 Precipitation 5.1.3 Rating Curves and River Outflow 5.2 RIDF Station 5.3 HMS Model. 5.4 Cross-section Data 5.5 Flo 2D Model 5.6 Results of HMS Calibration 5.7 Calculated Outflow hydrographs and Discharge Values for different Rainfall Return Periods. 5.7.1 Hydrograph using the Rainfall Runoff Model 5.8 Phiver Analysis (PAE) Model Simulation	39 40 47 48 58 60 64 64 64 65 67 78 78 78
CHAPTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE GUINABASAN RIVER BASIN 4.1 Summary of Activities 4.2 Control Survey 4.3 Baseline Processing 4.4 Network Adjustment 4.5 Cross-section and Bridge As-Built survey and Water Level Marking 4.5 Cross-section and Bridge As-Built survey and Water Level Marking 4.6 Validation Points Acquisition Survey 4.7 River Bathymetric Survey 6.1 Data Used for Hydrologic Modeling 5.1 Data Used for Hydrologic Modeling 5.1.1 Hydrometry and Rating Curves 5.1.2 Precipitation 5.1.3 Rating Curves and River Outflow 5.2 RIDF Station 5.3 HMS Model 5.4 Cross-section Data 5.5 Flo 2D Model 5.6 Results of HMS Calibration 5.7 Calculated Outflow hydrographs and Discharge Values for different Rainfall Return Periods. 5.7.1 Hydrograph using the Rainfall Runoff Model 5.8 River Analysis (RAS) Model Simulation 5.9 Elow Ponth and Elood Hazard	39 40 47 48 58 60 64 64 64 64 65 67 73 74 76 78 78 79
CHAPTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE GUINABASAN RIVER BASIN 4.1 Summary of Activities. 4.2 Control Survey 4.3 Baseline Processing 4.4 Network Adjustment 4.5 Cross-section and Bridge As-Built survey and Water Level Marking 4.5 Cross-section and Bridge As-Built survey and Water Level Marking 4.6 Validation Points Acquisition Survey 4.7 River Bathymetric Survey 6.1 Data Used for Hydrologic Modeling 5.1 Data Used for Hydrologic Modeling 5.1.1 Hydrometry and Rating Curves 5.1.2 Precipitation 5.1.3 Rating Curves and River Outflow 5.2 RIDF Station 5.3 HMS Model 5.4 Cross-section Data 5.5 Flo 2D Model 5.6 Results of HMS Calibration 5.7 Calculated Outflow hydrographs and Discharge Values for different Rainfall Return Periods. 5.7.1 Hydrograph using the Rainfall Runoff Model 5.8 River Analysis (RAS) Model Simulation 5.9 Flow Depth and Flood Hazard	39 40 47 48 60 64 64 64 64 64 65 67 73 74 76 78 78 78 79 80
CHAPTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE GUINABASAN RIVER BASIN 4.1 Summary of Activities. 4.2 Control Survey 4.3 Baseline Processing 4.4 Network Adjustment 4.5 Cross-section and Bridge As-Built survey and Water Level Marking 4.5 Cross-section and Bridge As-Built survey and Water Level Marking 4.6 Validation Points Acquisition Survey 4.7 River Bathymetric Survey 4.7 River Bathymetric Survey 5.1 Data Used for Hydrologic Modeling 5.1.1 Hydrometry and Rating Curves 5.1.2 Precipitation 5.1.3 Rating Curves and River Outflow 5.2 RIDF Station 5.3 HMS Model 5.4 Cross-section Data 5.5 Flo 2D Model 5.6 Results of HMS Calibration 5.7 Calculated Outflow hydrographs and Discharge Values for different Rainfall Return Periods. 5.7.1 Hydrograph using the Rainfall Runoff Model 5.8 River Analysis (RAS) Model Simulation 5.9 Flow Depth and Flood Hazard 5.10 Inventory of Areas Exposed to Flooding. 5.11 Eloced Volidation	39 40 47 48 60 64 64 64 64 64 64 65 73 74 78 78 78 79 80 88
CHAPTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE GUINABASAN RIVER BASIN 4.1 Summary of Activities. 4.2 Control Survey 4.3 Baseline Processing 4.4 Network Adjustment 4.5 Cross-section and Bridge As-Built survey and Water Level Marking 4.5 Validation Points Acquisition Survey 4.7 River Bathymetric Survey CHAPTER 5: FLOOD MODELING AND MAPPING 5.1 Data Used for Hydrologic Modeling 5.1.1 Hydrometry and Rating Curves. 5.1.2 Precipitation 5.1.3 Rating Curves and River Outflow 5.2 RIDF Station 5.3 HMS Model. 5.4 Cross-section Data 5.5 Flo 2D Model 5.6 Results of HMS Calibration 5.7 Calculated Outflow hydrographs and Discharge Values for different Rainfall Return Periods. 5.7.1 Hydrograph using the Rainfall Runoff Model 5.8 River Analysis (RAS) Model Simulation 5.9 Flow Depth and Flood Hazard 5.11 Flood Validation	39 40 47 48 60 64 64 64 64 64 64 65 67 73 74 76 78 78 78 79 80 88 101
CHAPTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE GUINABASAN RIVER BASIN 4.1 Summary of Activities. 4.2 Control Survey. 4.3 Baseline Processing 4.4 Network Adjustment 4.5 Cross-section and Bridge As-Built survey and Water Level Marking 4.6 Validation Points Acquisition Survey 4.7 River Bathymetric Survey. CHAPTER 5: FLOOD MODELING AND MAPPING 5.1 Data Used for Hydrologic Modeling 5.1.1 Hydrometry and Rating Curves. 5.1.2 Precipitation 5.1.3 Rating Curves and River Outflow 5.2 RIDF Station 5.3 HMS Model. 5.4 Cross-section Data 5.5 Flo 2D Model 5.6 Results of HMS Calibration 5.7 Calculated Outflow hydrographs and Discharge Values for different Rainfall Return Periods. 5.7.1 Hydrograph using the Rainfall Runoff Model 5.8 River Analysis (RAS) Model Simulation. 5.9 Flow Depth and Flood Hazard 5.10 Inventory of Areas Exposed to Flooding. EVENDED	39 40 47 48 60 64 64 64 64 64 64 65 73 74 76 78 78 78 78 78 78 78 80 88 101 104
CHAPTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE GUINABASAN RIVER BASIN 4.1 Summary of Activities. 4.2 Control Survey 4.3 Baseline Processing 4.4 Network Adjustment 4.5 Cross-section and Bridge As-Built survey and Water Level Marking 4.6 Validation Points Acquisition Survey 4.7 River Bathymetric Survey 4.7 River Bathymetric Survey CHAPTER 5: FLOOD MODELING AND MAPPING 5.1 Data Used for Hydrologic Modeling 5.1.1 Hydrometry and Rating Curves. 5.1.2 Precipitation 5.1.3 Rating Curves and River Outflow. 5.2 RIDF Station 5.3 HMS Model. 5.4 Cross-section Data 5.5 Flo 2D Model 5.6 Results of HMS Calibration 5.7 Calculated Outflow hydrographs and Discharge Values for different Rainfall Return Periods. 5.7.1 Hydrograph using the Rainfall Runoff Model 5.8 River Analysis (RAS) Model Simulation. 5.9 Flow Depth and Flood Hazard 5.10 Inventory of Areas Exposed to Flooding. 5.11 Flood Validation. REFERENCES ANNEXES	39 40 47 48 60 64 64 64 64 65 67 73 74 78 78 78 78 78 101 104 105
CHAPTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE GUINABASAN RIVER BASIN 4.1 Summary of Activities	39 40 47 48 60 64 64 64 64 65 67 73 76 78 78 78 78 78 101 104 105
CHAPTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE GUINABASAN RIVER BASIN 4.1 Summary of Activities. 4.2 Control Survey 4.3 Baseline Processing 4.4 Network Adjustment 4.5 Cross-section and Bridge As-Built survey and Water Level Marking 4.6 Validation Points Acquisition Survey 4.7 River Bathymetric Survey CHAPTER 5: FLOOD MODELING AND MAPPING 5.1 Data Used for Hydrologic Modeling 5.1.1 Hydrometry and Rating Curves 5.1.2 Precipitation 5.1.3 Rating Curves and River Outflow. 5.2 RIDF Station 5.3 HMS Model 5.4 Cross-section Data 5.5 Flo 2D Model 5.6 Results of HMS Calibration 5.7 Calculated Outflow hydrographs and Discharge Values for different Rainfall Return Periods. 5.7.1 Hydrograph using the Rainfall Runoff Model 5.8 River Analysis (RAS) Model Simulation. 5.9 Flow Depth and Flood Hazard 5.10 Inventory of Areas Exposed to Flooding. 5.11 Flood Validation. REFERENCES ANNEXES Annex 1. Technical Specifications of the LIDAR Sensors used in the Guinabasan Floodplain Survey.	39 40 47 48 60 64 64 64 64 64 65 67 73 73 74 76 78 78 78 78 80 101 104 105 107

Annex 3. Baseline Processing Reports of Control Points used in the LiDAR Survey	
Annex 4. The LiDAR Survey Team Composition	116
Annex 5. Data Transfer Sheet for Guinabasan Floodplain	117
Annex 6. Flight logs for the flight missions	
Annex 7. Flight status reports	
Annex 8. Mission Summary Reports	135
Annex 9. Guinabasan Model Basin Parameters	160
Annex 10. Guinabasan Model Reach Parameters	164
Annex 11. Guinabasan Field Validation Points	
Annex 12. Educational Institutions affected by flooding in Guinabasan Floodplain	169
Annex 13. Medical Institutions affected by flooding in Guinabasan Floodplain	170

LIST OF TABLES

Table 1. Flight planning parameters for the Pegasus LiDAR system	.3
Table 2. Details of the recovered NAMRIA horizontal control point CBU-327 used as base station for the LiDAR acquisition	.6
Table 3. Details of the recovered NAMRIA horizontal control point CBU-331 used as base station for the LiDAR acquisition	.7
Table 4.Details of the recovered NAMRIA horizontal control point CBU-337 used as base station for the LiDAR data acquisition	. 8
Table 5. Details of the recovered NAMRIA horizontal control point CU-575 used as base station for the LiDAR data acquisition	.9
Table 6. Details of the recovered NAMRIA horizontal control point CU-621A used as base station for the LiDAR data acquisition	LO
Table 7. Details of the recovered NAMRIA horizontal control point CU-671 used as base station for the LiDAR data acquisition1	11
Table 8. Ground control points used during the LiDAR data acquisition.	11
Table 9. Flight missions for LiDAR data acquisition in Guinabasan floodplain	12
Table 10. Actual parameters used during LiDAR data acquisition	13
Table 11. List of municipalities and cities surveyed during Guinabasan floodplain LiDAR survey.	13
Table 12 Self-calibration Results values for Guinabasan flights	19
Table 13 List of LiDAR blocks for the Guinabasan floodnlain	20
Table 14 Guinabasan classification results in TerraScan	2
Table 15 LiDAR blocks with its corresponding areas	28
Table 16. Shift values of each LiDAR block of Guinabasan Eloodhlain	20
Table 17. Calibration Statistical Measures	2/
Table 18 Validation Statistical Measures	25
Table 19. Details of the quality checking ratings for the huilding features extracted for the	,,,
Guinghasan River Rasin	20
Table 20. Ruilding features extracted for Guinabasan Eloodalain	20
Table 21. Total length of extracted roads for Guinabasan Floodplain.	10
Table 22. Number of extracted water bodies for Guinabasan Floodplain.	10
Table 22. Number of extracted water boules for Guinabasan Hoodplain.	11
Table 24. The Baseline processing report for the Guipabasan River GNSS static observation	14
Survey.	19
Table 25. Constraints applied to the adjustment of the control points	51
Table 26. Adjusted grid coordinates for the control points used in the Guinabasan River	
floodplain survey	51
Table 27. Adjusted geodetic coordinates for control points used in the Guinabasan River	
Floodplain validation	52
Table 28. The reference and control points utilized in the Guinabasan River Static Survey.	
with their corresponding locations (Source: NAMRIA, UP-TCAGP)	53
Table 29. RIDF values for the Mactan Point Rain Gauge, as computed by PAGASA	57
Table 30. Range of calibrated values for the Guinabasan River Basin.	76
Table 31. Summary of the Efficiency Test of the Guinabasan HMS Model	77
Table 32. The peak values of the Guinabasan HEC-HMS Model outflow using the Mactan RIDF7	79
Table 33. Municipalities affected in Guinabasan floodplain.	30
Table 34. Affected Areas in Asturias. Cebu during 5-Year Rainfall Return Period	39
Table 35. Affected Areas in Tuburan. Cebu during 5-Year Rainfall Return Period) 1
Table 36. Affected Areas in Asturias. Cebu during 25-Year Rainfall Return Period) 3
Table 37. Affected Areas in Tuburan. Cebu during 25-Year Rainfall Return Period.) 5
Table 38. Affected Areas in Asturias, Cebu during 100-Year Rainfall Return Period.) 7
Table 39. Affected Areas in Tuburan, Cebu during 100-Year Rainfall Return Period)9
Table 40. Area covered by each warning level with respect to the rainfall scenarios)1
Table 41. Actual Flood Depth versus Simulated Flood Depth at different levels	
in the Guinabasan River Basin)3
Table 42. Summary of the Accuracy Assessment in the Guinabasan River Basin Survey)3

LIST OF FIGURES

Figure	1. M	Map of Guinabasan River Basin (in brown)	2
rigure	2. r 9	system	ŀ
Figure	3. (GPS set-up over CBU-327 on a bridge adjacent to San Remigio Cemetery in Barangay Poblacion, San Remigio, Cebu (a) and NAMRIA reference point CBU-327 (b) as recovered by the field team	5
Figure	4. (GPS set-up over CBU-331 beside the Grotto in Barangay Sagay, Borbon, Cebu (a)	,
Figure	5. C	GPS set-up over CBU-337 outside Colonia Central School in Barangay Colonia, Tuburan,	ł
Figure	6. (P	GPS set-up over CU-575 at the right side of the National Road going to Tuburan Town roper, near KM Post No. 87 in Barangay Colonia, Tuburan, Cebu (a) and NAMRIA	, ,
Figure	7. (0	GPS set-up over CU-621A located 20 m NE of KM Post No. 133 and beside the head wall if the box culvert in Barangay Tambongon, San Remigio, Cebu (a) and NAMRIA reference	, N
Figure	۲ 8. 0 /	GPS set-up over CU-671 at the right side of the National Road going to Argao Town Proper in Barangay Liki, Sogod, Cebu (a) and NAMRIA reference point CU-671 (b)	,
Figure	9. A	Actual LiDAR survey coverage for Guinabasan floodplain	ŀ
Figure	10.	Schematic diagram for the data pre-processing.	; 7
Figure	11. 12	Smoothed Performance Metric Parameters of Guinabasan Flight 1825	2
Figure	13	Best Estimated Trajectory of the LiDAR missions conducted over the Guinabasan)
1.6410	10.	Floodplain)
Figure	14.	Boundaries of the processed LiDAR data over the Guinabasan Floodplain20)
Figure	15.	Image of data overlap for Guinabasan floodplain21	L
Figure	16.	Pulse density map of the merged LiDAR data for Guinabasan floodplain22	2
Figure	17.	Elevation difference Map between flight lines for the Guinabasan Floodplain Survey 23	5
Figure	18.	Quality checking for Guinabasan flight 1825P using the Profile Tool of QT Modeler24	ŀ
Figure	19.	Tiles for Guinabasan floodplain (a) and classification results (b) in TerraScan25	j .
Figure	20.	Point cloud before (a) and after (b) classification)
Figure	21.	The production of last return DSM (a) and DTM (b), first return DSM (c) and secondary	
Eiguro	วว	Guinabasan floodolain with available orthophotographs) 7
Figure	22. 72	Sample orthonhotograph tiles for Guinabasan floodplain	,
Figure	23. 24	Portions in the DTM of the Guinabasan Floodplain – a bridge before (a) and after (b)	
inguic i	2	manual editing: a part of the river before (c) and after (d) manual editing)
Figure	25.	Map of processed LiDAR data for the Guinabasan Floodplain	L
Figure	26.	Map of Guinabasan Floodplain with validation survey points in green	3
Figure	27.	Correlation plot between calibration survey points and LiDAR data	ŀ
Figure	28.	Correlation plot between the validation survey points and the LiDAR data	;
Figure	29.	Map of Guinabasan floodplain with bathymetric survey points in blue	1
Figure	30.	Block (in blue) of Guinabasan building features that was subjected to QC	3
Figure	31.	Extracted features of the Guinabasan Floodplain41	L
Figure	32.	Guinabasan River Survey Extent43	;
Figure	33.	Guinabasan River Basin Control Survey Extent45)
Figure	34.	GNSS receiver set-up, Trimble [®] SPS 852, at CBU-293 in front of Cantabaco National High School in Brgy. Cantabaco, Toledo City, Cebu	5
Figure	35.	GNSS receiver setup, Trimble [®] Zephyr [™] Model 2, at CU-784 Balud Bridge approach in	_
Figure	36.	GNSS base receiver setup, Trimble [®] Zephyr [™] Model 2, at CBU-3614, Lapu-Lapu Bridge approach in Brgy. Poblacion, Municipality of Asturias, Cebu	,
Figure	37.	GNSS base setup, Trimble [®] Zephyr [™] Model 2, at CU-552 in Brgy. Cantu-od, Municipality of Balamban	,
Figure	38.	GNSS base receiver setup, Trimble [®] Zephyr [™] Model 2, at the established point, UP-ILI in the approach of Ilihan Footbridge in Brgy. Ilihan, Toledo City	3
Figure	39.	GNSS base setup, Trimble [®] Zephyr [™] Model 2, at CBU-3015 in Santa Lucia Bridge, Brgy. Santa Lucia, Municipality of Asturias48	3

Figure 40.	GNSS base receiver setup, Trimble [®] Zephyr [™] Model 2, at DPWHECS in Brgy. Bago, Municipality of Asturias	49
Figure 41.	Bridge as-built and cross-section survey of Guinabasan Bridge.	54
Figure 42.	Location map of the Guinabasan Bridge Cross Section.	55
Figure 43.	The Guinabasan Bridge cross-section survey drawn to scale.	56
Figure 44.	The Guinabasan Bridge as-built survey data.	57
Figure 45.	Water level marking on Guinabasan Bridge.	58
Figure 46.	GNSS Receiver Trimble [®] SPS 882 installed on a vehicle for Ground Validation Survey	59
Figure 47.	The extent of the LiDAR ground validation survey (in red) for Guinabasan River Basin.	60
Figure 48.	Set up of the bathymetric survey at Guinabasan River	61
Figure 49.	The extent of the Guinabasan River Bathymetry Survey.	62
Figure 50.	Guinabasan Riverbed Profile.	63
Figure 51.	Location Map of the Guinabasan HEC-HMS model used for calibration.	65
Figure 52.	Cross-Section Plot of New Bago Bridge.	66
Figure 53.	The rating curve at New Bago Bridge. Asturias. Cebu.	66
Figure 54.	Rainfall and outflow data at New Bago Bridge, which was used for modeling	67
Figure 55.	Location of Mactan RIDE Station relative to Guinabasan River Basin.	68
Figure 56	Synthetic storm generated for a 24-hr period rainfall for various return periods	68
Figure 57	Soil Man of Guinabasan River Basin	69
Figure 58	Land Cover Man of Guinabasan River Basin	70
Figure 59	Slone Man of the Guinabasan River Basin	71
Figure 60	Stream Delineation Man of Guinabasan River Basin	72
Figure 61	Guinabasan river basin model generated in HEC-HMS	73
Figure 62	River cross-section of the Guinabasan River through the ArcMan HEC GeoRas tool	74
Figure 63	A screenshot of the river sub-catchment with the computational area	/ 4
inguic 05.	to be modeled in FLO-2D Grid Developer System Pro (FLO-2D GDS Pro)	75
Figure 64	Outflow Hydrograph of Guinabasan produced by the HEC-HMS model	, ,
inguic 04.	compared with observed outflow	76
Figure 65	The Outflow hydrograph at the Guinabasan Station generated using the Mactan RIDE	/0
inguic 05.	simulated in HEC-HMS	78
Figure 66	Sample output man of the Guinabasan RAS Model	20
Figure 67	A 100-year Flood Hazard Man for Guinabasan Floodolain overlaid on Google Farth	00
inguic of.	imagery	82
Figure 68	A 100-year Flow Denth Man for Guinabasan Floodolain overlaid on Google Farth	02
inguie oo.	imagery	83
Figure 69	A 25-year Flood Hazard Man for Guinabasan Floodnlain overlaid on Google Farth	05
inguic 05.	imagery	84
Figure 70	A 25-year Flow Denth Man for Guinabasan Floodnlain overlaid on Google Farth	0-
inguic 70.	imagery	85
Figure 71	A 5-year Flood Hazard Man for Guinabasan Floodolain overlaid on Google Farth	05
ingule / 1.	imagery	86
Figure 72	A 5-year Flood Denth Man for Guinabasan Floodnlain overlaid on Google Farth	00
inguic /2.	imagery	87
Figure 73	Affected Areas in Asturias, Cebu during 5-Year Rainfall Return Period	90
Figure 7/	Affected Areas in Tuburan, Cebu during 5-Vear Rainfall Return Period	92
Figure 75	Affected Areas in Acturias, Cebu during 25-Year Rainfall Return Period	92 97
Figure 76	Affected Areas in Tuburan, Cebu during 25-Year Rainfall Return Period	96
Figure 77	Affected Areas in Asturias. Cebu during 100-Year Rainfall Return Period	98
Figure 78	Affected Areas in Tuburan, Cebu during 100-Year Rainfall Return Period	00
Figure 70	Validation points for a 5-year Flood Depth Man of the Guinabasan Flood Plain	02
Figure 20	Flood Man denth versus Actual Flood Denth	02
		~~

LIST OF ACRONYMS AND ABBREVIATIONS

AAC	Asian Aerospace Corporation		
Ab	abutment		
ALTM	Airborne LiDAR Terrain Mapper		
ARG	automatic rain gauge		
ATQ	Antique		
AWLS	Automated Water Level Sensor		
BA	Bridge Approach		
BM	benchmark		
CAD	Computer-Aided Design		
CN	Curve Number		
CSRS	Chief Science Research Specialist		
DAC	Data Acquisition Component		
DEM	Digital Elevation Model		
DENR	Department of Environment and Natural Resources		
DOST	Department of Science and Technology		
DPPC	Data Pre-Processing Component		
DREAM	Disaster Risk and Exposure Assessment for Mitigation [Program]		
DRRM	Disaster Risk Reduction and Management		
DSM	Digital Surface Model		
DTM	Digital Terrain Model		
DVBC	Data Validation and Bathymetry Component		
FMC	Flood Modeling Component		
FOV	Field of View		
GiA	Grants-in-Aid		
GCP	Ground Control Point		
GNSS	Global Navigation Satellite System		
GPS	Global Positioning System		
HEC-HMS	Hydrologic Engineering Center - Hydrologic Modeling System		
HEC-RAS	Hydrologic Engineering Center - River Analysis System		
HC	High Chord		
IDW	Inverse Distance Weighted [interpolation method]		

IMU	Inertial Measurement Unit		
kts	knots		
LAS	LiDAR Data Exchange File format		
LC	Low Chord		
LGU	local government unit		
Lidar	Light Detection and Ranging		
LMS	LiDAR Mapping Suite		
m AGL	meters Above Ground Level		
MMS	Mobile Mapping Suite		
MSL	mean sea level		
NSTC	Northern Subtropical Convergence		
PAF	Philippine Air Force		
PAGASA	Philippine Atmospheric Geophysical and Astronomical Services Administration		
PDOP	Positional Dilution of Precision		
РРК	Post-Processed Kinematic [technique]		
PRF	Pulse Repetition Frequency		
PTM	Philippine Transverse Mercator		
QC	Quality Check		
QT	Quick Terrain [Modeler]		
RA	Research Associate		
RIDF	Rainfall-Intensity-Duration-Frequency		
RMSE	Root Mean Square Error		
SAR	Synthetic Aperture Radar		
SCS	Soil Conservation Service		
SRTM	Shuttle Radar Topography Mission		
SRS	Science Research Specialist		
SSG	Special Service Group		
TBC	Thermal Barrier Coatings		
UPC	University of the Philippines Cebu		
UP-TCAGP	University of the Philippines – Training Center for Applied Geodesy and Photogrammetry		

CHAPTER 1: OVERVIEW OF THE PROGRAM AND GUINABASAN RIVER

Enrico C. Paringit, Dr. Eng., Dr. Roland Emerito S. Otadoy, and Engr. Aure Flo Oraya

1.1 Background of the Phil-LIDAR 1 Program

The University of the Philippines Training Center for Applied Geodesy and Photogrammetry (UP-TCAGP) launched a research program entitled "Nationwide Hazard Mapping using LiDAR in 2014" or Phil-LiDAR 1, supported by the Department of Science and Technology (DOST) Grants-in-Aid (GiA) Program. The program was primarily aimed at acquiring a national elevation and resource dataset at sufficient resolution to produce information necessary to support the different phases of disaster management. Particularly, it targeted to operationalize the development of flood hazard models that would produce updated and detailed flood hazard maps for the major river systems in the country.

Also, the program was aimed at producing an up-to-date and detailed national elevation dataset suitable for 1:5,000 scale mapping, with 50 cm and 20 cm horizontal and vertical accuracies, respectively. These accuracies were achieved through the use of the state-of-the-art Light Detection and Ranging (LiDAR) airborne technology procured by the project through DOST. The methods applied in this report are thoroughly described in a separate publication entitled "FLOOD MAPPING OF RIVERS IN THE PHILIPPINES USING AIRBORNE LIDAR: METHODS (Paringit, et. al. 2017) available separately.

The implementing partner university for the Phil-LiDAR 1 Program is the University of San Carlos (USC). USC is in charge of processing LiDAR data and conducting data validation reconnaissance, cross section, bathymetric survey, validation, river flow measurements, flood height and extent data gathering, flood modeling, and flood map generation for the 17 river basins in the Central Visayas Region. The university is located in Cebu City in the province of Cebu.

1.2 Overview of the Guinabasan River Basin

Guinabasan River Basin covers two (2) Municipalities in Cebu, namely: Asturias and Tuburan, as well as the City of Danao. The DENR- RCBO identified the basin to have a drainage area of 120 km2 and an estimated 72 million cubic meter (MCM) annual run-off. The catchment is located in the central part of the Province of Cebu. It is classified under Type III weather in the Corona climate classification with dry season from November to April and wet season for the other months of the year. Asturias is a 3rd income class municipality with a population of 47,857. Tuburan is a 2nd income class municipality with a population of 63,866.

123°50'0"E

123°50'0"E

Its main stream, Guinabasan River, passes along Barangays Agtugop, Bog-O, Bago, New Bago, Santa Lucia, and Tubigagmanok, all within the Municipality of Asturias. It is part of the river systems in Central Visayas Region. There is a total of 12,384 people residing within the immediate vicinity of the river which is distributed among six (6) barangays, namely: Agtugop, Bago, Bog-O, New Bago, Tubigagmanok, and Santa Lucia (NSO, 2010). Most of the livelihood of the population in Western Cebu are the extraction, consumption, and management of coastal and marine resources found in their province. Recently, Typhoon Seniang, brought about immense flooding and landslides to Municipalities such as Sibonga, Ronda, and Dumanjung in Cebu in December 2014.

CHAPTER 2: LIDAR DATA ACQUISITION OF THE GUINABASAN FLOODPLAIN

Engr. Louie P. Balicanta, Engr. Christopher Cruz, Lovely Gracia Acuña, Engr. Gerome Hipolito, Ms. Julie Pearl S. Mars, and Jeriel Paul A. Alamban, Geol.

The methods applied in this chapter were based on the DREAM methods manual (Ang, et. al., 2014) and further enhanced and updated in Paringit, et. al. (2017).

2.1 Flight Plans

To initiate the LiDAR acquisition survey of the Guinabasan floodplain, the Data Acquisition Component (DAC) created flight plans within the delineated priority area for Guinabasan Floodplain in Cebu. These flight missions were planned for 16 lines and ran for at most four and a half hours (4.5) including take-off, landing and turning time. The flight planning parameters for the LiDAR system are outlined in Table 1. Figure 2 shows the flight plan for Guinabasan floodplain survey.

Block Name	Flying Height (m AGL)	Overlap (%)	Field of View (θ)	Pulse Repetition Frequency (PRF) (kHz)	Scan Frequency (Hz)	Average Speed (kts)	Average Turn Time (Minutes)
BLK36A	1200, 1000	30	50	200	30	130	5
BLK36B	1000	30	50	200	30	130	5
BLK36C	1200	30	50	200	30	130	5
BLK36D	1200	30	50	200	30	130	5
BLK36A	1200, 1000	30	50	200	30	130	5

Table 1. Flight planning parameters for the Pegasus LiDAR system.

Figure 2. Flight plans and base stations used for Guinabasan floodplain using Pegasus LiDAR system.

2.2 Ground Base Stations

The project team was able to recover three (3) NAMRIA horizontal ground control point: CBU-327, CBU-331, and CBU-337 which are of first (2nd) order accuracy. ree (3) NAMRIA benchmarks were also recovered: CU-575, CU-621A and CU-671 which are of first (1st) order accuracy. These benchmarks were used as vertical reference points and were also established as ground control points.

The certifications for the base stations are found in Annex 2 while the baseline processing reports for the established control points are found in Annex 3. These were used as base stations during flight operations for the entire duration of the survey on July 18, July 28, and July 30, 2014. Base stations were observed using dual frequency GPS receivers, TRIMBLE SPS 882 and SPS 852. Flight plans and location of base stations used during the aerial LiDAR acquisition in Guinabasan floodplain are shown in Figure 2.

The succeeding sections depict the sets of reference points, control stations and established points, and the ground control points for the entire Guinabasan Floodplain LiDAR Survey. Figure 3 to Figure 8 show the recovered NAMRIA reference points within the area of the floodplain, while Table 2 to Table 7 show the details about the following NAMRIA control stations and established points. Table 8, on the other hand, shows the list of all ground control points occupied during the acquisition together with the corresponding dates of utilization.

Figure 3. GPS set-up over CBU-327 on a bridge adjacent to San Remigio Cemetery in Barangay Poblacion, San Remigio, Cebu (a) and NAMRIA reference point CBU-327 (b) as recovered by the field team.

Table 2. Details of the recovered NAMRIA horizontal control point CBU-327 used as base station for the LiDAR acquisition.

Station Name	CBU-327		
Order of Accuracy	2 nd Order		
Relative Error (horizontal positioning)	1 in 50,000		
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Latitude Longitude Ellipsoidal Height	11° 4′ 30.20546″ 123° 56′ 10.33433″ 3.541 meters	
Grid Coordinates, Philippine Transverse Mercator Zone 5 (PTM Zone 5 PRS 92)	Easting Northing	602,289.857 meters 1,224,791.193 meters	
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Latitude Longitude Ellipsoidal Height	11° 4′ 25.88934″ North 123° 56′ 15.51412″ East 63.574 meters	
Grid Coordinates, Universal Transverse Mercator Zone 52 North (UTM 52N PRS 92)	Easting Northing	602,254.06 meters 1,224,362.49 meters	

- Figure 4. GPS set-up over CBU-331 beside the Grotto in Barangay Sagay, Borbon, Cebu (a) and NAMRIA reference point CBU-331 (b) as recovered by the field team.
- Table 3. Details of the recovered NAMRIA horizontal control point CBU-331 used as base station for the LiDAR acquisition.

Station Name	CBU-331		
Order of Accuracy	2 nd Order		
Relative Error (horizontal positioning)	1 iı	n 50,000	
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Latitude Longitude Ellipsoidal Height	10° 51′ 20.15600" 123° 58′ 52.36488″ 114.16 meters	
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Latitude Longitude Ellipsoidal Height	10° 51' 15.89918" North 123° 58' 57.56330" East 175.074 meters	
Grid Coordinates, Universal Transverse Mercator Zone 52 North (UTM 52N PRS 92)	Easting Northing	607,249.46 meters 1,200,110.89 meters	

Figure 5. GPS set-up over CBU-337 outside Colonia Central School in Barangay Colonia, Tuburan, Cebu (a) and NAMRIA reference point CBU-337 (b) as recovered by the field team.

Table 4.Details of the recovered NAMRIA horizontal control point CBU-337 used as base station for the LiDAR data acquisition.

Station Name	CBU-337		
Order of Accuracy	2 nd Order		
Relative Error (horizontal positioning)	1 in 50,000		
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Latitude Longitude Ellipsoidal Height	10° 39′ 23.68236″ 123° 47′ 24.66142″ 29.987 meters	
Grid Coordinates, Philippine Transverse Mercator Zone 5 (PTM Zone 5 PRS 92)	Easting Northing	586,455.051 meters 1,178,456.495 meters	
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Latitude Longitude Ellipsoidal Height	10° 39′ 19.45980″ 123° 47′ 29.88199″ 90.660 meters	
Grid Coordinates, Universal Transverse Mercator Zone 52 North (UTM 52N PRS 92)	Easting Northing	586,424.79 meters 1,178,044.01 meters	

Figure 6. GPS set-up over CU-575 at the right side of the National Road going to Tuburan Town Proper, near KM Post No. 87 in Barangay Colonia, Tuburan, Cebu (a) and NAMRIA reference point CU-575 (b) as recovered by the field team.

Table 5. Details of the recovered NAMRIA horizontal control point CU-575 used as base station for the LiDAR data acquisition.

Station Name	CU-575		
Order of Accuracy	2 nd Order		
Relative Error (horizontal positioning)	1 in 50,000		
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Latitude Longitude Ellipsoidal Height	10° 39' 54.85976" 123° 47' 43.61537" 28.568 meters	
Grid Coordinates, Philippine Transverse Mercator Zone 5 (PTM Zone 5 PRS 92)	Easting Northing	587,058.76 meters 1,179,426.958 meters	
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Latitude Longitude Ellipsoidal Height	10° 39' 50.63546" North 123° 47' 48.83243" East 89.233 meters	
Grid Coordinates, Universal Transverse Mercator Zone 52 North (UTM 52N PRS 92)	Easting Northing	586,498.1305 meters 1,179,003.08 meters	

Figure 7. GPS set-up over CU-621A located 20 m NE of KM Post No. 133 and beside the head wall of the box culvert in Barangay Tambongon, San Remigio, Cebu (a) and NAMRIA reference point CU-621A (b) as recovered by the field team.

Table 6. Details of the recovered NAMRIA horizontal control point CU-621A used as base station for the LiDAR data acquisition.

Station Name	Cl	J-621A		
Order of Accuracy	2 nd Order			
Relative Error (horizontal positioning)	1 in 50,000			
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Latitude Longitude Ellipsoidal Height	11° 01' 11.40721" 123° 55' 20.28470" 15.6595 meters		
Grid Coordinates, Philippine Transverse Mercator Zone 5 (PTM Zone 5 PRS 92)	Easting Northing	600,817.462 meters 1,218,689.898 meters		
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Latitude Longitude Ellipsoidal Height	11° 01′ 07.10388″ North 123° 55′ 25.46947″ East 75.791 meters		
Grid Coordinates, Universal Transverse Mercator Zone 52 North (UTM 52N PRS 92)	Easting Northing	600,754.2895 meters 1,218,251.478 meters		

Figure 8. GPS set-up over CU-671 at the right side of the National Road going to Argao Town Proper in Barangay Liki, Sogod, Cebu (a) and NAMRIA reference point CU-671 (b) as recovered by the field team.

Table 7. Details of the recovered NAMRIA horizontal control point CU-671 used as base station for the LiDAR data acquisition.

Station Name	C	U-671		
Order of Accuracy	2 nd Order			
Relative Error (horizontal positioning)	1 in 50,000			
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Latitude Longitude Ellipsoidal Height	10° 47′ 20.40000″ 123° 59′ 42.04388″ 113.6205 m		
Grid Coordinates, Philippine Transverse Mercator Zone 5 (PTM Zone 5 PRS 92)	Easting Northing	608,849.434 m 1,193,181.364 m		
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Latitude Longitude Ellipsoidal Height	10° 47' 16.16154" North 123° 59' 47.24832" East 174.484 m		
Grid Coordinates, Universal Transverse Mercator Zone 52 North (UTM 52N PRS 92)	Easting Northing	608,781.9745 m 1,192,751.406 m		

Date Surveyed	Flight Number	Mission Name	Ground Control Points
July 23, 2014	1747P	1BLK36A204B	CBU-327 and CU-621A
July 24, 2014	1749P	1BLK36AS205A	CBU-327 and CU-621A
August 6, 2014	1801P	1BLK36D218A	CBU-337 and CU-575
August 6, 2014	1803P	1BLK36C218B	CBU-337 and CU-575
August 7, 2014	1805P	1BLK36B219A	CBU-331 and CU-671
August 11, 2014	1821P	1BLK36AS223A	CBU-327 and CU-621A
August 12, 2014	1825P	1BLK36ABC224A	CBU-331 and CU-671

Table 8 Ground cor	ntrol points use	during the LiDAR	data acquisition
Taple 6. Ground Cor	ittoi points used	i uui ilig tile LIDAK	uala acquisition.

2.3 Flight Missions

Seven (7) missions were conducted to complete the LiDAR data acquisition in Guinabasan floodplain, for a total of twenty-five hours and thirty-five minutes (25+35) of flying time for RP-C9022 (See Annex 6). All missions were acquired using Pegasus LiDAR system. As shown below, the total area of actual coverage per mission and the corresponding flying hours are depicted in Table 9, while the actual parameters used during the LiDAR data acquisition are presented in Table 10.

Table 9. Flight missions for LiDAR data acquisition in Guinabasan floodplain.

Flight		Flight	Surveyed	Area Surveyed Surveyed Outside		No. of	Flying Hours	
Date Surveyed	Number	Plan Area (km2)	Area (km2)	Floodplain (km2)	the Floodplain (km2)	Images (Frames)	Hr	Min
July 23, 2014	1747P	233.03	258.43	NA	258.43	NA	3	35
July 24, 2014	1749P	49.22	96.59	NA	96.59	NA	3	7
August 6, 2014	1801P	316.09	347.35	45.21	302.14	NA	4	18
August 6, 2014	1803P	257.90	306.81	NA	306.81	NA	3	35
August 7, 2014	1805P	183.55	318.85	NA	318.85	NA	4	23
August 11, 2014	1821P	233.03	170.46	NA	170.46	NA	3	40
August 12, 2014	1825P	183.55	129.83	NA	129.83	NA	2	57
TOTAL		1456.37	625.63	32.63	590.98	NA	25	35

Flight Number	Flying Height (m AGL)	Overlap (%)	FOV (θ)	PRF (KHz)	Scan Frequency (Hz)	Average Speed (kts)	Average Turn Time (Minutes)
BLK36A	1200, 1000	30	50	200	30	130	5
BLK36B	1000	30	50	200	30	130	5
BLK36C	1200	30	50	200	30	130	5
BLK36D	1200	30	50	200	30	130	5

Table 10. Actual parameters used during LiDAR data acquisition.

2.4 Survey Coverage

This certain LiDAR acquisition survey covered the Guinabasan floodplain (See Annex 7). It is located in the province of Cebu with majority of the floodplain situated within the municipalities Asturias and Tuburan. Municipality of Tabuelan is fully covered by the survey. The list of municipalities and cities surveyed, with at least one (1) square kilometer coverage, is shown in Table 11. Figure 9, on the other hand, shows the actual coverage of the LiDAR acquisition for the Guinabasan floodplain.

Table 11. List of municipalities and cities surveyed during Guinabasan floodplain LiDAR survey.

Province	Municipality/City	Area of Municipality/City (km2)	Total Area Surveyed (km2)	Percentage of Area Surveyed
	Asturias	252.52	188.42	74.62%
	Balamban	236.29	51.5	21.80%
	Bogo City	86.17	86.13	99.95%
	Borbon	91.56	91.54	99.98%
	Carmen	58.44	1.62	2.77%
	Catmon	92.99	58.79	63.22%
Cebu	Daanbantayan	94.98	90.95	95.76%
	Medellin	75.7	73.34	96.88%
	San Remigio	97.13	97.09	99.96%
	Sogod	75.1	75.09	99.99%
	Tabogon	91.49	91.46	99.97%
	Tabuelan	85.94	85.94	100%
	Tuburan	242.78	241.44	99.45%
7	Total	1581.09	1233.31	78%

Figure 9. Actual LiDAR survey coverage for Guinabasan floodplain.

CHAPTER 3: LIDAR DATA PROCESSING OF THE GUINABASAN FLOODPLAIN

Engr. Ma. Rosario Concepcion O. Ang, Engr. John Louie D. Fabila, Engr. Sarah Jane D. Samalburo , Engr. Joida F. Prieto , Ailyn G. Biñas , Engr. Jennifer B. Saguran, Engr. Monalyne C. Rabino, Engr. Jovelle Anjeanette S. Canlas , Engr. Ma. Joanne I. Balaga, Engr. Erica Erin E. Elazegui

The methods applied in this chapter were based on the DREAM methods manual (Ang, et. al., 2014) and further enhanced and updated in Paringit, et. al. (2017).

3.1 Overview of the LIDAR Data Pre-Processing

The data transmitted by the Data Acquisition Component are checked for completeness based on the list of raw files required to proceed with the pre-processing of the LiDAR data. Upon acceptance of the LiDAR field data, georeferencing of the flight trajectory is done in order to obtain the exact location of the LiDAR sensor when the laser was shot. Point cloud georectification is performed to incorporate correct position and orientation for each point acquired. The georectified LiDAR point clouds are subject for quality checking to ensure that the required accuracies of the program, which are the minimum point density, vertical and horizontal accuracies, are met. The point clouds are then classified into various classes before generating Digital Elevation Models such as Digital Terrain Model and Digital Surface Model.

Using the elevation of points gathered in the field, the LiDAR-derived digital models are calibrated. Portions of the river that are barely penetrated by the LiDAR system are replaced by the actual river geometry measured from the field by the Data Validation and Bathymetry Component. LiDAR acquired temporally are then mosaicked to completely cover the target river systems in the Philippines. Orthorectification of images acquired simultaneously with the LiDAR data is done through the help of the georectified point clouds and the metadata containing the time the image was captured.

These processes are summarized in the flowchart shown in Figure 10.

Figure 10. Schematic diagram for the data pre-processing.

3.2 Transmittal of Acquired LiDAR Data

Data transfer sheets for all the LiDAR missions of the Guinabasan Floodplain can be found in Annex 5. The missions flown during the first survey in December 2013 and second survey on June 2014 utilized the Airborne LiDAR Terrain Mapper (ALTM[™] Optech Inc.) Pegasus system over Guinabasan, Cebu.

The Data Acquisition Component (DAC) transferred a total of 138.6 Gigabytes of Range data, 1.27 Gigabytes of POS data, 42.08 Megabytes of GPS base station data, and no raw image data to the data server on August 4, 2014 for the first survey which was verified for accuracy and completeness by the DPPC. The whole dataset for the Guinabasan Floodplain was fully transferred on September 2014, as indicated on the Data Transfer Sheets for the Guinabasan floodplain.

3.3 Trajectory Computation

The Smoothed Performance Metrics of the computed trajectory for Flight 1825P, one of the Guinabasan flights, which is the North, East, and Down position RMSE values are shown in Figure 11Figure 11. The x-axis corresponds to the time of the flight, which was measured by the number of seconds from the midnight of the start of the GPS week, which fell on the date and time of June 20, 2014 00:00AM. The y-axis, on the other hand, represents the RMSE value for that particular position.

Figure 11. Smoothed Performance Metrics of Guinabasan Flight 1825.

The time of flight was from 179,000 seconds to 185,500 seconds, which corresponds to afternoon of August 12, 2014. The initial spike that is seen on the data corresponds to the time that the aircraft was getting into position to start the acquisition, and the POS system starts computing for the position and orientation of the aircraft.

Redundant measurements from the POS system quickly minimized the RMSE value of the positions. The periodic increase in RMSE values from an otherwise smoothly curving RMSE values correspond to the turnaround period of the aircraft, when the aircraft makes a turn to start a new flight line. Figure 12 shows that the North position RMSE peaks at 3.00 centimeter, the East position RMSE peaks at 3.50 centimeters, and the Down position RMSE peaks at 6.20 centimeters, which are within the prescribed accuracies described in the methodology.

Figure 12. Solution Status Parameters of Guinabasan Flight

The Solution Status parameters, which indicate the number of GPS satellites; Positional Dilution of Precision (PDOP); and the GPS processing mode used for Guinabasan Flight 1825P are shown in Figure 12. For the Solution Status parameters, the figure above signifies that the number of satellites utilized and tracked during the acquisition were between 7 and 9, not going lower than 7. Similarly, the PDOP value did not go above the value of 3, which indicates optimal GPS geometry. The processing mode also remained at 0 for majority of the survey with some peaks up to 1 attributed to the turns performed by the aircraft. The value of 0 corresponds to a Fixed, Narrow-Lane Mode, which is the optimum carrier-cycle integer ambiguity resolution technique available for the POSPAC MMS. Fundamentally, all of the parameters adhered to the accuracy requirements for optimal trajectory solutions, as indicated in the methodology. The computed best estimated trajectory for all Guinabasan flights is shown in Figure 13.

Figure 13. Best estimated trajectory of the LiDAR missions conducted over the Guinabasan

3.4 LiDAR Point Cloud Computation

The produced LAS contains 107 flight lines, with each flight line contains two channels, since the Pegasus system contains two channels. The summary of the self-calibration results obtained from LiDAR processing in the LiDAR Mapping Suite (LMS) software for all flights over the Guinabasan floodplain are given in Table 9.

Parameter	Acceptable Value	Computed Value
Boresight Correction stdev)	<0.001degrees	0.001156
IMU Attitude Correction Roll and Pitch Corrections stdev)	<0.001degrees	0.004014
GPS Position Z-correction stdev)	<0.01meters	0.0078

Table 12. Self-calibration Results values for Guinabasan flights.

The optimum accuracy values for all Guinabasan flights were also calculated, which are based on the computed standard deviations of the corrections of the orientation parameters. The standard deviation values for individual blocks are presented in the Mission Summary Reports (Annex 8).

3.5 LiDAR Quality Checking

The boundary of the processed LiDAR data is shown in Figure 14. The map shows gaps in the LiDAR coverage that are attributed to cloud coverage.

Figure 14. Boundary of the processed LiDAR data on top of the SAR Elevation Data over the Guinabasan Floodplain.

A total area of 1,524.882 square kilometers (sq. kms.) were covered by the Guinabasan flight missions as a result of six (6) flight acquisitions, which were grouped and merged into five (5) block accordingly, as portrayed in Table 13.

LiDAR Blocks	Flight Numbers	Area (sq.km)
	1747P	450.768
Cebu Blk36A	1749P	
	1821P	
Cebu Blk36B	1825P	395.82
	1805P	
Cebu Blk36B additional	1805P	30.97
Cebu Blk36C	1803P	286.861
Cebu Blk36D	1803P	360.463
TOTAL	1,524.882 sq.km	

Table 13. List of LiDAR blocks for the Guinabasan floodplair	ı.
--	----

The overlap data for the merged LiDAR blocks, showing the number of channels that pass through a particular location is shown in Figure 12. Since the Pegasus system employs two channels, we would expect an average value of 2 (blue) for areas where there is limited overlap, and a value of 3 (yellow) or more (red) for areas with three or more overlapping flight lines.

Figure 15. Image of data overlap for Guinabasan floodplain

The overlap statistics per block for the Guinabasan floodplain can be found in the Mission Summary Reports (Annex 8). One pixel corresponds to 25.0 square meters on the ground. For this area, the percent overlaps are 26.55% and 45.30% which passed the 25% requirement.

The pulse density map for the merged LiDAR data, with the red parts showing the portions of the data that satisfy the two (2) points per square meter criterion is shown in Figure 16. As seen in the figure below, it was determined that all LiDAR data for the Guinabasan Floodplain Survey satisfy the point density requirement, as the average density for the entire survey area is 3.11 points per square meter.

Figure 16. Pulse density map of the merged LiDAR data for Guinabasan floodplain.

The elevation difference between overlaps of adjacent flight lines is shown in Figure 17. The default color range is blue to red, where bright blue areas correspond to portions where elevations of a previous flight line are higher by more than 0.20m, as identified by its acquisition time; which is relative to the elevations of its adjacent flight line. Similarly, bright red areas indicate portions where elevations of a previous flight line are lower by more than 0.20m, relative to the elevations of its adjacent flight line. Areas highlighted in bright red or bright blue necessitate further investigation using the Quick Terrain Modeler software.

Figure 17. Elevation difference Map between flight lines for the Guinabasan Floodplain Survey.

A screen-capture of the processed LAS data from Guinabasan flight 1825P loaded in QT Modeler is shown in Figure 18. The upper left image shows the elevations of the points from two overlapping flight strips traversed by the profile, illustrated by a dashed red line. The x-axis corresponds to the length of the profile. It is evident that there are differences in elevation, but the differences do not exceed the 20-centimeter mark. This profiling was repeated until the quality of the LiDAR data generated satisfactory results. No reprocessing was done for this LiDAR dataset.

Figure 18. Quality checking for Guinabasan flight 1825P using the Profile Tool of QT Modeler.

3.6 LiDAR Point Cloud Classification and Rasterization

Pertinent Class	Total Number of Points
Ground	1,157,172,657
Low Vegetation	1,042,381,165
Medium Vegetation	2,833,588,589
High Vegetation	1,268,915,135
Building	39,054,915

Table 14. Guinabasan classification results in TerraScan.

The tile system that TerraScan employed for the LiDAR data as well as the final classification image for a block of the Guinabasan floodplain is shown in Figure 19. A total of 1,987 tiles with 1 km. X 1 km. (one kilometer by one kilometer) size were produced. Correspondingly, Table 14 summarizes the number of points classified to the pertinent categories. The point cloud has a maximum and minimum height of 725.61 meters and 60.43 meters respectively.

Figure 19. Tiles for Guinabasan floodplain (a) and classification results (b) in TerraScan.

An isometric view of an area before and after running the classification routines is shown in Figure 20. The ground points are highlighted in orange, while the vegetation is in different shades of green, and the buildings are in cyan. It can be seen that residential structures adjacent or even below the canopy are classified correctly, due to the density of the LiDAR data.

Figure 20. Point cloud before (a) and after (b) classification.

The production of the last return (V_ASCII) and secondary (T_ASCII) DTM as well as the first (S_ASCII) and last (D_ASCII) return DSM of the area in top view display are shown in Figure 21. It shows that DTMs are the representation of the bare earth, while on the DSMs, all features are present, such as buildings and vegetation.

Figure 21. The production of last return DSM (a) and DTM (b), first return DSM (c) and secondary DTM (d) in some portion of Guinabasan floodplain.

3.7 LiDAR Image Processing and Orthophotograph Rectification

The 1,914 1km by 1km tiles area covered by Guinabasan floodplain is shown in Figure 22. After tie point selection to fix photo misalignments, color points were added to smoothen out visual inconsistencies along the seamlines where photos overlap. The Guinabasan floodplain has a total of 1399.09 sq.km orthophotogaph coverage comprised of 4,190 images. A zoomed in version of sample orthophotographs named in reference to its tile number is shown in Figure 23.

Figure 22. Guinabasan floodplain with available orthophotographs

Figure 23. Sample orthophotograph tiles for Guinabasan floodplain.
3.8 DEM Editing and Hydro-Correction

Five (5) mission blocks were processed for the Guinabasan Floodplain Survey. The block is from the Cebu mission with a total area of 1,524.882 square kilometers. Table 15 shows the name and corresponding area of each block in square kilometers.

LiDAR Blocks	Area (sq. km.)
Cebu_Blk36A	450.768
Cebu_Blk36B	395.82
Cebu_Blk36C	286.861
Cebu_Blk36D	360.463
Cebu_Blk36B_additional	30.97
TOTAL	1,524.882 sq.km

Table 15. LiDAR blocks with its corresponding areas.

Figure 24 shows portions of a DTM before and after manual editing. As evident in the figure, the bridge (Figure 24a) has obstructed the flow of water along the river. To correct the river hydrologically, the bridge was removed through manual editing (Figure 24b). A part of river (Figure 24c) has obstructed the flow of water and has to be removed through manual editing (Figure 24d).

Figure 24. Portions in the DTM of the Guinabasan Floodplain – a bridge before (a) and after (b) manual editing; a part of the river before (c) and after (d) manual editing.

3.9 Mosaicking of Blocks

Cebu_Blk36G was used as the reference block at the start of mosaicking because the identified reference for shifting was an existing calibrated Cebu DEM overlapping with the blocks to be mosaicked. Table 16 shows the shift values applied to each LiDAR block during mosaicking.

Mosaicked LiDAR DTM for Guinabasan Floodplain is shown in Figure 19. It can be seen that the entire Guinabasan floodplain is 100% covered by LiDAR data.

Mission Dioska	Shift Values (meters)			
MISSION BIOCKS	х	у	z	
Cebu_Blk36A	0.00	0.00	-0.63	
Cebu_Blk36B	0.00	0.00	0.37	
Cebu_Blk36B_additional	0.00	0.00	0.85	
Cebu_Blk36C	0.00	0.00	-0.30	
Cebu_Blk36D	0.00	0.00	-0.25	
Cebu_Blk36A	0.00	0.00	-0.63	

Table 16. Shift values of each LiDAR block of Guinabasan Floodplain.

Figure 25. Map of processed LiDAR data for the Guinabasan Floodplain.

3.10 Calibration and Validation of Mosaicked LiDAR DEM

The extent of the validation survey done by the Data Validation and Bathymetry Component (DVBC) in Guinabasan to collect points with which the LiDAR dataset is validated is shown in Figure 26. A total of 22,471 survey points were gathered for all the flood plains within the province of Cebu wherein the Guinabasan floodplain is located. Random selection of 80% of the survey points, resulting to 17,977 points, was used for calibration.

A good correlation between the uncalibrated mosaicked LiDAR DTM and ground survey elevation values is shown in Figure 27. Statistical values were computed from extracted LiDAR values using the selected points to assess the quality of data and obtain the value for vertical adjustment. The computed height difference between the LiDAR DTM and calibration points is 0.55 meters with a standard deviation of 0.20 meters. Calibration of the LiDAR data was done by subtracting the height difference value, 0.55 meters, to the mosaicked LiDAR data. Table 17 shows the statistical values of the compared elevation values between the LiDAR data and calibration data.

Figure 26. Map of Guinabasan Floodplain with validation survey points in green.

Figure 27. Correlation plot between calibration survey points and LiDAR data.

Calibration Statistical Measures	Value (meters)
Height Difference	0.55
Standard Deviation	0.20
Average	-0.51
Minimum	-1.01
Maximum	-0.00005

Table 17. Calibration Statistical Measures
--

The remaining 20% of the total survey points were intersected to the flood plain, resulting to 365 points, were used for the validation of calibrated Guinabasan DTM. A good correlation between the calibrated mosaicked LiDAR elevation values and the ground survey elevation, which reflects the quality of the LiDAR DTM, is shown in Figure 28. The computed RMSE between the calibrated LiDAR DTM and validation elevation values is 0.15 meters with a standard deviation of 0.09 meters, as shown in Table 18.

Figure 28. Correlation plot between the validation survey points and the LiDAR data.

Validation Statistical Measures	Value (meters)
RMSE	0.15
Standard Deviation	0.09
Average	0.12
Minimum	-0.25
Maximum	0.40

Table 18. Validation S	Statistical Measures
------------------------	----------------------

3.11 Integration of Bathymetric Data into the LiDAR Digital Terrain Model

For bathy integration, centerline and zigzag data were available for Guinabasan with a total of 15,322 bathymetric survey points. The resulting raster surface produced was done by Inverse Distance Weighted (IDW) interpolation method. After burning the bathymetric data to the calibrated DTM, assessment of the interpolated surface is represented by the computed RMSE value of 0.002 meters. The extent of the bathymetric survey done by the Data Validation and Bathymetry Component (DVBC) in Guinabasan integrated with the processed LiDAR DEM is shown in Figure 29.

Figure 29. Map of Guinabasan floodplain with bathymetric survey points in blue.

3.12 Feature Extraction

The features salient in flood hazard exposure analysis include buildings, road networks, bridges, and water bodies within the floodplain area with a 200-meter buffer zone. Mosaicked LiDAR DEMs with a 1-m resolution were used to delineate footprints of building features, which comprised of residential buildings, government offices, medical facilities, religious institutions, and commercial establishments, among others. Road networks comprise of main thoroughfares such as highways and municipal and barangay roads essential for the routing of disaster response efforts. These features are represented by network of road centerlines.

3.12.1 Quality Checking (QC) of Digitized Features' Boundary

Guinabasan floodplain, including its 200-m buffer, has a total area of 53.95 sq km. For this area, a total of 5.0 sq. km., corresponding to a total of 1085 building features, were considered for QC. Figure 30 shows the QC block for the Guinabasan floodplain.

Figure 30. Block (in blue) of Guinabasan building features that was subjected to QC.

Quality checking of Guinabasan building features resulted in the ratings shown in Table 19.

Table 19. Details of the quality checking ratings for the building features extracted for the Guinabasan River Basin

FLOODPLAIN	COMPLETENESS	CORRECTNESS	QUALITY	REMARKS
Guinabasan	99.82	99.91	97.79	PASSED

3.12.2 Height Extraction

Height extraction was done for 6,144 building features in Guinabasan floodplain. Of these building features, 1,344 were filtered out after height extraction, resulting to 4,800 buildings with height attributes. The lowest building height is at 2.00 meters, while the highest building is at 6.40 meters.

3.12.3 Feature Attribution

In attribution, combination of participatory mapping and actual field validation was done. Representatives from LGU were invited to assist in the determination of the features. The remaining unidentified features were then validated on the field.

Table 20 summarizes the number of building features per type, while Table 21 shows the total length of each road type. Table 22, on the other hand, shows the number of water features extracted per type.

Facility Type	No. of Features
Residential	4,745
School	10
Market	2
Agricultural/Agro-Industrial Facilities	1
Medical Institutions	2
Barangay Hall	2
Military Institution	0
Sports Center/Gymnasium/Covered Court	2
Telecommunication Facilities	0
Transport Terminal	0
Warehouse	0
Power Plant/Substation	0
NGO/CSO Offices	1
Police Station	0
Water Supply/Sewerage	0
Religious Institutions	5
Bank	0
Factory	19
Gas Station	2
Fire Station	0
Other Government Offices	1
Other Commercial Establishments	8
Total	4,800

Table 20. Building features extracted for Guinabasan Floodplain.

Floodplain	Barangay Road City/ Municipal Road Provincial Road Road Others					Total
Guinabasan	76.59	13.22	0.00	14.46	0.00	104.27

Table 21. Total length of extracted roads for Guinabasan Floodplain.

Table 22. Number of extracted water bodies for Guinabasan Floodplain.

Water Body Type							
Floodplain	Rivers/ Streams	Rivers/ StreamsLakes/PondsSeaDamFish Pen					
Guinabasan	2	14	0	0	24	40	

A total of three (3) bridges over small culverts over small channels that are part of the river network were also extracted for the floodplain.

3.12.4 Final Quality Checking of Extracted Features

All extracted ground features were given the complete required attributes. Respectively, all these output features comprise the flood hazard exposure database for the floodplain. The final quality checking completes the feature extraction phase of the project.

Figure 31 shows the completed Digital Surface Model (DSM) of the Guinabasan floodplain overlaid with its ground features.

Figure 31. Extracted features of the Guinabasan Floodplain.

CHAPTER 4 LIDAR VALIDATION SURVEY AND MEASUREMENT OF THE GUINABASAN RIVER BASIN

Engr. Louie P. Balicanta, Engr. Joemarie S. Caballero, Ms. Patrizcia Mae. P. dela Cruz, Engr. Dexter T. Lozano For. Dona Rina Patricia C. Tajora, Elaine Bennet Salvador, and For. Rodel C. Alberto

The methods applied in this chapter were based on the DREAM methods manual (Balicanta, et. al., 2014) and further enhanced and updated in Paringit, et. al. (2017).

4.1 Summary of Activities

The Data Validation and Bathymetry Component (DVBC) conducted a field survey in Guinabasan River on December 5 to 17, 2015. Generally, the scope of work was comprised of (i) initial reconnaissance; (ii) control point survey for the establishment of a control point; (iii) the cross section survey and bridge asbuilt survey, and water level marking in the Mean Sea Level (MSL) of the Guinabasan Bridge in Brgy. Bago, Municipality of Asturias; (iv) validation points acquisition of about 97.43 km covering Municipalities of Asturias and Balamban, and Toledo City; and (v) bathymetric survey from Brgy. Agtugop down to Brgy. Tubigagmanok, Municipality of Asturias, with an approximate length of 9.52 km using Trimble[®] SPS 882 GNSS PPK survey technique. Figure 32 illustrates the extent of the entire survey in Guinabasan River.

Figure 32. Guinabasan River Survey Extent.

4.2 Control Survey

The GNSS network utilized for the Guinabasan River Basin is composed of seven (7) loops established on December 7 and 14, 2015, which occupied the following reference points: CBU-293, a second order GCP located inside Cantabaco National High School in Brgy. Cantabaco, Toledo City; and, CU-784, a first order BM in Brgy. Balud, Toldeo City.

A control point was established along the approach of bridges, namely: UP-ILI at Ilihan Bridge in Brgy. Ilihan, Toledo City. The DPWH control point DPWHECS, in Brgy. Bago, Astrias; and the NAMRIA established control points CBU-3614, in Brgy. Poblacion, Municipality of Asturias; CU-552, in Brgy. Cantu-Od, Municipality of Balamban; and CBU-3015, in Brgy. Sta. Lucia, Municipality of Asturias, were also occupied to use as markers for the network.

Table 23 depicts the summary of reference and control points utilized, with their corresponding locations, while Figure 31 shows the GNSS network established in the Guinabasan River Survey.

Table 23. List of reference and control points used during the survey in Guinabasan River (Source: NAMRIA, UP-TCAGP).

		Geographic Coordinates (WGS 84)				
Control Point	Order of Accuracy	Latitude	Longitude	Ellipsoidal Height (m)	MSL Elevation (m)	Date of Establishment
CBU-293	2nd order	10°18'28.70835"	123°43'20.76082"	350.838	-	2007
CU-784	1st order	-	-	121.354	58.767	2014
CBU-3614	Used as marker	-	-	-	-	2007
CU-552	Used as marker	-	-	-	-	2003
UP-ILI	UP Established	-	-	-	-	12-7-2015
CBU-3015	Used as marker	-	-	-	-	2007
DPWHECS	Used as marker	-	-	-	-	2010

Figure 33. Guinabasan River Basin Control Survey Extent.

Figure 34 to Figure 40 depict the setup of the GNSS on recovered reference points and established control points in the Guinabasan River.

Figure 34. GNSS receiver set-up, Trimble® SPS 852, at CBU-293 in front of Cantabaco National High School in Brgy. Cantabaco, Toledo City, Cebu.

Figure 35. GNSS receiver setup, Trimble® Zephyr ™ Model 2, at CU-784 Balud Bridge approach in Brgy. Balud, Toledo City, Cebu.

Figure 36. GNSS base receiver setup, Trimble® Zephyr ™ Model 2, at CBU-3614, Lapu-Lapu Bridge approach in Brgy. Poblacion, Municipality of Asturias, Cebu.

Figure 37. GNSS base setup, Trimble® Zephyr ™ Model 2, at CU-552 in Brgy. Cantu-od, Municipality of Balamban.

Figure 38. GNSS base receiver setup, Trimble® Zephyr ™ Model 2, at the established point, UP-ILI in the approach of Ilihan Footbridge in Brgy. Ilihan, Toledo City.

Figure 39. GNSS base setup, Trimble® Zephyr ™ Model 2, at CBU-3015 in Santa Lucia Bridge, Brgy. Santa Lucia, Municipality of Asturias.

Figure 40. GNSS base receiver setup, Trimble® Zephyr ™ Model 2, at DPWHECS in Brgy. Bago, Municipality of Asturias.

4.3 Baseline Processing

The GNSS Baselines were processed simultaneously in TBC by observing that all baselines have fixed solutions with horizontal and vertical precisions within +/- 20 cm and +/- 10 cm requirement respectively. In cases where one or more baselines did not meet all of these criteria, masking was performed. Masking is the removal or covering of portions of the baseline data using the same processing software. The data is then repeatedly processed until all baseline requirements are met. If the reiteration yields out of the required accuracy, a resurvey is initiated. Table 24 presents the baseline processing results of control points in the Guinabasan River Basin, as generated by the TBC software.

Table 24. The Baseline processing report for the Guinabasan River GNSS static observation survey.

Observation	Date of Observation	Solution Type	H.Prec	V. Prec. (Meter)	Geodetic Az.	Ellipsoid Dist. (Meter)
CU-784 UP- ILI (B1)	12-7-2015	Fixed	0.006	0.034	340°45'16"	4741.533
CU-552 UP- ILI (B9)	12-7-2015	Fixed	0.004	0.022	202°05'36"	16152.939
CBU-293 CU-784 (B3)	12-7-2015	Fixed	0.006	0.028	305°11'33"	6328.249
CU-784 CBU3614 (B6)	12-7-2015	Fixed	0.006	0.042	10°56'41"	25772.836
CU784 CU- 552 (B10)	12-7-2015	Fixed	0.004	0.021	13°03'37"	19960.518
CBU-3614 CU-552 (B7)	12-7-2015	Fixed	0.005	0.026	183°44'41"	5872.324
CBU-293 CBU-3614 (B4)	12-7-2015	Fixed	0.008	0.035	359°27'24"	28951.752
CBU-293 CU-552 (B8)	12-7-2015	Fixed	0.006	0.022	358°22'03"	23100.039
CBU-293 UP-ILI (B2)	12-7-2015	Fixed	0.004	0.019	320°20'42"	10551.869
CBU-3614 UP-ILI (B5)	12-7-2015	Fixed	0.004	0.027	197°13'50"	21805.194
DPWHECS CBU-3015 (B12)	12-14-2015	Fixed	0.006	0.010	303°29'12"	1750.592
CU-552 DPWHECS (B10)	12-14-2015	Fixed	0.006	0.033	24°32'17"	12684.190
CBU-3614 DPWHECS (B11)	12-14-2015	Fixed	0.006	0.035	40°41'55"	7490.309
CBU-3614 CBU-3015 (B7)	12-14-2015	Fixed	0.003	0.016	27°15'49"	7474.835
CU-552 CBU-3614 (B8)	12-14-2015	Fixed	0.004	0.016	183°44'41"	5872.328

As shown in Table 24, a total of fifteen (15) baselines were processed with the coordinates of CBU-293 and CU-784 held fixed for coordinate and elevation values; it is apparent that all baselines passed the required accuracy.

4.4 Network Adjustment

After the baseline processing procedure, the network adjustment is performed using the TBC software. Looking at the Adjusted Grid Coordinates table of the TBC-generated Network Adjustment Report, it is observed that the square root of the sum of the squares of x and y must be less than 20 cm and z less than 10 cm for each control point; or in equation form:

where:

 $\sqrt{((x_e)^2+(y_e)^2\,)}\,{<}\,20$ cm and $z_e\,{<}10$ cm

xe is the Easting Error, ye is the Northing Error, and ze is the Elevation Error

For complete details, see the Network Adjustment Report shown in Table 25 to Table 28.

The seven (7) control points, CBU-293, CU-784, CBU-3614, CU-552, CBU-3015, DPWHECS and UP-ILI were occupied and observed simultaneously to form a GNSS loop. Coordinates of CBU-293 and elevation value of CU-784 were held fixed during the processing of the control points as presented in Table 25. Through these reference points, the coordinates and elevation of the unknown control points will be computed.

Table 25. Constraints applied to the adjustment of the control points.

Point ID	Туре	East σ (Meter)	North σ (Meter)	Height σ (Meter)	Elevation σ (Meter)			
CBU-293	Global	Fixed	Fixed					
CU-784	Grid				Fixed			
Fixed = 0.000001(Meter)								

Likewise, the list of adjusted grid coordinates, i.e. Northing, Easting, Elevation and computed standard errors of the control points in the network is indicated in Table 26. The fixed control point CBU-293 has no values for standard errors.

Table 26. Adjusted grid coordinates for the control points used in the Guinabasan River flood plain survey.

Point ID	Easting (Meter)	Easting Error (Meter)	Northing (Meter)	Northing Error (Meter)	Elevation (Meter)	Elevation Error (Meter)	Constraint
CBU-293	579101.757	?	1139552.798	?	287.891	0.028	LL
CBU-3614	578761.189	0.004	1168493.192	0.004	3.267	0.033	
CU-552	578391.244	0.004	1162634.434	0.003	4.293	0.026	
CU-784	573923.645	0.004	1143187.034	0.004	58.767	?	е
UP-ILI	572351.798	0.004	1147658.769	0.003	13.024	0.029	
CBU-3015	582168.859	0.011	1175143.391	0.009	8.929	0.036	
DPWHECS	583630.791	0.012	1174181.419	0.010	18.930	0.039	

With the mentioned equation, $\sqrt{((x_e)^2+(y_e)^2)}<20$ cm for horizontal and $z^e<10$ cm for the vertical; the computation for the accuracy are as follows:

a.	CBU-293		= fixed	
=	2.8 < 10 cm			
	011 70 4			
b.	CU-784		(((0, 0)))	
norizon	tal accuracy	=	$V((0.4)^2 + (0.3)^2)$	
		=	V(0.16 + 0.9)	
		=	1.03 cm < 20 cm	
vertical	accuracy	=	пхеа	
с.	CBU-3614			
horizon	tal accuracy	=	√((0.4) ² + (0.4) ²	
	= v(0.16 -	⊦ 0.16)		
=	0.57 cm < 20 cn	า		
vertical	accuracy	=	3.3 < 10 cm	
d.	CU-552			
horizon	tal accuracy	=	√((0.4) ² + (0.3) ²	
	= √(0.16 -	⊦0.9)		
		=	1.03 cm < 20 cm	
vertical	accuracy	=	2.6 < 10 cm	
•				
e. borizon	UP-ILI	_	V//0 1/2 · /0 2/2	
nonzon	la accuracy	-	V((0.4) + (0.5))	
		-	$V(0.10 \pm 0.9)$	
vortical	2001/201/	-	1.03 cm < 20 cm	
vertical	accuracy	-	2.9 < 10 cm	
f.	CBU-3015			
horizon	tal accuracy	=	$\sqrt{((1.1)^2 + (0.9)^2)}$	
		=	$\sqrt{(1.21 + 0.81)}$	
		=	1.42 cm < 20 cm	
vertical	accuracv	=	3.6 < 10 cm	
g.	DPWHECS			
horizon	tal accuracy	=	$V((1.2)^2 + (1.0)^2)$	
		=	v(1.44 + 1.0)	
		=	1.56 cm < 20 cm	
vertical	accuracy	=	3.9 < 10 cm	

Following the given formula, the horizontal and vertical accuracy result of the occupied control points are within the required precision.

Point ID	Latitude	Longitude	Ellipsoid Height (Meter)	Height Error (Meter)	Constraint
CBU-293	N10°18'28.70835"	E123°43'20.76082"	350.838	0.028	LL
CBU-3614	N10°34'10.94597"	E123°43'11.73023"	64.969	0.033	
CU-552	N10°31'00.23116"	E123°42'59.11634"	66.222	0.026	
CU-784	N10°20'27.39811"	E123°40'30.77220"	121.354	?	е
UP-ILI	N10°22'53.09406"	E123°39'39.39389"	75.336	0.029	
CBU-3015	N10°37'47.19160"	E123°45'04.38488"	70.553	0.036	
DPWHECS	N10°37'15.75721"	E123°45'52.41992"	80.663	0.039	

Table 27. Adjusted geodetic coordinates for control points used in the Guinabasan River Flood Plain validation.

The corresponding geodetic coordinates of the observed points are within the required accuracy as shown in Table 27. Based on the results of the computation, the accuracy conditions are satisfied; hence, the required accuracy for the program was met. The computed coordinates of the reference and control points utilized in the Guinabasan River GNSS Static Survey are seen in Table 28

Table 28. The reference and control points utilized in the Guinabasan River Static Survey, with their corresponding locations (Source: NAMRIA, UP-TCAGP)

		Geograph	nic Coordinates (WGS 84	UTM ZONE 51 N			
Control Point	Order of Accuracy	Latitude	Longitude	Ellipsoidal Height (m)	Northing (m)	Easting (m)	BM Ortho (m)
CBU-293	2nd order GCP	10°18'28.70835"	123°43'20.76082"	350.838	1139553	579101.8	287.844
CU-784	1st order BM	10°20'27.39811"	123°40'30.77220"	121.354	1143187	573923.6	58.767
CBU-3614	Used as Marker	10°34'10.94597"	123°43'11.73023"	64.969	1168493	578761.2	3.317
CU-552	Used as Marker	10°31'00.23116"	123°42'59.11634"	66.222	1162634	578391.2	4.332
UP-ILI	UP Established	10°22'53.09406"	123°39'39.39389"	75.336	1147659	572351.8	13.001
CBU-3015	Used as Marker	10°37'47.19160"	123°45'04.38488"	70.553	1175143	582168.9	8.929
DPWHECS	Used as Marker	10°37'15.75721"	123°45'52.41992"	80.663	1174181	583630.8	18.93

4.5 Cross-section and Bridge As-Built survey and Water Level Marking

The bridge cross-section and as-built survey were conducted on December 15, 2015 at the upstream portion of Guinabasan River in Guinabasan Bridge, Brgy. Bago, Municipality of Asturias using GNSS receiver Trimble[®] SPS 882 in PPK survey technique (Figure 41).

Figure 41. Bridge as-built and cross-section survey of Guinabasan Bridge.

The length of the cross-sectional line surveyed at Guinabasan Bridge is about 101.680 m. (Figure 42) with eighty-one (81) cross-sectional points using the control point DPWHECS as the GNSS base station. The location map, cross-section diagram, and the accomplished bridge data form are shown in Figure 42 to Figure 44.

Figure 42. Location map of the Guinabasan Bridge Cross Section.

52

_					Bridge D	ata For	m					
В	ridge Na	me: Gu	inabasan Bridg	e				Da	te: Dece	ember	15, 2015	
R	iver Nan	ne: <u>Gui</u>	nabasan River					Ti	me: <u>12:1</u>	2 PM		
L	ocation	Brgy, C	ity,Region): Brg	y. New Ba	go, Municip	ality of	Asturias, Ce	bu				
S	urvey Te	am: An	nante, Alberto,	Salvador,	Tort							
F	ow cond	dition:	low	normal	high		Weath	ner Condi	ition:	fair	rain	У
La	atitude:	10d37':	16.06902"	Long	itude: 123d	45'55.9	9703"					
	BA2	2		2	\frown	BA3						
(BA	1		ti i			ť.	BA4	BA = Bridge	e Approach	P = Pier	LC = Low	Chord
		Ab1			C	Ab2	-	i I	Ш	Ш	п п	1
				P		н	c —				~	
			Deck (Pleas	e start your m	easurement fro	m the left	side of the bank	facing upst	ream)			i.c.
	E	levation	: <u>8.111m</u>	Width:			Span (B	BA3-BA2):	69.28	2m		LC
			Station			High	h Chord Eleva	tion	Low	Chord	Elevation	
1												
2												
3												
4												
	-		Bridge Ap	proach (Please	start your measure	ment from th	he left side of the ba	nk facing upstro	cam)			
		Statio	on/Distance fro	om BA1)	Elevation		Station(D	istance f	from BA	1) F	levation	1
	BA1	Jun	0		18.647m	BA3	Station(D	93.864m 18.005m				
	BA2		24 220m		17 937m	BA4		96.068m	1	1	7.997m	
	UAL		24.22011		17.55711	UNA]
Ab	utment:	Is th	e abutment slop	ing?	Yes No;	If yes	s, fill in the fo	llowing int	formation	n:		
				tation (Di	stance fro	m RA1)			Flev	ation		
	A	b1			stance no	in brit			LICV	acion		
	Δ	b2										
			Pier (Please	start your me	asurement fro	m the left	side of the bank	facing upst	ream)			
	ek				6.01							
_	snape:	rectan	gular	Number	of Piers:		_ Height	of column	n footing:			
			Station (Dis	tance fror	n BA1)	Elevation Pier Width					_	
-	Pier 1		32	.280m			8.111m					_
-	Pier 2											
\vdash	Pier A											_
	Pier 5											
				NOTE: Use	the center of the	pier as refe	rence to its station	n (
								0.			Gin	
					Disas	ter Risk a	and Exposure	Assessme	ent for Mit	tigation		>

Figure 44. The Guinabasan Bridge as-built survey data.

The water surface elevation of Guinabasan River was determined using a survey grade GNSS receiver Trimble[®] SPS 882 in PPK survey technique on December 15, 2015 at 12:12 PM with a value of 8.111 m above MSL. This was translated into marking on the bridge's pier using the same technique as shown in Figure 45. It now serves as the reference for flow data gathering and depth gauge deployment of the University of San Carlos (USC), the partner HEI responsible for the monitoring of Guinabasan River.

Figure 45. Water level marking on Guinabasan Bridge

4.6 Validation Points Acquisition Survey

The validation points acquisition survey was conducted on December 12 and 14, 2015 using a surveygrade GNSS Rover receiver, Trimble® SPS 882, mounted at the side of a vehicle as shown in Figure 46. It was secured with cable ties to ensure that it was horizontally and vertically balanced. The antenna height was 2.170 m measured from the ground up to the bottom of notch of the GNSS Rover receiver. The PPK technique utilized for the conduct of the survey was set to continuous topo mode with CBU-3015, CBU-3614, CU-552, DPWHECS, UP-ILI occupied as the GNSS base stations in the conduct of the survey.

Figure 46. GNSS Receiver Trimble® SPS 882 installed on a vehicle for Ground Validation Survey.

The validation points acquisition survey for the Guinabasan River Basin traversed the Municipalities of Tuburan, Asturias, and Balamban. The route of the survey aims to traverse LiDAR flight strips perpendicularly for the basin. The survey gathered a total of 12,473 points with approximate length of 97.43 km for the entire extent validation points acquisition survey as illustrated in the map in Figure 47.

Figure 47. The extent of the LiDAR ground validation survey (in red) for Guinabasan River Basin.

4.7 River Bathymetric Survey

A manual bathymetric survey was performed on December 9, 2015 using a Trimble[®] SPS 882 in GNSS PPK survey technique in continuous topo mode as illustrated in Figure 48. The survey team was divided in to two (2) groups – the first group began upstream in Brgy. Agtugop, Municipality of Asturias, with coordinates 10°36'22.57096"N 123°47'29.55609"E, up to the boundary of Brgy. New Bago, Municipality of Asturias. Meanwhile, the second group started from Brgy. New Bago, Municipality of Asturias, with coordinates 10°37'09.34070"N 123°46'30.46167"E, going to the mouth of the river to Brgy. Tubigagmanok, Municipality of Asturias. The survey was conducted with the assistance of personnel from the University of San Carlos. Portions of the river with data gaps were resurveyed on December 15, 2015. The control point CBU-3015 was used as base station for the whole conduct of the survey.

Figure 48. Set up of the bathymetric survey at Guinabasan River.

The extent of the bathymetric survey for Guinabasan River is shown in Figure 49. There was a slight deviation from the delineated bathymetric lines in Brgy. Santa Lucia due to the river branching out into two. The survey team chose the branch that has a wider riverbed. To further illustrate this, a CAD drawing of the riverbed centerline profile of the Guinabasan River was produced. As seen in Figure 50, there is about a 23.31-m change in elevation observed within the whole extent of the bathymetric data from its upstream in Brgy. Agtugop down to the mouth of the river in Brgy. Tubigagmanok in the Municipality of Asturias

Figure 49. The extent of the Guinabasan River Bathymetry Survey.

Overall, the bathymetric survey for Libertad River gathered a total of 3,477 points, covering 8.023 km of the river. The extent of the bathymetric survey for the Libertad River is shown in Figure 42. To further illustrate this, a CAD drawing of the riverbed profile of the Libertad River was produced. As seen in Figure 43, the highest and lowest elevation has a 40-m difference. The highest elevation observed was 37.575 m in MSL located at Brgy. Cangabo, Libertad; while the lowest was -3.217 m below MSL located in Brgy. Poblacion also in Libertad.

Figure 50. Guinabasan Riverbed Profile.

CHAPTER 5: FLOOD MODELING AND MAPPING

Dr. Alfredo Mahar Lagmay, Christopher Uichanco, Sylvia Sueno, Marc Moises, Hale Ines, Miguel del Rosario, Kenneth Punay, Neil Tingin, and Pauline Racoma

The methods applied in this chapter were based on the DREAM methods manual (Lagmay, et. al., 2014) and further enhanced and updated in Paringit, et. al. (2017).

5.1 Data Used for Hydrologic Modeling

5.1.1 Hydrometry and Rating Curves

All components and data, such as rainfall, water level, and flow in a certain period of time, which may affect the hydrologic cycle of the Guinabasan River Basin were monitored, collected, and analyzed.

5.1.2 Precipitation

Precipitation data was taken from an automatic rain gauge (ARG) installed by the Department of Science and Technology – Advanced Science and Technology Institute (DOST-ASTI). This rain gauge was installed in in Brgy. Agbanga, Asturias with geographic coordinates of 10.5911° N and 123.803°E as illustrated in Figure 51.

The total precipitation for this event in Brgy. Agbanga, Asturias ARG was 6 mm. It has a peak rainfall of 1.4 mm on January 2, 2017 at 6:50 AM. The lag time between the peak rainfall and discharge is 1 hour and 50 minutes.

Figure 51. Location Map of the Guinabasan HEC-HMS model used for calibration.

5.1.3 Rating Curves and River Outflow

A rating curve was computed using the prevailing cross-section (Figure 52) at New Bago Bridge (10.6212°N, 123.765°E). It gives the relationship between the observed water levels and outflow of the watershed at this location.

Figure 52. Cross-Section Plot of New Bago Bridge.

For New Bago Bridge, the rating curve is expressed y=1E-14e^4.4196x as shown in Figure 53.

Figure 53. The rating curve at New Bago Bridge, Asturias, Cebu.

This rating curve equation was used to compute the river outflow at New Bago Bridge for the calibration of the HEC-HMS model shown in Figure 54. The total rainfall for this event is 6 mm and the peak discharge is 5.4 m3/s at 7:40 PM of January 2, 2017.

Figure 54. Rainfall and outflow data at New Bago Bridge, which was used for modeling.

5.2 RIDF Station

PAGASA computed the Rainfall Intensity Duration Frequency (RIDF) values for the Laoag Rain Gauge (Table 29). The RIDF rainfall amount for 24 hours was converted into a synthetic storm by interpolating and re-arranging the values in such a way that certain peak values will be attained at a certain time (Figure 56). This station was selected based on its proximity to the Guinabasan watershed. The extreme values for this watershed were computed based on a 37-year record.

	COMPUTED EXTREME VALUES (in mm) OF PRECIPITATION										
T (yrs)	10 mins	20 mins	30 mins	1 hr	2 hrs	3 hrs	6 hrs	12 hrs	24 hrs		
2	15.9	24.7	31.4	41.4	53.7	60.5	73.1	83.4	92.8		
5	21.9	34	43.2	58.4	74.9	84	105.2	122.6	139.1		
10	25.8	40.2	51.1	69.7	88.9	99.6	126.3	148.6	169.7		
15	28.1	43.6	55.5	76	96.8	108.4	138.3	163.3	187		
20	29.6	46.1	58.6	80.5	102.3	114.5	146.7	173.5	199.1		
25	30.9	48	61	83.9	106.6	119.3	153.1	181.4	208.5		
50	34.6	53.8	68.3	94.4	119.7	133.9	173	205.8	237.2		
100	38.3	59.5	75.6	104.9	132.7	148.4	192.7	230	265.7		

Table 29. RIDF values for the Mactan Point Rain Gauge, as computed by PAGASA

Figure 55. Location of Mactan RIDF Station relative to Guinabasan River Basin.

Figure 56. Synthetic storm generated for a 24-hr period rainfall for various return periods.

5.3 HMS Model

The soil dataset was generated before 2004 from the Bureau of Soils under the Department of Environment and Natural Resources Management. The land cover dataset is from the National Mapping and Resource information Authority (NAMRIA). The soil and land cover of the Guinabasan River Basin are shown in Figure 57 and Figure 58, respectively.

Figure 57. Soil Map of Guinabasan River Basin.

Figure 58. Land Cover Map of Guinabasan River Basin.

For Guinabasan, four (4) soil classes were identified. These are clay, clay loam, silt loam and undifferentiated land. Moreover, seven (7) land cover classes were identified. These are brushlands, built-up areas, cultivated areas, inland water, open areas, open canopy forests, and tree plantations.

Figure 59. Slope Map of the Guinabasan River Basin.

Figure 60. Stream Delineation Map of Guinabasan River Basin

Figure 61. Guinabasan river basin model generated in HEC-HMS.

Using the SAR-based DEM, the Guinabasan basin was delineated and further subdivided into subbasins. The model consists of 57 sub basins and 28 reaches as shown in Figure 61 (See Annex 10).

5.4 Cross-section Data

The riverbed cross-sections of the watershed were necessary in the HEC-RAS model setup. The crosssection data for the HEC-RAS model was derived from the LiDAR DEM data, which was defined using the Arc GeoRAS tool and was post-processed in ArcGIS (Figure 62).

5.5 Flo 2D Model

The automated modelling process allows for the creation of a model with boundaries that are almost exactly coincidental with that of the catchment area. As such, they have approximately the same land area and location. The entire area is divided into square grid elements, 10 meter by 10 meter in size. Each element is assigned a unique grid element number which serves as its identifier, then attributed with the parameters required for modelling such as x-and y-coordinate of centroid, names of adjacent grid elements, Manning coefficient of roughness, infiltration, and elevation value. The elements are arranged spatially to form the model, allowing the software to simulate the flow of water across the grid elements and in eight directions (north, south, east, west, northeast, northwest, southeast, southwest).

Based on the elevation and flow direction, it is seen that the water will generally flow from the south of the model to the north, following the main channel. As such, boundary elements in those particular regions of the model are assigned as inflow and outflow elements respectively.

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

Figure 63. A screenshot of the river sub-catchment with the computational area to be modeled in FLO-2D Grid Developer System Pro (FLO-2D GDS Pro).

The simulation is then run through FLO-2D GDS Pro. This particular model had a computer run time of 100.06329 hours. After the simulation, FLO-2D Mapper Pro is used to transform the simulation results into spatial data that shows flood hazard levels, as well as the extent and inundation of the flood. Assigning the appropriate flood depth and velocity values for Low, Medium, and High creates the following food hazard map. Most of the default values given by FLO-2D Mapper Pro are used, except for those in the Low hazard level. For this particular level, the minimum h (Maximum depth) is set at 0.2 m while the minimum vh (Product of maximum velocity (v) times maximum depth (h)) is set at 0 m2/s. The generated hazard maps for Guinabasan are in Figure 68, 70, and 72.

The creation of a flood hazard map from the model also automatically creates a flow depth map depicting the maximum amount of inundation for every grid element. The legend used by default in Flo-2D Mapper is not a good representation of the range of flood inundation values, so a different legend is used for the layout. In this particular model, the inundated parts cover a maximum land area of 63 792 800.00 m2. The generated flood depth maps for Guinabasan are in Figure 69, 71, and 73.

There is a total of 465 228 177.98 m3 of water entering the model. Of this amount, 25 253 779.51 m3 is due to rainfall while 439 974 398.47 m3 is inflow from other areas outside the model. 11 329 565.00 m3 of this water is lost to infiltration and interception, while 24 641 579.81 m3 is stored by the flood plain. The rest, amounting up to 429 257 024.59 m3, is outflow.

5.6 Results of HMS Calibration

After calibrating the Guinabasan HEC-HMS river basin model (See Annex 9), its accuracy was measured against the observed values. Figure 64 shows the comparison between the two discharge data.

Figure 64. Outflow Hydrograph of Guinabasan produced by the HEC-HMS model compared with observed outflow.

Table 30 shows the adjusted ranges of values of the parameters used in calibrating the model.

Hydrologic Element	Calculation Type	Method	Parameter	Range of Calibrated Values
	Loss	SCS Curve number	Initial Abstraction (mm)	1.15-6.22
	LUSS		Curve Number	59.07-83.33
Dacin	Transform	Clark Unit Hydrograph	Time of Concentration (hr)	0-70
DdSIII	Industoriu		Storage Coefficient (hr)	0.51-7.63
	Deceflow	Decession	Recession Constant	0.02-27.85
	Basellow	Recession	Ratio to Peak	0-0.10
Reach	Routing	Muskingum-Cunge	Manning's Coefficient	0.17-0.40

Initial abstraction defines the amount of precipitation that must fall before surface runoff. The magnitude of the outflow hydrograph increases as initial abstraction decreases. The range of values 1.15 to 6.22 mm means that there is minimal to average amount of infiltration or rainfall interception by vegetation.

Curve number is the estimate of the precipitation excess of soil cover, land use, and antecedent moisture. The magnitude of the outflow hydrograph increases as curve number increases. The range of 65 to 90 for curve number is advisable for Philippine watersheds depending on the soil and land cover of the area (M. Horritt, personal communication, 2012). Since the soil type is mostly clay, the curve number values for Guinabasan range from 59.07 to 83.33.

Time of concentration and storage coefficient are the travel time and index of temporary storage of runoff in a watershed. The range of calibrated values 0.51 to 7.63 minutes determines the reaction time of the model with respect to the rainfall. The peak magnitude of the hydrograph also decreases when these parameters are increased.

Recession constant is the rate at which baseflow recedes between storm events and ratio to peak is the ratio of the baseflow discharge to the peak discharge. Recession constant of 0 to 0.10 indicates that the basin will quickly go back to its original discharge. Ratio to peak of 0.17 to 0.40 indicates a steeper receding limb of the outflow hydrograph.

Manning's roughness coefficient of 0.01 to 0.90 corresponds to the common roughness in Guinabasan, which is determined to be mostly brushland (Brunner, 2010).

Accuracy measure	Value
RMSE	0.6774
r2	0.9684
NSE	0.8596
PBIAS	-24
RSR	0.3747

 Table 31. Summary of the Efficiency Test of the Guinabasan HMS Model

The Root Mean Square Error (RMSE) method aggregates the individual differences of these two measurements. It was identified at 0.6774

The Pearson correlation coefficient (r²) assesses the strength of the linear relationship between the observations and the model. This value being close to 1 corresponds to an almost perfect match of the observed discharge and the resulting discharge from the HEC HMS model. Here, it measured 0.9684.

The Nash-Sutcliffe (E) method was also used to assess the predictive power of the model. Here the optimal value is 1. The model attained an efficiency coefficient of 0.8596.

A positive Percent Bias (PBIAS) indicates a model's propensity towards under-prediction. Negative values indicate bias towards over-prediction. Again, the optimal value is 0. In the model, the PBIAS is -24.

The Observation Standard Deviation Ratio, RSR, is an error index. A perfect model attains a value of 0 when the error in the units of the valuable a quantified. The model has an RSR value of 0.3747. 1.

5.7 Calculated Outflow hydrographs and Discharge Values for different Rainfall Return Periods

5.7.1 Hydrograph using the Rainfall Runoff Model

The summary graph (Figure 63) shows the Guinabasan outflow using the Mactan Rainfall Intensity-Duration-Frequency curves (RIDF) in 5 different return periods (5-year, 10-year, 25-year, 50-year, and 100-year rainfall time series) based on the Philippine Atmospheric Geophysical and Astronomical Services Administration (PAG-ASA) data. The simulation results show increasing outflow magnitude as the rainfall intensity increases for a range of durations and return periods.

Figure 65. The Outflow hydrograph at the Guinabasan Station, generated using the Mactan RIDF simulated in HEC-HMS.

A summary of the total precipitation, peak rainfall, peak outflow and time to peak of the Guinabasan discharge using the Mactan Rainfall Intensity-Duration-Frequency curves (RIDF) in five different return periods is shown in Table 33.

RIDF Period	Total Precipitation (mm)	Peak rainfall (mm)	Peak outflow (m 3/s)	Time to Peak
5-Year	139.1	21.9	420.206	2 hour, 20 minutes
10-Year	169.7	25.8	552.835	2 hour, 10 minutes
25-Year	208.5	30.9	728.715	2 hour, 10 minutes
50-Year	237.2	34.6	861.084	2 hour, 00 minutes
100-Year	265.7	38.3	997.209	2 hour, 00 minutes

Table 32. The peak values of the Guinabasan HEC-HMS Model outflow using the Mactan RIDF.

5.8 River Analysis (RAS) Model Simulation

The HEC-RAS Flood Model produced a simulated water level at every cross-section for every time step for every flood simulation created. The resulting model will be used in determining the flooded areas within the model. The simulated model will be an integral part in determining real-time flood inundation extent of the river after it has been automated and uploaded on the DREAM website. For this publication, only a sample output map river was to be shown. Figure 66 shows a generated sample map of the Guinabasan River using the calibrated HMS base flow.

Figure 66. Sample output map of the Guinabasan RAS Model.

5.9 Flow Depth and Flood Hazard

The resulting hazard and flow depth maps have a 10m resolution. Figure 67 to Figure 72 show the 5-, 25-, and 100-year rain return scenarios of the Guinabasan floodplain. The floodplain, with an area of 566.21 sq. km., covers 16 municipalities from three provinces. Table 37 shows the percentage of area affected by flooding per municipality.

Province	Municipality	Total Area	Area Flooded	% Flooded
Abra	San Quintin	62.29	44.19	70.94%
Abra	Bangued	123.75	30.88	24.96%
Abra	Langiden	98.70	87.67	88.82%
Abra	Pidigan	58.13	45.00	77.41%
llocos Norte	Nueva Era	619.00	3.54	0.57%
Ilocos Sur	Bantay	71.06	71.06	100.00%
Ilocos Sur	Caoayan	21.20	20.08	94.73%
Ilocos Sur	Magsingal	78.90	75.66	95.90%
Ilocos Sur	Narvacan	97.18	0.30	0.31%
Ilocos Sur	San Ildefonso	13.21	13.21	100.00%
Ilocos Sur	San Juan	59.88	42.08	70.28%
Ilocos Sur	San Vicente	12.20	12.20	100.00%
Ilocos Sur	Santa Catalina	10.83	8.09	74.65%
llocos Sur	Santa	57.20	35.91	62.78%
llocos Sur	Santo Domingo	50.36	50.36	99.99%
Ilocos Sur	Vigan City	24.01	23.44	97.66%

Table 33. Municipalities affected in Guinabasan floodplain.

This image is not availabe for this river basin.

Figure 67. A 100-year Flood Hazard Map for Guinabasan Floodplain overlaid on Google Earth imagery.

This image is not availabe for this river basin.

Figure 68. A 100-year Flow Depth Map for Guinabasan Floodplain overlaid on Google Earth imagery.

This image is not availabe for this river basin.

Figure 69. A 25-year Flood Hazard Map for Guinabasan Floodplain overlaid on Google Earth imagery.

This image is not availabe for this river basin.

Figure 70. A 25-year Flow Depth Map for Guinabasan Floodplain overlaid on Google Earth imagery.

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

This image is not availabe for this river basin.

Figure 71. A 5-year Flood Hazard Map for Guinabasan Floodplain overlaid on Google Earth imagery.

This image is not availabe for this river basin.

Figure 72. A 5-year Flood Depth Map for Guinabasan Floodplain overlaid on Google Earth imagery.

5.10 Inventory of Areas Exposed to Flooding

Listed below are the affected barangays in the Guinabasan River Basin, grouped accordingly by municipality. For the said basin, four municipalities consisting of 26 barangays are expected to experience flooding when subjected to 5-yr rainfall return period.

For the 5-year return period, 42% of the municipality of Asturias with an area of 140.45 sq. km. will experience flood levels of less 0.20 meters. 1.9% of the area will experience flood levels of 0.21 to 0.50 meters while 1.8%, 1.5%, 1.01, and 0.31% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters respectively. Listed in Table 34 are the affected areas in square kilometers by flood depth per barangay. Annex 12 and Annex 13 show the educational and health institutions exposed to flooding.

		New Bago	5.17	0.44	0.72	0.56	0.28	0.094
		Manguiao	8.46	0.34	0.23	0.18	0.13	0.0072
urn Períod		Magcalape	3.41	0.078	0.04	0.06	0.051	0.012
r Rainfall Ret	(in sq. km.)	Lunas	3.56	0.12	0.053	0.056	0.062	0.012
ou during 5-Yea	ngays in Asturias	Bog-O	2.86	0.064	0.041	0.016	0.0021	0.000003
Asturias, Ceł	of affected bara	Bairan	1.98	0.049	0.025	0.025	0.037	0.011
Fable 34. Affected Areas ir Area	Area o	Bago	5.7	0.35	0.3	0.35	0.27	0.027
	Agtugop	5.49	0.21	0.26	0.32	0.26	0.14	
ι.		Agbanga	2.39	0.047	0.063	0.1	0.2	0.08
	Affected Area (sq. km.)	ру тіооа аерти (іп т.)	0.03-0.20	0.21-0.50	0.51-1.00	1.01-2.00	2.01-5.00	> 5.00

Affected Area (sq. km.)			Area	of affected bar	angays in Asturia	s (in sq. km.)		
by flood depth (in m.)	San Isidro	San Roque	Santa Lucia	Santa Rita	Tag-Amakan	Tubigagmanok	Tubod	Ubogon
0.03-0.20	0.93	1.39	2.89	5.86	0.4	4.67	1.95	1.87
0.21-0.50	0.016	0.037	0.33	0.14	0.007	0.37	0.043	0.036
0.51-1.00	0.014	0.023	0.27	0.11	0.0048	0.28	0.026	0.019
1.01-2.00	0.019	0.028	0.059	0.087	0.0036	0.2	0.019	0.017
2.01-5.00	0.019	0.018	0.017	0.087	0.0083	0.073	0.0098	0.014
> 5.00	0.0014	0.0066	0.00032	0.017	0.0041	0.018	0.000	0.0003

For the municipality of Tuburan, with an area of 243.8 sq. km., 7.04% will experience flood levels of less 0.20 meters. 0.49% of the area will experience flood levels of 0.21 to 0.50 meters while 0.35%, 0.28%, 0.04%, and 0.0004% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 35 are the affected areas in square kilometers by flood depth per barangay.

Affected Area (sq. km.)		Area of affected	barangays in T	uburan (in sq. k	km.)
by flood depth (in m.)	Antipolo	Bakyawan	Caridad	Colonia	Fortaliza
0.03-0.20	5.25	0.17	0.085	3.58	1.18
0.21-0.50	0.14	0.0079	0.0021	0.66	0.066
0.51-1.00	0.15	0.0005	0.00029	0.43	0.059
1.01-2.00	0.28	0.0002	0	0.19	0.12
2.01-5.00	0.014	0	0	0.011	0.025
> 5.00	0	0	0	0.0001	0

Table 35. Affected Areas in Tuburan, Cebu during 5-Year Rainfall Return Period.

Affected Area (sq. km.)		Area of affected	barangays in T	uburan (in sq. k	:m.)
by flood depth (in m.)	Kagba-O	Libo	Molobolo	Santo Niño	
0.03-0.20	0.17	2.92	0.082	3.72	
0.21-0.50	0.0022	0.19	0.0043	0.11	
0.51-1.00	0.00064	0.14	0.002	0.074	
1.01-2.00	0.0003	0.044	0.00091	0.035	
2.01-5.00	0	0.029	0.0004	0.012	
> 5.00	0	0.0007	0	0.0001	

Figure 74. Affected Areas in Tuburan, Cebu during 5-Year Rainfall Return Period.

For the 25-year return period, 40.7% of the municipality of Asturias with an area of 140.45 sq. km. will experience flood levels of less 0.20 meters. 1.87% of the area will experience flood levels of 0.21 to 0.50 meters while 1.78%, 1.82%, 1.087, and 0.72% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters respectively. Listed in Table 36 are the affected areas in square kilometres by flood depth per barangay.

Affected Area (sq. km.)			Area c	of affected bara	ngays in Asturias	(in sq. km.)			
ру пооа аерти (и m.)	Agbanga	Agtugop	Bago	Bairan	Bog-O	Lunas	Magcalape	Manguiao	New Bag
0.03-0.20	2.35	5.34	5.2	1.96	2.84	3.5	3.36	8.27	4.86
0.21-0.50	0.045	0.19	0.38	0.056	0.064	0.12	0.09	0.33	0.28
0.51-1.00	0.043	0.19	0.37	0.031	0.05	0.073	0.045	0.27	0.55
1.01-2.00	0.083	0.33	0.45	0.027	0.022	0.064	0.053	0.25	0.7
2.01-5.00	0.21	0.37	0.56	0.041	0.0055	0.077	0.077	0.2	0.74
> 5.00	0.15	0.24	0.04	0.017	0.000003	0.022	0.019	0.023	0.13

Affected Area (sq. km.)			Area	a of affected ba	ırangays in Asturia	ıs (in sq. km.)		
by flood depth (in m.)	San Isidro	San Roque	Santa Lucia	Santa Rita	Tag-Amakan	Tubigagmanok	Tubod	Ubogon
0.03-0.20	0.91	1.36	2.72	5.79	0.4	4.49	1.93	1.85
0.21-0.50	0.016	0.044	0.38	0.14	0.0068	0.4	0.047	0.041
0.51-1.00	0.014	0.025	0.33	0.11	0.0045	0.33	0.031	0.022
1.01-2.00	0.021	0.029	0.11	0.11	0.0041	0.26	0.022	0.017
2.01-5.00	0.031	0.025	0.024	0.12	0.0085	0.11	0.017	0.02
> 5.00	0.0055	0.012	0.0014	0.024	0.0079	0.02	0.0023	0.0029

Table 36. Affected Areas in Asturias, Cebu during 25-Year Rainfall Return Period

Figure 75. Affected Areas in Asturias, Cebu during 25-Year Rainfall Return Period.

For the municipality of Tuburan, with an area of 243.8 sq. km., 6.85% will experience flood levels of less 0.20 meters. 0.45% of the area will experience flood levels of 0.21 to 0.50 meters while 0.4%, 0.32%, 0.14%, and 0.0008% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 37 are the affected areas in square kilometers by flood depth per barangay.

Affected Area (sq. km.)		Area of affected	barangays in Tu	uburan (in sq. k	:m.)
by flood depth (in m.)	Antipolo	Bakyawan	Caridad	Colonia	Fortaliza
0.03-0.20	5.19	0.17	0.084	3.31	1.15
0.21-0.50	0.14	0.011	0.0024	0.58	0.069
0.51-1.00	0.12	0.001	0.00036	0.61	0.054
1.01-2.00	0.31	0.0001	0.00013	0.28	0.062
2.01-5.00	0.079	0.0002	0	0.091	0.12
> 5.00	0	0	0	0.0002	0

Table 37. Affected Areas in Tuburan, Cebu during 25-Year Rainfall Return Period.

Affected Area (sq. km.)	Area o	of affected barang	ays in Tuburan (in	sq. km.)
by flood depth (in m.)	Kagba-O	Libo	Molobolo	Santo Niño
0.03-0.20	0.17	2.86	0.08	3.68
0.21-0.50	0.0023	0.17	0.0041	0.12
0.51-1.00	0.00084	0.18	0.0028	0.081
1.01-2.00	0.0004	0.073	0.0016	0.054
2.01-5.00	0	0.038	0.0005	0.017
> 5.00	0	0.0016	0	0.0002

Figure 76. Affected Areas in Tuburan, Cebu during 25-Year Rainfall Return Period.

For the 100-year return period, 40.05% of the municipality of Asturias with an area of 140.45 sq. km. will experience flood levels of less 0.20 meters. 1.73% of the area will experience flood levels of 0.21 to 0.50 meters while 1.78%, 1.9%, 2.37, and 0.72% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters respectively. Listed in Table are the affected areas in square kilometers by flood depth per barangay.

Affected Area (so km)			Area o	of affected bara	ngavs in Asturias (in sa. km.)			
ру пооа аерти (п т.)	Agbanga	Agtugop	Bago	Bairan	Bog-O	Lunas	Magcalape	Manguiao	New Bag
0.03-0.20	2.32	5.25	5.04	1.94	2.83	3.46	3.34	8.15	4.74
0.21-0.50	0.045	0.18	0.24	0.061	0.068	0.11	660.0	0.33	0.22
0.51-1.00	0.038	0.18	0.42	0.035	0.052	0.094	0.05	0.27	0.38
1.01-2.00	0.07	0.29	0.46	0.029	0.027	0.065	0.043	0.3	0.73
2.01-5.00	0.17	0.44	0.77	0.045	0.0077	0.09	0.094	0.26	1.03
> 5.00	0.24	0.32	0.051	0.023	0.000003	0.029	0.027	0.038	0.16

Table 38. Affected Areas in Asturias, Cebu during 100-Year Rainfall Return Period.

Affected Area (sq. km.)			Area	l of affected ba	rangays in Asturia	ıs (in sq. km.)		
by flood depth (in m.)	San Isidro	San Roque	Santa Lucia	Santa Rita	Tag-Amakan	Tubigagmanok	Tubod	Ubogon
0.03-0.20	0.9	1.35	2.62	5.76	0.39	4.39	1.92	1.84
0.21-0.50	0.015	0.047	0.37	0.14	0.0089	0.39	0.05	0.043
0.51-1.00	0.015	0.027	0.38	0.11	0.0038	0.37	0.034	0.026
1.01-2.00	0.022	0.032	0.16	0.13	0.0045	0.28	0.024	0.02
2.01-5.00	0.036	0.028	0.03	0.13	0.0089	0.15	0.02	0.021
> 5.00	0.01	0.015	0.002	0.033	0.01	0.022	0.003	0.0053

Figure 77. Affected Areas in Asturias, Cebu during 100-Year Rainfall Return Period.

For the municipality of Tuburan, with an area of 243.8 sq. km., 6.74% will experience flood levels of less 0.20 meters. 0.43% of the area will experience flood levels of 0.21 to 0.50 meters while 0.45%, 0.34%, 0.24%, and 0.002% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 39 are the affected areas in square kilometers by flood depth per barangay.

Affected Area (sq. km.)	Area of affected barangays in Tuburan (in sq. km.)				
by flood depth (in m.)	Antipolo	Bakyawan	Caridad	Colonia	Fortaliza
0.03-0.20	5.15	0.17	0.084	3.16	1.13
0.21-0.50	0.15	0.013	0.0023	0.53	0.075
0.51-1.00	0.13	0.0019	0.0003	0.65	0.052
1.01-2.00	0.2	0.0002	0.00029	0.38	0.056
2.01-5.00	0.22	0.0002	0	0.15	0.14
> 5.00	0	0	0	0.0002	0

Table 39. Affected Areas in Tuburan, Cebu during 100-Year Rainfall Return Period.

Affected Area (sq. km.)	Area o	of affected barang	ays in Tuburan (in	sq. km.)
by flood depth (in m.)	Kagba-O	Libo	Molobolo	Santo Niño
0.03-0.20	0.17	2.83	0.08	3.66
0.21-0.50	0.0026	0.14	0.0037	0.12
0.51-1.00	0.00094	0.19	0.0034	0.086
1.01-2.00	0.0004	0.11	0.0017	0.065
2.01-5.00	0	0.044	0.0006	0.022
> 5.00	0	0.003	0	0.0006

Figure 78. Affected Areas in Tuburan, Cebu during 100-Year Rainfall Return Period.

Among the barangays in the municipality of Asturias, Manguiao is projected to have the highest percentage of area that will experience flood levels at 6.65%. Meanwhile, New Bago posted the second highest percentage of area that may be affected by flood depths at 5.17%.

Among the barangays in the municipality of Tuburan, Antipolo is projected to have the highest percentage of area that will experience flood levels at 2.4%. Meanwhile, Colonia posted the second highest percentage of area that may be affected by flood depths at 2%.

Moreover, the generated flood hazard maps for the Guinabasan Floodplain were used to assess the vulnerability of the educational and medical institutions in the floodplain. Using the flood depth units of PAG-ASA for hazard maps - "Low", "Medium", and "High" - the affected institutions were given their individual assessment for each Flood Hazard Scenario (5 yr, 25 yr, and 100 yr).

Manning Loval	Area	Covered in s	sq. km.
warning Level	5 year	25 year	100 year
Low	3.73	3.62	3.36
Medium	4.96	5.25	5.45
High	3.51	5.61	6.83

Table 40. Area covered by each warning level with respect to the rainfall scenarios.

Of the 2 identified Education Institutions in the Guinabasan Flood plain, no schools were assessed to be exposed to any of the flooding scenarios.

Of the 2 identified Medical Institutions in the Guinabasan Flood Plain, one medical institution was assessed to be exposed to Low level flooding in both 25 and 100 year scenarios.

5.11 Flood Validation

In order to check and validate the extent of flooding in different river systems, there is a need to perform validation survey work. Field personnel gathered secondary data regarding flood occurrence in the area within the major river system in the Philippines.

From the flood depth maps produced by Phil-LiDAR 1 Program, multiple points representing the different flood depths for different scenarios were identified for validation.

The validation personnel then went to the specified points identified in a river basin and gathered data regarding the actual flood level in each location. Data gathering was done through a local DRRM office to obtain maps or situation reports about the past flooding events or by interviewing some residents with knowledge of or have experienced flooding in a particular area.

The actual data from the field were compared to the simulated data to assess the accuracy of the Flood Depth Maps produced and to improve on the results of the flood map. The points in the flood map versus its corresponding validation depths are shown in Figure 80.

Comparing it with the flood depth map of the nearest storm event, the map has an RMSE value of 3.15 m. Table 41 shows a contingency matrix of the comparison. The validation points are found in Annex 11.

The flood validation data were gathered on Jan 13-15, 2016

Figure 79. Validation points for a 5-year Flood Depth Map of the Guinabasan Flood Plain.

Figure 80. Flood Map depth versus Actual Flood Depth.

Table 41. Actual Flood Depth versus Simulated Flood Depth at different levels in the Guinabasan River Basin.

CLUNAR				Modeleo	d Flood Deptl	n (m)		
GUINAD	ASAN DASIN	0-0.20	0.21-0.50	0.51-1.00	1.01-2.00	2.01-5.00	> 5.00	Total
	0-0.20	11	1	2	0	0	0	14
	0.21-0.50	9	3	6	0	0	0	18
Actual	0.51-1.00	2	2	11	3	0	9	27
Flood	1.01-2.00	0	0	1	1	1	23	26
(m)	2.01-5.00	0	0	0	0	0	0	0
	> 5.00	0	0	0	0	0	0	0
	Total	22	6	20	4	1	32	85

On the whole, the overall accuracy generated by the flood model is estimated at 30.59% with 26 points correctly matching the actual flood depths. In addition, there were 21 points estimated one level above and below the correct flood depths while there were 27 points and 9 points estimated two levels above and below, and three or more levels above and below the correct flood. A total of 4 points were overestimated while a total of 14 points were underestimated in the modelled flood depths of Guinabasan. Table 42 depicts the summary of the Accuracy Assessment in the Guinabasan River Basin Flood Depth Map.

Table 42. Summary of the Accuracy Assessment in the Guinabasan River Basin Survey.

	No. of Points	%
Correct	26	30.59
Overestimated	45	52.94
Underestimated	14	16.47
Total	85	100.00

REFERENCES

Ang M.O., Paringit E.C., et al. 2014. DREAM Data Processing Component Manual. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Balicanta L.P., Paringit E.C., et al. 2014. DREAM Data Validation Component Manual. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Brunner, G. H. 2010a. HEC-RAS River Analysis System Hydraulic Reference Manual. Davis, CA: U.S. Army Corps of Engineers, Institute for Water Resources, Hydrologic Engineering Center.

Lagmay A.F., Paringit E.C., et al. 2014. DREAM Flood Modeling Component Manual. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Paringit E.C, Balicanta L.P., Ang, M.O., Sarmiento, C. 2017. Flood Mapping of Rivers in the Philippines Using Airborne Lidar: Methods. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Sarmiento C., Paringit E.C., et al. 2014. DREAM Data Acquisition Component Manual. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

UP TCAGP 2016, Acceptance and Evaluation of Synthetic Aperture Radar Digital Surface Model (SAR DSM) and Ground Control Points (GCP). Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

ANNEXES

Annex 1. Technical Specifications of the LIDAR Sensors used in the Guinabasan Floodplain Survey

1. PEGASUS SENSOR

Parameter	Specification			
Operational envelope (1,2,3,4)	150-4000 m AGL, nominal			
Laser wavelength	1064 nm			
Horizontal accuracy (2)	1/5,500 x altitude, (m AGL)			
Elevation accuracy (2)	<5-35 cm, 1 σ			
Effective laser repetition rate	Programmable, 33-167 kHz			
Position and orientation system	POS AV™ AP50 (OEM); 220-channel dual frequency GPS/GNSS/Galileo/L-Band receiver			
Scan width (WOV)	Programmable, 0-50°			
Scan frequency (5)	Programmable, 0-70 Hz (effective)			
Sensor scan product	1000 maximum			
Beam divergence	Dual divergence: 0.25 mrad (1/e) and 0.8 mrad (1/e), nominal			
Roll compensation	Programmable, ±5° (FOV dependent)			
Range capture	Up to 4 range measurements, including 1st, 2nd, 3rd, and last retu			
Intensity capture	Up to 4 intensity returns for each pulse, including last (12 bit)			
Video Camera	Internal video camera (NTSC or PAL)			
Image capture	Compatible with full Optech camera line (optional)			
Full waveform capture	12-bit Optech IWD-2 Intelligent Waveform Digitizer (optional)			
Data storage	Removable solid state disk SSD (SATA II)			
Power requirements	28 V; 900 W;35 A(peak)			
Dimensions and weight	Sensor: 260 mm (w) x 190 mm (l) x 570 mm (h); 23 kg Control rack: 650 mm (w) x 590 mm (l) x 530 mm (h); 53 kg			
Operating temperature	-10°C to +35°C (with inLibertading jacket)			
Relative humidity	0-95% no-condensing			

Table A-1.1 Parameters and Specifications of Pegasus Sensor

Annex 2. NAMRIA Certificate of Reference Points Used in the LiDAR Survey

1. CBU-327

Republic of the Philippines Department of Environment and Natural Resources NATIONAL MAPPING AND RESOURCE INFORMATION AUTHORITY

July 25, 2014

CERTIFICATION

To whom it may concern:

This is to certify that according to the records on file in this office, the requested survey information is as follows -

	Provi	nce: CEBU			
	Station Na	ame: CBU-327			
Island MCANAG	Order	2nd			
Municipality: SAN REMIGIO			Baranga MSI Ela	ay: POB	LACION
insing of the indice	PRS	92 Coordinates	NOL LIC	auton.	
Latitude: 11° 4' 30.20546"	Longitude:	123° 56' 10.33433"	Ellipsoid	ial Hgt:	3.54100 m.
	WGS	84 Coordinates			
Latitude: 11° 4' 25.88934"	Longitude:	123° 56' 15.51412"	Ellipsoid	ial Hgt:	63.57400 m.
	PTM / P	RS92 Coordinates			
Northing: 1224791.193 m.	Easting:	602289.857 m.	Zone:	4	
	UTM / P	RS92 Coordinates			
Northing: 1,224,362.49	Easting:	602,254.06	Zone:	51	

CBU-327

Location Description

Station is located at San Remegio. It is situated on the bridge adjacent to San Remegio Public Cemetery.

Mark is the head of a 3 in. copper nail embedded and centered on a 30 cm x 30 cm x 1.20 cm concrete monument, protruding about 20 cm above the ground with inscriptions, "CBU-327, 2007, NAMRIA".

 Requesting Party:
 UP-TCAGP / Engr. Christopher Cruz

 Pupose:
 Reference

 OR Number:
 8799582 A

 T.N.:
 2014-1733

111 RUELOM. BELEN, MNSA Director, Mapping And Geodesy Branch Um

NAMRIA OFFICES: Man : Lawton Avenue. Fort Bonitacio. 1634 Taguig City. Philippines Tal. No.: (632) 810-4831 to 41 Bonch : 421 Banch : 421 Banchicata B. San Noolas. 1010 Manila, Philippines, Tal. No. (632) 241-3494 to 98 www.namria.gov.ph

ISO 9001: 2008 CERTIFIED FOR MAPPING AND GEOSPATIAL INFORMATION MANAGEMENT

Figure A-2.1. CBU-327

2. CBU-331

Republic of the Philippines Department of Environment and Natural Resources NATIONAL MAPPING AND RESOURCE INFORMATION AUTHORITY

July 25, 2014

CERTIFICATION

To whom it may concern:

This is to certify that according to the records on file in this office, the requested survey information is as follows -

	Province: CEBU	
	Station Name: CBU-331	
	Order: 4th	
Island: Visayas Municipality: BORBON		Barangay: SAGAY MSL Elevation:
	PRS92 Coordinates	
Latitude: 10° 51' 20.15600"	Longitude: 123° 58' 52.36448'	" Ellipsoidal Hgt: 114.16500 m.
	WGS84 Coordinates	
Latitude: 10° 51' 15.89918"	Longitude: 123° 58' 57.56330'	" Ellipsoidal Hgt: 175.07400 m
	PTM / PRS92 Coordinates	
Northing: 1200531.095 m.	Easting: 607287.007 m.	Zone: 4
	UTM / PRS92 Coordinates	
Northing: 1,200,110.89	Easting: 607,249.46	Zone: 51

Location Description

CBU-331 From Cebu City, travel N to Brgy. Sagay. When you reach Brgy. Sagay turn right at the road going to Borbon town. The monument is located beside the Grotto, 10 m SW from the chapel, 6 m away from the center of the provincial road, and 20 m SW from the brgy. hall of Sagay. Mark is the head of a 3 in. copper nail embedded and centered on a 30 cm x 1.20 cm concrete monument, protruding about 20 cm above the ground with inscriptions, "CBU-331, 2007, NAMRIA".

Requesting Party: UP-TCAGP / Engr. Christopher Cruz Pupose: Reference OR Number: 8799582 A T.N.: 2014-1732

111 RUEL DM. BELEN, MNSA Director, Mapping And Geodesy Branch am

NAMRIA OFFICES Main : Lewton Avenue, Fort Bonitacio. 1634 Taguig City, Philippines Tal. No.: (632) 810-4831 to 41 Branch : 421 Banaca St. San Nicolas, 1010 Manila, Philippines, Tel. No. (632) 241-3494 to 96 www.namria.gov.ph

ISO 9001: 2008 CERTIFIED FOR MAPPING AND GEOSPATIAL INFORMATION MANAGEMENT

Figure A-2.2. CBU-331

3. CBU-337

Republic of the Philippines Department of Environment and Natural Resources NATIONAL MAPPING AND RESOURCE INFORMATION AUTHORITY

July 25, 2014

CERTIFICATION

To whom it may concern:

This is to certify that according to the records on file in this office, the requested survey information is as follows -

	Province: CEBU	
	Station Name: CBU-337	
Island: VISAYAS	Order: 2nd	Barangay: COLONIA
municipality. TOBORAN	PRS92 Coordinates	MSL Elevation:
Latitude: 10º 39' 23.68236"	Longitude: 123° 47' 24.66412"	Ellipsoidal Hgt: 29.98700 m.
	WGS84 Coordinates	
Latitude: 10° 39' 19.45980"	Longitude: 123° 47' 29.88199"	Ellipsoidal Hgt: 90.66000 m.
	PTM / PRS92 Coordinates	
Northing: 1178456.495 m.	Easting: 586455.051 m.	Zone: 4
	UTM / PRS92 Coordinates	
Northing: 1,178,044.01	Easting: 586,424.79	Zone: 51

Location Description

CBU-337

To reach the station, travel along S road to Naga City then turn W to the junction road leading to Toledo City and travel for one and a half hrs., after you reach Toledo City, turn N to Sangi junction leading to the Mun. of Tuburan and travel again for one and a half hrs. to reach the station. You will pass the Municipalities of Balamban and Asturias. After reaching Asturias Proper, continue travelling to Sta. Lucia Junction. When you reach the junction, turn right going to a concrete road and continue travelling to another junction leading to Brgy. Colonia and Brgy. Manguiao. After you reach the other junction, turn left to the road to reach Brgy. Colonia. The station is located aoutside the Colonia Central School compound near the concrete fence infront of the school.

Mark is the head of a 3 in. copper nail embedded and centered on a 30 cm x 30 cm x 1.20 m concrete monument, protruding about 20 cm above the ground with inscriptions, "CBU-337, 2007, NAMRIA".

Requesting Party:	UP-TCAGP / Engr. Christopher Cruz
Pupose:	Reference
OR Number:	8799582 A
T.N.:	2014-1731

NAMRIA OFFICES

RUEL DM. BELEN, MNSA Director, Mapping And Geodesy Branch

Main : Lowton Avenue, Fort Bonitacio, 1634 Taguig City, Philippines Tel. No.: (632) 810-4831 to 43 Branch : 421 Barraca St. San Nicolas, 1010 Manila, Philippines, Tel. No. (632) 241-3494 to 98 www.namria.gov.ph

ISO 9001: 2008 CERTIFIED FOR MAPPING AND GEOSPATIAL INFORMATION MANAGEMENT

Figure A-2.3. CBU-337

4. CU-575

Location Description

BM CU-575 is located along the national highway of barangay Fortaliza, Tuburan 13 m NE of deep well, 20 m SE of Jessie Quer Residence, 25 m SE of Renante Quer residence, 0.20 m NW of km post 87. It is set on a drilled hole centered with a copper nail on a 0.20 m x 0.20 m cement putty, 0.02 m above a concrete surface of a riprap wall with inscription of CU-575.

Requesting Party: ENGR. CHRISTOPHER CRUZ Purpose: OR Number: T.N.:

Reference 8799780 A 2014-1903

1/1/4 RUEL DM. BELEN, MNSA Director, Mapping And Geodesy Branch

NAMRIA OFFICES Man : Lawlow Avenue, Fort Bonifacio, 1834 Taguig City, Philippines Tel. No.: (632) 810-4831 to 41 Branch : 421 Barraca St. San Nicolas, 1010 Manila, Philippines, Tel. No. (632) 241-3494 to 98 www.namria.gov.ph

ISO 9001: 2008 CERTIFIED FOR MAPPING AND GEOSPATIAL INFORMATION MANAGEMENT

Figure A-2.4. CU-575

5. CU-621A

			July 25, 2014
		CERTIFICATION	
To whom it may co	ncern:		
This is to certify	that according to the	records on file in this office, the requi	ested survey information is as follows -
		Province: CEBU Station Name: CU-621	
Island: CEBU		Municipality: SAN REMIGIO	Barangay: TAMBONGON
Elevation: 19.87	70 m.	Order: 1st Order	Datum: Mean Sea Level
post 133, 15 m SV Building.	/ of Diodito Pabona	Residence, 18 m NW of Urnilio Ursa	the town proper travel 20 m NE of km lez Residence and 65 m NE of Daring's
le a head of A" con	cription "CU-621, 20	108. NAMRIA".	ent with projection of 0.20 m above the
Is a head of 4" cop ground surface. Ins			
Is a head of 4" cop ground surface. Ins Requesting Party: Pupose: OR Number: T.N.:	UP-TCAGP / Engr Reference 8799582 A 2014-1735	Christopher Cruz RUEU Director, Mapp	M. BELEN, MNSA

NAMRIA OFFICES: Main : Lawton Avenue, Fort Bonfacio, 1634 Taguig Oity, Philippines – Tol. No.: (632) 810-4831 to 41 Branch : 421 Barraca 81: San Nicolas, 1010 Mania, Philippines, Tel. No. (632) 241-3494 to 98 www.namria.gov.ph

ISO 9001: 2008 CERTIFIED FOR MAPPING AND GEOSPATIAL INFORMATION MANAGEMENT

Figure A-2.5. CU-621A

6. CU-671

Republic of the Philippines Department of Environment and Natural Resources NATIONAL MAPPING AND RESOURCE INFORMATION AUTHORITY

August 15, 2014

CERTIFICATION

To whom it may concern:

This is to certify that according to the records on file in this office, the requested survey information is as follows -

	Province: CEBU Station Name: CU-671	
Island: CEBU	Municipality: SOGOD	Barangay: DAMOLOG
Elevation: 112.9312 m.	Order: 1st Order	Datum: Mean Sea Level

Location Description

BM CU-671 is located along the national highway of brgy. Damolog, municipality of Sogod, 8 m SE of a concrete riprap wall, 35 m SE of a steel concrete post railings and 10 m SW of km post 65. Mark is set on a drilled hole centered with 3" copper nail on top of a concrete riprap wall embedded with concrete cement putty, 0.20 m x 0.20 m x 0.03 m with inscription of "CU-671 2008 NAMRIA".

Requesting Party: Pupose: OR Number: T.N.;

Engr. Cristopher Cruz Reference 8799719 A 2014-1850

Director, Mapping And Geodesy Branch

NAMRIA OFFICES: Man Luwton Avenue. Fort Bonfacio, 1634 Taguig City, Philippines Tel. No., (632) 810-4831 to 41 Branch - 421 Barcharas B. San Nicosas, 1210 Manila, Philippines. Tel. No. (632) 241-3494 to 98 www.namria.gov.ph

ISO 9001: 2003 CERTIFIED FOR MAPPING AND GEOSPATIAL INFORMATION MANAGEMENT

Figure A-2.6. CU-671

Annex 3. Baseline Processing Reports of Control Points used in the LiDAR Survey

1. CU-575

Table A-3.1. CU-575

Trocessing ourmany										
Observation	From	То	Solution Type	H. Prec. (Meter)	V. Prec. (Meter)	Geodetic Az.	Ellipsoid Dist. (Meter)	∆Height (Meter)		
CBU-337 CU-575 (B1)	CBU-337	CU-575	Fixed	0.003	0.004	31°01'03"	1117.714	-1.414		
CBU-337 CU-575 (B2)	CBU-337	CU-575	Fixed	0.002	0.003	31°01'04"	1117.719	-1.424		

Acceptance Summary								
Processed	Passed	Flag	▶	Fail	•			
2	2	0		0				

Vector Components (Mark to Mark)

From:	CBU-337	CBU-337							
	Grid		Local			Global			
Easting	586424.790 n	Latit	ude	N10°39'23	3.68236"	Latitude		N10°39'19.45981"	
Northing	1178044.015 n	Long	gitude	E123°47'24	4.66412"	Longitude		E123°47'29.88199"	
Elevation	28.962 n	Heig	Height 29.987 m H		Height		90.659 m		
To: CU-575									
Grid			Local			Global			
Easting	586998.127 n	Latit	ude	N10°39'54	4.85973"	Latitude		N10°39'50.63543"	
Northing	1179003.079 n	Long	gitude	E123°47'43	3.61525"	Longitude		E123°47'48.83231"	
Elevation	27.560 n	Heig	ht	2	8.573 m	m Height		89.238 m	
Vector									
∆Easting	573.3	36 m	NS Fwd Azimuth			31°01'03"	ΔX	-379.302 m	
∆Northing	959.0	64 m	Ellipsoid Dist.			1117.714 m	ΔY	-468.760 m	
∆Elevation	-1.4	02 m /	∆Height			-1.414 m	ΔZ	941.111 m	

Stanuaru Errors

Vector errors:							
σ ΔEasting	0.001 m	σ NS fwd Azimuth	0°00'00"	σΔΧ	0.001 m		
σ ΔNorthing	0.001 m	σ Ellipsoid Dist.	0.001 m	σΔΥ	0.002 m		
σ ΔElevation	0.002 m	σ ΔHeight	0.002 m	σΔΖ	0.001 m		

2. CU-621A

Table A-3.2. CU-621A

Frocessing Summary										
Observation	From	То	Solution Type	H. Prec. (Meter)	V. Prec. (Meter)	Geodetic Az.	Ellipsoid Dist. (Meter)	∆Height (Meter)		
CBU-327 CU- 621A (B1)	CBU-327	CU-621A	Fixed	0.004	0.014	193°58'06"	6294.070	12.113		
CBU-327 CU- 621A (B2)	CBU-327	CU-621A	Fixed	0.003	0.012	193°58'06"	6294.084	12.124		

Processing Summary

Acceptance Summary								
Processed	Passed	Flag	Þ	Fail	•			
2	2	0		0				

Vector Components (Mark to Mark)

From:	CBU-327							
	Grid		Local			Global		
Easting	602254.054 m	Latitude	N11°04'30	0.20546"	Latitude		N11°04'25.88935"	
Northing	1224362.494 m	Longitude	E123°56'10).33433"	Longitude		E123°56'15.51412"	
Elevation	2.863 m	Height		3.541 m	Height		63.573 m	
To: CU-621A								
Grid		Local			Global			
Easting	600754.296 m	Latitude	N11°01'11	1.40740"	Latitude		N11°01'07.10407*	
Northing	1218251.484 m	Longitude	E123°55'20	E123°55'20.28492"			E123°55'25.46968"	
Elevation	15.098 m	Height	1	5.654 m	4 m Height		75.785 m	
Vector								
∆Easting	-1499.75	7 m NS Fwd Azir	nuth		193°58'06"	ΔX	600.402 m	
∆Northing	-6111.01	1 m Ellipsoid Dist	L.		6294.070 m	ΔY	1828.859 m	
∆Elevation	12.23	5 m ∆Height			12.113 m	ΔZ	-5992.519 m	

Standard Errors

Vector errors:							
σ ΔEasting	0.002 m	σ NS fwd Azimuth	0°00'00"	σΔΧ	0.004 m		
σ ΔNorthing	0.001 m	σ Ellipsoid Dist.	0.001 m	σΔΥ	0.006 m		
σ ΔElevation	0.007 m	σ ΔHeight	0.007 m	σΔZ	0.002 m		

3. CU-671

Table A-3.3. CU-671

Observation То Solution Type H. Prec. V. Prec. Geodetic Ellipsoid ∆Height From (Meter) Dist. (Meter) (Meter) Az. (Meter) CU-671 --- CBU-331 CBU-331 (B1) CU-671 Fixed 0.011 0.027 168°25'16' 7519.275 -0.549 CBU-331 --- CU-671 CBU-331 CU-671 Fixed 0.011 0.028 168°25'16" 7519.276 -0.540 (B2)

Acceptance Summary

Processed	Passed	Flag	Þ	Fail	Þ
2	2	0		0	

Vector Components (Mark to Mark)

From:	CBU	CBU-331							
Grid		Local		Global					
Easting		607249.455 m	Latit	tude	N10°51'20	0.15600"	Latitude		N10°51'15.89943"
Northing		1200110.888 m	Lon	gitude	E123°58'52	2.36448"	Longitude		E123°58'57.56315"
Elevation		113.315 m	Heig	ght	11	4.165 m	Height		174.835 m
To:	CU-	671							
Grid		Local			Global				
Easting		608781.977 m	1.977 m Latitude		N10°47'20.40004"		Latitude		N10°47'16.16158"
Northing		1192751.407 m Lo		Longitude E123°59'42.0439		2.04397"	Longitude		E123°59'47.24841"
Elevation		112.679 m		leight 113.616 m		Height		174.479 m	
Vector									
∆Easting		1532.52	3 m	NS Fwd Azimuth			168°25'16"	ΔX	-2024.349 m
∆Northing		-7359.48	1 m	Ellipsoid Dist.			7519.275 m	ΔY	302.655 m
ΔElevation		-0.63	6 m	∆Height			-0.549 m	ΔZ	-7235.455 m

Standard Errors

Vector errors:							
σ ΔEasting	0.005 m	σ NS fwd Azimuth	0°00'00"	σΔX	0.009 m		
σ ΔNorthing	0.002 m	σ Ellipsoid Dist.	0.002 m	σΔY	0.011 m		
σ ΔElevation	0.014 m	σ ΔHeight	0.014 m	σΔZ	0.004 m		

Processing Summary
Annex 4. The LiDAR Survey Team Composition

Data Acquisition Component Sub-Team	Designation	Name	Agency/ Affiliation
PHIL-LIDAR 1	Program Leader	ENRICO C. PARINGIT, D.ENG	UP-TCAGP
Data Acquisition Com- ponent Leader	Data Component Project Leader – I	ENGR. CZAR JAKIRI SARMIENTO	UP-TCAGP
	Chief Science Research Specialist (CSRS)	ENGR. CHRISTOPHER CRUZ	UP-TCAGP
Survey Supervisor	Supervising Science Re-	LOVELY GRACIA ACUÑA	UP-TCAGP
	search Specialist (Super- vising SRS)	ENGR. LOVELYN ASUN- CION	UP-TCAGP
	FIELD TEA	М	
	Senior Science Research Specialist (SSRS)	ENGR. GEROME HIPOLITO	UP-TCAGP
LiDAR Operation	Decease Accesiete (DA)	GRACE SINADJAN	UP-TCAGP
	Research Associate (RA)	ENGR. IRO NIEL ROXAS	UP-TCAGP
Ground Survey, Data	RA	JERIEL PAUL ALAMBAN, GEOL.	UP-TCAGP
Download and transfer		KENNETH QUISADO	UP-TCAGP
	Airborne Security	SSG. RAYMUND DOMINE	PILIPPINE AIR FORCE (PAF)
LiDAR Operation	Pilot	CAPT. CESAR ALFONSO III	ASIAN AERO- SPACE CORPO- RATION (AAC)
		CAPT. FERDINAND DE OCAMPO	AAC

Table A-4.1. The LiDAR Survey Team Composition

	FLIGHT PLAN SERVER	Actual KML LOCATION	St NA ZWithome	Z.Wittome_	Raw Raw	55 NA Z'Airborne.	38/30 NA Z'Mithome	7-1 Aleboura	37 NA LUMBON
	OPERATOR	(00140)	EMB	and a	INB	163	100		1KB
	(show(s)	Base Info (Jod)	1KB	1	ED41	1408	1408		EKE
	BASE ST	BASE STATIONESI	6.03		30.4	10.4	0.70		3.45
		Digitizer	211		6.63	124	-	-	MA
		RANGE	7		23.3	18.5		A1.0	50.9
R SHEET J ready)	BOU NOISSIN	FLENCASI			208	243		600	114
TA TRANSFEF	anna a	MAGESICASI	1	-	40.4	29.6	-	48.4	11.8
DA		POS	-	202	250	170		122	192
		(INN)SSON		13.8	12.1	7.95		12.8	7.24
	LAS	KML	(swath)	1.67	1.5	4.46		1.82	708
	RAW	Cutout I AC	and indiano	2.62	2.24	101	241	NA	NA
		SENSOR		Pegasus	Peoasus		hegases	Pegasus	Pegasus
		MISSION NAME		1BLK47B199A		1BLK36H203A	1BLK36H203B	Abre Antonia	TRI KURASODSA
		FUGHT NO.		1725P	4744D		1743P	1747P	1749P
		DATE		18/2014	ADDINA		22/2014	23/2014	24/2014

Annex 5. Data Transfer Sheet for Guinabasan Floodplain

Figure A-5.1. Transfer Sheet for Guinabasan Floodplain - A

		CEBU ready)	08/15/2014(
-	and interest									
E DIGITIZER	PLEICASI PANOS	RANK PARK	POS	(mossowe)	KM	RAW		SENSOR	ADSN35 NAME	SENSOR SENSOR
NA	85 9.16	10.5	04.7	346	(swath)	5	onth	onte	Contro	PLUBITI NAA
NA	318 22.0	100			-	100	-	Pegasus	18UX4TAZ10A Pegasus	1769P 18UKTAZIOA Pegasus
NA	200 15.1	22.6	101	100	208	231	+	Pegasus	Pegasus Likuk/A211A	1773P 15UK07A211A Pegasus
NA	402 32.4	40.6		1.00	101	1.61	-	Pegasus	18UK47A2118 Pegasus	1775P 18UK47A2118 Pegasus
NA	369 25.0	212			3.02	332	+	Pegasus	pegasus Pegasus	1777P 28,036232A Pegasus
MA	3.65			2/8/	3.04	2.64	-	Pegasus	18U0560F2128	1776P 28406692128 Pegasus
NA	100 MM		512	808	2.94	2.57	-	Pegasus	Pegasus Pegasus	1781P Incodizion Propendi
NA	100 000 000 00 00 00 00 00 00 00 00 00 0	1000	280	8.87	3.78	3.36	-	Pegasus	Texced/214A Pegasus	1766P 18LCHGG7214A Pegasus
NA	2.0 A1901000		580	9.24	3.41	3.07	-	Pequetut	18ur0662148 Pegetus	1787P 15Kx5602148 Pegasus
NA	40 02	10.4	550	2.16	8'I	22	-	Pegasus	Pegasus Pegasus	1700P INCTROISA Pegasus
NA		101	101	5.44	12	213	+	Propesus	INCTN2158 Pegasus	1791P IMCTN2158 Pegasus
W .		-	141	5.12	745	ž	+	Pegasus	INUCREPESZIEA Pegasus	succeded vystcsodadchat d06/1
1		8	588	8.62	36	2	-	Pregasus	Pegasus	Pegasus Pegasus
2	e crzinest	22.707.1	22M	12.1	3.83	3.58	-	Pegasus	Pegasus	1900b an university
12 M	441 34	90.4	280	10,945	3.91	3.41	-	Pegasus	Pegasua .	1806P recovered Pegatua
					500					
		Received by								
ETO 20	JOIDA PRIC	Name Postion					_	ANDAVA	Received from Name TIN, AN JAVA	Name TN ANJAVA
	NA N	200 151 NA 442 32.4 NA 369 36.8 NA 360 35.5 NA 360 35.5 NA 360 35.5 NA 360 35.5 NA 361 35.5 NA 4651/275 32.3 NA 165 6.52 NA 17 6.7 NA 189 32.3 NA 181 34.3 NA 181 34.1 3.3 NA 189 3.3 NA NA 189 3.3 NA NA 441 34.5 NA 441 34.5 NA	22.5 200 15.1 NA 59.6 442 22.4 NA 41.3 59.9 25.5 NA 42.3 59.9 25.5 NA 42.3 145671070 28.5 NA 75.61 465 28.3 NA 75.61 76.9 28.3 NA 75.61 70.6 28.2 NA 54 384 32.1 NA 52.703.1 1894207 38.3 NA 60.4 441 34.5 NA 60.4 44	3(1) 22,5 200 1(1) MA 280 59,6 442 32,4 MA 280 59,6 442 32,4 MA 280 41,3 36,9 25,5 MA 280 43,1 4567,07 28,5 MA 280 13,4 105 28,3 MA 280 13,4 105 28,3 MA 280 13,4 105 28,3 MA 144 11 77 6,3 MA 280 24,1 34,4 34,5 MA 280 24,1 34,4 34,5 MA 280 24,1 34,4 34,5 MA 280 24,1 34,5 34,4 MA 280	736 141 22.5 200 141 N 877 282 966 442 24.4 NA 8071 283 966 442 25.5 NA 8071 289 413 369 25.5 NA 807 296 413 369 25.5 NA 807 290 413 369 25.5 NA 807 290 433 4667107 28.5 NA 918 290 13.4 105 28.5 NA 514 151 151 60 53.5 NA 544 161 171 61 NA 543 141 177 61 NA 652 54 54 36 NA 121 22 151 153 35 NA 121 234 364 441 345 NA 121 236 264	1 1 2 2 2 1 1 1 1 8 1 1 2 2 2 1 1 3 8 1 3 1 3 3 1 1 1 3 1 1 2 2 1 3 3 1 1 1 3 1 1 2 2 1 3 3 1	11 1	Poppino call Lan Lan <thlan< th=""> Lan <thlan< th=""> <thlan< <="" td=""><td>NAMENALILA PAPANA Cont. Lot. Tab. Math. Math.</td><td>1739 Mantatata Papatoa cats 1</td></thlan<></thlan<></thlan<>	NAMENALILA PAPANA Cont. Lot. Tab. Math. Math.	1739 Mantatata Papatoa cats 1

Figure A-5.3. Transfer Sheet for Guinabasan Floodplain – C

Annex 6. Flight logs for the flight missions

1. Flight Log for 1747P Mission

Mission successful at 1000m flying height; Some kins of 36A: Please refer to electronic oplag	Set of Hard ther: ary POS	Drive Drive	PRF:	144 8 8 8 8 8 8 8 8 8 8 8 8	Mission Folder PS Status PDOP	Hiz 1, Name: Comments	2 Scan Angle: -	Approx. Swa	Airport of Degatures: tht: Camera Mission Folder	Eyesafe: Name Ground Surveyo	Airport of Arrhait. Celoyy m
	Y					7	bision suc some	levetur kina refer	f at 1000 of 34A:	in Algi	ng height.
	RECEIVED NAME: POSITION: SIGNATUR DATE TRAU	r ROM:		н.				POSTI POSTI	ND BM NUL: NUNCE FRANCO.		-

Figure A-6.1. Flight Log for Mission1747P

Udar Operator: 1. Rex. at a 1.11M Model? E2 1.19er. VIR Mission Name. 191V. 36.45.201C. 4. Alternit Tome. ConnectTrocal ALL M. Action Name. 1.	C. A. FOR SO COPNOL P. DEDCAMODO ROUTE. CEDU ANTONIO OF ANTONIO CONTRACTION ANTONIO ANTO ANTO ANTONIO ANTONIO ANTO ANTONIO	over MAY 2014 PHS: Mit Scan Freq: Ht 1/2 Scan Angle: Approx Swath: Everafte: m	Set of Hard Drive A B Mission Folder Name: Camera Mission Folder Name:	Weather: Ground Base Station Genuind Comment	LINE #: Reg/Ht m GPS Status Comments	Primary POS Speed Kts AGL SVS POOP	COA demark		Mussion successful at 1200 m floring hereitet:		Underfeat rest of OCK 36 A plus additional	coatflice.		There refer to cleckowic option.					Problems and Solutions		MCCIMD FROM:	POSITIOR. NAME	POSITORI.	DATT TRANSFERRED: DATT TRANSFERRED: DATT TRANSFERRED:				(DBEAM	DREAM		Character fact Lincome and Lincome	Datamenta to concernent in the concernent of the	DARE AM STORE AM STORE AM STORE
--	--	--	--	--	--------------------------------------	------------------------------------	------------	--	--	--	--	------------	--	----------------------------------	--	--	--	--	------------------------	--	--------------	----------------	-----------	---	--	--	--	---	--	--	-------	-------	--	--	--	---------------------------------

Figure A-6.2. Flight Log for Mission1749P

CEAM Data Acquisition Fight we	4	10.01	Chick	NUMBER OF STREET, STRE	E Alsocafe Identification:
UDAR Operator: J. ROKAS	2 ALTM Model: PSE	3 Mission Name: 1 Dulc 76	APAGE 4 Type: VFR	5 Auroratt Type: Cesnna Loon	o virtualit inclusion mon-
Pilot: C. ALPONDO 8 CO-PI	lot: + De octimpe	9 Route:	COBH		
Date: And. 6, 2014	12 Airport of Departure	(Airport, City/Province):	12 Airport of Arrival	(Airport, City/Province):	
Engine On: 8 + 17- 14 Engi	ine Off: ku t s f	15 Total Engine Time: 4 + 18	16 Take off:	17 Landing:	18 Total Flight Time:
Weather	Air -				
Remarks:	Circonstruct Hi	hut .	-		21222
21 Problems and Solutions:					-
		ţ			
Acquisition Flight Approved <i>Actuality Aboli sum</i> Signature over Printed Nam (End User Representative)	2 2 E	quisition Flight Certified by putture over Printed Name A Representative)	Pilotin Ca	memod Alfreden III Alfred Name over Printed Name	Udea Operation spend run that Signature over Printed Name

106

Figure A-6.3. Flight Log for Mission1801P

Figure A-6.4. Flight Log for Mission 8464AC

107

ы.

108

Figure A-6.5. Flight Log for Mission1805P

<u>ю</u>

109

110

Annex 7. Flight status reports

Table A-7.1. Flight Status Report

FLIGHT NO	AREA	MISSION	OPERATOR	DATE FLOWN	REMARKS
1747P	BLK36A	1BLK36A204B	G. Sinadjan	July 23	Surveyed 10 lines of BLK36A; 258.43 km2
1749P	BLK36A	1BLK36AS205A	I. Roxas	July 24	Mission successful. Plan extended to cover shoreline; 96.59 km2
1801P	BLK36D	1BLK36D218A	I. Roxas	August 6	Completed BLK36D; 347.35 km2
1803P	BLK36C	1BLK36C218B	G. Sinadjan	August 6	Completed BLK36C; 306.81 km2
1805P	BLK36B	1BLK36B219A	I. Roxas	August 7	Data acquired in BLK36B; Survey area exended to cover coastal areas; 318.85 km2
1821P	BLK36A	1BLK36AS223A	G. Sinadjan	August 11	Filled in gaps in BLK 36A; Some coastal areas added. Some voids and gaps due to low lying clouds; 170.46 km2
1825P	BLK36A, BLK36B	1BLK36ABC224A	I. Roxas	August 12	Filled in gaps in BLK 36A, 36B and 36 C; Some coastal areas added; 129.83 km2

Cebu Mission July 23-24, 2014, August 6-7, 2014, and August 11-12, 2014

SWATH PER FLIGHT MISSION

Iight No. :	1747P			
Area:	BLK36A			
Mission Name: 1BLK36	A204B			
Parameters:	Altitude:	1200m; Scan Fre	equency:	30Hz;
	Scan Angle:	25deg;	Overlap:	30%

Figure A-7.1. Swath for Flight No. 1747P

Flight No. :	1749P			
Area:	BLK36A			
Mission Name: 1BLK36	AS205A			
Parameters:	Altitude:	1200m; Scan Fr	equency:	30Hz;
	Scan Angle:	25deg;	Overlap:	30%

Figure A-7.2. Swath for Flight No. 1749P

Figure A-7.3. Swath for Flight No. 8462AC

Flight No. :	1803P			
Area:	BLK36C			
Mission Name: 1BLK36	C218B			
Parameters:	Altitude:	1200m; Scan Fr	equency:	30Hz;
	Scan Angle:	25deg;	Overlap:	30%

Figure A-7.4. Swath for Flight No. 8464AC

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

Figure A-7.5. Swath for Flight No. 1805P

Flight No. : 1821P Area: BLK36A Mission Name: 1BLK36AS223A Parameters: Altitude: Scan Angle

.K36A			
223A			
titude:	1000m; Sca	n Frequency:	30Hz;
an Angle:	25deg;	Overlap:	30%

Figure A-7.6. Swath for Flight No. 1821P

Flight No. : 1825P Area: BLK36B Mission Name: 1BLK36ABC224A Parameters: Altitude: Scan Angle

(30B			
224A			
itude:	1000m; Scan Frequency:		30Hz;
in Angle:	25deg;	Overlap:	30%

Figure A-7.7. Swath for Flight No. 1825P

ANNEX 8. Mission Summary Reports

Flight Area	Cebu
Mission Name	Blk36D
Inclusive Flights	1801P
Range data size	32.1 GB
Base data size	8.9 MB
POS	258 MB
Image	54.0 GB
Transfer date	August 20, 2014
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	Yes
Processing Mode (<=1)	Yes
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	1.2
RMSE for East Position (<4.0 cm)	1.4
RMSE for Down Position (<8.0 cm)	2.8
Boresight correction stdev (<0.001deg)	0.000153
IMU attitude correction stdev (<0.001deg)	0.000411
GPS position stdev (<0.01m)	0.0068
Minimum % overlap (>25)	32.62%
Ave point cloud density per sq.m. (>2.0)	5.31
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	451
Maximum Height	358.11 m
Minimum Height	60.66 m
Classification (# of points)	
Ground	287,792,916
Low vegetation	214,914,170
Medium vegetation	546,398,318
High vegetation	258,444,081
Building	5,935,580
Orthophoto	Yes
Processed by	Engr. Irish Cortez, Engr. Harmond Santos, Engr. Jeffrey Delica

Table A-8.1. Mission Summary Report for Mission Blk26D

Figure A-8.1 Solution Status

Figure A-8.2. Smoothed Performance Metric Parameters

Figure A-8.3. Best Estimated Trajectory

Figure A-8.4. Coverage of LiDAR data

Figure A-8.5. Image of data overlap

Figure A-8.6. Density map of merged LiDAR data

Figure A-8.7. Elevation difference between flight lines

Flight Area	Cebu	
Mission Name	Blk36A	
Inclusive Flights	1747P, 1749P, 1821P	
Range data size	58.60 GB	
Base data size	4.45 MB	
POS	644 MB	
Image	92.4 GB	
Transfer date	September 16, 2014	
Solution Status		
Number of Satellites (>6)	Yes	
PDOP (<3)	Yes	
Baseline Length (<30km)	Yes	
Processing Mode (<=1)	Yes	
Smoothed Performance Metrics (in cm)		
RMSE for North Position (<4.0 cm)	3.0	
RMSE for East Position (<4.0 cm)	3.5	
RMSE for Down Position (<8.0 cm)	6.2	
Boresight correction stdev (<0.001deg)	0.001156	
IMU attitude correction stdev (<0.001deg)	0.004014	
GPS position stdev (<0.01m)	0.0078	
Minimum % overlap (>25)	45.30%	
Ave point cloud density per sq.m. (>2.0)	5.67	
Elevation difference between strips (<0.20 m)	Yes	
Number of 1km x 1km blocks	630	
Maximum Height	399.43 m	
Minimum Height	49.55 m	
Classification (# of points)		
Ground	407,980,203	
Low vegetation	367,986,481	
Medium vegetation	942,528,392	
High vegetation	224,684,474	
Building	19,336,751	
Orthophoto	Yes	
Processed by	Engr. Jommer Medina, Aljon Rie Araneta, Jovy Narisma	

Table A-8.2. Mission Summary Report for Mission Blk36A

Figure A-8.8. Solution Status

Figure A-8.9. Smoothed Performance Metric Parameters

Figure A-8.10. Best Estimated Trajectory

Figure A-8.11. Coverage of LiDAR data

Figure A-8.12. Image of data overlap

Figure A-8.13. Density map of merged LiDAR data

Figure A-8.14. Elevation difference between flight lines

Elight Area	Cebu	
Mission Name	Blk36B	
Inclusive Flights	1805P. 1825P	
Range data size	47 GB	
Base data size	6.47 MB	
POS	444 MB	
Image	81.2 GB	
Transfer date	August 20, 2014	
Solution Status		
Number of Satellites (>6)	Yes	
PDOP (<3)	Yes	
Baseline Length (<30km)	Yes	
Processing Mode (<=1)	Yes	
Smoothed Performance Metrics (in cm)		
RMSE for North Position (<4.0 cm)	2.2	
RMSE for East Position (<4.0 cm)	1.6	
RMSE for Down Position (<8.0 cm)	2.5	
Boresight correction stdev (<0.001deg)	0.000168	
IMU attitude correction stdev (<0.001deg)	0.002433	
GPS position stdev (<0.01m)	0.0029	
Minimum % overlap (>25)	41.07%	
Ave point cloud density per sq.m. (>2.0)	6.81	
Elevation difference between strips (<0.20 m)	Yes	
Number of 1km x 1km blocks	519	
Maximum Height	731.74 m	
Minimum Height	60.43 m	
Classification (# of points)		
Ground	372,118,756	
Low vegetation	310,445,965	
Medium vegetation	818,595,739	
High vegetation	364,539,463	
Building	11,845,876	
Urthophoto	Yes	
Processed by	Engr. Irish Cortez, Engr. Edgardo Gubatanga Jr., Engr. John Dill Macapagal	

Table A-8.3. Mission Summary Report for Mission Blk36B

Figure A-8.15. Solution Status

Figure A-8.16. Smoothed Performance Metric Parameters

Figure A-8.17. Best Estimated Trajectory

Figure A-8.18. Coverage of LiDAR data

Figure A-8.19. Image of data overlap

Figure A-8.20. Density map of merged LiDAR data

Figure A-8.21. Elevation difference between flight lines

Flight Area	Cebu	
Mission Name	Blk36C	
Inclusive Flights	1803P	
Range data size	33.0 GB	
Base data size	8.9 MB	
POS	224 MB	
Image	59.8 GB	
Transfer date	September 16, 2014	
Solution Status		
Number of Satellites (>6)	Yes	
PDOP (<3)	Yes	
Baseline Length (<30km)	Yes	
Processing Mode (<=1)	Yes	
Smoothed Performance Metrics (in cm)		
RMSE for North Position (<4.0 cm)	1.0	
RMSE for East Position (<4.0 cm)	1.6	
RMSE for Down Position (<8.0 cm)	3.25	
Boresight correction stdev (<0.001deg)	0.000153	
IMU attitude correction stdev (<0.001deg)	0.000411	
GPS position stdev (<0.01m)	0.0068	
Minimum % overlap (>25)	55.29%	
Ave point cloud density per sq.m. (>2.0)	6.97	
Elevation difference between strips (<0.20 m)	Yes	
Number of 1km x 1km blocks	376	
Maximum Height	692.74 m	
Minimum Height	84.17 m	
Classification (# of points)		
Ground	238,048,848	
Low vegetation	174,614,136	
Medium vegetation	588,737,226	
High vegetation	388,155,860	
Building	3,659,537	
Orthophoto	Yes	
Processed by	Engr. Irish Cortez, Engr. Edgardo Gubatanga Jr., Engr. Monalyne Rabino	

Table A-8.4. Mission Summary Report for Mission Blk36C

Figure A-8.22. Solution Status

Figure A-8.23. Smoothed Performance Metric Parameters

Figure A-8.24. Best Estimated Trajectory

Figure A-8.25. Coverage of LiDAR data

Figure A-8.26. Image of data overlap

Figure A-8.27. Density map of merged LiDAR data

Figure A-8.28. Elevation difference between flight lines

Elight Area						
	Cebu					
Mission Name	Blk36B_additonal					
Inclusive Flights	1805P					
Range data size	34.5 GB					
Base data size	7.01 MB					
POS	280 MB					
Image	60.4 GB					
Transfer date	August 20, 2014					
Solution Status						
Number of Satellites (>6)	Yes					
PDOP (<3)	Yes					
Baseline Length (<30km)	Yes					
Processing Mode (<=1)	Yes					
Smoothed Performance Metrics (in cm)						
RMSE for North Position (<4.0 cm)	2.2					
RMSE for East Position (<4.0 cm)	1.6					
RMSE for Down Position (<8.0 cm)	2.5					
Boresight correction stdev (<0.001deg)	0.000168					
IMU attitude correction stdev (<0.001deg)	0.002433					
GPS position stdev (<0.01m)	0.0029					
Minimum % overlap (>25)	26.55%					
Ave point cloud density per sq.m. (>2.0)	6.34					
Elevation difference between strips (<0.20 m)	Yes					
Number of 1km x 1km blocks	54					
Maximum Height	730.75 m					
Minimum Height	207.94 m					
Classification (# of points)						
Ground	35,198,409					
Low vegetation	23,205,736					
Medium vegetation	51,225,555					
High vegetation	27,423,683					
Building	319,205					
Orthophoto	Yes					
Processed by	Engr. Irish Cortez, Engr. Antonio Chua Jr., Engr. Gladys Mae Apat					

Table A-8.5. Mission Summary Report for Mission Blk36B_additional

Figure A-8.29. Solution Status

Figure A-8.30. Smoothed Performance Metric Parameters

Figure A-8.31. Best Estimated Trajectory

Figure A-8.32. Coverage of LiDAR data

Figure A-8.33. Image of data overlap

Figure A-8.34. Density map of merged LiDAR data

Figure A-8.35. Elevation difference between flight lines

Annex 9. Guinabasan Model Basin Parameters

Ratio to 0.25099 0.17246 0.25098 0.36895 0.17074 0.26134 0.18293 0.17073 0.25099 0.25099 0.17422 0.25611 0.25098 0.25099 0.18294 0.26891 0.26133 0.25611 0.26891 0.37251 0.3953 0.2561 Peak Threshold Type Ratio to Peak Recession Constant Baseflow Model Recession Constant 0.04356 0.04356 0.00296 0.02963 0.02963 0.02963 0.04356 0.02963 0.02963 0.04356 0.04356 0.02963 0.04356 0.02963 0.03968 0.02963 0.02963 0.02963 0.02963 0.02963 0.06667 0.098 Discharge 0.0125604 Discharge 0.0014646 Discharge 0.0049299 Discharge 0.0047381 Discharge 0.0035144 Discharge 0.0010039 Discharge 0.0157891 0.0185673 0.0184327 0.0177757 0.0034036 0.0050386 0.0164848 0.0039633 0.0209253 0.0141977 0.0252962 Discharge 0.0031089 Discharge 0.0178215 Discharge 0.0042406 Discharge 0.0019894 Discharge 0.0204198 Initial Discharge Initial Type Storage Coefficient 0.091046 0.031198 0.051909 0.040516 0.029473 0.033115 0.041344 0.061383 0.033517 0.51799 1.8314 1.59661.9267 0.55863 0.03394 2.5871 2.5969 1.5056 2.0516 1.8382 20.543 1.235 Clark Transform Model Concentration 1.04683.7999 2.2029 2.5876 0.98523 2.3909 1.88963.3939 0.7405 5.3304 7.6318 3.9028 2.2941 Time of 1.9305 2.6795 1.8662 3.6441 2.3742 2.5821 1.6657 3.5052 3.7128 Impervious SCS Curve Number Loss Model 10 10 10 10 50 70 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Curve Number 68.9316 68.7562 68.7562 68.7562 68.7562 74.9986 65.5605 77.4496 69.105 68.7766 75.0098 69.8863 83.8267 69.6323 68.7562 68.7562 68.7562 68.7562 68.7562 68.7562 68.7562 68.7562 Abstraction 4.5648 3.8668 2.6305 3.9526 2.6305 2.6305 3.8668 2.6305 1.81832.6747 2.2593 2.5494 3.8668 2.4729 3.8303 2.5077 2.6305 2.6305 3.8668 2.6277 2.6305 Initial 3.963 W1010 W1020 W1030 W1060 W1110 W1120 W1130 W1040 W1050 W1070 Numbei W1000 W1080 W1090 W1100 W1140 W610 W580 W590 W600 W620 W630 W640 Basin

0.18293	0.26891	0.26891	0.26891	0.26134	0.3953	0.3953	0.3953	0.27028	0.3953	0.37837	0.36895	0.25099	0.36895	0.36895	0.36895	0.25611	0.36895	0.1751	0.36895	0.36895	0.2352	0.38416	0.3953	0.38416	0.26133	0.38416	0 38416
Ratio to Peak																											
0.02963	0.02963	0.04356	0.02963	0.02963	0.02963	0.02963	0.02963	0.02963	0.02963	0.02963	0.02963	0.02963	0.02963	0.02963	0.04356	0.02963	0.02963	0.04356	0.02963	0.04356	0.06533	0.06533	0.098	0.04444	0.04444	0.04444	0.04444
0.0054119	0.0071399	0.0063606	0.0052737	0.0108121	0.0015037	0.0060643	0.00546	0.0052029	0.0011689	0.0012521	0.0312462	0.0256986	0.0156641	0.0081998	0.0388571	0.0164544	0.0156405	0.018312	0.0044079	0.0138142	0.050745	0.0060431	0.01901	0.0236683	0.0102833	0.0136931	0.0270022
Discharge																											
0.77228	4.7842	2.0992	1.9836	3.7492	0.12651	0.31941	0.46058	27.854	0.018	0.4972	4.0622	0.028619	0.36215	0.049269	0.087692	0.078563	0.16613	1.4828	0.019198	0.28528	0.51616	3.426	21.876	0.43671	0.19252	0.24806	0.49972
3.4544	2.9282	2.9741	3.668	2.228	1.3967	3.1043	2.2921	3.1361	0.51406	1.9465	3.3376	1.2598	1.7336	1.0241	2.6359	1.1624	1.5985	2.8084	0.64793	2.1089	3.3581	1.4894	1.6398	2.4323	0.98912	2.2864	1.7606
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
64.5099	79.0072	69.3325	68.2982	74.0989	73.3492	65.2178	65.5911	68.3543	59.0713	71.8508	72.4261	74.0867	81.0533	75.0638	70.0291	68.7562	69.3967	71.2021	72.8861	68.7572	68.7562	68.7562	68.7562	69.8588	73.0147	68.8041	60:0209
2.8343	2.0204	4.6438	4.5579	3.7983	6.215	6.2149	2.2108	3.1412	2.8364	1.1524	2.6635	3.6066	2.6305	3.3748	3.0555	2.6303	3.8668	3.8668	3.8668	2.4766	3.0316	3.857	3.8057	3.8668	3.3528	3.6452	3.7165
W650	W660	W670	W680	069M	W700	W710	W720	W730	W740	W750	W760	W770	W780	067W	W800	W810	W820	W830	W840	W850	W860	W870	W880	W890	006M	W910	W920

0.3953	0.26667	0.26133	0.26133	0.39259	0.26891	0.26133
Ratio to Peak						
0.1	0.06667	0.06667	0.06667	0.06667	0.06667	0.1
0.0579544	0.0227569	0.0219816	0.0611436	0.0186035	0.0056459	0.0135383
Discharge						
0.030356	0.028373	0.073848	0.041038	0.61831	0.035473	0.053849
1.6328	1.3146	1.4627	2.3234	1.1773	0.79812	0.82886
0	0	0	0	0	0	0
68.7562	71.3164	69.8363	69.8516	68.7562	68.8276	68.7562
3.9457	3.9307	3.9457	3.9457	3.2881	3.2881	3.2881
W930	W940	W950	W960	W970	W980	066M

		Μu	Iskingum Cunge	Routing Model			
Reach Number	Time Step Method	Length (m)	Slope	Manning's n	Shape	Width	Side Slope
R120	Automatic Fixed Interval	127.28	0.001	0.04557	Trapezoid	20	0.1
R130	Automatic Fixed Interval	311.13	0.001	0.15139	Trapezoid	20	0.1
R140	Automatic Fixed Interval	685.98	0.001	0.10203	Trapezoid	20	0.1
R150	Automatic Fixed Interval	125.71	0.001	0.06035	Trapezoid	20	0.1
R160	Automatic Fixed Interval	120.71	0.001	0.01558	Trapezoid	20	0.1
R20	Automatic Fixed Interval	803.26	0.00614	0.029	Trapezoid	30	0.1
R210	Automatic Fixed Interval	2671.4	0.00235	0.07555	Trapezoid	20	0.1
R230	Automatic Fixed Interval	1368.1	0.00866	0.2216	Trapezoid	20	0.1
R250	Automatic Fixed Interval	2299.1	0.00455	0.06102	Trapezoid	20	0.1
R260	Automatic Fixed Interval	313.14	0.00134	0.06454	Trapezoid	20	0.1
R270	Automatic Fixed Interval	1556.8	0.00833	0.08122	Trapezoid	20	0.1
R280	Automatic Fixed Interval	2554.5	0.0047	0.04267	Trapezoid	20	0.1
R290	Automatic Fixed Interval	885.27	0.01391	0.10982	Trapezoid	20	0.1
R330	Automatic Fixed Interval	4936.6	0.01122	0.03246	Trapezoid	20	0.1
R350	Automatic Fixed Interval	2310.7	0.02222	0.02618	Trapezoid	20	0.1
R370	Automatic Fixed Interval	4052.4	0.01167	0.01873	Trapezoid	15	0.1
R380	Automatic Fixed Interval	685.27	0.001	0.10492	Trapezoid	15	0.1
R390	Automatic Fixed Interval	1725.4	0.00708	0.0345	Trapezoid	15	0.1
R410	Automatic Fixed Interval	1115.7	0.01264	0.00616	Trapezoid	15	0.1
R420	Automatic Fixed Interval	868.41	0.03949	0.04286	Trapezoid	15	0.1
R450	Automatic Fixed Interval	1097.7	0.02578	0.10891	Trapezoid	15	0.1
R470	Automatic Fixed Interval	378.7	0.001	0.86264	Trapezoid	15	0.1
R50	Automatic Fixed Interval	2068.5	0.00336	0.07517	Trapezoid	30	0.1

Table A-10.1. Guinabasan Model Reach Parameters

Annex 10. Libertad Model Reach Parameters

0.1	0.1	0.1	0.1	0.1
15	15	30	30	30
Trapezoid	Trapezoid	Trapezoid	Trapezoid	Trapezoid
0.9008	0.11469	0.15192	0.0342	0.04435
0.06508	0.04782	0.001	0.01238	0.001
3973.3	2561.7	70.711	2257.9	1942.1
Automatic Fixed Interval				
R520	R570	R60	R70	R90

Annex 11. Guinabasan Field Validation Points

Point	Validation C	Coordinates	Model	Validation	Error	F	at / Data	Return
No.	Longitude	Latitude	(m)	Points (m)	(m)	Eve	ni / Dale	of Event
1	10.63156	123.75099	0.36	0.9	0.2916	Basyang	January 2014	100 Year
2	10.6366383	123.75114	0.34	0.5	0.0256	Basyang	January 2014	100 Year
3	10.6367283	123.750542	0.71	0.9	0.0361	Basyang	January 2014	100 Year
4	10.6367583	123.750567	0.71	1.2	0.2401	Ruby	Dec 1-12, 2014	100 Year
5	10.6372117	123.750233	0.44	0.5	0.0036	Basyang	January 2014	100 Year
6	10.6376333	123.747965	0.49	0.3	0.0361	Basyang	January 2014	100 Year
7	10.637495	123.747223	0.63	0.5	0.0169	Basyang	January 2014	100 Year
8	10.6211744	123.765105	5.7	0.58	26.2144	Nona	10-Dec-15	5 Year
9	10.6211744	123.765105	5.7	0.83	23.7169	Onyok	Dec 14-19, 2015	5 Year
10	10.6211744	123.765105	5.7	1.33	19.0969	Kabayan	Ocotober 5, 2015	5 Year
11	10.6211744	123.765105	5.7	0.78	24.2064	Ineng	Aug 13-25, 2015	5 Year
12	10.6211744	123.765105	5.7	1.16	20.6116	LPA	July 22-25	5 Year
13	10.6211744	123.765105	5.7	0.63	25.7049	Hanna	29-Jul-15	5 Year
14	10.6211744	123.765105	5.7	0.65	25.5025	LPA	01-Jun-15	5 Year
15	10.6211744	123.765105	5.7	0.91	22.9441	Dodong	May 2-12, 2012	5 Year
16	10.6211744	123.765105	5.7	0.98	22.2784	Chedeng	Mar 26-Apr 7, 2015	5 Year
17	10.6211744	123.765105	5.7	1.24	19.8916	Neneng	04-Oct-15	5 Year
18	10.6211744	123.765105	5.7	1.12	20.9764	Ompong	07-Oct-15	5 Year
19	10.6211744	123.765105	5.7	1.3	19.36	Karding	06-Sep-14	5 Year
20	10.6211744	123.765105	5.7	1.17	20.5209	Luis	12-Sep-14	5 Year
21	10.6211744	123.765105	5.7	1.01	21.9961	Mario	17-Sep-14	5 Year
22	10.6211744	123.765105	5.7	1.34	19.0096	Jose	02-Aug-14	5 Year
23	10.6211744	123.765105	5.7	1.16	20.6116	Florita	05-Jul-14	5 Year
24	10.6211744	123.765105	5.7	1.04	21.7156	Glenda	15-Jul-14	5 Year
25	10.6211744	123.765105	5.7	1.22	20.0704	Henry	18-Jul-14	5 Year
26	10.6211744	123.765105	5.7	1.1	21.16	Inday	29-Jul-14	5 Year
27	10.6211744	123.765105	5.7	1.17	20.5209	Ester	14-Jun-14	5 Year
28	10.6211744	123.765105	5.7	1.3	19.36	Doming	06-Apr-14	5 Year
29	10.6211744	123.765105	5.7	1.27	19.6249	Caloy	21-Mar-14	5 Year

Table A-11.1. Guinabasan Field Validation Points

30	10.6211744	123.765105	5.7	1.4	18.49	Agaton	17-Jan-14	5 Year
31	10.6211744	123.765105	5.7	0.95	22.5625	Vinta	05-Nov-14	5 Year
32	10.6211744	123.765105	5.7	1.24	19.8916	Wilma	02-Nov-14	5 Year
33	10.6211948	123.76512	7.4	0.93	41.8609	Lando	Oct 12-21, 2015	100 Year
34	10.6211948	123.76512	7.4	1.05	40.3225	Egay	01-Jul-15	100 Year
35	10.6211948	123.76512	7.4	1.22	38.1924	Amang	13-Jan-15	100 Year
36	10.6211948	123.76512	7.4	1.14	39.1876	Basyang	January 2014	100 Year
37	10.6211948	123.76512	7.4	1.1	39.69	Zoraida	Nov 11-15, 2014	100 Year
38	10.5960144	123.780129	0.71	0.6	0.0121	Ruby	Dec 1-12, 2014	100 Year
39	10.5962457	123.779943	0.71	0.9	0.0361	Ruby	Dec 1-12, 2014	100 Year
40	10.6038549	123.777859	0.03	0.2	0.0289	Basyang	January 2014	100 Year
41	10.6099438	123.783363	0.61	0.7	0.0081	Basyang	January 2014	100 Year
42	10.6100872	123.784414	0.03	0.3	0.0729	Basyang	January 2014	100 Year
43	10.6101102	123.780824	0.03	0.2	0.0289	Seniang	Dec 29-30, 2014	100 Year
44	10.6101391	123.785866	0.04	0.5	0.2116	Seniang	Dec 29-30, 2014	100 Year
45	10.6103362	123.781396	0.03	0.5	0.2209	Seniang	Dec 29-30, 2014	100 Year
46	10.610641	123.7792	0.71	0.9	0.0361	Ruby	Dec 1-12, 2014	100 Year
47	10.6108061	123.784996	0.03	0.2	0.0289	Seniang	Dec 29-30, 2014	100 Year
48	10.6109035	123.78563	0.71	0	0.5041	Ruby	Dec 1-12, 2014	100 Year
49	10.6112195	123.778114	0.03	0.2	0.0289	Seniang	Dec 29-30, 2014	100 Year
50	10.6115779	123.778393	0.03	0.3	0.0729	Basyang	January 2014	100 Year
51	10.6211744	123.765105	8.41	1.1	53.4361	Seniang	Dec 29-30, 2014	100 Year
52	10.6211948	123.76512	8.41	1.5	47.7481	Seniang	Dec 29-30, 2014	100 Year
53	10.6219379	123.764395	0.03	0.2	0.0289	Seniang	Dec 29-30, 2014	100 Year
54	10.6221082	123.769759	0.03	0.2	0.0289	Seniang	Dec 29-30, 2014	100 Year
55	10.6223953	123.764263	0.03	0.2	0.0289	Seniang	Dec 29-30, 2014	100 Year
56	10.6223959	123.770153	0.64	0.9	0.0676	Seniang	Dec 29-30, 2014	100 Year
57	10.6225128	123.770245	0.93	1	0.0049	Seniang	Dec 29-30, 2014	100 Year
58	10.6227186	123.770613	0.71	0.8	0.0081	Ruby	Dec 1-12, 2014	100 Year

59	10.6247021	123.772011	1.51	0.9	0.3721	Seniang	Dec 29-30, 2014	100 Year
60	10.6251165	123.771838	0.71	0.5	0.0441	Ruby	Dec 1-12, 2014	100 Year
61	10.62592	123.763746	0.03	0.3	0.0729	Seniang	Dec 29-30, 2014	100 Year
62	10.6261297	123.763801	0.04	0.3	0.0676	Seniang	Dec 29-30, 2014	100 Year
63	10.6263418	123.763464	0.03	0.3	0.0729	Seniang	Dec 29-30, 2014	100 Year
64	10.626552	123.760548	0.03	0.2	0.0289	Seniang	Dec 29-30, 2014	100 Year
65	10.6276397	123.773288	2.02	1.7	0.1024	Seniang	Dec 29-30, 2014	100 Year
66	10.6293768	123.773312	0.35	0.6	0.0625	Basyang	January 2014	100 Year
67	10.6299293	123.773403	0.03	0.2	0.0289	Basyang	January 2014	100 Year
68	10.6306119	123.741736	0.03	0.2	0.0289	Seniang	Dec 29-30, 2014	100 Year
69	10.6313543	123.741884	0.03	0.3	0.0729	Seniang	Dec 29-30, 2014	100 Year
70	10.6319051	123.741866	0.03	0.7	0.4489	Seniang	Dec 29-30, 2014	100 Year
71	10.6321331	123.77335	0.03	0.5	0.2209	Basyang	January 2014	100 Year
72	10.6327221	123.773327	0.03	0.2	0.0289	Seniang	Dec 29-30, 2014	100 Year
73	10.6364394	123.774335	0.62	0.9	0.0784	Seniang	Dec 29-30, 2014	100 Year
74	10.636594	123.774374	0.09	0.7	0.3721	Seniang	Dec 29-30, 2014	100 Year
75	10.6366181	123.774527	0.62	0.8	0.0324	Seniang	Dec 29-30, 2014	100 Year
76	10.6373362	123.747465	0.56	0.4	0.0256	Seniang	Dec 29-30, 2014	100 Year
77	10.638819	123.775899	1.44	1.2	0.0576	Seniang	Dec 29-30, 2014	100 Year
78	10.639188	123.75191	0.73	0.7	0.0009	Seniang	Dec 29-30, 2014	100 Year
79	10.6394966	123.752043	0.57	0.5	0.0049	Seniang	Dec 29-30, 2014	100 Year
80	10.6396775	123.752767	0.62	0.2	0.1764	Seniang	Dec 29-30, 2014	100 Year
81	10.6398235	123.752736	1.15	0.9	0.0625	Seniang	Dec 29-30, 2014	100 Year
82	10.6399034	123.752444	0.22	0.2	0.0004	Seniang	Dec 29-30, 2014	100 Year
83	10.640378	123.752817	0.77	0.5	0.0729	Basyang	January 2014	100 Year
84	10.6406108	123.752967	0.52	0.5	0.0004	Basyang	January 2014	100 Year
85	10.6406301	123.777082	1.3	0.8	0.25	Basyang	January 2014	100 Year

Annex 12. Educational Institutions affected by flooding in Guinabasan Floodplain

Table A-12.1. Educational Institutions in Guinabasan, Cebu affected by flooding in Guinabasan Flood Plain

	Cebu					
	Asturias					
Ruilding Name	Barangay	Rainfall Scenario				
Building Name	Darangay	5-year	25-year	100-year		
Bago Elementary School	New Bago					
Sta Lucia National High School	Santa Lucia					

Annex 13. Medical Institutions affected by flooding in Guinabasan Floodplain

Table A-13.1. Medical Institutions in Guinabasan, Cebu affected by flooding in Guinabasan Flood Plain.

Cebu										
	Asturias									
Duilding Name	Barangay	Rainfall Scenario								
Building Name	Darangay	5-year	25-year	100-year						
New Bago Health Center	New Bago									
Sta Lucia Health Center	Santa Lucia		Low	Low						