Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

LiDAR Surveys and Flood Mapping of Catarman River

University of the Philippines Training Center for Applied Geodesy and Photogrammetry Visayas State University Department of Science and Technology

APRIL 2017

${f \mathbb C}$ University of the Philippines Diliman and Visayas State University 2017

Published by the UP Training Center for Applied Geodesy and Photogrammetry (TCAGP) College of Engineering University of the Philippines – Diliman Quezon City 1101 PHILIPPINES

This research project is supported by the Department of Science and Technology (DOST) as part of its Grants-in-Aid (GIA) Program and is to be cited as:

E.C. Paringit, and F. Morales. (Eds.). (2017), LiDAR Surveys and Flood Mapping Report of Catarman River. Quezon City: University of the Philippines Training Center for Applied Geodesy and Photogrammetry – 261pp

The text of this information may be copied and distributed for research and educational purposes with proper acknowledgement. While every care is taken to ensure the accuracy of this publication, the UP TCAGP disclaims all responsibility and all liability (including without limitation, liability in negligence) and costs which might incur as a result of the materials in this publication being inaccurate or incomplete in any way and for any reason.

For questions/queries regarding this report, contact:

Engr. Florentino Morales, Jr.

Project Leader, PHIL-LiDAR 1 Program Visayas State University Baybay, Leyte, Philippines6521 ffmorales_jr@yahoo.com

Enrico C. Paringit, Dr. Eng.

Program Leader, PHIL-LiDAR 1 Program University of the Philippines Diliman Quezon City, Philippines 1101 E-mail: ecparingit@up.edu.ph

National Library of the Philippines ISBN: 978-621-430-198-0

TABLE OF CONTENTS

TABLE OF CONTENTS	iii
LIST OF TABLES	v
LIST OF FIGURES	vii
LIST OF ACRONYMS AND ABBREVIATIONS	x
CHAPTER 1: OVERVIEW OF THE PROGRAM AND CATARMAN RIVER	1
1.1 Background of the Phil-LIDAR 1 Program	1
1.2 Overview of the Catarman River Basin	1
CHAPTER 2: LIDAR DATA ACQUISITION OF THE CATARMAN FLOODPLAIN	3
2.1 Flight Plans	3
2.2 Ground Base Stations	5
2.3 Flight Missions	
2.4 Survey Coverage	
CHAPTER 3: LIDAR DATA PROCESSING OF THE CATARMAN FLOODPLAIN	
3.1 Overview of the LiDAR Data Pre-Processing	15
3.2 Indistrillat of Acquired LiDAR Data	10
3.3 ITAJECTORY COMPUTATION	10
3.4 LIDAR Point Cloud Computation	19
2.6 LiDAR Quality Clecking	19
2.7 LiDAR POINT CIOUU Classification and Orthonhotograph Pastification	2525 جد
3.8 DEM Editing and Hydro. Correction	/∠۷ סר
3.9 Mosaicking of Blocks	∠0 20
3.5 Mosaicking of Diocks	29
3 11 Integration of Bathymetric Data into the LiDAR Digital Terrain Model	
3 12 Feature Extraction	
3 12 1 Quality Checking (OC) of Digitized Features' Boundary	
3 12 2 Height Extraction	
3 12 3 Feature Attribution	38
3.12.4 Final Quality Checking of Extracted Features	39
CHAPTER 4. LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE CATARMAN RIVER	
- CHAFTER 9. LIDAR VALIDATION JURVET AND WEAJUREWIJ OF THE CATARIVIAN RIVER	BASIN41
4.1 Summary of Activities	BASIN41
4.1 Summary of Activities	BASIN41 41 42
4.1 Summary of Activities	41
4.1 Summary of Activities 4.2 Control Survey 4.3 Baseline Processing. 4.4 Network Adjustment	41 42 42 47 48
 4.1 Summary of Activities 4.2 Control Survey 4.3 Baseline Processing 4.4 Network Adjustment 4.5 Cross-section and Bridge As-Built survey and Water Level Marking 	41 41 42 47 48 51
 4.1 Summary of Activities	41 41 42 47 47 48 51 63
 4.1 Summary of Activities	41 41 42 47 48 51 63 66
 4.1 Summary of Activities	41 41 42 47 47 48 51 63 66 66
 4.1 Summary of Activities	BASIN 41 41 42 42 47 43 51 63 66 66 66
 4.1 Summary of Activities 4.2 Control Survey 4.3 Baseline Processing 4.4 Network Adjustment 4.5 Cross-section and Bridge As-Built survey and Water Level Marking 4.6 Validation Points Acquisition Survey. CHAPTER 5: FLOOD MODELING AND MAPPING 5.1 Data Used for Hydrologic Modeling 5.1.1 Hydrometry and Rating Curves 5.1.2 Precipitation 	BASIN 41 41 41 42 42 47 48 48
 4.1 Summary of Activities	BASIN 41 41 42 42 47 43 63
 4.1 Summary of Activities	BASIN 41
 4.1 Summary of Activities	BASIN 41 41
 4.1 Summary of Activities. 4.2 Control Survey 4.3 Baseline Processing. 4.4 Network Adjustment 4.5 Cross-section and Bridge As-Built survey and Water Level Marking	BASIN 41 41 41
 4.1 Summary of Activities. 4.2 Control Survey 4.3 Baseline Processing. 4.4 Network Adjustment 4.5 Cross-section and Bridge As-Built survey and Water Level Marking	BASIN 41
 4.1 Summary of Activities	BASIN 41
 4.1 Summary of Activities	BASIN 41
 4.1 Summary of Activities	BASIN 41
 4.1 Summary of Activities	BASIN 41
 4.1 Summary of Activities 4.2 Control Survey 4.3 Baseline Processing 4.4 Network Adjustment 4.5 Cross-section and Bridge As-Built survey and Water Level Marking 4.6 Validation Points Acquisition Survey CHAPTER 5: FLOOD MODELING AND MAPPING 5.1 Data Used for Hydrologic Modeling 5.1.1 Hydrometry and Rating Curves 5.1.2 Precipitation 5.1.3 Rating Curves and River Outflow 5.2 RIDF Station 5.4 Cross-section Data 5.5 Flo 2D Model 5.6 Results of HMS Calibration 5.7 Calculated Outflow hydrographys and Discharge Values for different Rainfall Retu 5.7.1 Hydrograph using the Rainfall Runoff Model 5.7.2 Discharge data using Dr. Horritts's recommended hydrologic method. 5.8 River Analysis (RAS) Model Simulation 	BASIN 41
 4.1 Summary of Activities 4.2 Control Survey 4.3 Baseline Processing 4.4 Network Adjustment 4.5 Cross-section and Bridge As-Built survey and Water Level Marking 4.6 Validation Points Acquisition Survey. CHAPTER 5: FLOOD MODELING AND MAPPING 5.1 Data Used for Hydrologic Modeling 5.1.1 Hydrometry and Rating Curves 5.1.2 Precipitation 5.1.3 Rating Curves and River Outflow 5.2 RIDF Station 5.3 HMS Model 5.4 Cross-section Data 5.5 Flo 2D Model 5.6 Results of HMS Calibration 5.7 Calculated Outflow hydrographys and Discharge Values for different Rainfall Retu 5.7.1 Hydrograph using the Rainfall Runoff Model 5.7.2 Discharge data using Dr. Horritts's recommended hydrologic method. 5.8 River Analysis (RAS) Model Simulation 5.9 Flow Depth and Flood Hazard. 	BASIN 41
 4.1 Summary of Activities 4.2 Control Survey 4.3 Baseline Processing 4.4 Network Adjustment 4.5 Cross-section and Bridge As-Built survey and Water Level Marking 4.6 Validation Points Acquisition Survey. CHAPTER 5: FLOOD MODELING AND MAPPING 5.1 Data Used for Hydrologic Modeling 5.1.1 Hydrometry and Rating Curves 5.1.2 Precipitation 5.1.3 Rating Curves and River Outflow 5.2 RIDF Station 5.4 Cross-section Data 5.5 Flo 2D Model 5.6 Results of HMS Calibration 5.7 Calculated Outflow hydrographys and Discharge Values for different Rainfall Retu 5.7.1 Hydrograph using the Rainfall Runoff Model 5.7.2 Discharge data using Dr. Horritts's recommended hydrologic method. 5.8 River Analysis (RAS) Model Simulation 5.9 Flow Depth and Flood Hazard 5.10 Inventory of Areas Exposed to Flooding of Affected Areas. 	BASIN 41
 4.1 Summary of Activities	BASIN 41
 4.1 Summary of Activities	BASIN 41
 4.1 Summary of Activities	BASIN 41
 4.1 Summary of Activities	BASIN 41
 4.1 Summary of Activities	BASIN 41
 4.1 Summary of Activities 4.2 Control Survey 4.3 Baseline Processing. 4.4 Network Adjustment 4.5 Cross-section and Bridge As-Built survey and Water Level Marking 4.6 Validation Points Acquisition Survey CHAPTER 5: FLOOD MODELING AND MAPPING 5.1 Data Used for Hydrologic Modeling 5.1.1 Hydrometry and Rating Curves 5.1.2 Precipitation 5.1.3 Rating Curves and River Outflow 5.2 RIDF Station 5.3 HMS Model 5.4 Cross-section Data 5.5 Flo 2D Model 5.6 Results of HMS Calibration 5.7 Calculated Outflow hydrographys and Discharge Values for different Rainfall Retu 5.7.1 Hydrograph using the Rainfall Runoff Model 5.7.2 Discharge data using Dr. Horritts's recommended hydrologic method. 5.8 River Analysis (RAS) Model Simulation 5.9 Flow Depth and Flood Hazard. 5.10 Inventory of Areas Exposed to Flooding of Affected Areas. 5.11 Flood Validation. REFERENCES Annex 1. Technical Specifications of the LIDAR Sensors used in the Catarman Floodplain Survey Annex 2. NAMRIA Certificate of Reference Points Used in the LiDAR Survey. 	BASIN 41

Annex 4. The LiDAR Survey Team Composition	145
Annex 5. Data Transfer Sheet for Catarman Floodplain	146
Annex 6. Flight logs for the flight missions	148
Annex 7. Flight status reports	
Annex 8. Mission Summary Reports	
Annex 9. Catarman Model Basin Parameters	249
Annex 10. Catarman Model Reach Parameters	
Annex 11. Catarman Field Validation Points	
Annex 12. Educational Institutions affected by flooding in Catarman Flood Plain	
Annex 13. Medical Institutions affected by flooding in Catarman Flood Plain	

LIST OF TABLES

Table 1. Flight planning parameters for the Aquarius LiDAR system.	3
Table 2. Details of the recovered NAMRIA horizontal control point SMN-16 used as base station	
for the LiDAR data acquisition	6
Table 3. Details of the recovered NAMRIA horizontal control point SMN-12used as base station	
for the LiDAR data acquisition	7
Table 4. Details of the recovered NAMRIA horizontal control point SMN-22 used as base station	
for the LiDAR data acquisition	8
Table 5. Details of the recovered NAMRIA Benchmark NS-100 used as base station for the LiDAR	
data acquisition with established coordinates.	9
Table 6. Details of the recovered NAMRIA Benchmark NS-61 used as base station for the LiDAR	
data acquisition with established coordinates.	9
Table 7. Details of the established horizontal control point CMN-01 used as base station for the	
LiDAR acquisition	10
Table 8. Ground control points used during the LIDAR data acquisition.	10
Table 9. Flight missions for LiDAR data acquisition in Catarman floodplain.	11
Table 10. Actual parameters used during LiDAR data acquisition.	12
Table 11. List of municipalities and cities surveyed during Catarman floodplain LiDAR survey	13
Table 12. Self-calibration Results values for Catarman flights.	19
Table 13. List of LiDAR blocks for the Catarman floodplain	21
Table 14. Catarman Classification results in Terrascan.	25
Table 15. LIDAR DIOCKS WITH Its corresponding areas	28
Table 15. Shift values of each LIDAR block of Catarman Floodplain.	30
Table 17. Calibration Statistical Measures.	34
Table 10. Details of the quality shocking ratings for the building features extracted for the	35
Cotormon Biver Basin	27
Caldffildfi River Basifi	37
Table 20. Building reduces extracted roads for Catarman Floodplain.	0C
Table 22. Number of extracted water bodies for Catarman Elecatelain	20
Table 22. Number of extracted water boules for Catalinan Floodplain.	59
NAMPIA LID-TCAGD	12
Table 24. The Baseline processing report for the Catarman River GNSS static observation survey	42 17
Table 25. Constraints applied to the adjustment of the control points	47 //Q
Table 26. Adjusted grid coordinates for the control points used in the Catarman River flood	40
nlain survey	48
Table 27 Adjusted geodetic coordinates for control points used in the Catarman River	40
Flood Plain validation	50
Table 28. The reference and control points utilized in the Catarman River Static Survey, with their	
corresponding locations (Source: NAMRIA, UP-TCAGP)	50
Table 29. RIDF values for the Catarman River Basin based on average RIDF data of Catarman	
station, as computed by PAGASA.	69
Table 30. Range of calibrated values for the Catarman River Basin.	
Table 31. Summary of the Efficiency Test of the Catarman HMS Model	79
Table 32. The peak values of the Catarman HEC-HMS Model outflow using the Catarman RIDF	80
Table 33. Summary of Catarman river (1) discharge generated in HEC-HMS.	81
Table 34. Summary of Catarman river (2) discharge generated in HEC-HMS.	82
Table 35. Summary of Catarman river (3) discharge generated in HEC-HMS.	83
Table 36. Summary of Catarman river (4) discharge generated in HEC-HMS.	84
Table 37. Summary of Catarman river (5) discharge generated in HEC-HMS.	85
Table 38. Validation of river discharge estimates.	85
Table 39. Municipalities affected in Catarman floodplain.	87
Table 40. Affected Areas in Bobon, Northern Samar during 5-Year Rainfall Return Period	95
Table 41. Affected Areas in Bobon, Northern Samar during 5-Year Rainfall Return Period	95
Table 42. Affected Areas in Catarman, Northern Samar during 5-Year Rainfall Return Period	98
Table 43. Affected Areas in Catarman, Northern Samar during 5-Year Rainfall Return Period	98
Table 44. Affected Areas in Catarman, Northern Samar during 5-Year Rainfall Return Period	99
Table 45. Affected Areas in Catarman, Northern Samar during 5-Year Rainfall Return Period	۵۵
Table 46 Affected Areas in Catarman, Northern Samar during 5-Year Rainfall Return Period	99
Table 40. Anceled Areas in Calarman, Northern Samar during 5 rear Raiman Return Ferrod	. 100
Table 47. Affected Areas in Catarman, Northern Samar during 5-Year Rainfall Return Period	. 100 . 100

Table 49. Affected Areas in Lope de Vega, Northern Samar during 5-Year Rainfall Return Period..........105 Table 50. Affected Areas in Mondragon, Northern Samar during 5-Year Rainfall Return Period.106 Table 52. Affected Areas in Bobon, Northern Samar during 25-Year Rainfall Return Period......108 Table 54. Affected Areas in Catarman, Northern Samar during 25-Year Rainfall Return Period......110 Table 55. Affected Areas in Catarman, Northern Samar during 25-Year Rainfall Return Period......110 Table 56. Affected Areas in Catarman, Northern Samar during 25-Year Rainfall Return Period......111 Table 57. Affected Areas in Catarman, Northern Samar during 25-Year Rainfall Return Period......111 Table 58. Affected Areas in Catarman, Northern Samar during 25-Year Rainfall Return Period......112 Table 61. Affected Areas in Lope de Vega, Northern Samar during 25-Year Rainfall Return Period.......118 Table 62. Affected Areas in Mondragon, Northern Samar during 25-Year Rainfall Return Period.119 Table 64. Affected Areas in Bobon, Northern Samar during 100-Year Rainfall Return Period......121 Table 65. Affected Areas in Bobon, Northern Samar during 100-Year Rainfall Return Period.......121 Table 66. Affected Areas in Catarman, Northern Samar during 100-Year Rainfall Return Period......123 Table 67. Affected Areas in Catarman, Northern Samar during 100-Year Rainfall Return Period............123 Table 68. Affected Areas in Catarman, Northern Samar during 100-Year Rainfall Return Period......124 Table 69. Affected Areas in Catarman, Northern Samar during 100-Year Rainfall Return Period............124 Table 70. Affected Areas in Catarman, Northern Samar during 100-Year Rainfall Return Period............125 Table 71. Affected Areas in Catarman, Northern Samar during 100-Year Rainfall Return Period......125 Table 72. Affected Areas in Catarman, Northern Samar during 100-Year Rainfall Return Period......125 Table 73. Affected Areas in Lope de Vega, Northern Samar during 100-Year Rainfall Return Period. 130 Table 74. Affected Areas in Mondragon, Northern Samar during 100-Year Rainfall Return Period. 131 Table 75. Affected Areas in San Jose, Northern Samar during 100-Year Rainfall Return Period......132 Table 77. Actual Flood Depth versus Simulated Flood Depth at different levels in the

LIST OF FIGURES

Cierce 1 Man of Cotomer Diver Desig (in brown)	h
Figure 1. Map of Catarman River Basin (in brown)	Z
Figure 2. Flight plans and base stations used for Catarman floodplain using Aquarius LiDAR system	4
Figure 3. GPS set-up over SMN-16 situated in Brgy. Bagasbas, Municipality of Mondragon located	
inside the Basketball Court (a) and NAMRIA reference point SMN-16 (b) as recovered	
by the field team	5
Figure 4. GPS set-up over SMN-12 situated in the Municipality of Mondragon located inside a	
school (a) and NAMRIA reference point SMN-12 (b) as recovered by the field team.	6
Figure 5, GPS set-up over SMN-22 located in Barangay Simora Elementary School, Northern Samar,	
and NAMBIA reference point SMN-22 (h) as recovered by the field team	7
Figure 6 GPS setup over NS-100 as situated in Geratag Bridge 1. Northern Samar and NAMBIA	/
reference opint NS 100 (b) as recovered by the field team	0
Figure 7. NS (1 as city and in Maryaw Bridge, Mandragen Northers Samer (a) and NAMPIA	0
Figure 7. NS-61 as situated in Muyaw Bruge, Month agon Northern Samar (a) and NAMRIA	~
reference point NS-61 (a) as recovered by the field team.	9
Figure 8. Actual LiDAR survey coverage for Catarman floodplain.	14
Figure 9. Schematic diagram for the data pre-processing.	16
Figure 10. Smoothed Performance Metric Parameters of Catarman Flight 7846AC	17
Figure 11. Solution Status Parameters of Catarman Flight 7846AC	18
Figure 12. Best Estimated Trajectory of the LiDAR missions conducted over the Catarman	
Floodplain	19
Figure 13, Boundaries of the processed LiDAR data over the Catarman Floodplain.	20
Figure 14 Image of data overlap for Catarman floodplain	22
Figure 15 Pulse density man of the merged LiDAR data for Catarman floodnlain	22
Figure 16. Elevation difference Man between flight lines for the Catarman Elevation Survey	21
Figure 17. Devalues the service of the target of the target the catalinant houppain survey	24
Figure 17. Quality checking for Catalman hight / 846AC using the Profile foot of QT Modeler.	25
Figure 18. Thes for Catarman floodplain (a) and classification results (b) in Terrascan.	26
Figure 19. Point cloud before (a) and after (b) classification.	26
Figure 20. The production of last return DSM (a) and DTM (b), first return DSM (c) and secondary	
DTM (d) in some portion of Catarman floodplain	27
Figure 21. Portions in the DTM of the Catarman Floodplain – a paddy field before (a) and after	
(b) data retrieval; a bridge before (c) and after (d) manual editing	29
Figure 22. Map of processed LiDAR data for the Catarman Floodplain	31
Figure 23. Map of Catarman Floodplain with validation survey points in green	33
Figure 24. Correlation plot between calibration survey points and LiDAR data	34
Figure 25. Correlation plot between the validation survey points and the LiDAR data	35
Figure 26. Map of Catarman floodplain with bathymetric survey points in blue	36
Figure 27, Block (in blue) of Catarman building features that was subjected to OC	37
Figure 28. Extracted features of the Catarman Floodplain	40
Figure 29. Catarman River Survey Extent	41
Figure 30. The GNSS Network established in the Catarman River Survey	13
Figure 31, CNSS receiver setup. Trimble® SDS 882, at SMN-18, located inside Nenita Elementary	45
Figure S1. GNSS receiver setup, minute S5 5062, at SWIN-16, located inside Nemita Elementary	A A
School in Bigs, Netrica, Municipality of Monuragon, Northern Sanial.	44
Figure 32. GINSS base set up, Trimble® SPS 852, at INS-26, located near the approach of Paticua	
Bridge in Brgy. Polangi, Municipality of Catarman, Northern Samar.	44
Figure 33. GNSS receiver setup, Trimble [®] SPS 985 at NS-55, located at the approach of Mondragon	
Bridge in Brgy. Eco Poblacion, Municipality of Mondragon, Northern Samar	45
Figure 34. GNSS receiver setup, Trimble [®] SPS 985, at NS-73, located at the approach of Pambujan	
Bridge, in Brgy. Dale, Municipality of San Roque, Northern Samar.	45
Figure 35. GNSS receiver setup, Trimble [®] SPS 882, at NS-81, located at the approach of Burabod	
Bridge in Brgy. Burabud, Municipality of Laoang, Northern Samar.	46
Figure 36. GNSS receiver setup. Trimble [®] SPS 852, at SMN-22, located at Simora Elementary	
School in Brgy, Simora, Municipality of Laoang, Northern Samar,	46
Figure 37. Downstrream side of Catarman Bridge	51
Figure 38 Cross-section survey conducted at Catarman Bridge	51
Figure 39 Location man of the Catarman Bridge cross-section survey	52
Figure 40. The Catarman Bridge cross-section survey drawn to scale	52
Figure 40. The Catarman Bridge ac built curvey data	در ۲
Figure 41. The Caldifiant Diluge as-built survey uald	54
rigure 42. water-level markings on the pier of Catarman Bridge.	55
rigure 43. Philippine-Australian Friendsnip Bridge facing downstream	56
Figure 44. As-built survey of Philippine-Australian Friendship Bridge.	56
Figure 45. Location map of the Philippine-Australian Friendship Bridge cross-section survey.	57
Figure 46. The Philippine-Australian Friendship Bridgecross-section survey drawn to scale	58
Figure 47. The Philippine-Australian Friendship Brigde Bridge as-built survey data	59
Figure 48. Water-level markings on the pier of Philippine-Australian Friendship Bridge	60

Figure 49.	. The validation point acquisition setup using a GNSS Receiver Trimble [®] SPS 882 fixed on a	
	vehicle along the Catarman River Basin.	61
Figure 50.	. The extent of the LiDAR ground validation survey (in red) for Catarman River Basin	62
Figure 51.	. Set up of the bathymetric survey at Catarman River using a Hi-Target™ V30 GNSS	63
Figure 52.	. The extent of the Catarman River Bathymetry Survey	64
Figure 53.	. The Catarman Riverbed Profile	65
Figure 54.	. Location Map of the Catarman HEC-HMS model used for calibration	67
Figure 55.	Cross-Section Plot of Catarman Bridge	68
Figure 56.	. The rating curve at Catarman Bridge	68
Figure 57.	. Rainfall and outflow data at Catarman Bridge, which was used for modeling	69
Figure 58.	. The location of the Catarman RIDF station relative to the Catarman River Basin.	70
Figure 59.	. The synthetic storm generated for a 24-hour period rainfall for various return periods	70
Figure 60.	. Soil Map of Catarman River Basin.	71
Figure 61.	. Land Cover Map of Catarman River Basin	72
Figure 62.	. Slope Map of the Catarman River Basin.	73
Figure 63.	Stream Delineation Map of Catarman River Basin.	74
Figure 64.	Catarman river basin model generated in HEC-HMS.	75
Figure 65.	River cross-section of the Catarman River through the ArcMap HEC GeoRas tool.	76
Figure 66.	A screenshot of the river sub-catchment with the computational area to be modeled in	
	FLO-2D Grid Developer System Pro (FLO-2D GDS Pro).	77
Figure 67.	Outflow Hydrograph of Catarman produced by the HEC-HMS model compared with	
	observed outflow.	78
Figure 68.	The Outflow hydrograph at the Catarman Station, generated using the Catarman RIDF	
	simulated in HEC-HMS.	80
Figure 69.	Catarman river (1) generated discharge using 5-, 25-, and 100-year rainfall intensity-	
	duration-frequency (RIDF) in HEC-HMS.	81
Figure 70.	Catarman river (2) generated discharge using 5-, 25-, and 100-year rainfall intensity-	
	duration-frequency (RIDF) in HEC-HMS.	82
Figure 71.	Catarman river (3) generated discharge using 5-, 25-, and 100-year rainfall intensity-	
	duration-frequency (RIDF) in HEC-HMS.	83
Figure 72.	Catarman river (4) generated discharge using 5-, 25-, and 100-year rainfall intensity-	
	duration-frequency (RIDF) in HEC-HMS.	84
Figure 73.	Catarman river (5) generated discharge using 5-, 25-, and 100-year rainfall intensity-	~-
	duration-frequency (RIDF) in HEC-HMS.	85
Figure 74.	Sample output map of the Catarman RAS Model.	86
Figure 75.	A 100-year Flood Hazard Map for Catarman Floodplain overlaid on Google Earth Imagery	88
Figure 76.	A 100-year Flow Depth Map for Catarman Floodplain overlaid on Google Earth imagery	89
Figure 77.	A 25-year Flood Hazard Map for Catarman Floodplain overlaid on Google Earth imagery	90
Figure 78.	A 25-year Flow Depth Map for Catarman Floodplain overlaid on Google Earth Imagery	91
Figure 79.	A 5-year Flood Hazaru Map for Catarman Floodplain Overlaid on Google Earth imagery.	92
Figure 80.	A 5-year Flood Depth Map for Catalman Floodpian Overlaid on Google Earth Inagery	93
Figure 01	Affected Areas in Bobon, Northern Samar during 5-fed Kalilian Return Period	90
Figure 62.	Affected Areas in Cotorman, Northern Samar during 5-fed Kalilian Return Period	9/
Figure 03	Affected Areas in Catarman, Northern Samar during 5-fedr Rainfall Return Period	101
Figure 04.	Affected Areas in Catarman, Northern Samar during 5-fedi Rainfall Return Period	102
Figure 05.	Affected Areas in Catarman, Northern Samar during 5-Year Rainfall Return Period	102
Figure 80.	Affected Areas in Catarman, Northern Samar during 5-Year Rainfall Return Period	102
Figure 07.	Affected Areas in Catarman, Northern Samar during 5-Year Rainfall Return Period	103
Figure 80	Affected Areas in Catarman, Northern Samar during 5-Year Rainfall Return Period	104
Figure 09.	Affected Areas in Catalinali, Northern Samar during 5-fear Kaliliali Keturn Period	
Figure 90.	Affected Areas in Mondragon, Northern Samar during 5-Year Painfall Peturn Period 1	105
Figure 02	Affected Areas in San Jose, Northern Samar during 5-Year Painfall Peturn Period	107
Figure 02	Affected Areas in John Northern Samar during 25-Year Painfall Peturn Deriod	
Figure 95.	Affected Areas in Bobon, Northern Samar during 25-Year Rainfall Return Period	109
Figure 05	Affected Areas in Catarman, Northern Samar during 25-Year Rainfall Return Period	11/
Figure 95	Affected Areas in Catarman, Northern Samar during 25-real Naimain Actum Feriod	115
Figure 07	Affected Areas in Catarman, Northern Samar during 25-real Namial Neturn Period	115
Figure 97	Affected Areas in Catarman, Northern Samar during 25 Teal Naimain Neturn Period	116
Figure 00	Affected Areas in Catarman, Northern Samar during 25 Teal Naimain Neturn Period	116
Figure 10). Affected Areas in Catarman, Northern Samar during 25-Year Rainfall Return Period 1	117
Figure 10	1. Affected Areas in Catarman, Northern Samar during 25 Year Rainfall Return Period 1	117
Figure 10	2. Affected Areas in Lope de Vega, Northern Samar during 25-Year Rainfall Return Period 1	118
Figure 10	3. Affected Areas in Mondragon, Northern Samar during 25-Year Rainfall Return Period 1	119
Figure 10	4. Affected Areas in San Jose, Northern Samar during 25-Year Rainfall Return Period	120
Figure 10	5. Affected Areas in Bobon, Northern Samar during 100-Year Rainfall Return Period	122
	· · · · · · · · · · · · · · · · · · ·	

Figure 106. Affected Areas in Bobon, Northern Samar during 100-Year Rainfall Return Period
Figure 107. Affected Areas in Catarman, Northern Samar during 100-Year Rainfall Return Period 126
Figure 108. Affected Areas in Catarman, Northern Samar during 100-Year Rainfall Return Period 127
Figure 109. Affected Areas in Catarman, Northern Samar during 100-Year Rainfall Return Period 127
Figure 110. Affected Areas in Catarman, Northern Samar during 100-Year Rainfall Return Period 128
Figure 111. Affected Areas in Catarman, Northern Samar during 100-Year Rainfall Return Period 128
Figure 112. Affected Areas in Catarman, Northern Samar during 100-Year Rainfall Return Period 129
Figure 113. Affected Areas in Catarman, Northern Samar during 100-Year Rainfall Return Period 129
Figure 114. Affected Areas in Lope de Vega, Northern Samar during 100-Year Rainfall Return Period. 130
Figure 115. Affected Areas in Mondragon, Northern Samar during 100-Year Rainfall Return Period 131
Figure 116. Affected Areas in San Jose, Northern Samar during 100-Year Rainfall Return Period 132
Figure 117. Validation Points for a 100-year Flood Depth Map of the Catarman Floodplain
Figure 118. Flood Map depth versus Actual Flood Depth

Ι	LIST OF ACRONYMS	AND ABI	BREVIATIONS	
AAC	Asian Aerospace Corporation	MMS	Mobile Mapping Suite	
Ab	abutment	MSL	mean sea level	
ALTM	Airborne LiDAR Terrain Mapper	NAMRIA	National Mapping and	
ARG	automatic rain gauge		Northern Subtronical Co	
AWLS	Automated Water Level Sensor		Rhilipping Air Force	
BA	Bridge Approach			
BM	benchmark	PAGASA	Geophysical and As	
CAD	Computer-Aided Design		Services Administration	
CN	Curve Number	PDOP	Positional Dilution of Pr	
CSRS	Chief Science Research Specialist	РРК	Post-Processed Kinemat	
DAC	Data Acquisition Component		[technique]	
DEM	Digital Elevation Model	PRF	Pulse Repetition Freque	
DENR	Department of Environment and	PTM	Philippine Transverse M	
	Natural Resources	QC	Quality Check	
DOST	Department of Science and	QT	Quick Terrain [Modeler]	
	Data Bro Brocossing Component	RA	Research Associate	
DREAM	Disaster Risk and Exposure	RIDF	Rainfall-Intensity-I Frequency	
	[Program]	RMSE	Root Mean Square Erro	
DRRM	Disaster Risk Reduction and	SAR	Synthetic Aperture Rada	
	Management	SCS	Soil Conservation Service	
DSM	Digital Surface Model	SRTM	Shuttle Radar Topograp	
DTM	Digital Terrain Model	SRS	Science Research Specia	
DVBC	Data Validation and Bathymetry	SSG	Special Service Group	
	Component	ТВС	Thermal Barrier Coating	
FMC	Flood Modeling Component	UP-TCAGP	University of the	
FOV	Field of View		- Training Center fo	
GiA	Grants-in-Aid			
GCP	Ground Control Point		Visouas State University	
GNSS	Global Navigation Satellite System	VSU	Visayas State University	
GPS	Global Positioning System	WGS	world Geodetic System	
HEC-HMS	Hydrologic Engineering Center - Hydrologic Modeling System			
HEC-RAS	Hydrologic Engineering Center - River Analysis System			
НС	High Chord			
IDW	Inverse Distance Weighted [interpolation method]			
IMU	Inertial Measurement Unit			
kts	knots			
LAS	LiDAR Data Exchange File format			
LC	Low Chord			
LGU	local government unit			
Lidar	Light Detection and Ranging			
LMS	LiDAR Mapping Suite			
m AGL	meters Above Ground Level			

MMS	Mobile Mapping Suite		
MSL	mean sea level		
NAMRIA	National Mapping and Resource Information Authority		
NSTC	Northern Subtropical Convergence		
PAF	Philippine Air Force		
PAGASA	Philippine Atmospheric Geophysical and Astronomical Services Administration		
PDOP	Positional Dilution of Precision		
РРК	Post-Processed Kinematic [technique]		
PRF	Pulse Repetition Frequency		
PTM	Philippine Transverse Mercator		
QC	Quality Check		
QT	Quick Terrain [Modeler]		
RA	Research Associate		
RIDF	Rainfall-Intensity-Duration- Frequency		
RMSE	Root Mean Square Error		
SAR	Synthetic Aperture Radar		
SCS	Soil Conservation Service		
SRTM	Shuttle Radar Topography Mission		
SRS	Science Research Specialist		
SSG	Special Service Group		
ТВС	Thermal Barrier Coatings		
UP-TCAGP	University of the Philippines – Training Center for Applied Geodesy and Photogrammetry		
UTM	Universal Transverse Mercator		
VSU	Visayas State University		
WGS	World Geodetic System		

Х

CHAPTER 1: OVERVIEW OF THE PROGRAM AND CATARMAN RIVER

Engr. Florentino Morales Jr. and Enrico C. Paringit, Dr. Eng.

1.1 Background of the Phil-LIDAR 1 Program

The University of the Philippines Training Center for Applied Geodesy and Photogrammetry (UP-TCAGP) launched a research program entitled "Nationwide Hazard Mapping using LiDAR in 2014" or Phil-LiDAR 1, supported by the Department of Science and Technology (DOST) Grants-in-Aid (GiA) Program. The program was primarily aimed at acquiring a national elevation and resource dataset at sufficient resolution to produce information necessary to support the different phases of disaster management. Particularly, it targeted to operationalize the development of flood hazard models that would produce updated and detailed flood hazard maps for the major river systems in the country.

Also, the program was aimed at producing an up-to-date and detailed national elevation dataset suitable for 1:5,000 scale mapping, with 50 cm and 20 cm horizontal and vertical accuracies, respectively. These accuracies were achieved through the use of the state-of-the-art Light Detection and Ranging (LiDAR) airborne technology procured by the project through DOST. The methods applied in this report are thoroughly described in a separate publication entitled "FLOOD MAPPING OF RIVERS IN THE PHILIPPINES USING AIRBORNE LIDAR: METHODS (Paringit, et. al. 2017) available separately.

The implementing partner university for the Phil-LiDAR 1 Program is the Visayas State University (VSU). VSU is in charge of processing LiDAR data and conducting data validation reconnaissance, cross section, bathymetric survey, validation, river flow measurements, flood height and extent data gathering, flood modeling, and flood map generation for the 28 river basins in the Eastern Visayas Region. The university is located in Baybay City in the province of Leyte.

1.2 Overview of the Catarman River Basin

The Catarman River Basin covers two (2) municipalities in Northern Samar; namely, the municipalities of Catarman and Lope de Vega. It also covers some portions of the municipalities of Mondragon and Bobon in Northern Samar and Calbayog City in Samar. The DENR River Basin Control Office (RBCO) states that the Catarman River Basin has drainage of 272 km² and an estimated 517 cubic meter (MCM) annual run-off (RBCO, 2015).

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

Figure 1. Map of Catarman River Basin (in brown).

Its main stem, Catarman River, is part of the twenty-eight (28) river systems in Eastern Visayas Region. According to the 2015 national census of PSA, a total of 25,275 persons residing within the immediate vicinity of the river which is distributed among barangays Somoge, Washington, San Pascual, McKinley, Hinatad, Doña Pulqueria, Galutan, Macagtas, Ipil-Ipil, Jose Abad Santos, Sampaguita, Mabolo, Baybay, and Bangkerohan in the Municipality of Catarman. In terms of economy, major industries in the province include agriculture and fishing with traditional crops such as palay, corn, vegetables, and fruits as the main products (National Economic and Development Authority, 2011). About 7,333 families (32,358 individuals) in Northern Samar were displaced by floods spawned by torrential rains in December 17, 2016 (Gabriela, J. & Dejon, R., 2016).

CHAPTER 2: LIDAR DATA ACQUISITION OF THE CATARMANFLOODPLAIN

Engr. Louie P. Balicanta, Engr. Christopher Cruz, Lovely Gracia Acuña, Engr. Gerome Hipolito, Engr. Christopher L. Joaquin, Ms. Mary Catherine Elizabeth M. Baliguas

The methods applied in this chapter were based on the DREAM methods manual (Ang, et. al., 2014) and further enhanced and updated in Paringit, et. al. (2017).

2.1 Flight Plans

To initiate the LiDAR acquisition survey of the Catarman floodplain, the Data Acquisition Component (DAC) created flight plans within the delineated priority area for Catarman Floodplain in Northern Samar. These flight missions were planned for 14 lines and ran for at most four and a half hours (4.5) including take-off, landing and turning time. The flight planning parameters for the LiDAR system are outlined in Table 1. Figure 2 shows the flight plan for Catarmanfloodplain survey.

Block Name	Flying Height (m AGL)	Overlap (%)	Field of View (θ)	Pulse Repetition Frequency (PRF) (kHz)	Scan Frequency (Hz)	Average Speed (kts)	Average Turn Time (Minutes)
BLK331A	600	35	36	50	50	120	5
BLK331B	500	35	36	50	45	120	5
BLK331C	500	35	36	50	45	120	5
BLK331D	500	35	36	50	45	120	5
BLK331G	600	35	36	50	50	120	5
BLK331H	600	25, 30, 35	36	50	45	120	5
BLK331I	600	30, 35	36	50	45	120	5
BLK331J	600	35	36	50	50	120	5
BLK331K	600	30, 35	36	50	50	120	5
BLK331L	500	35	40	50	45, 50	120	5
BLK331N	500	35	40	50	45	120	5
BLK3310	600	25	36	50	50	120	5
BLK331T	500	35	36	50	45	120	5

Table 1. Flight planning parameters for the Aquarius LiDAR system.

Figure 2. Flight plans and base stations used for Catarman floodplain using Aquarius LiDAR system.

2.2 Ground Base Stations

The project team was able to recover four (4) NAMRIA ground control points: SMN-16 (SMN-19), SMN-22, SMN-12 which are all of second (2nd) order accuracy.

The certifications for the base stations are found in Annex 2 while the baseline processing reports for the established control points are found in Annex 3. The project team also established ground control point CMN-01. Three (3) NAMRIA benchmarks were recovered: NS-61, NS-100 and SI-08 which are all of first (1st) order accuracy. These benchmarks were used as vertical reference points and were also established as ground control points. These were used as base stations during flight operations for the entire duration of the survey (February 21 to March 9, 2015 and August 1 to 28, 2015). Base stations were observed using dual frequency GPS receivers, TOPCON GR5, TRIMBLE SPS 852 and SPS 985. Flight plans and location of base stations used during the aerial LiDAR acquisition in Catarman floodplain are shown in Figure 2.

The succeeding sections depict the sets of reference points, control stations and established points, and the ground control points for the entire Catarman Floodplain LiDAR Survey. Figure 3 to Figure 7 show the recovered NAMRIA reference points within the area of the floodplain, while Table 2 to Table 7 show the details about the following NAMRIA control stations and established points. Table 8, on the other hand, shows the list of all ground control points occupied during the acquisition together with the corresponding dates of utilization.

(a)

(b)

Figure 3. GPS set-up over SMN-16 situated in Brgy. Bagasbas, Municipality of Mondragon located inside the Basketball Court (a) and NAMRIA reference point SMN-16 (b) as recovered by the field team.

Table 2. Details of the recovered NAMRIA horizontal control point SMN-16 used as base station for the LiDAR data acquisition.

Station Name	SMN-16		
Order of Accuracy	2	nd Order	
Relative Error (horizontal positioning)	1:50,000		
	Latitude	12°31'32.33268" North	
Reference of 1992 Datum (PRS 92)	Longitude	124° 48'56.69485"East	
	Ellipsoidal Height	5.45500 meters	
Grid Coordinates, Philippine Transverse	Easting	479974.965 meters	
Mercator Zone 5 (PTM Zone 5 PRS 92)	Northing	1385085.603 meters	
	Latitude	12° 31' 27.72792" North	
Geographic Coordinates, World Geodetic	Longitude	124° 49' 1.74020"East	
System 1964 Datam (Wes 64)	Ellipsoidal Height	63.99100 meters	
Grid Coordinates, Universal Transverse Mercator Zone 51 North	Easting	697302.11 meters	
(UTM 51N PRS1992)	Northing	1385272.01 meters	

(a)

Figure 4. GPS set-up over SMN-12 situated in the Municipality of Mondragon located inside a school (a) and NAMRIA reference point SMN-12 (b) as recovered by the field team.

Table 3. Details of the recovered NAMRIA horizontal control point SMN-12 used as base station for the LiDAR data acquisition.

Station Name	SMN-12		
Order of Accuracy	2	nd Order	
Relative Error (horizontal positioning)	1:50,000		
	Latitude	12° 26' 15.70013" North	
Reference of 1992 Datum (PRS 92)	Longitude	124° 19' 13.39605" East	
	Ellipsoidal Height	5.45500 meters	
Grid Coordinates, Philippine Transverse Mer-	Easting	426111.163 meters	
cator Zone 3 (PTM Zone 3 PRS 92)	Northing	1375444.106 meters	
	Latitude	12° 26' 11.07561" North	
Geographic Coordinates, World Geodetic	Longitude	124° 19' 18.45344" East	
System 1964 Datam (WOS 64)	Ellipsoidal Height	64.58200 meters	
Grid Coordinates, Universal Transverse Mercator Zone 51 North	Easting	643513.56 meters	
(UTM 51N PRS1992)	Northing	1375224.53 meters	

(a)

(b)

Figure 5. GPS set-up over SMN-22 located in Barangay Simora Elementary School, Northern Samar, and NAMRIA reference point SMN-22 (b) as recovered by the field team.

Table 4. Details of the recovered NAMRIA horizontal control point SMN-22 used as base station for the LiDAR data acquisition.

Station Name	SMN-22		
Order of Accuracy	2 nd Order		
Relative Error (horizontal positioning)	1:50,000		
	Latitude	12°28'27.20633" North	
Geographic Coordinates, Philippine	Longitude	125°1'25.36067" East	
	Ellipsoidal Height	-1.70407 meters	
Grid Coordinates, Philippine Transverse Mer-	Easting	502577.525meters	
cator Zone 3 (PTM Zone 3 PRS 92)	Northing	1379390.508meters	
	Latitude	12°28'22.63174" North	
Geographic Coordinates, World Geodetic	Longitude	125°1'30.408661" East	
System 1964 Datam (Wes 64)	Ellipsoidal Height	57.47400 meters	
Grid Coordinates, Universal Transverse Mercator Zone 51 North	Easting	719951.32 meters	
(UTM 51N PRS1992)	Northing	13/3/40.07 IIIEters	

(a)

(b)

Figure 6. GPS set-up over NS-100 as situated in Geratag Bridge 1, Northern Samar, and NAMRIA reference point NS-100 (b) as recovered by the field team.

Table 5. Details of the recovered NAMRIA Benchmark NS-100 used as base station for the LiDAR data acquisition with established coordinates.

Station Name	NS-100		
Order of Accuracy	2 nd Order		
Relative Error (horizontal positioning)	1:50,000		
	Latitude	12° 31′ 15.60049″ North	
Geographic Coordinates, Philippine	Longitude	124° 30' 47.05130" East	
	Ellipsoidal Height	5.524 meters	
Grid Coordinates, Philippine Transverse Mer-	Easting	664407.825meters	
cator Zone 3 (PTM Zone 3 PRS 92)	Northing	1384550.595meters	
	Latitude	12° 31' 10.97151" North	
Geographic Coordinates, World Geodetic	Longitude	124° 30' 52.09977" East	
	Ellipsoidal Height	63.332 meters	

Figure 7. NS-61 as situated in Muyaw Bridge, Mondragon Northern Samar (a) and NAMRIA reference point NS-61 (a) as recovered by the field team.

Table 6. Details of the recovered NAMRIA Benchmark NS-61 used as base station for the LiDAR data acquisition with established coordinates.

Station Name	NS-61		
Order of Accuracy	2nd		
Relative Error (horizontal positioning)	1:50,000		
	Latitude	12°31'17.86801" North	
Geographic Coordinates, Philippine Refer-	Longitude	124°48'26.40323" East	
ence of 1992 Datum (PRS 92)	Ellipsoidal Height	5.208 meters	
	Latitude	12°31'13.26354" North	
Geographic Coordinates, World Geodetic	Longitude	124°48'31.44902" East	
System 1984 Datum (WGS 84)	Ellipsoidal Height	63.733 meters	
Grid Coordinates, Philippine Transverse Mer-	Easting	696390.555 meters	
cator Zone 5 (PTM Zone 5 PRS 92)	Northing	1384821.249 meters	

Table 7. Details of the established horizontal control point CMN-01 used as base station for the LiDAR acquisition.

Station Name	CMN-01		
Order of Accuracy	2nd		
Relative Error (horizontal positioning)	1 in 50,000		
	Latitude	12° 29' 53.60604" North	
Geographic Coordinates, Philippine	Longitude	124° 38' 11.46535" East	
Reference of 1992 Datum (FRS 92)	Ellipsoidal Height	12.573 meters	
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Latitude Longitude Ellipsoidal Height	12° 29' 48.99306" North 124° 38' 16.51471" East 70.742 meters	
Grid Coordinates, Universal Transverse Mercator Zone 51 North	Easting	677840.326 meters 1382111.129 meters	
(UTM 51N PRS92)	Northing		

Table 8. Ground control points used during the LiDAR data acquisition.

Date Sur- veyed	Flight Number	Mission Name	Ground Control Points
21-Feb-15	7814AC	3BLK331I052A	SMN-16 and NS-61
24-Feb-15	7820AC	3BLK331I055A	SMN-16 and NS-61
25-Feb-15	7822AC	3BLK331I056A	SMN-16 and NS-61
26-Feb-15	7824AC	3BLK331H057A	SMN-16 and NS-61
27-Feb-15	7826AC	3BLK331K058A	SMN-16 and NS-61
28-Feb-15	7828AC	3BLK331J059A	SMN-12 and NS-100
28-Feb-15	7829AC	3BLK331H059B	SMN-12 and NS-100
01-Mar-15	7830AC	3BLK331HSO060A	SMN-16 and NS-61
03-Mar-15	7834AC	3BLK331KSOS062A	SMN-16 and NS-61
05-Mar-15	7838AC	3BLK331JSB064A	SMN-12 and NS-100
05-Mar-15	7839AC	3BLK331G064B	SMN-12 and NS-100
07-Mar-15	7842AC	3BLK331JO066A	SMN-16 and NS-61
09-Mar-15	7846AC	3BLK331L068A	SMN-16 and NS-61
01-Aug-15	8137AC	CASILCTF213A	SMN-19 and CMN-01
04-Aug-15	8142AC	AQUALCTF216A	SMN-19 and CMN-01
11-Aug-15	8156 AC	3BLK331LNS223A	SMN-19 and CMN-01
24-Aug-15	8183AC	3BLK33STV236B	SMN-22 and SI-08
25-Aug-15	8185AC	3BUNDLEADJUSTMENT237B	SMN-22, SMN-16, SI-08 and NS-61
27-Aug-15	8188AC	3BLK33S239A	SMN-12 and NS-100
28-Aug-15	8190AC	3BLK33CD240A	SMN-12 and NS-100

2.3 Flight Missions

A total of 20 missions were conducted to complete the LiDAR data acquisition in Catarman floodplain, for a total of fifty-six hours and twenty-four minutes (56+24) of flying time for RP-C9322 (See Annex 6). All missions were acquired using Aquarius LiDAR system. As shown below, the total area of actual coverage per mission and the corresponding flying hours are depicted inTable 9, while the actual parameters used during the LiDAR data acquisition are presented inTable 10.

				Area	Area		Flying	Hours
Date Surveyed	Flight Number	Flight Plan Area (km²)	Surveyed Area (km²)	Surveyed within the Floodplain (km²)	Surveyed Outside the Floodplain (km ²)	No. of Images (Frames)	Hr	Min
21-Feb-15	7814AC	78.22	13.24	9.73	3.51	NA	1	23
24-Feb-15	7820AC	78.22	10.51	8.70	1.81	NA	1	17
25-Feb-15	7822AC	78.22	77.71	57.14	20.57	NA	3	53
26-Feb-15	7824AC	78.71	80.10	23.97	56.13	NA	3	11
27-Feb-15	7826AC	110.19	41.17	12.46	28.71	NA	2	35
28-Feb-15	7828AC	218.50	89.26	56.87	32.39	NA	3	53
28-Feb-15	7829AC	61.57	39.76	27.63	12.13	NA	2	35
01-Mar-15	7830AC	154.26	87.52	11.44	76.08	NA	3	59
03-Mar-15	7834AC	171.76	59.24	20.91	38.33	NA	2	41
05-Mar-15	7838AC	102.59	67.35	18.66	48.69	NA	3	35
05-Mar-15	7839AC	56.73	37.04	0.66	36.38	NA	2	5
07-Mar-15	7842AC	78.71	58.41	30.75	27.66	NA	4	5
09-Mar-15	7846AC	78.22	127.71	18.72	108.99	NA	3	48
01-Aug-15	8137AC	78.22	24.25	21.84	2.41	NA	1	47
04-Aug-15	8142AC	78.22	11.74	2.79	8.95	NA	1	53
11-Aug-15	8156 AC	78.71	153.81	11.66	142.15	NA	3	41
24-Aug-15	8183AC	110.19	40.09	3.74	36.35	NA	2	41
25-Aug-15	8185AC	218.50	8.30	7.94	0.36	NA	1	29
27-Aug-15	8188AC	61.57	21.32	0.01	21.31	NA	2	11
28-Aug-15	8190AC	154.26	55.36	0.01	55.35	NA	3	42
TOTA	AL	1871.44	1103.89	345.61	758.28	NA	56	24

Table 9. Flight missions for LiDAR data acquisition in Catarman floodplain.

Flight Number	Flying Height (m AGL)	Overlap (%)	FOV (θ)	PRF (khz)	Scan Frequency (Hz)	Average Speed (kts)	Average Turn Time (Minutes)
7814AC	600	35	36	50	45	120	5
7820AC	600	35	36	50	45	120	5
7822AC	600	35	36	50	45	120	5
7824AC	600	30,35	36	50	50	120	5
7826AC	600	35	36	50	50	120	5
7828AC	600	50	36	50	50	120	5
7829AC	600	35	36	50	50	120	5
7830AC	600	25	36	50	50	120	5
7834AC	600	30	36	50	50	120	5
7838AC	600	35	36	50	50	120	5
7839AC	600	35	36	50	50	120	5
7842AC	600	35	36	50	50	120	5
7846AC	600	30	36	50	50	120	5
8137AC	600	35	36	50	45	120	5
8142AC	600	35	36	50	45	120	5
8156 AC	500	35	40	50	45	120	5
8183AC	500	35	36	50	45	120	5
8185AC	500	35	36	50	45	120	5
8188AC	500	35	36	50	45	120	5
8190AC	500	35	36	50	45	120	5

Table 10. Actual parameters used during LiDAR data acquisition.

2.4 Survey Coverage

This certain LiDAR acquisition survey covered the Catarman floodplain (See Annex 7). It is located in the province of Northern Samar with majority of the floodplain situated within the municipality of Catarman. Most of Catarman is covered by the survey. The list of municipalities and cities surveyed, with at least one (1) square kilometer coverage, is shown in Table 11. Figure 8, on the other hand, shows the actual coverage of the LiDAR acquisition for theCatarman floodplain.

Province	Municipality/City	Area of Municipality/ City	Total Area Surveyed	Percentage of Area Surveved	
		(km²)	(km²)		
	Catarman	255.77	233.39	91.25%	
	Bobon	198.53	105.61	53.20%	
	Mondragon	322.75	150.63	46.67%	
	San Roque	166.51	76.2	45.76%	
	Victoria	137.55	57.07	41.49%	
Northern	Pambujan	150.63	51.62	34.27%	
Samar	Biri	26.75	8.6	32.14%	
	Laoang	207.6	48.62	23.42%	
	San Jose	68.72	12.29	17.89%	
	Allen	57.16	9.64	16.87%	
	Lope de Vega	186.61	22.58	12.10%	
	Palapag	153.46	17.74	11.56%	
	Total	1932.04	793.99	41.10%	

Table 11. List of municipalities and cities surveyed during Catarman floodplain LiDAR survey.

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

Figure 8. Actual LiDAR survey coverage for Catarman floodplain.

CHAPTER 3: LIDAR DATA PROCESSING OF THE CATARMAN FLOODPLAIN

Engr. Ma. Rosario Concepcion O. Ang, Engr. John Louie D. Fabila, Engr. Sarah Jane D. Samalburo , Engr. Harmond F. Santos , Engr. Gladys Mae Apat , Engr. Jovelle Anjeanette S. Canlas, Engr. Wilbert Ian M. San Juan, Engr. Vincent Louise DL. Azucena , Nereo Joshua G. Pecson, Areanne Katrice K. Umali

The methods applied in this chapter were based on the DREAM methods manual (Ang, et. al., 2014) and further enhanced and updated in Paringit, et. al. (2017).

3.1 Overview of the LIDAR Data Pre-Processing

The data transmitted by the Data Acquisition Component are checked for completeness based on the list of raw files required to proceed with the pre-processing of the LiDAR data. Upon acceptance of the LiDAR field data, georeferencing of the flight trajectory is done in order to obtain the exact location of the LiDAR sensor when the laser was shot. Point cloud georectification is performed to incorporate correct position and orientation for each point acquired. The georectified LiDAR point clouds are subject for quality checking to ensure that the required accuracies of the program, which are the minimum point density, vertical and horizontal accuracies, are met. The point clouds are then classified into various classes before generating Digital Elevation Models such as Digital Terrain Model and Digital Surface Model.

Using the elevation of points gathered in the field, the LiDAR-derived digital models are calibrated. Portions of the river that are barely penetrated by the LiDAR system are replaced by the actual river geometry measured from the field by the Data Validation and Bathymetry Component. LiDAR acquired temporally are then mosaicked to completely cover the target river systems in the Philippines. Orthorectification of images acquired simultaneously with the LiDAR data is done through the help of the georectified point clouds and the metadata containing the time the image was captured.

These processes are summarized in the flowchart shown inFigure 9.

Figure 9. Schematic diagram for the data pre-processing.

3.2 Transmittal of Acquired LiDAR Data

Data transfer sheets for all the LiDAR missions of the Catarman Floodplain can be found in Annex 5. The missions flown during the conduct of the survey in June 2015 utilized the Airborne LiDAR Terrain Mapper (ALTM™ Optech Inc.) Aquariussystem over Catarman, Northern Samar.

The Data Acquisition Component (DAC) transferred a total of 139.23 Gigabytes of Range data, 3.07 Gigabytes of POS data, 353.98 Megabytes of GPS base station data, and 737.23 Gigabytes of raw image data to the data server on July 13, 2015 for the first survey and April 17, 2016 for the second survey. The Data Pre-processing Component (DPPC) verified the completeness of the transferred data. The whole dataset for Catarman was fully transferred on June 4, 2016, as indicated on the Data Transfer Sheets for Catarman floodplain.

3.3 Trajectory Computation

The Smoothed Performance Metric parameters of the computed trajectory for Flight 7846AC, one of the Catarman flights, which is the North, East, and Down position RMSE values are shown inFigure 10. The x-axis corresponds to the time of the flight, which was measured by the number of seconds from the midnight of the start of the GPS week, which fell on the date and time of March 9, 2015, 00:00 AM. The y-axis, on the other hand, represents the RMSE value for that particular position.

Figure 10. Smoothed Performance Metric Parameters of Catarman Flight 7846AC.

The time of flight was from 78500 seconds to 91500 seconds, which corresponds to afternoon of March 9, 2015. The initial spike that is seen on the data corresponds to the time that the aircraft was getting into position to start the acquisition, and the POS system starts computing for the position and orientation of the aircraft.

Redundant measurements from the POS system quickly minimized the RMSE value of the positions. The periodic increase in RMSE values from an otherwise smoothly curving RMSE values correspond to the turnaround period of the aircraft, when the aircraft makes a turn to start a new flight line. Figure 11 shows that the North position RMSE peaks at 1.11 centimeters, the East position RMSE peaks at 1.16 centimeters, and the Down position RMSE peaks at 2.90 centimeters, which are within the prescribed accuracies described in the methodology.

Figure 11. Solution Status Parameters of Catarman Flight 7846AC.

The Solution Status parameters, which indicate the number of GPS satellites; Positional Dilution of Precision (PDOP); and the GPS processing mode used for Catarman Flight 7846AC are shown inFigure 11. For the Solution Status parameters, the figure above signifies that the number of satellites utilized and tracked during the acquisition were between 6 and 8, not going lower than 6. Similarly, the PDOP value did not go above the value of 3, which indicates optimal GPS geometry. The processing mode also stayed at the value of 0 for the majority of the survey stayed at the value of 0 for majority of the survey with some peaks up to 1 attributed to the turns performed by the aircraft. The value of 0 corresponds to a Fixed, Narrow-Lane Mode, which is the optimum carrier-cycle integer ambiguity resolution technique available for the POSPAC MMS. Fundamentally, all of the parameters adhered to the accuracy requirements for optimal trajectory solutions, as indicated in the methodology. The computed best estimated trajectory for all Catarman flights is shown inFigure 12.

Figure 12. Best Estimated Trajectory of the LiDAR missions conducted over the Catarman Floodplain.

3.4 LiDAR Point Cloud Computation

The produced LAS contains 208 flight lines, with each flight line contains one channel, since the Aquarius system contains only one channel. The summary of the self-calibration results obtained from LiDAR processing in the LiDAR Mapping Suite (LMS) software for all flights over the Catarman floodplain are given inTable 12.

Table 12. Self-calibration Results values for	or Catarman flights.
---	----------------------

Parameter	Acceptable Value	Computed Value
Boresight Correction stdev)	<0.001degrees	0.000404
IMU Attitude Correction Roll and Pitch Corrections stdev)	<0.001degrees	0.000905
GPS Position Z-correction stdev)	<0.01meters	0.0031

The optimum accuracy values for all Catarman flights were also calculated, which are based on the computed standard deviations of the corrections of the orientation parameters. The standard deviation values for individual blocks are presented in the Mission Summary Reports (Annex8).

3.5 LiDAR Quality Checking

The boundary of the processed LiDAR data on top of the SAR Elevation Data over the Catarman Floodplain is shown inFigure 13. The map shows gaps in the LiDAR coverage that are attributed to cloud coverage.

Figure 13. Boundaries of the processed LiDAR data over the Catarman Floodplain.

A total area of 779.40 square kilometers (sq.km) were covered by the Catarman flight missions as a result of eighteen (18) flight acquisitions, which were grouped and merged into twelve (12) block accordingly, as portrayed inTable 13.

LiDAR Blocks	Flight Numbers	Area (sq. km)
Cotormon Dlk22C	8188AC	26.91
Catarman_Bik33C	8190AC	30.81
Catarman_Blk33D	8190AC	31.47
Catarman_Blk331G	7839AC	32.35
	7828AC	
	7829AC	77.00
Catarman_Blk331H	7830AC	/7.02
	7834AC	
	7822AC	05.40
Catarman_Bik3311	7820AC	95.40
	7828AC	
Catarman_Blk331J	7838AC	146.87
	7842AC	
Catarman_Blk331I_ supplement	7814AC	10.21
	7824AC	
Catarman_Blk_331K	7826AC	121.02
	7834AC	
Catarman_Blk331L	7846AC	126.38
Catarman_Blk331L_additional	8156AC	37.44
Catarman_Blk33S	8183AC	13.40
Catarman_reflights_Blk33F	8445AC	51.03
TOTAL		779.40 sq.km

Table 13. List of LiDAR blocks for the Catarman floodplain.

The overlap data for the merged LiDAR blocks, showing the number of channels that pass through a particular location is shown in Figure 14. Since the Aquarius system employs one channel, we would expect an average value of 1 (blue) for areas where there is limited overlap, and a value of 2 (yellow) or more (red) for areas with three or more overlapping flight lines.

Figure 14. Image of data overlap for Catarman floodplain.

The overlap statistics per block for the Catarman floodplain can be found in the Mission Summary Reports (Annex 8). One pixel corresponds to 25.0 square meters on the ground. For this area, the percent overlaps 27.44% and 69.50% respectively, which passed the 25% requirement.

The pulse density map for the merged LiDAR data, with the red parts showing the portions of the data that satisfy the two (2) points per square meter criterion is shown inFigure 15. As seen in the figure below, it was determined that all LiDAR data for the Catarman Floodplain Survey satisfy the point density requirement, as the average density for the entire survey area is 2.62 points per square meter.

Figure 15. Pulse density map of the merged LiDAR data for Catarman floodplain.

The elevation difference between overlaps of adjacent flight lines is shown in Figure 16. The default color range is blue to red, where bright blue areas correspond to portions where elevations of a previous flight line are higher by more than 0.20m, as identified by its acquisition time; which is relative to the elevations of its adjacent flight line. Similarly, bright red areas indicate portions where elevations of a previous flight line are lower by more than 0.20m, relative to the elevations of its adjacent flight line. Areas highlighted in bright red or bright blue necessitate further investigation using the Quick Terrain Modeler software.

Figure 16. Elevation difference Map between flight lines for the Catarman Floodplain Survey.

A screen-capture of the processed LAS data from Catarman flight 7846AC loaded in QT Modeler is shown in Figure 17. The upper left image shows the elevations of the points from two overlapping flight strips traversed by the profile, illustrated by a dashed red line. The x-axis corresponds to the length of the profile. It is evident that there are differences in elevation, but the differences do not exceed the 20-centimeter mark. This profiling was repeated until the quality of the LiDAR data generated satisfactory results. No reprocessing was done for this LiDAR dataset.

Figure 17. Quality checking for Catarman flight 7846AC using the Profile Tool of QT Modeler.

3.6 LiDAR Point Cloud Classification and Rasterization

Pertinent Class	Total Number of Points
Ground	378,125,898
Low Vegetation	262,550,711
Medium Vegetation	421,179,506
High Vegetation	1,011,467,578
Building	18,868,494

Table 14. Catarman classification results in TerraScan.

The tile system that TerraScan employed for the LiDAR data as well as the final classification image for a block of the Catarman floodplain is shown in Figure 18. A total of 1,264 tiles with 1 km. X 1 km. (one kilometer by one kilometer) size were produced. Correspondingly, Table 14 summarizes the number of points classified to the pertinent categories. The point cloud has a maximum and minimum height of 637.77 meters and 41.99 meters respectively. Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

Figure 18. Tiles for Catarman floodplain (a) and classification results (b) in TerraScan.

An isometric view of an area before and after running the classification routines is shown in Figure 19. The ground points are highlighted in orange, while the vegetation is in different shades of green, and the buildings are in cyan. It can be seen that residential structures adjacent or even below the canopy are classified correctly, due to the density of the LiDAR data.

Figure 19. Point cloud before (a) and after (b) classification.

The production of the last return (V_ASCII) and secondary (T_ASCII) DTM as well as the first (S_ASCII) and last (D_ASCII) return DSM of the area in top view display are show inFigure 20. It shows that DTMs are the representation of the bare earth, while on the DSMs, all features are present, such as buildings and vegetation.

Figure 20. The production of last return DSM (a) and DTM (b), first return DSM (c) and secondary DTM (d) in some portion of Catarman floodplain.

3.7 LiDAR Image Processing and Orthophotograph Rectification

There are no available orthophotographs for the Catarman floodplain.

3.8 DEM Editing and Hydro-Correction

Twelve (12) mission blocks were processed for the Catarman Floodplain Survey. The blocks are composed of Catarman and Catarman_reflights blocks with a total area of 779.40 square kilometers. Table 15shows the name and corresponding area of each block in square kilometers.

Table 15. LiDAR blocks with its corresponding areas.

·	
LiDAR Blocks	Area (sq. km.)
Catarman_Blk331G	32.35
Catarman_Blk331H	77.02
Catarman_Blk331I	95.40
Catarman_Blk331I_supplement	10.21
Catarman_Blk331J	146.87
Catarman_Blk331K	121.02
Catarman_Blk331L	126.38
Catarman_Blk331L_additional	37.44
Catarman_Blk33S	13.40
Catarman_reflights_Blk33F	51.03
Catarman_Blk33C	36.81
Catarman_Blk33D	31.47
TOTAL	779.40 sq.km

Figure 21 shows portions of a DTM before and after manual editing. As evident in the figure, the paddy field (Figure 21a) has been misclassifiedand removed during classification process and has to be retrieved to complete the surface (Figure 21b). The bridge ((Figure 21c) has obstructed the flow of water along the river. To correct the river hydrologically, the bridge was removed through manual editing (Figure 21d).

Figure 21. Portions in the DTM of the Catarman Floodplain – a paddy field before (a) and after (b) data retrieval; a bridge before (c) and after (d) manual editing.

3.9 Mosaicking of Blocks

Catarman_Blk331H was used as the reference block at the start of mosaicking because this block was made available for editing and mosaicking before the other blocks. Table 16 shows the shift values applied to each LiDAR block during mosaicking.

Mosaicked LiDAR DTM for Catarman Floodplain is shown inFigure 22. Map of processed LiDAR data for the Catarman Floodplain.. It can be seen that the entire Catarman floodplain is 98.24% covered by LiDAR data. Portions with no Lidar data were patched with the available IFSAR data.

Mission Diselie	Shi	ft Values (met	ers)
	x	у	z
Catarman_Blk331H	0.00	0.00	0.00
Catarman_Blk331K	0.00	0.00	0.00
Catarman_Blk331G	0.00	0.00	0.38
Catarman_Blk331L	0.00	0.00	0.00
Catarman_Blk331I_supplement	2.00	-1.00	0.15
Catarman_Blk331I	0.00	0.00	0.14
Catarman_Blk331J	1.00	0.00	-0.67
Catarman_Blk33S	-14.00	-17.00	3.94
Catarman_Blk331L_additional	0.00	0.00	0.06
Catarman_reflights_Blk33F	1.00	0.00	-0.28
Catarman_Blk33C	0.00	0.00	0.00
Catarman_Blk33D	0.00	0.00	0.00

Table 16. Shift values of each LiDAR block of Catarman Floodplain.

Figure 22. Map of processed LiDAR data for the Catarman Floodplain.

3.10 Calibration and Validation of Mosaicked LiDAR DEM

The extent of the validation survey done by the Data Validation and Bathymetry Component (DVBC) in Catarman to collect points with which the LiDAR dataset is validated is shown in Figure 23, with the validation survey points highlighted in green. A total of 14,268 survey points were gathered for the Catarman floodplain and were used for calibration. Random selection of 80% of the survey points, resulting to 11,415 points, was used for calibration.

A good correlation between the uncalibrated LiDAR DTM and the ground survey elevation values is shown in Figure 24. Statistical values were computed from extracted LiDAR values using the selected points to assess the quality of the data and obtain the value for vertical adjustment. The computed height difference between the LiDAR DTM and calibration points is 2.79 meters, with a standard deviation of 0.18 meters. The calibration of theLiDAR data was accomplished by subtracting the height difference value of 2.79 meters to the mosaicked LiDAR data. Table 17 shows the statistical values of the compared elevation values between the Catarman LiDAR data and the calibration data.

Figure 23. Map of Catarman Floodplain with validation survey points in green.

Figure 24. Correlation plot between calibration survey points and LiDAR data.

Calibration Statistical Measures	Value (meters)
Height Difference	2.79
Standard Deviation	0.18
Average	-2.79
Minimum	-3.15
Maximum	-2.43

Table 17. Calibration Statistical Measures
--

A total of 529 survey points were used to validate the calibrated Catarman DTM. A good correlation between the calibrated mosaicked LiDAR elevation and the ground survey elevation values, which point toward the quality of the LiDAR DTM is shown inFigure 25. The computed RMSE value between the calibrated LiDAR DTM and the validation elevation values is at 0.20 meters with a standard deviation of 0.20 meters, as shown inTable 18.

Figure 25. Correlation plot between the validation survey points and the LiDAR data.

Validation Statistical Measures	Value (meters)
RMSE	0.20
Standard Deviation	0.20
Average	0.04
Minimum	-0.35
Maximum	0.43

Table 18.	Validation	Statistical	Measures

3.11 Integration of Bathymetric Data into the LiDAR Digital Terrain Model

For bathy integration, centerline and cross-section data were available for Catarman with a total of 9,422 bathymetric survey points. The resulting raster surface produced was done by Kernel Interpolation with Barriers interpolation method. After burning the bathymetric data to the calibrated DTM, assessment of the interpolated surface is represented by the computed RMSE value of 0.47 meters. The extent of the bathymetric survey done by the Data Validation and Bathymetry Component (DVBC) in Catarman integrated with the processed LiDAR DEM is shown inFigure 26.

Figure 26. Map of Catarman floodplain with bathymetric survey points in blue.

3.12 Feature Extraction

The features salient in flood hazard exposure analysis include buildings, road networks, bridges, and water bodies within the floodplain area with a 200-meter buffer zone. Mosaicked LiDAR DEMs with a 1-m resolution were used to delineate footprints of building features, which comprised of residential buildings, government offices, medical facilities, religious institutions, and commercial establishments, among others. Road networks comprise of main thoroughfares such as highways and municipal and barangay roads essential for the routing of disaster response efforts. These features are represented by network of road centerlines.

3.12.1 Quality Checking (QC) of Digitized Features' Boundary

Catarman floodplain, including its 200-m buffer, has a total area of 272.80sq km. For this area, a total of 9.0 sq. km., corresponding to a total of 1,770building features, were considered for QC. Figure 27shows the QC blocks for the Catarman floodplain.

3.12.2 Height Extraction

Height extraction was done for 17.941 building features in Catarman floodplain. Of these building features, 1,667 were filtered out after height extraction, resulting to 16,274 buildings with height attributes. The lowest building height is at 2.00 meters, while the highest building is at 12.20meters.

3.12.3 Feature Attribution

The digitized features were marked and coded in the field using handheld GPS receivers. The attributes of non-residential buildings were first identified; all other buildings were then coded as residential. A DSM was generated using the LiDAR DEMs to extract the heights of the buildings. A minimum height of 2 meters was used to filter out the terrain features that were digitized as buildings. Buildings that were not yet constructed during the time of LiDAR acquisition were noted as new buildings in the attribute table.

Table 20 summarizes the number of building features per type, while Table 21 shows the total length of each road type. Table 22, on the other hand, shows the number of water features extracted per type.

Facility Type	No. of Features
Residential	15,248
School	321
Market	9
Agricultural/Agro-Industrial Facilities	3
Medical Institutions	36
Barangay Hall	27
Military Institution	28
Sports Center/Gymnasium/Covered Court	9
Telecommunication Facilities	0
Transport Terminal	8
Warehouse	72
Power Plant/Substation	3
NGO/CSO Offices	3
Police Station	13
Water Supply/Sewerage	5
Religious Institutions	49
Bank	13
Factory	3
Gas Station	12
Fire Station	1
Other Government Offices	87
Other Commercial Establishments	324
Total	16,274

Table 20. Building features extracted for Catarman Floodplain.

					F • • • • • •	
Road Network Length (km)						
Floodplain	Barangay Road	City/Municipal Road	Provincial Road	National Road	Others	Total
Catarman	125.69	19.90	0.00	29.20	1.00	175.79

Table 21. Total length of extracted roads for Catarman Floodplain.

Table 22. Number of extracted water bodies forCatarman Floodplain.

Eloodalain		Total							
FIOOdplain	Rivers/Streams	Lakes/Ponds	Sea	Dam	Fish Pen	IOLAI			
Catarman	192	1	0	2	0	195			

A total of 68 bridges and culverts over small channels that are part of the river network were also extracted for the floodplain.

3.12.4 Final Quality Checking of Extracted Features

All extracted ground features were given the complete required attributes. Respectively, all these output features comprise the flood hazard exposure database for the floodplain. The final quality checking completes the feature extraction phase of the project.

Figure 28 shows the completed Digital Surface Model (DSM) of the Catarman floodplain overlaid with its ground features.

Figure 28. Extracted features of the Catarman Floodplain.

CHAPTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE CATARMAN RIVER BASIN

Engr. Louie P. Balicanta, Engr. Joemarie S. Caballero, Ms. Patrizcia Mae. P. dela Cruz, Engr. Dexter T. Lozano, For. Dona Rina Patricia C. Tajora, Elaine Bennet Salvador, For. Rodel C. Alberto, Engr. Marck Lorenz R. Taguse, Mary Cibyl J. Atacador

The methods applied in this chapter were based on the DREAM methods manual (Ang, et. al., 2014) and further enhanced and updated in Paringit, et. al. (2017).

4.1 Summary of Activities

The H.O. Noveloso Surveying (HONS) conducted a field survey in Catarman River on November 24, 2016, December 1, 2016, January 17 to 20, 2017 and January 23 to 24, 2017; and the Data Validation and Bathymetry Component (DVBC) on August 28-September 5, October 17-26, 2016 with the following scope: reconnaissance; control survey; cross-section and as-built survey at Catarman Bridge in Brgy. Galutan, Municipality of Catarman, Northern Samar and the Philippine-Australian Friendship Bridge in Brgy. Doña Pulqueria, Municipality of Catarman, Northern Samar and bathymetric survey from its upstream in Brgy. Somoge to the mouth of the river located in Brgy. Bangkerohan, Catarman with an approximate length of 15.346 km using a Hi-Target™Single Beam Echo Sounder and Hi-Target™GNSS in RTK survey technique. The entire survey extent is illustrated in Figure 29.

Figure 29. Catarman River Survey Extent.

4.2 Control Survey

The GNSS network used for Catarman River survey is composed of four (4) loops established on September 2, 2016 occupying the following control points: SMN-18, a 2nd order GCP in SMN-18, a 2nd order GCP in Brgy. Nenita, Municipality of Mondragon, Northern Samar; NS-26, a 1st order BM in Brgy. Polangi, Municipality of Catarman; NS-55, a 1st order BM in Brgy. Eco Poblacion, Municipality of Mondragon; NS-73, a 1st order BM in Brgy. Dale, Municipality of San Roque; and NS-81, a 1st order BM located in Brgy. Burabud, Municipality of Laoang, all in Northern Samar.

A NAMRIA established control point namely SMN-22 located in Brgy. Simora, Municipality of Laoang, was also used as a marker.

Table 23 depicts the summary of reference and control points utilized, with their corresponding locations, while Figure 30shows the GNSS network established in the Catarman River Survey.

Table 23. List of Reference and Control points used in Catarman River Basin Survey (Source: NAMRIA, UP-TCAGP).

			linates (WGS	84)		
Control Point	Order of Accuracy	Latitude Longitude		Ellipsoidal Height (m)	MSL Elevation (m)	Date Established
SMN- 18	2 nd Order, GCP	12°28'28.14643"	124°48'26.98399"	64.624	8.910	09-07-16
NS-26	Acc. Class at 95%CL: 4cm	12°23′08.14503″	124°37′40.19430″	70.990	13.480	09-01-16
NS-55	Acc. Class at 95%CL: 4cm	12°30'53.61856"	124°45′01.76667″	61.077	5.710	05-02-16
NS-73	Acc. Class at 95%CL: 6cm	12°32'52.45862"	124°54'30.80700"	60.314	5.945	09-01-16
NS-81	Acc. Class at 95%CL: 6cm	12°32′50.94301″	124°58'34.46636"	59.293	5.105	04-14-16
SMN- 22	Used as Marker	-	-	-	-	09-04-15

Figure 30. The GNSS Network established in the Catarman River Survey.

Figure 34. GNSS receiver setup, Trimble[®] SPS 985, at NS-73, located at the approach of Pambujan Bridge, in Brgy. Dale, Municipality of San Roque, Northern Samar.

Figure 35. GNSS receiver setup, Trimble[®] SPS 882, at NS-81, located at the approach of Burabod Bridge in Brgy. Burabud, Municipality of Laoang, Northern Samar.

Figure 36. GNSS receiver setup, Trimble[®] SPS 852, at SMN-22, located at Simora Elementary School in Brgy. Simora, Municipality of Laoang, Northern Samar.

4.3 Baseline Processing

The GNSS Baselines were processed simultaneously in TBC by observing that all baselines have fixed solutions with horizontal and vertical precisions within +/- 20 cm and +/- 10 cm requirement respectively. In cases where one or more baselines did not meet all of these criteria, masking was performed. Masking is the removal or covering of portions of the baseline data using the same processing software. The data is then repeatedly processed until all baseline requirements are met. If the reiteration yields out of the required accuracy, a resurvey is initiated. Table 24 presents the baseline processing results of control points in the Catarman River Basin, as generated by the TBC software.

Table 24. The Baseline processing report for the Catarman River GNSS static observation survey.

Observation	Date of Observation	Solution Type	H.Prec. (Meter)	V.Prec. (Meter)	Geodetic Az.	Ellipsoid Dist. (Meter)	Height (Meter)
NS-73 SMN- 18 (B2)	09-02-16	Fixed	0.007	0.019	53°30'34"	13661.419	-4.222
NS-26 SMN- 18 (B5)	09-02-16	Fixed	0.003	0.015	243°17'56"	21869.739	6.334
NS-55 NS-26 (B7)	09-02-16	Fixed	0.003	0.014	223°00'23"	19555.744	9.752
NS-73 NS-55 (B8)	09-02-16	Fixed	0.005	0.013	258°00'58"	17563.299	0.841
NS-55 SMN- 18 (B9)	09-02-16	Fixed	0.004	0.015	305°48'50"	7640.620	-3.409
NS-73 NS-81 (B11)	09-02-16	Fixed	0.003	0.013	90°21′20″	7355.805	-1.057
NS-73 SMN- 22 (B18)	09-02-16	Fixed	0.009	0.017	123°16'30"	15138.600	-2.047
SMN-22 SMN-18 (B19)	09-02-16	Fixed	0.004	0.015	270°28′32″	23643.589	6.262
SMN-22 NS- 81 (B20)	09-02-16	Fixed	0.004	0.016	327°20'08"	9814.890	0.918
NS-73 SMN- 22 (B21)	09-02-16	Fixed	0.004	0.014	123°16'30"	15138.605	-1.963

As shown in Table 24, a total of ten (10) baselines were processed with values of all reference points except SMN-22, held fixed for coordinate and elevation values; it is apparent that all baselines passed the required accuracy.

4.4 Network Adjustment

After the baseline processing procedure, the network adjustment is performed using the TBC software. Looking at the Adjusted Grid Coordinates table of the TBC-generated Network Adjustment Report, it is observed that the square root of the sum of the squares of x and y must be less than 20 cm and z less than 10 cm for each control point; or in equation form:

 $\sqrt{((x_e)^2 + (y_e)^2)}$ <20cm and $z_e < 10 \ cm$

where:

 x_e is the Easting Error, y_e is the Northing Error, and z_a is the Elevation Error

For complete details, see the Network Adjustment Report shown inTable 25toTable 28.

The six (6) control points, NS-26, NS-55, NS-73, NS-81, SMN-18 and SMN-22 were occupied and observed simultaneously to form a GNSS loop. The coordinate values of SMN-18 and elevation values of all benchmarks were held fixed during the processing of the control points as presented in Table 25. Through these reference points, the coordinates and elevation of the unknown control points will be computed.

Table 25. Constraints applied to the adjustment of the control points.

Point ID	Туре	East σ (Meter)	North σ (Meter)	Height σ (Meter)	Elevation σ (Meter)	
SMN-18	Global	Fixed	Fixed			
NS-26	Grid					
NS-55	Grid					
NS-73	Grid					
NS-81	Grid				Fixed	
Fixed = 0.000001(Meter)						

Likewise, the list of adjusted grid coordinates, i.e. Northing, Easting, Elevation and computed standard errors of the control points in the network is indicated in Table 26. All fixed control points have no values for grid and elevation errors.

Table 26. Adjusted grid coordinates for the control points used in the Catarman River flood plain survey.

Point ID	Easting (Meter)	Easting Error (Meter)	Northing (Meter)	Northing Error (Meter)	Elevation (Meter)	Elevation Error (Meter)	Constraint
SMN-18	696441.22698	?	1379691.63306	?	8.9098	0.031	LL
NS-26	676970.19397	0.007	1369731.98493	0.006	13.4801	?	е
NS-55	690214.51511	0.008	1384120.46061	0.006	5.7095	?	е
NS-73	707369.75759	0.009	1387891.68118	0.006	5.9447	?	е
NS-81	714726.67255	0.011	1387899.30448	0.008	5.1053	?	е
SMN-22	720088.05329	0.009	1379675.96886	0.006	3.45269	0.067	

The results of the computation for accuracy are as follows:

a.	SMN-18		
	horizontal accuracy	=	Fixed
	vertical accuracy	=	3.1 cm < 10 cm
b.	NS-26		
	horizontal accuracy	=	$\sqrt{(0.7)^2 + (0.6)^2}$
		=	√ (0.49 + 0.36)
		=	0.92 < 20 cm
	vertical accuracy	=	Fixed
c.	NS-55		
	horizontal accuracy	=	$V((0.8)^2 + (0.6)^2)$
		=	√ (0.64 + 0.36)
		=	1.00 < 20 cm
	vertical accuracy	=	Fixed
4	NC 72		
u.	horizontal accuracy	_	$1/(0,0)^{2} + (0,6)^{2}$
	nonzontal accuracy	_	V((0.9) + (0.0)
		_	1.08 < 20 cm
	vertical accuracy	_	I.00 < 20 Cm
	vertical accuracy	-	Tixed
e.	NS-81		
	horizontal accuracy	=	$\sqrt{((1.1)^2 + (0.8)^2)}$
		=	√ (1.21 + 0.64)
		=	1.36 cm < 20 cm
	vertical accuracy	=	Fixed
	-		
f.	SMN-22		
	horizontal accuracy	=	$\sqrt{(0.9)^2 + (0.6)^2}$
		=	√ (0.81 + 0.36)
		=	1.08 cm < 20 cm
	vertical accuracy	=	6.7 cm < 10 cm

Following the given formula, the horizontal and vertical accuracy result of the two (2) occupied control points are within the required precision.

Point ID	Latitude	Longitude	Ellipsoid Height (Meter)	Height Error (Meter)	Constraint
SMN-18	N12°28′28.14643″	E124°48'26.98399"	64.6235	0.031	LL
NS-26	N12°23'08.14503"	E124°37'40.1943"	70.99005	?	е
NS-55	N12°30′53.61856″	E124°45'01.76667"	61.0772	?	е
NS-73	N12°32′52.45862″	E124°54'30.807"	60.31401	?	е
NS-81	N12°32′50.94301″	E124°58'34.46636"	59.29264	?	е
SMN-22	N12°28'22.07678"	E125°01'29.94039"	58.56371	0.067	

Table 27. Adjusted geodetic coordinates for control points used in the Catarman River Flood Plain

The corresponding geodetic coordinates of the observed points are within the required accuracy as shown in Table 27. Based on the results of the computation, the accuracy conditions are satisfied; hence, the required accuracy for the program was met. The computed coordinates of the reference and control points utilized in the Catarman River GNSS Static Survey are seen in Table 28.

Table 28. The reference and control points utilized in the Catarman River Static Survey, with their corresponding locations (Source: NAMRIA, UP-TCAGP)

	Order of Accu- racy	Geographic	Coordinates (WGS	UTM ZONE 51 N			
trol Point		Latitude	Longitude	Ellipsoid Height (m)	Northing (m)	Easting (m)	BM Ortho (m)
SMN- 18	2 nd Order, GCP	12°28′28.14643″	124°48'26.98399"	64.624	1379691.633	696441.227	8.910
NS- 26	Acc. Class at 95%CL: 4cm	12°23'08.14503"	124°37′40.19430″	70.990	1369731.985	676970.194	13.480
NS- 55	Acc. Class at 95%CL: 4cm	12°30'53.61856"	124°45′01.76667″	61.077	1384120.461	690214.515	5.710
NS- 73	Acc. Class at 95%CL: 6cm	12°32′52.45862″	124°54'30.80700"	60.314	1387891.681	707369.758	5.945
NS- 81	Acc. Class at 95%CL: 6cm	12°32′50.94301″	124°58'34.46636"	59.293	1387899.304	714726.673	5.105
SMN- 22	Used as Marker	12°28′22.07678″	125°01'29.94039"	58.564	1379675.969	720088.053	3.453

4.5 Cross-section and Bridge As-Built survey and Water Level Marking

The bridge cross-section and as-built surveys were conducted on January 17, 2017 at the downstream side of Catarman Bridge in Brgy. Galutan, Municipality of Catarman, Province of Northern Samar as shown in Figure C-9. A Sokkia™ Set CX Total Station was utilized for this survey(Figure 37).

Figure 37. Downstrream side of Catarman Bridge.

Figure 38. Cross-section survey conducted at Catarman Bridge.

The length of the cross-sectional line surveyed at Catarman Bridge is about 191.605 meters (Figure 39) with three hundred nineteen (319) cross-sectional points acquired using the established control point UP-CATA-4 as the GNSS base station. The location map, cross-section diagram, and the accomplished bridge data formare shown inFigure 39, 40 and 41 respectively.

52

Figure 41. The Catarman Bridge as-built survey data.

The water surface elevation of Catarman River was determined by a Sokkia[™] Set CX Total Station on January 17, 2017 at 7:30 AM at Catarman Bridge area with a value of 0.375m in MSL as shown in Figure 40. This was translated into marking on the bridge's deck as shown in Figure 42. It now serves as the reference for flow data gathering and depth gauge deployment of the Visayas State University (VSU), the partner HEI responsible for the monitoring of the Catarman River.

Figure 42. Water-level markings on the pier of Catarman Bridge.

Another cross-section and as-built surveys were conducted on January 18, 2017 at the downstream side of the Philippine-Australian Friendship Bridge in Brgy. Doña Pulqueria, Municipality of Catarman, Province of Northern Samar as shown inFigure 43. A Sokkia™ Set CX Total Station was also utilized for this survey as shown in Figure 44. The Automated Water Level System (AWLS) is located on the upstream side of the bridge and its elevation was measured 8.382 m above MSL.

Figure 43. Philippine-Australian Friendship Bridge facing downstream.

Figure 44. As-built survey of Philippine-Australian Friendship Bridge.

The length of the cross-sectional line surveyed at Philippine-Australian Friendship Bridge is about 232.626 meters (Figure 45) with three hundred seventy-nine (379) cross-sectional points acquired using the established control point UP-CATA-3 as the GNSS base station. The location map, cross-section diagram, and the accomplished bridge data form are shown in Figure 45, 46, and 47, respectively.

Figure 45. Location map of the Philippine-Australian Friendship Bridge cross-section survey.

Figure 47. The Philippine-Australian Friendship Brigde Bridge as-built survey data.

The water surface elevation of Catarman River was also determined by a Sokkia™ Set CX Total Station on January 18, 2017 at 9:14 AM at the Philippine-Australian Friendship Bridge area with a value of 0.869 m in MSL as shown in Figure 46. This was translated into marking on the bridge's pier as shown in Figure 48.

Figure 48. Water-level markings on the pier of Philippine-Australian Friendship Bridge.

4.6 Validation Points Acquisition Survey

The validation points acquisition survey was conducted on August 31, September 2 and 3, 2016 using a survey-grade GNSS Rover receiver, Trimble[®] SPS 882, mounted in front of a vehicle as shown in Figure 49. It was secured with a nylon rope to ensure that it was horizontally and vertically balanced. The antenna height was 1.907 m and measured from the ground up to the bottom of notch of the GNSS Rover receiver. The PPK technique utilized for the conduct of the survey was set to continuous topo mode with NS-26, SMN-18 and SMN-22 occupied as the GNSS base stations in the conduct of the survey.

Figure 49. The validation point acquisition setup using a GNSS Receiver Trimble[®] SPS 882 fixed on a vehicle along the Catarman River Basin.

The survey had three routes. The first route started in Brgy. Molave going south covering thirteen (13) barangays in Catarman and ending in Brgy. Cervantes, Municipality of Catarman. The second route started in Brgy. Bugko going south and ended in Brgy. Nenita, Municipality of Mondragon. The third route started in Brgy. Bantayan, Municipality of San Roque going east covering twelve (12) barangays of Laoang, Pambujan and San Roque and ended in Brgy. Rawis, Municipality of Laoang; and going south covering eighteen (18) more barangays and ended in Brgy. Sagudsuron, Municipality of Catubig.

The survey acquired a total 13,816 points with approximate length of 79 km using NS-26, SMN-18 and SMN-22 as GNSS base stations for the entire extent validation points acquisition survey as illustrated in the map in Figure 50.

4.7 River Bathymetric Survey

A bathymetric survey was performed on January 19 to 20 and 23 to 24, 2017 using Hi-Target[™] V30 GNSS as shown in Figure 51. The survey started in the upstream part of the river in Brgy. Tamdagan, Municipality of Vintar with coordinates 18°18′49.21447″ 120°42′44.63259″, traversed down by foot to the mouth of the river and ended in Brgy. Casilian, Municipality of Catarman with coordinates 18°16′41.90157″ 120°34′05.80297″. The UP established control point UP-BAC was used to serve as the GNSS base all throughout the survey.

Figure 51. Set up of the bathymetric survey at Catarman River using a Hi-Target[™] V30 GNSS

Overall, the bathymetric survey for Catarman River, with an estimated length of 15.346 km, gathered a total of 2,916 points of the river traversingbarangays Somoge, Washington, San Pascual, McKinley, Hinatad, Doña Pulqueria, Galutan, Macagtas, Ipil-Ipil, Jose Abad Santos, Sampaguita, Mabolo, Baybay, and Bangkerohan in the Municipality of Catarman as shown in Figure 52. To further illustrate this, a CAD drawing of the riverbed profile of the Catarman River was produced. As seen in Figure 53, the highest elevation observed was -0.41 m below MSL located in Brgy. Somoge, Municipality of Catarman; while the lowest was -8.50 m below MSL located in Brgy. Hinatad, also in the Municipality of Catarman.

CHAPTER 5: FLOOD MODELING AND MAPPING

Dr. Alfredo Mahar Lagmay, Christopher Uichanco, Sylvia Sueno, Marc Moises, Hale Ines, Miguel del Rosario, Kenneth Punay, Neil Tingin

The methods applied in this chapter were based on the DREAM methods manual (Ang, et. al., 2014) and further enhanced and updated in Paringit, et. al. (2017).

5.1 Data Used for Hydrologic Modeling

5.1.1 Hydrometry and Rating Curves

All components and data, such as rainfall, water level, and flow in a certain period of time, which may affect the hydrologic cycle of the Catarman River Basin were monitored, collected, and analyzed.

5.1.2 Precipitation

Precipitation data was taken from an automatic rain gauge (ARG) installed by the Department of Science and Technology – Advanced Science and Technology Institute (DOST-ASTI). This rain gauge is the Catarman ARG as shown in Figure 54.

The total precipitation for this event in the Catarman ARG was 46 mm. with a peak rainfall rate of 1.8 mm on 20 January 2017 at 9:40 in the evening. The lag time between the peak rainfall and discharge is 15 hours and 20 minutes.

Figure 54. Location Map of the Catarman HEC-HMS model used for calibration.

5.1.3 Rating Curves and River Outflow

A rating curve was developed at Catarman Bridge II, Brgy. Doña Pulqueria, Catarman, Northern Samar (12.490965° N, 124.652594° E). It gives the relationship between the observed water levels from the Catarman Bridge II Automatic Water Level Sensor (AWLS) and the combined discharge from baseflow and bankfull.

For Catarman Bridge, the rating curve is expressed as $Q = 153.02e^{0.4962h}$ as shown in Figure 55.

This rating curve equation was used to compute the river outflow at Catarman Bridge for the calibration of the HEC-HMS model for Catarman shown in Figure 57. The total rainfall for this event in rain gauge is 46 mm andit peaked to 1.8 mm on 20 January 2017, 21:40. The lag time between the peak rainfall and discharge is 15 hours and 20 minutes.

Figure 57. Rainfall and outflow data at Catarman Bridge, which was used for modeling.

5.2 RIDF Station

The Philippine Atmospheric Geophysical and Astronomical Services Administration (PAGASA) computed for Rainfall Intensity Duration Frequency (RIDF) values for the Catarman Rain Gauge. The RIDF rainfall amount for 24 hours was converted to a synthetic storm by interpolating and re-arranging the values in such a way a certain peak value will be attained at a certain time (Table 29). This station is chosen based on its proximity to the Catarman watershed. The extreme values for this watershed were computed based on a 52-year record.

Table 29. RIDF values for the Catarman River Basin based on average RIDF data of Catarman station, as computed by PAGASA.

COMPUTED EXTREME VALUES (in mm) OF PRECIPITATION									
T (yrs)	10 mins	20 mins	30 mins	1 hr	2 hrs	3 hrs	6 hrs	12 hrs	24 hrs
2	22.5	34.2	42.4	57.5	80.9	96.4	125.2	156.6	180
5	29.9	45.4	56.2	77	110.3	135.9	183.5	229.5	255.4
10	34.7	52.8	65.4	90	129.7	162	222.1	277.8	305.4
15	37.5	57	70.5	97.3	140.7	176.7	243.9	305.1	333.6
20	39.4	60	74.2	102.4	148.4	187.1	259.1	324.1	353.3
25	40.9	62.2	76.9	106.3	154.3	195	270.9	338.8	368.5
50	45.5	69.2	85.5	118.4	172.6	219.5	307.1	384.1	415.3

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

5.3 HMS Model

These soil dataset was taken in 2004 from the Bureau of Soils and Water Management (BSWM). It is under the Department of Agriculture (DA). The land cover dataset is from the National Mapping and Resource information Authority (NAMRIA). The soil and land cover of the Catarman River Basin are shown in Figure 60 and Figure 61, respectively.

Figure 60. Soil Map of Catarman River Basin.

Figure 61. Land Cover Map of Catarman River Basin.

For Catarman, three (3) soil classes were identified. These are clay loam, loam, and undifferentiated land. Moreover, five (5) land cover classes were identified. These are shrubland, grassland, forest plantation, open forest, and closed forest.

Figure 63. Stream Delineation Map of Catarman River Basin.

Using the SAR-based DEM, the Catarman basin was delineated and further subdivided into subbasins. The model consists of 59 subbasins, 29 reaches, and 29 junctions as shown in Figure 64. The main outlet is at Catarman Bridge.

Figure 64. Catarman river basin model generated in HEC-HMS.

5.4 Cross-section Data

The riverbed cross-sections of the watershed were necessary in the HEC-RAS model setup. The crosssection data for the HEC-RAS model was derived from the LiDAR DEM data, which was defined using the Arc GeoRAS tool and was post-processed in ArcGIS (Figure 65).

5.5 Flo 2D Model

The automated modelling process allows for the creation of a model with boundaries that are almost exactly coincidental with that of the catchment area. As such, they have approximately the same land area and location. The entire area is divided into square grid elements, 10 meter by 10 meter in size. Each element is assigned a unique grid element number which serves as its identifier, then attributed with the parameters required for modelling such as x-and y-coordinate of centroid, names of adjacent grid elements, Manning coefficient of roughness, infiltration, and elevation value. The elements are arranged spatially to form the model, allowing the software to simulate the flow of water across the grid elements and in eight directions (north, south, east, west, northeast, northwest, southeast, southwest).

Based on the elevation and flow direction, it is seen that the water will generally flow from the southwest of the model to the northeast, following the main channel. As such, boundary elements in those particular regions of the model are assigned as inflow and outflow elements respectively.

Figure 66. A screenshot of the river sub-catchment with the computational area to be modeled in FLO-2D Grid Developer System Pro (FLO-2D GDS Pro).

The simulation is then run through FLO-2D GDS Pro. This particular model had a computer run time of 376.43188 hours. After the simulation, FLO-2D Mapper Pro is used to transform the simulation results into spatial data that shows flood hazard levels, as well as the extent and inundation of the flood. Assigning the appropriate flood depth and velocity values for Low, Medium, and High creates the following food hazard map. Most of the default values given by FLO-2D Mapper Pro are used, except for those in the Low hazard level. For this particular level, the minimum h (Maximum depth) is set at 0.2 m while the minimum vh (Product of maximum velocity (v) times maximum depth (h)) is set at 0 m²/s. The generated hazard maps for Catarman are inFigure 75, 77, and 79.

The creation of a flood hazard map from the model also automatically creates a flow depth map depicting the maximum amount of inundation for every grid element. The legend used by default in Flo-2D Mapper is not a good representation of the range of flood inundation values, so a different legend is used for the layout. In this particular model, the inundated parts cover a maximum land area of 102 342 144.00m². The generated flood depth maps for Catarman are inFigure 76, 78, and 80.

There is a total of 158 479 845.67 m³ of water entering the model. Of this amount, 45 686 223.71m³ is due to rainfall while 112 793 621.96 m³ is inflow from other areas outside the model. 10 940 128.00m³ of this water is lost to infiltration and interception, while 41 029 856.98 m³ is stored by the flood plain. The rest, amounting up to 106 509 809.61m³, is outflow.

5.6 Results of HMS Calibration

After calibrating the Catarman HEC-HMS river basin model, its accuracy was measured against the observed values. Figure 67 shows the comparison between the two discharge data.

Figure 67. Outflow Hydrograph of Catarman produced by the HEC-HMS model compared with observed outflow.

Table 30 shows the adjusted ranges of values of the parameters used in calibrating the model.

Hydrologic Element	Calculation Type	Method	Parameter	Range of Calibrated Values
	Loss	SCS Curve Number	Initial Abstraction (mm)	0.6 – 5
Basin	LOSS	SCS Curve Multiber	Curve Number	95 - 99
	Transform	Clark Unit Hydrograph	Time of Concentration (hr)	0.5 - 9
		Clark Offit Hydrograph	Storage Coefficient (hr)	0.8 - 14
	Pacoflow	Pacassian	Recession Constant	0.3
	Dasenow	Recession	Ratio to Peak	0.01
Reach	Routing	Muskingum-Cunge	Manning's Coefficient	0.04

Table 30. Range of calibrated values for the Catarman River Basin.

Initial abstraction defines the amount of precipitation that must fall before surface runoff. The magnitude of the outflow hydrograph increases as initial abstraction decreases. The range of values from 0.6mm to 5mm means that there is a minimal amount of infiltration or rainfall interception by vegetation per subbasin.

The curve number is the estimate of the precipitation excess of soil cover, land use, and antecedent moisture. The magnitude of the outflow hydrograph increases as curve number increases. The range of 95 to 99 for curve number is advisable for Philippine watersheds depending on the soil and land cover of the area (M. Horritt, personal communication, 2012).

Time of concentration and storage coefficient are the travel time and index of temporary storage of runoff in a watershed. The range of calibrated values from 0.5 hours to 14 hours determines the reaction time of the model with respect to the rainfall. The peak magnitude of the hydrograph also decreases when these parameters are increased.

Recession constant is the rate at which baseflow recedes between storm events and ratio to peak is the ratio of the baseflow discharge to the peak discharge. Recession constant valueof 0.3 indicates that the basin is likely to quickly go back to its original discharge and instead, will be higher. Values of ratio to peak of 0.01 indicates a steeper receding limb of the outflow hydrograph.

Manning's roughness coefficients of 0.04 correspond to the common roughness of Catarman watershed, which is determined to be cultivated with mature field crops (Brunner, 2010).

Accuracy measure	Value
RMSE	10.3
r ²	0.92
NSE	0.80
PBIAS	0.65
RSR	0.44

Table 31. Summary of the Efficiency Test of the Catarman HMS Model

The Root Mean Square Error (RMSE) method aggregates the individual differences of these two measurements. It was computed as 10.3 m³/s.

The Pearson correlation coefficient (r²) assesses the strength of the linear relationship between the observations and the model. This value being close to 1 corresponds to an almost perfect match of the observed discharge and the resulting discharge from the HEC HMS model. Here, it measured 0.92.

The Nash-Sutcliffe (E) method was also used to assess the predictive power of the model. Here the optimal value is 1. The model attained an efficiency coefficient of 0.80.

A positive Percent Bias (PBIAS) indicates a model's propensity towards under-prediction. Negative values indicate bias towards over-prediction. Again, the optimal value is 0. In the model, the PBIAS is 0.65.

The Observation Standard Deviation Ratio, RSR, is an error index. A perfect model attains a value of 0 when the error in the units of the valuable a quantified. The model has an RSR value of 0.44.

5.7 Calculated Outflow hydrographys and Discharge Values for different Rainfall Return Periods

5.7.1 Hydrograph using the Rainfall Runoff Model

The summary graph (Figure 68) shows the Catarman outflow using the CatarmanRainfall Intensity-Duration-Frequency curves (RIDF) in 5 different return periods (5-year, 10-year, 25-year, 50-year, and 100-year rainfall time series) based on the Philippine Atmospheric Geophysical and Astronomical Services Administration (PAGASA) data. The simulation results reveal increasing outflow magnitude as the rainfall intensity increases for a range of durations and return periods.

Figure 68. The Outflow hydrograph at the Catarman Station, generated using the Catarman RIDF simulated in HEC-HMS.

A summary of the total precipitation, peak rainfall, peak outflow and time to peak of the Catarmandischarge using the Catarman Rainfall Intensity-Duration-Frequency curves (RIDF) in five different return periods is shown inTable 32.

RIDF Period	Total Precipitation (mm)	Peak rainfall (mm)	Peak outflow (m ³ /s)	Time to Peak
5-Year	255.4	29.9	1652.1	9 hours, 20 minutes
10-Year	305.4	34.7	2036.3	9 hours, 00 minutes
25-Year	368.5	40.9	2539.8	8 hours, 30 minutes
50-Year	415.3	45.5	2924.2	8 hours, 20 minutes
100-Year	461.8	50	3313.1	8 hours, 10 minutes

Table 32. The peak values of the Catarman HEC-HMS Model outflow using the Catarman RIDF.

5.7.2 Discharge data using Dr. Horritts's recommended hydrologic method

The river discharge values for the nine rivers entering the floodplain are shown in Figure 69 to Figure 73 and the peak values are summarized in Table 33 to Table 37.

Figure 69. Catarman river (1) generated discharge using 5-, 25-, and 100-year rainfall intensity-duration-frequency (RIDF) in HEC-HMS.

Table 33. Summary of Catarman river (1) discharge generated in HEC-HMS.

RIDF Period	Peak discharge (cms)	Time-to-peak
100-Year	3063.6	250.7 minutes
25-Year	2309	250.7 minutes
5-Year	2	250.7 minutes

Figure 70. Catarman river (2) generated discharge using 5-, 25-, and 100-year rainfall intensity-duration-frequency (RIDF) in HEC-HMS.

RIDF Period	Peak discharge (cms)	Time-to-peak	
100-Year	397.1	136.3 minutes	
25-Year	297.7	136.3 minutes	
5-Year	179.7	136.3 minutes	

Table 34. Summary of Catarman river (2) discharge generated in HEC-HMS.

Figure 71. Catarman river (3) generated discharge using 5-, 25-, and 100-year rainfall intensity-duration-frequency (RIDF) in HEC-HMS.

Table 25 Summar	of Catarman	rivor (2)	discharge	gonorated in	
Table 55. Summary	/ Of Calannan	inver (5)	uischarge	generateu m	HEC-HIVIS.

RIDF Period Peak discharge (cms)		Time-to-peak
100-Year	837.8	102.6 minutes
25-Year	640	102.6 minutes
5-Year	402.2	102.6 minutes

Figure 72. Catarman river (4) generated discharge using 5-, 25-, and 100-year rainfall intensity-duration-frequency (RIDF) in HEC-HMS.

Table 36. Summary of Catarman river (4) discharge generated in HEC-HMS.

RIDF Period	Peak discharge (cms)	Time-to-peak
100-Year	600.7	198.6 minutes
25-Year	458.1	198.6 minutes
5-Year	288.7	198.6 minutes

Table 37. Summary of Catarman river (5) discharge generated in HEC-HMS.

RIDF Period	Peak discharge (cms)	Time-to-peak
100-Year	322.8	134.7 minutes
25-Year	243.3	134.7 minutes
5-Year	150.3	134.7 minutes

The comparison of the discharge results using Dr. Horritt's recommended hydrological method against the bankful and specific discharge estimates is shown in Table 38.

	0			VALI	DATION
Discharge Point	Cms	Q _{BANKFUL} , cms	Q _{MED(SPEC)} , cms	Bankful Discharge	Specific Discharge
Catarman (1)	1245.024	1827.803	425.668	Pass	Fail
Catarman (2)	158.136	196.209	96.620	Pass	Fail
Catarman (3)	353.936	632.565	145.829	Pass	Fail
Catarman (4)	254.056	310.603	144.009	Pass	Fail
Catarman (5)	132.264	194.626	82.757	Pass	Fail

Table 38. Validation of river discharge estimates.

The results from the HEC-HMS river discharge estimates were able to satisfy the conditions for validation using the bankful discharge methods. The passing values are based on theory but are supported using other discharge computation methods so they were good to use flood modeling. These values will need further investigation for the purpose of validation. It is therefore recommended to obtain actual values of the river discharges for higher-accuracy modeling.

5.8 River Analysis (RAS) Model Simulation

The HEC-RAS Flood Model produced a simulated water level at every cross-section for every time step for every flood simulation created. The resulting model will be used in determining the flooded areas within the model. The simulated model will be an integral part in determining real-time flood inundation extent of the river after it has been automated and uploaded on the DREAM website. Figure 74 shows a generated sample map of the Catarman River using the calibrated HMS base flow.

Figure 74. Sample output map of the Catarman RAS Model.

5.9 Flow Depth and Flood Hazard

The resulting hazard and flow depth maps have a 10m resolution. Figure 75 to Figure 80 shows the 5-, 25-, and 100-year rain return scenarios of the Catarman floodplain. The floodplain, with an area of 385.55 sq. km., covers five municipalities namely Bobon, Catarman, Lope de Vega, Mondragon, and San Jose. Table 39 shows the percentage of area affected by flooding per municipality.

Municipality	Total Area	Area Flooded	% Flooded
Bobon	198.53	98.12	49%
Catarman	255.77	239.9	94%
Lope de Vega	186.61	15.5793	8%
Mondragon	322.75	30.0557	9%
San Jose	68.72	0.0392	0.1%

Table 39. Municipalities affected in Catarman floodplain.

5.10 Inventory of Areas Exposed to Flooding of Affected Areas

Listed below are the affected barangays in the Catarman River Basin, grouped accordingly by municipality. For the said basin, five municipalities consisiting of 83 barangaysare expected to experience flooding when subjected to 5-yr rainfall return period.

For the 5-year return period, 34.94% of the municipality of Bobon with an area of 198.53 sq. km. will experience flood levels of less 0.20 meters. 4.30% of the area will experience flood levels of 0.21 to 0.50 meters while 4.25%, 3.43%, 2.10% and 0.40% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters and more than 5 meters, respectively. Listed in Table 40 and Table 41 are the affected areas in square kilometers by flood depth per barangay. Annex 12 and Annex 13 show the educational and health institutions exposed to flooding.

		Jose P. Laurel	5.22	0.41	0.34	0.43	0.37	0.12
		Jose Abad Santos	3.22	0.18	0.39	0.94	0.71	0.13
	(in sq. km.)	Gen. Lucban	0.049	0.011	0.0044	0	0	0
1	ays in Bobon	E. Duran	0.54	0.025	0.025	0.022	0.0034	0
	affected barang	Dancalan	4.36	0.91	0.63	0.19	0.045	0
	Area of	Calantiao	2.02	0.31	0.32	0.47	0.26	0.0024
		Balat-Balud	1.87	1.02	1.28	0.66	0.26	0.0042
		Arellano	2.13	0.44	0.15	0.06	0.005	0.0002
		Acerida	5.72	0.75	0.79	0.75	0.42	0.16
	Affected area (sq.km.) by	flood depth (in m.)	0.03-0.20	0.21-0.50	0.51-1.00	1.01-2.00	2.01-5.00	> 5.00

Table 40. Affected Areas in Bobon, Northern Samar during 5-Year Rainfall Return Period

Table 41. Affected Areas in Bobon, Northern Samar during 5-Year Rainfall Return Period

area (sq.km.)			Are	a of affected bara	ingays in Bobon	(in sq. km.)			
depth (in m.)	Magsaysay	Quezon	Salvacion	San Isidro	San Juan	Santa Clara	Santander	Somoroy	Trojello
.03-0.20	1.23	3.53	1.36	2.27	0.4	0.39	24.57	1.24	9.26
.21-0.50	0.21	0.43	0.42	0.87	0.088	0.069	1.45	0.16	0.77
.51-1.00	0.15	0.35	0.35	0.6	0.081	0.022	1.72	0.14	1.1
.01-2.00	0.13	0.53	0.1	0.16	0.058	0.0037	1.32	0.019	0.97
.01-5.00	0.051	0.39	0.0001	0.038	0.0029	0	0.89	0.0053	0.73
> 5.00	0	0.092	0	0	0	0	0.1	0	0.18

Figure 82. Affected Areas in Bobon, Northern Samar during 5-Year Rainfall Return Period

For the municipality of Catarman, with an area of 255.77 sq. km., 68.45% will experience flood levels of less 0.20 meters. 7.04% of the area will experience flood levels of 0.21 to 0.50 meters while 6.13%, 4.55%, 4.79% and 2.82% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and above 5 meters, respectively. Listed in Table 42 to Table 48 are the affected areas in square kilometers by flood depth per barangay.

	Cal-Igang	6.96	0.46	0.83	0.74	0.31	0.048
	Cag-Abaca	3.35	0.36	0.3	0.17	0.075	0.0005
	Cabayhan	2.81	0.18	0.21	0.27	0.1	0.022
an (in sq. km.)	Bocsol	1.84	0.4	0.45	0.41	0.09	0.0008
ays in Catarma	Ваурау	0.29	0.23	0.18	0.044	0.0093	0.0064
f affected barang	Bangkerohan	0.34	0.27	0.34	0.017	0	0
Area o	Airport Village	0.14	0.074	0.018	0.0035	0.0015	0
	Aguinaldo	1.39	0.16	0.2	0.22	0.14	0.0027
	Acacia	0.099	0.036	0.0091	0.0011	0	0
Affected area (sq.km.) by	flood depth (in m.)	0.03-0.20	0.21-0.50	0.51-1.00	1.01-2.00	2.01-5.00	> 5.00

Table 42. Affected Areas in Catarman, Northern Samar during 5-Year Rainfall Return Period.

Table 43. Affected Areas in Catarman, Northern Samar during 5-Year Rainfall Return Period.

Afforted area (ca han)			Are	a of affected	harangays in	Catarman (in sa km)		
hv flood denth (in m)	idede.								
	Calacinucin	Lawayan	CELVANIES	CUIALITIA	Daganas	Dalakit	DOATA PUIQUERIA	ดลเนเลท	Gebalagnan
0.03-0.20	0.14	1.7	3.6	1.98	2.09	0.6	2.64	1.89	6.25
0.21-0.50	0.053	0.32	0.097	0.15	0.66	0.22	1	1.31	0.24
0.51-1.00	0.0086	0.11	0.067	0.15	0.37	0.24	0.79	1.1	0.2
1.01-2.00	0	0.083	0.088	0.27	0.023	0.11	0.42	0.35	0.28
2.01-5.00	0	0.01	0.54	0.25	0	0	0.26	0.025	0.72
> 5.00	0	0.0005	1.63	0.088	0	0	0.11	0.11	0.51

$\overline{\mathbf{D}}$
ă
.9
_
Ð
Ā
_
-
Б
5
~
ц <u>г</u>
_
T
50
-
.≒
B
$\tilde{\mathbf{x}}$
-
<u>ــ</u>
b
a)
₩
1
ιÒ
- ,
pD
2
. =
<u>ـ</u>
5
<u>_</u>
σ
~
5
—
.0
0,
_
_
Ę
S L
lern
hern
thern
rthern
orthern
Vorthern
Northern
i, Northern
n, Northern
an, Northern
an, Northern
man, Northern
rman, Northern
arman, Northern
tarman, Northern
atarman, Northern
Catarman, Northern
Catarman, Northern
n Catarman, Northern
in Catarman, Northern
s in Catarman, Northern
as in Catarman, Northern
as in Catarman, Northern
eas in Catarman, Northern
reas in Catarman, Northern
Areas in Catarman, Northern
Areas in Catarman, Northern
d Areas in Catarman, Northern
ed Areas in Catarman, Northern
ted Areas in Catarman, Northern
cted Areas in Catarman, Northern
ected Areas in Catarman, Northern
fected Areas in Catarman, Northern
ffected Areas in Catarman, Northern
Affected Areas in Catarman, Northern
Affected Areas in Catarman, Northern
 Affected Areas in Catarman, Northern
4. Affected Areas in Catarman, Northern
44. Affected Areas in Catarman, Northern
e 44. Affected Areas in Catarman, Northern
le 44. Affected Areas in Catarman, Northern
ole 44. Affected Areas in Catarman, Northern
ible 44. Affected Areas in Catarman, Northern
able 44. Affected Areas in Catarman, Northern

	Jose P. Rizal	0.02	0.012	0.00019	0	0	0
(.	Jose Abad Santos	0.15	0.03	0.0085	0.00034	0.00016	0
n (in sq. km	Ipil-Ipil	0.058	0.0019	0.0015	0.0013	0.0002	0
in Catarma	Imelda	3.05	0.85	0.66	0.23	0.031	0
barangays	Hinatad	4.67	0.36	0.34	0.48	0.35	0.17
of affected	Guba	4.41	0.23	0.24	0.14	0.035	0.0041
Area (General Malvar	2.37	0.12	0.11	0.12	0.12	0.033
	Gebulwangan	9.45	0.58	0.43	0.49	1.08	0.43
Affected area (sq.km.)	by flood depth (in m.)	0.03-0.20	0.21-0.50	0.51-1.00	1.01-2.00	2.01-5.00	> 5.00

Table 45. Affected Areas in Catarman, Northern Samar during 5-Year Rainfall Return Period.

Table 46. Affected Areas in Catarman, Northern Samar during 5-Year Rainfall Return Period.

	Salvacion	1.28	0.063	0.052	0.038	0.009	0.0002
	Quezon	2.89	0.28	0.29	0.32	0.56	0.13
i (in sq. km.)	Polangi	20.93	0.72	0.64	0.9	2.14	1.34
ys in Catarmar	Paticua	2.35	0.24	0.4	0.35	0.5	0.15
ected baranga	Old Rizal	3.85	1.14	0.85	0.2	0.0005	0
Area of affe	New Rizal	3.7	0.26	0.35	0.27	0.14	0.0025
	Narra	0.024	0.00053	0.0006	0.00011	0	0
	Molave	0.089	0.011	0.018	0.014	0.0001	0
Affected area (sq.km.)	by flood depth (in m.)	0.03-0.20	0.21-0.50	0.51-1.00	1.01-2.00	2.01-5.00	> 5.00

Table 47. Affected Areas in Catarman, Northern Samar during 5-Year Rainfall Return Period.

	Trangue	2.86	0.085	0.071	0.11	0.17	0.037
	Tinowaran	14.74	0.52	0.47	0.63	0.7	0.14
(in sq. km.)	Talisay	0.084	0.014	0.0062	0.0017	0	0
in Catarman	Somoge	7.03	0.54	0.56	0.72	1	0.89
ted barangays	Santol	0.019	0.0023	0.00017	0.0002	0	0
Area of affec	San Pascual	3.4	0.24	0.16	0.16	0.22	0.099
	San Julian	1.95	0.15	0.18	0.1	0.07	0.0019
	Sampaguita	0.023	0.0083	0.0013	0.00022	0	0
Affected area (sq.km.)	by flood depth (in m.)	0.03-0.20	0.21-0.50	0.51-1.00	1.01-2.00	2.01-5.00	> 5.00

Affected area (sq.km.)	Area	of affected bai	rangays in Cata	arman (in sq. k	m.)
by flood depth (in m.)	Uep I	UEP II	Uep III	Washington	Yakal
0.03-0.20	2.3	0.26	1.21	3.49	0.053
0.21-0.50	0.27	0.045	0.17	0.25	0.0026
0.51-1.00	0.14	0.032	0.14	0.42	0.0013
1.01-2.00	0.052	0.0074	0.026	0.22	0.0018
2.01-5.00	0.012	0	0.01	0.2	0.0002
> 5.00	0.0001	0	0.0004	0.011	0

Table 48. Affected Areas in Catarman, Northern Samar during 5-Year Rainfall Return Period.

Figure 83. Affected Areas in Catarman, Northern Samar during 5-Year Rainfall Return Period

Figure 86. Affected Areas in Catarman, Northern Samar during 5-Year Rainfall Return Period.

Figure 87. Affected Areas in Catarman, Northern Samar during 5-Year Rainfall Return Period.

Figure 89. Affected Areas in Catarman, Northern Samar during 5-Year Rainfall Return Period.

For the municipality of Lope de Vega, with an area of 186.61 sq. km., 6.93% will experience flood levels of less 0.20 meters. 0.28% of the area will experience flood levels of 0.21 to 0.50 meters while 0.25%, 0.28%, 0.38% and 0.21% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5

meters, and above 5 meters, respectively. Listed in Table 49 are the affected areas in square kilometers by flood depth per barangay.

Affected area (sq.km.)		Area of affect	ed barangays i	n Lope de Ve	ga (in sq. km.)
by flood depth (in m.)	Bayho	Cag-Aguingay	Gebonawan	Gen. Luna	Maghipid	San Miguel
0.03-0.20	0.052	2.44	5.5	0.98	2.82	1.15
0.21-0.50	0.0014	0.13	0.15	0.033	0.19	0.032
0.51-1.00	0.00065	0.13	0.094	0.023	0.21	0.014
1.01-2.00	0.00024	0.16	0.11	0.02	0.22	0.014
2.01-5.00	0.0013	0.34	0.099	0.0088	0.25	0.025
> 5.00	0.0059	0.16	0.0022	0	0.024	0.2

Table 49. Affected Areas in Lope de Vega, Northern Samar during 5-Year Rainfall Return Period.

Figure 90. Affected Areas in Lope de Vega, Northern Samar during 5-Year Rainfall Return Period.

For the municipality of Mondragon, with an area of 322.75 sq. km., 6.935% will experience flood levels of less 0.20 meters. 0.52% of the area will experience flood levels of 0.21 to 0.50 meters while 0.45%, 0.33%, 0.16% and 0.01% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and above 5 meters, respectively.Listed in Table 50are the affected areas in square kilometers by flood depth per barangay.

Table 50. Affec	cted Areas in N	1ondragon,	, Northern	Samar during	g 5-Year Rain	fall Return	Period.
Affected area		Area of aff	fected bara	ngays in Mor	ndragon (in s	q. km.)	
(sq.km.) by flood depth (in m.)	Cagmanaba	Doña Lucia	Imelda	La Trinidad	Makiwalo	San Agustin	San Isidro
0.03-0.20	8.65	0	2.27	9.59	0.29	1.55	0.076
0.21-0.50	0.21-0.50 0.25 0 0.25 0.68 0.057 0.39 0.038						
0.51-1.00	0.17	0	0.18	0.52	0.073	0.51	0.0094
1.01-2.00	0.22	0	0.084	0.5	0.03	0.23	0.0029
2.01-5.00	0.13	0	0.026	0.32	0.0027	0.047	0.00072
> 5.00	0.013	0	0.0009	0.025	0	0.0001	0

Figure 91. Affected Areas in Mondragon, Northern Samar during 5-Year Rainfall Return Period.

For the municipality of San Jose, with an area of 68.72 sq. km., 0.05% will experience flood levels of less 0.20 meters. 0.01% of the area will experience flood levels of 0.21 to 0.50 meters while 0.001%, 0%, 0% and 0% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and above 5 meters, respectively.Listed in Table 51 are the affected areas in square kilometers by flood depth per barangay.

Table 51. Affected Areas in San Jose, Northern Samar during 5-Year Rainfall Return Period.

Affected area (sq.km.)	Area of affected barangays in San Jose (in sq. km.)
by nood depth (in m.)	Geratag
0.03-0.20	0.032
0.21-0.50	0.0065
0.51-1.00	0.00091
1.01-2.00	0
2.01-5.00	0
> 5.00	0

Figure 92. Affected Areas in San Jose, Northern Samar during 5-Year Rainfall Return Period.

For the 25-year return period, 32.58% of the municipality of Bobon with an area of 198.53 sq. km. will experience flood levels of less 0.20 meters. 3.51% of the area will experience flood levels of 0.21 to 0.50 meters while 3.97%, 4.93%, 3.79% and 0.64% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters and more than 5 meters, respectively. Listed in and Table 52 and Table 53 are the affected areas in square kilometers by flood depth per barangay.

Affected area (sq.km.)				Area of aff	ected barangay.	s in Bobon (in sq. km.)		
by flood depth (in m.)	Acerida	Arellano	Balat-Balud	Calantiao	Dancalan	E. Duran	Gen. Lucban	Jose Abad Santos	Jose P. Laur
0.03-0.20	5.41	1.99	1.25	1.83	3.9	0.54	0.046	3.07	5.02
0.21-0.50	0.53	0.46	0.67	0.25	0.88	0.025	0.012	0.15	0.36
0.51-1.00	0.68	0.22	1.14	0.22	0.84	0.025	0.0069	0.17	0.34
1.01-2.00	0.89	0.094	1.53	0.49	0.44	0.028	0	0.57	0.42
2.01-5.00	0.83	0.012	0.48	0.59	0.068	0.0052	0	1.41	0.57
> 5.00	0.24	0.0002	0.016	0.0031	0	0.0001	0	0.19	0.18

Table 52. Affected Areas in Bobon, Northern Samar during 25-Year Rainfall Return Period.

Table 53. Affected Areas in Bobon, Northern Samar during 25-Year Rainfall Return Period

Affected area (sq.km.)			Area	of affected ba	rangays in E	3obon (in sq. kn	n.)		
by flood depth (in m.)	Magsaysay	Quezon	Salvacion	San Isidro	San Juan	Santa Clara	Santander	Somoroy	Trojello
0.03-0.20	1.13	3.26	1.05	1.54	0.36	0.37	23.79	1.21	8.92
0.21-0.50	0.23	0.42	0.26	0.49	0.098	0.086	1.31	0.12	0.62
0.51-1.00	0.18	0.33	0.34	0.65	0.078	0.027	1.54	0.2	0.9
1.01-2.00	0.13	0.51	0.52	1.13	0.093	0.0094	1.82	0.03	1.06
2.01-5.00	60.0	0.7	0.071	0.12	0.0067	0	1.41	0.0076	1.14
> 5.00	0	0.12	0	0	0	0	0.18	0	0.36

Figure 94. Affected Areas in Bobon, Northern Samar during 25-Year Rainfall Return Period

For the municipality of Catarman, with an area of 255.77 sq. km., 63.15% will experience flood levels of less 0.20 meters. 6.15% of the area will experience flood levels of 0.21 to 0.50 meters while 6.50%, 6.83% 5.91% and 5.25% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and above 5 meters, respectively. Listed in Table 54 to Table 60 are the affected areas in square kilometers by flood depth per barangay.

Afforted area (ca had			Area	of affected harans	ravs in Cata	rman (in so	km)		
Allected alea (sq.KIII.)			200		Days III card		1.111.1.1		
by flood depth (in m.)	Acacia	Aguinaldo	Airport Village	Bangkerohan	Baybay	Bocsol	Cabayhan	Cag-Abaca	Cal-Igang
0.03-0.20	0.088	1.28	0.1	0.19	0.11	1.68	2.67	3.2	6.67
0.21-0.50	0.038	0.089	0.087	0.071	0.083	0.3	0.16	0.29	0.37
0.51-1.00	0.018	0.18	0.041	0.27	0.28	0.36	0.18	0.3	0.46
1.01-2.00	0.0016	0.23	0.0044	0.44	0.26	0.58	0.25	0.34	1.05
2.01-5.00	0	0.3	0.003	0.003	0.015	0.29	0.31	0.12	0.71
> 5.00	0	0.02	0	0	0.0081	0.0053	0.036	0.0018	0.088

Table 54. Affected Areas in Catarman, Northern Samar during 25-Year Rainfall Return Period.

Table 55. Affected Areas in Catarman, Northern Samar during 25-Year Rainfall Return Period.

_			Area c	of affected t	barangays i	n Catarmaı	n (in sq. km.)		
	Calachuchi	Cawayan	Cervantes	Cularima	Daganas	Dalakit	Doña Pulqueria	Galutan	Gebalagnan
	0.12	1.48	3.35	1.72	1.73	0.48	1.82	0.87	6.01
	0.054	0.32	0.11	0.088	0.69	0.2	0.75	0.94	0.26
	0.03	0.27	0.073	0.14	0.54	0.15	1.05	1.39	0.21
	0	0.13	0.081	0.27	0.19	0.33	1.09	1.4	0.27
	0	0.015	0.18	0.51	0	0.015	0.32	0.056	0.71
	C	0.0006	2.23	0.16	U	U	0.18	0.12	0.74

ŝrio
1
a 1
Ψ.
Ā
_
<u> </u>
2
The second
~
<u> </u>
=
σ
Ψ
<u> </u>
B
Č
-
E
ä
19
1
ഹ
2
50
l m
1
5
σ
i.
E
2
≥
ā
ŝ
<u> </u>
5
×
÷
L
0
7
z
Z ć
N, N
lan, N
man, N
rman, N
arman, N
itarman, N
atarman, N
Catarman, N
າ Catarman, N
in Catarman, N
s in Catarman, N
as in Catarman, N
eas in Catarman, N
reas in Catarman, N
Areas in Catarman, N
Areas in Catarman, N
d Areas in Catarman, N
ed Areas in Catarman, N
cted Areas in Catarman, N
ected Areas in Catarman, N
fected Areas in Catarman, N
offected Areas in Catarman, N
Affected Areas in Catarman, N
. Affected Areas in Catarman, N
6. Affected Areas in Catarman, N
56. Affected Areas in Catarman, N
e 56. Affected Areas in Catarman, N
le 56. Affected Areas in Catarman, N
ble 56. Affected Areas in Catarman, N
able 56. Affected Areas in Catarman, N

	Jose P. Rizal	0.016	0.015	0.0012	0	0	0
m.)	Jose Abad Santos	0.12	0.038	0.026	0.0015	0.00022	0
an (in sq. k	Ipil-Ipil	0.057	0.0024	0.0021	0.0014	0.00029	0
s in Catarm	Imelda	2.72	0.81	0.8	0.45	0.047	0
d barangays	Hinatad	4.37	0.35	0.31	0.46	0.64	0.23
of affected	Guba	4.34	0.21	0.25	0.21	0.054	0.0055
Area	General Malvar	2.22	0.11	0.16	0.17	0.18	0.047
	Gebulwangan	8.9	0.53	0.55	0.56	0.99	0.93
Affected area (sq.km.)	by flood depth (in m.)	0.03-0.20	0.21-0.50	0.51-1.00	1.01-2.00	2.01-5.00	> 5.00

Table 57. Affected Areas in Catarman, Northern Samar during 25-Year Rainfall Return Period.

Affected area (sq.km.) by		Ar	ea of affec	ted barang	ays in Cata	rman (in sq	. km.)	
flood depth (in m.)	Kasoy	Lapu-Lapu	Liberty	Libjo	Mabini	Mabolo	Macagtas	Mckinley
0.03-0.20	0.024	0.0035	5.43	9.94	4.34	0.036	2.31	15.74
0.21-0.50	0.01	0.0074	0.22	2.07	0.29	0.01	1.02	0.69
0.51-1.00	0.0016	0.0038	0.19	2.06	0.2	0.0011	0.81	0.87
1.01-2.00	0.00019	0.0001	0.2	1.03	0.15	0.0004	0.85	1.4
2.01-5.00	0	0	0.35	0.061	0.08	0.0001	660.0	1.44
> 5.00	0	0	2.37	0.0004	0.0009	0	0.00092	0.27

Table 58. Affected Areas in Catarman, Northern Samar during 25-Year Rainfall Return Period.

	Salvacion	1.26	0.06	0.061	0.049	0.014	0.0003
m.)	Quezon	2.61	0.16	0.22	0.49	0.73	0.25
an (in sq. k	Polangi	20.02	0.68	0.47	0.66	1.71	3.12
in Catarm	Paticua	1.97	0.074	0.13	0.5	0.94	0.38
l barangays	Old Rizal	3.28	1.11	1.14	0.51	0.011	0
ea of affected	New Rizal	3.59	0.21	0.3	0.39	0.21	0.006
A	Narra	0.024	0.00096	0.00064	0.00011	0	0
	Molave	0.081	0.0072	0.015	0.028	0.0012	0
Affected area (sq.km.)	by flood depth (in m.)	0.03-0.20	0.21-0.50	0.51-1.00	1.01-2.00	2.01-5.00	> 5.00

Table 59. Affected Areas in Catarman, Northern Samar during 25-Year Rainfall Return Period.

	Trangue	2.78	0.095	0.08	0.1	0.22	0.062
	Tinowaran	14.18	0.54	0.5	0.7	1.06	0.22
(in sq. km.)	Talisay	0.075	0.017	0.01	0.0029	0.0002	C
. Catarman	Somoge	5.39	0.35	0.5	0.73	2.03	1.74
arangays in	Santol	0.016	0.0051	0.00017	0.0002	0	O
a of affected b	San Pascual	3.24	0.28	0.19	0.18	0.22	0.17
Area	San Julian	1.88	0.11	0.19	0.18	0.092	0.0051
	Sampaguita	0.018	0.0096	0.0046	0.00037	0	0
Affected area (sq.km.)	by flood depth (in m.)	0.03-0.20	0.21-0.50	0.51-1.00	1.01-2.00	2.01-5.00	> 5.00

Period.
l Return
۲ Rainfal
25-Year
ır during
rn Sama
Northe
Catarman,
Areas in
Affected
able 60.

Affected area (sq.km.)	A	rea of affected l	oarangays in Ca	atarman (in sq. km.	(
by flood depth (in m.)	Uep I	UEP II	Uep III	Washington	Yakal
0.03-0.20	2.21	0.24	1.15	3.32	0.051
0.21-0.50	0.27	0.049	0.14	0.28	0.004
0.51-1.00	0.21	0.042	0.19	0.22	0.0015
1.01-2.00	0.069	0.016	0.065	0.37	0.0018
2.01-5.00	0.018	0	0.011	0.34	0.0004
> 5.00	0.0003	0	0.001	0.046	0

Figure 98. Affected Areas in Catarman, Northern Samar during 25-Year Rainfall Return Period.

Figure 99. Affected Areas in Catarman, Northern Samar during 25-Year Rainfall Return Period.

0.21-0.50

0 Uep I UEP II Uep III Washington Yakal Barangays

0.2

Figure 101. Affected Areas in Catarman, Northern Samar during 25-Year Rainfall Return Period.

For the municipality of Lope de Vega, with an area of 186.61 sq. km., 6.66% will experience flood levels of

less 0.20 meters. 0.30% of the area will experience flood levels of 0.21 to 0.50 meters while 0.26%, 0.32%, 0.47% and 0.33% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and above 5 meters, respectively. Listed in Table 61are the affected areas in square kilometers by flood depth per barangay.

Table 61. Affected Areas in Lope de Vega, Northern Samar during 25-Year Rainfall Return Period.

Affected area		Area of affe	cted barangays i	n Lope de Vega	(in sq. km.)	
(sq.km.) by flood depth (in m.)	Bayho	Cag-Aguingay	Gebonawan	Gen. Luna	Maghipid	San Miguel
0.03-0.20	0.048	2.23	5.43	0.97	2.67	1.09
0.21-0.50	0.0017	0.13	0.18	0.036	0.18	0.033
0.51-1.00	0.001	0.13	0.1	0.026	0.2	0.018
1.01-2.00	0.00042	0.18	0.12	0.021	0.26	0.017
2.01-5.00	0.0015	0.36	0.13	0.013	0.35	0.026
> 5.00	0.0091	0.31	0.0043	0	0.049	0.25

Figure 102. Affected Areas in Lope de Vega, Northern Samar during 25-Year Rainfall Return Period.

For the municipality of Mondragon, with an area of 322.75 sq. km., 6.935% will experience flood levels of less 0.20 meters. 0.52% of the area will experience flood levels of 0.21 to 0.50 meters while 0.45%, 0.33%, 0.16% and 0.01% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and above 5 meters, respectively. Listed in Table 62 are the affected areas in square kilometers by flood depth per barangay.

Affected area		Area of a	ffected bar	angays in Mor	ndragon (in sq	. km.)	
(sq.km.) by flood depth (in m.)	Cagmanaba	Doña Lucia	Imelda	La Trinidad	Makiwalo	San Agustin	San Isidro
0.03-0.20	8.53	0	2.11	9.24	0.25	1.35	0.066
0.21-0.50	0.27	0	0.33	0.66	0.057	0.29	0.035
0.51-1.00	0.18	0	0.22	0.63	0.063	0.46	0.02
1.01-2.00	0.24	0	0.12	0.61	0.073	0.56	0.0055
2.01-5.00	0.19	0	0.037	0.44	0.0087	0.088	0.0013
> 5.00	0.019	0	0.0016	0.05	0	0.0017	0

Table 62. Affected Areas in Mondragon, Northern Samar during 25-Year Rainfall Return Period.

Figure 103. Affected Areas in Mondragon, Northern Samar during 25-Year Rainfall Return Period.

For the municipality of San Jose, with an area of 68.72 sq. km., 0.04% will experience flood levels of less 0.20 meters. 0.01% of the area will experience flood levels of 0.21 to 0.50 meters while 0.007%, 0%, 0% and 0% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and above 5 meters, respectively. Listed in Table 63 are the affected areas in square kilometers by flood depth per barangay.

Table 63. Affected Areas in San Jose, Northern Samar during 25-Year Rainfall Return Period.

Affected area (sq.km.)	Area of affected barangays in San Jose (in sq. km.)
by nood depth (in m.)	Geratag
0.03-0.20	0.025
0.21-0.50	0.0092
0.51-1.00	0.005
1.01-2.00	0
2.01-5.00	0
> 5.00	0

Figure 104. Affected Areas in San Jose, Northern Samar during 25-Year Rainfall Return Period.

For the 100-year return period, 31.36% of the municipality of Bobon with an area of 198.53 sq. km. will experience flood levels of less 0.20 meters. 3.32% of the area will experience flood levels of 0.21 to 0.50 meters while 3.61%, 5.10%, 5.10% and 0.93% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters and more than 5 meters, respectively. Listed in and Table 64 and Table 65 are the affected areas in square kilometers by flood depth per barangay.

Period.
l Return
r Rainfal
L00-Year
during 1
Samar
Northern
n Bobon,
Areas i
Affected
Table 64.

	s Jose P. Laurel	4.91	0.35	0.37	0.37	0.66	0.22
	Jose Abad Santos	2.98	0.14	0.16	0.26	1.7	0.32
n (in sq. km.)	Gen. Lucban	0.042	0.013	0.0085	0.0001	0	0
ays in Bobo	E. Duran	0.53	0.024	0.025	0.031	0.0072	0.0001
fected barang	Dancalan	3.6	0.86	0.89	0.65	0.13	0
Area of af	Calantiao	1.73	0.22	0.22	0.36	0.86	0.0049
	Balat-Balud	0.97	0.59	0.8	1.8	0.91	0.021
	Arellano	1.9	0.46	0.27	0.13	0.021	0.0002
	Acerida	5.26	0.46	0.62	0.74	1.19	0.32
Affected area (sq.km.)	by flood depth (in m.)	0.03-0.20	0.21-0.50	0.51-1.00	1.01-2.00	2.01-5.00	> 5.00

Table 65. Affected Areas in Bobon, Northern Samar during 100-Year Rainfall Return Period

							-		
Affected area (sq.km.)			Area	от аптестео ра	rangays in E	sopon (in sq. kn	(·L		
by flood depth (in m.)	Magsaysay	Quezon	Salvacion	San Isidro	San Juan	Santa Clara	Santander	Somoroy	Trojello
0.03-0.20	1.06	3.15	0.94	1.27	0.33	0.35	23.33	1.19	8.73
0.21-0.50	0.24	0.39	0.27	0.44	0.1	0.097	1.27	0.11	0.56
0.51-1.00	0.2	0.34	0.29	0.58	0.091	0.034	1.24	0.21	0.82
1.01-2.00	0.14	0.47	0.57	1.35	0.11	0.012	1.98	0.054	1.11
2.01-5.00	0.12	0.84	0.17	0.31	0.012	0.000048	1.96	0.0084	1.24
> 5.00	0	0.14	0	0	0	0	0.28	0	0.55

Figure 106. Affected Areas in Bobon, Northern Samar during 100-Year Rainfall Return Period

For the municipality of Catarman, with an area of 255.77 sq. km., 60.45% will experience flood levels of less 0.20 meters. 5.63% of the area will experience flood levels of 0.21 to 0.50 meters while 6.07%, 7.72%, 7.12% and 6.80% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and above 5 meters, respectively. Listed in Table 66 and Table 72 are the affected areas in square kilometers by flood depth per barangay.

		Cal-Igang	6.5	0.36	0.39	0.89	1.08	0.12
		Cag-Abaca	3.11	0.25	0.26	0.36	0.26	0.0065
Period.		Cabayhan	2.59	0.14	0.17	0.22	0.43	0.052
kainfall Return F	ו (in sq. km.)	Bocsol	1.58	0.24	0.32	0.42	0.63	0.013
ıring 100-Year R	ays in Catarmar	Ваурау	0.063	0.047	0.15	0.45	0.033	0.013
Northern Samar du	a of affected barang	Bangkerohan	0.15	0.058	0.13	0.63	0.0079	0
d Areas in Catarman,	ed Areas in Catarma	Airport Village	0.083	0.079	0.065	0.0071	0.0036	0
able 66. Affecteo		Aguinaldo	1.24	0.059	0.15	0.24	0.37	0.039
10		Acacia	0.081	0.037	0.024	0.0021	0	0
	Affected area (sq.km.)	by flood depth (in m.)	0.03-0.20	0.21-0.50	0.51-1.00	1.01-2.00	2.01-5.00	> 5.00

Table 67. Affected Areas in Catarman, Northern Samar during 100-Year Rainfall Return Period.

Affected area (sq.			A	rea of affected	d barangays in	Catarman (in	sq. km.)		
km.) by flood depth (in m.)	Calachuchi	Cawayan	Cervantes	Cularima	Daganas	Dalakit	Doña Pulqueria	Galutan	Gebala- gnan
0.03-0.20	0.11	1.35	3.17	1.64	1.52	0.43	1.55	0.4	5.9
0.21-0.50	0.051	0.26	0.11	0.072	0.66	0.22	0.61	0.51	0.26
0.51-1.00	0.044	0.27	0.079	0.069	0.62	0.12	0.8	1.3	0.2
1.01-2.00	0.00019	0.3	0.084	0.22	0.35	0.36	1.61	2.24	0.27
2.01-5.00	0	0.038	0.18	0.62	0.0011	0.048	0.43	0.21	0.7
> 5.00	0	0.0006	2.4	0.27	0	0	0.22	0.12	0.88

Affected area (sg.km.) by			Area of afl	fected barangays	in Catarman (i	n sq. km.)		
flood depth (in m.)	Gebulwangan	General Malvar	Guba	Hinatad	Imelda	Ipil-Ipil	Jose Abad Santos	Jose P. Riza
0.03-0.20	8.62	2.17	4.29	4.15	2.56	0.055	0.098	0.014
0.21-0.50	0.5	0.093	0.2	0.42	0.72	0.0041	0.03	0.015
0.51-1.00	0.51	0.12	0.24	0.31	0.85	0.002	0.047	0.0041
1.01-2.00	0.64	0.22	0.25	0.43	0.63	0.0017	0.011	0
2.01-5.00	96.0	0.22	0.075	0.8	0.066	0.00029	0.00031	0
> 5.00	1.22	0.055	0.0059	0.25	0	0	0	0

Table 68. Affected Areas in Catarman, Northern Samar during 100-Year Rainfall Return Period.

Table 69. Affected Areas in Catarman, Northern Samar during 100-Year Rainfall Return Period.

Affected area (sq.km.)			Area of affec	cted barangays	s in Catarmar	ı (in sq. km.)		
by flood depth (in m.)	Kasoy	Lapu-Lapu	Liberty	Libjo	Mabini	Mabolo	Macagtas	Mckinley
0.03-0.20	0.02	0.003	5.25	9.5	4.23	0.032	2.02	15.45
0.21-0.50	0.013	0.0049	0.23	1.94	0.33	0.013	0.95	0.63
0.51-1.00	0.0021	0.0067	0.15	2.21	0.22	0.0016	0.89	0.71
1.01-2.00	0.00019	0.0001	0.21	1.38	0.17	0.0004	0.97	1.35
2.01-5.00	0	0	0.36	0.13	0.096	0.0001	0.27	1.94
> 5.00	0	0	2.57	0.0007	0.0012	0	0.00092	0.34

_

l

Affected		А	rea of affecte	ed barangay	/s in Catarn	nan (in sq.	km.)	
area (sq. km.) by flood depth (in m.)	Molave	Narra	New Rizal	Old Rizal	Paticua	Polangi	Quezon	Salvacion
0.03-0.20	0.076	0.023	3.53	2.93	1.9	19.51	2.54	1.24
0.21-0.50	0.0077	0.0017	0.21	1.07	0.069	0.69	0.14	0.057
0.51-1.00	0.011	0.00064	0.25	1.2	0.06	0.44	0.14	0.064
1.01-2.00	0.033	0.00011	0.43	0.82	0.14	0.56	0.35	0.057
2.01-5.00	0.0053	0	0.28	0.037	1.25	1.35	0.91	0.019
> 5.00	0	0	0.0096	0	0.58	4.12	0.39	0.0005

Table 70. Affected Areas in Catarman, Northern Samar during 100-Year Rainfall Return Period.

Table 71. Affected Areas in Catarman, Northern Samar during 100-Year Rainfall Return Period.

Affected		Area	of affecte	d barangay	s in Catarm	nan (in sq	. km.)	
area (sq. km.) by flood depth (in m.)	Sampaguita	San Julian	San Pascual	Santol	Somoge	Talisay	Tinowaran	Trangue
0.03-0.20	0.016	1.84	2.99	0.013	4.76	0.07	13.76	2.74
0.21-0.50	0.0079	0.098	0.3	0.0074	0.26	0.02	0.51	0.099
0.51-1.00	0.0077	0.16	0.23	0.00017	0.34	0.012	0.39	0.08
1.01-2.00	0.001	0.25	0.26	0.0002	0.53	0.0034	0.65	0.11
2.01-5.00	0.00023	0.1	0.26	0	1.98	0.0003	1.45	0.23
> 5.00	0	0.0083	0.23	0	2.87	0	0.43	0.084

Table 72. Affected Areas in Catarman, Northern Samar during 100-Year Rainfall Return Period.

Affected area (sq.km.)	Area o	f affected b	arangays ii	n Catarman (in s	q. km.)
by flood depth (in m.)	Uep I	UEP II	Uep III	Washington	Yakal
0.03-0.20	2.15	0.23	1.12	3.2	0.049
0.21-0.50	0.27	0.048	0.13	0.3	0.0058
0.51-1.00	0.25	0.049	0.18	0.24	0.0016
1.01-2.00	0.082	0.022	0.12	0.42	0.0018
2.01-5.00	0.024	0	0.011	0.34	0.0004
> 5.00	0.0008	0	0.0016	0.082	0

Figure 108. Affected Areas in Catarman, Northern Samar during 100-Year Rainfall Return Period.

Figure 109. Affected Areas in Catarman, Northern Samar during 100-Year Rainfall Return Period.

Figure 111. Affected Areas in Catarman, Northern Samar during 100-Year Rainfall Return Period.

Figure 113. Affected Areas in Catarman, Northern Samar during 100-Year Rainfall Return Period.

0.0011

0.00022

0.0016

0.011

0.51-1.00

1.01-2.00

2.01-5.00

> 5.00

For the municipality of Lope de Vega, with an area of 186.61 sq. km., 6.50% will experience flood levels of less 0.20 meters. 0.31% of the area will experience flood levels of 0.21 to 0.50 meters while 0.26%, 0.33%, 0.54% and 0.40% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and above 5 meters, respectively.Listed in Table 73 are the affected areas in square kilometers by flood depth per barangay.

		Area of affected	d barangays in Lo	ope de Vega	a (in sq. km.)	
flood depth (in m.)	Bayho	Cag-Aguingay	Gebonawan	Gen. Luna	Maghipid	San Miguel
0.03-0.20	0.045	2.12	5.37	0.96	2.59	1.06
0.21-0.50	0.002	0.13	0.19	0.041	0.18	0.034

0.11

0.12

0.15

0.008

0.028

0.021

0.017

0.0002

0.19

0.27

0.41

0.078

0.019

0.18

0.028

0.28

0.14

0.19

0.4

0.37

Table 73. Affected Areas in Lope de Vega, Northern Samar during 100-Year Rainfall Return Period.

Figure 114. Affected Areas in Lope de Vega, Northern Samar during 100-Year Rainfall Return Period.

For the municipality of Mondragon, with an area of 322.75 sq. km., 6.52% will experience flood levels of less 0.20 meters. 0.50% of the area will experience flood levels of 0.21 to 0.50 meters while 0.49%, 0.58%, 0.32% and 0.03% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and above 5 meters, respectively. Listed in Table 74 are the affected areas in square kilometers by flood depth per barangay.

Affected area (sq.km.) by flood depth (in m.)	Area of affected barangays in Mondragon (in sq. km.)						
	Cagmanaba	Doña Lucia	Imelda	La Trinidad	Makiwalo	San Agustin	San Isidro
0.03-0.20	8.45	0	1.99	9.06	0.23	1.25	0.058
0.21-0.50	0.29	0	0.36	0.62	0.056	0.25	0.032
0.51-1.00	0.19	0	0.26	0.68	0.063	0.36	0.028
1.01-2.00	0.24	0	0.17	0.67	0.087	0.71	0.0064
2.01-5.00	0.24	0	0.043	0.56	0.022	0.16	0.002
> 5.00	0.024	0	0.0028	0.062	0	0.0033	0

Table 74. Affected Areas in Mondragon, Northern Samar during 100-Year Rainfall Return Period.

Figure 115. Affected Areas in Mondragon, Northern Samar during 100-Year Rainfall Return Period.

For the municipality of San Jose, with an area of 68.72 sq. km., 0.03% will experience flood levels of less 0.20 meters. 0.02% of the area will experience flood levels of 0.02 to 0.50 meters while 0.02%, 0.0003%, 0% and 0% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and above 5 meters, respectively. Listed in Table 75 are the affected areas in square kilometers by flood depth per barangay.

Table 75. Affected Areas in San Jose, Northern Samar during 100-Year Rainfall Return Period.

Affected area (sq.km.)	Area of affected barangays in San Jose (in sq. km.)			
by flood depth (in m.)	Geratag			
0.03-0.20	0.018			
0.21-0.50	0.01			
0.51-1.00	0.01			
1.01-2.00	0.00026			
2.01-5.00	0			
> 5.00	0			

Figure 116. Affected Areas in San Jose, Northern Samar during 100-Year Rainfall Return Period.

Among the barangays in the municipality of Bobon, Santander is projected to have the highest percentage of area that will experience flood levels at 15.14%. Meanwhile, Trojello posted the second highest percentage of area that may be affected by flood depths at 6.55%.

Among the barangays in the municipality of Catarman, Polangi is projected to have the highest percentage of area that will experience flood levels at 10.43%. Meanwhile, Mckinley posted the second highest percentage of area that may be affected by flood depths at 7.98%.

Among the barangays in the municipality of Lope de Vega, Gebonawan is projected to have the highest percentage of area that will experience flood levels of at 3.19%. Meanwhile, Maghipid posted the second highest percentage of area that may be affected by flood depths of at 1.99%.
Among the barangays in the municipality of Mondragon, La Trinidad is projected to have the highest percentage of area that will experience flood levels of at 3.60%. Meanwhile, Cagmanaba posted the second highest percentage of area that may be affected by flood depths of at 2.92%.

Among the barangays in the municipality of San Jose, Geratag is the only affected barangay with 0.06% of its area is projected to experience flood.

Moreover, the generated flood hazard maps for the Catarman Floodplain were used to assess the vulnerability of the educational and medical institutions in the floodplain. Using the flood depth units of PAGASA for hazard maps - "Low", "Medium", and "High" - the affected institutions were given their individual assessment for each Flood Hazard Scenario (5 yr, 25 yr, and 100 yr).

Marning Loual	Area Covered in sq. km.					
warning Level	5 year	25 year	100 year			
Low	29.44	25.47	23.63			
Medium	40.24	45.97	43.91			
High	34.23	52.16	66.23			

Table 76. Area covered by each warning level with respect to the rainfall scenarios

Of the sixty (60) identified Education Institute in Catarman Flood plain, 17 schools were assessed to be exposed to the Low level flooding during a 5 year scenario while 9 were assessed to be exposed to Medium and 1 to High level flooding in the same scenario. In the 25 year scenario, 18 schools were assessed to be exposed to the Low level flooding while 12 schools were assessed to be exposed to Medium and 8 to High level flooding. For the 100 year scenario, 18 schools were assessed for Low level flooding and 18 schools for Medium level flooding. In the same scenario, 8 school were assessed to be exposed to High level flooding.

Of the 23 identified Medical Institutions in Catarman Flood plain, 4 were assessed to be exposed to the Low level flooding during a 5 year scenario while 3 were assessed to be exposed to Medium level flooding. In the 25 year scenario, 3 were assessed to be exposed to the Low level flooding while 4 were assessed to be exposed to the Low level flooding while 4 were assessed to be exposed to Medium level flooding and 4 to High level flooding. For the 100 year scenario, 4 schools were assessed for Low level flooding and 4 for Medium and High level flooding.

5.11 Flood Validation

In order to check and validate the extent of flooding in different river systems, there is a need to perform validation survey work. Field personnel gather secondary data regarding flood occurrence in the area within the major river system in the Philippines.

From the flood depth maps produced by Phil-LiDAR 1 Program, multiple points representing the different flood depths for different scenarios were identified for validation.

The validation personnel will then go to the specified points identified in a river basin and will gather data regarding the actual flood level in each location. Data gathering can be done through a local DRRM office to obtain maps or situation reports about the past flooding events or interview some residents with knowledge of or have had experienced flooding in a particular area.

The actual data from the field were compared to the simulated data to assess the accuracy of the Flood Depth Maps produced and to improve on the results of the flood map. The points in the flood map versus its corresponding validation depths are shown in Figure 117. The flood validation consists of 197 points randomly selected all over the Catarman flood plain comparing it with the flood depth map of the nearest storm event, the map has an RMSE value of 0.57 m. Table 77 shows a contingency matrix of the comparison. The validation points are found in Annex 11.

Figure 118. Flood Map depth versus Actual Flood Depth.

Table 77. Actual Flood Depth versus Simulated Flood Depth at different levels in the Catarman River
Basin.

Actual Flood Depth	Modeled Flood Depth (m)							
(m)	0-0.20	0.21-0.50	0.51-1.00	1.01-2.00	2.01-5.00	> 5.00	Total	
0-0.20	13	0	0	0	0	0	13	
0.21-0.50	22	10	6	5	0	0	43	
0.51-1.00	46	28	20	11	0	0	105	
1.01-2.00	0	8	9	8	11	0	36	
2.01-5.00	0	0	0	0	0	0	0	
> 5.00	0	0	0	0	0	0	0	
Total	81	46	35	24	11	0	197	

On the whole, the overall accuracy generated by the flood model is estimated at 25.89%, with 51 points correctly matching the actual flood depths. In addition, there were 87 points estimated one level above and below the correct flood depths while there were 59 points and 0 points estimated two levels above and below, and three or more levels above and below the correct flood depths were underestimated in the modelled flood depths of Catarman.Table 78 depicts the summary of the Accuracy Assessment in the Catarman River Basin Flood Depth Map.

Table 78. Summary of the Accuracy Assessment in the Catarman River Basin Survey.

	No. of Points	%
Correct	51	25.89
Overestimated	33	16.75
Underestimated	113	57.36
Total	197	100

REFERENCES

Ang M.O., Paringit E.C., et al. 2014. *DREAM Data Processing Component Manual*. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Balicanta L.P., Paringit E.C., et al. 2014. DREAM Data Validation Component Manual. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Lagmay A.F., Paringit E.C., et al. 2014. *DREAM Flood Modeling Component Manual*. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Paringit E.C, Balicanta L.P., Ang, M.O., Sarmiento, C. 2017. *Flood Mapping of Rivers in the Philippines Using Airborne Lidar: Methods*. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Sarmiento C., Paringit E.C., et al. 2014. *DREAM Data Acquisition Component Manual*. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

UP TCAGP 2016, Acceptance and Evaluation of Synthetic Aperture Radar Digital Surface Model (SAR DSM) and Ground Control Points (GCP). Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Camera Controller Tablet

ANNEXES Annex 1. Technical Specifications of the LIDAR Sensors used in the Catarman Floodplain Survey AQUARIUS SENSOR Laptop Pilot Display Aquarius Sensor Head

Control Rack

1.

Digitizer Camera

Figure A-1.1. Aquarius Sensor

Parameter	Specification
Operational altitude	300-600 m AGL
Laser pulse repetition rate	33, 50. 70 kHz
Scan rate	0-70 Hz
Scan half-angle	0 to ± 25 °
Laser footprint on water surface	30-60 cm
Depth range	0 to > 10 m (for k < 0.1/m)
Topographic mode	
Operational altitiude	300-2500
Range Capture	Up to 4 range measurements, including 1st, 2nd, 3rd, and last returns
Intensity capture	12-bit dynamic measurement range
Position and orientation system	POS AVTM 510 (OEM) includes embedded 72-channel GNSS receiver (GPS and GLONASS)
Data Storage	Ruggedized removable SSD hard disk (SATA III)
Power	28 V, 900 W, 35 A
Image capture	5 MP interline camera (standard); 60 MP full frame (optional)
Full waveform capture	12-bit Optech IWD-2 Intelligent Waveform Digitizer (optional)
Dimonsions and weight	Sensor:250 x 430 x 320 mm; 30 kg;
	Control rack: 591 x 485 x 578 mm; 53 kg
Operating temperature	0-35°C
Relative humidity	0-95% no-condensing

Table A-1.1. Parameters and Specifications of Aquarius Sensor

nex 2. NAI	✓RIA Certificate	e of Reference Points Us	sed in the LiDAR Surve
		1. SMN-16	
ALL AND A	Republic of the P Department of Er NATIONAL M	Thilippines Invironment and Natural Resources IAPPING AND RESOURCE INFORMATION	AUTHORITY
			July 03, 2015
		CERTIFICATION	
To whom	n it may concern:		
This	is to certify that according to	o the records on file in this office, the requ	uested survey information is as follows -
		Province: NORTHERN SAMAR	
		Station Name: SMN-16	
Island	VISAYAS	Order: 2nd Barangay: BACASBAS	
Munio			
wunic	ipality: MONDRAGON	MSL Elevation:	
wunic	ipality: MONDRAGON	MSL Elevation: PRS92 Coordinates	
Latitud	ipality: MONDRAGON le: 12º 31' 32.33268"	MSL Elevation: PRS92 Coordinates Longitude: 124° 48' 56.69485"	Ellipsoidal Hgt: 5.45500 m.
Latitud	ipality: MONDRAGON le: 12º 31' 32.33268"	MSL Elevation: PRS92 Coordinates Longitude: 124° 48' 56.69485" WGS84 Coordinates	Ellipsoidal Hgt: 5.45500 m.
Latitud	ipality: MONDRAGON de: 12º 31' 32.33268" le: 12º 31' 27.72792"	MSL Elevation: PRS92 Coordinates Longitude: 124° 48' 56.69485" WGS84 Coordinates Longitude: 124° 49' 1.74020"	Ellipsoidal Hgt: 5.45500 m. Ellipsoidal Hgt: 63.99100 m.
Latitud	ipality: MONDRAGON de: 12° 31' 32.33268" de: 12° 31' 27.72792"	MSL Elevation: PRS92 Coordinates Longitude: 124° 48' 56.69485" WGS84 Coordinates Longitude: 124° 49' 1.74020" PTM / PRS92 Coordinates	Ellipsoidal Hgt: 5.45500 m. Ellipsoidal Hgt: 63.99100 m.
Latitud	ipality: MONDRAGON de: 12° 31' 32.33268" de: 12° 31' 27.72792" ng: 1385085.603 m.	MSL Elevation: PRS92 Coordinates Longitude: 124° 48' 56.69485" WGS84 Coordinates Longitude: 124° 49' 1.74020" PTM / PRS92 Coordinates Easting: 479974.965 m.	Ellipsoidal Hgt: 5.45500 m. Ellipsoidal Hgt: 63.99100 m. Zone: 5
Latitud	ipality: MONDRAGON de: 12º 31' 32.33268" de: 12º 31' 27.72792" ng: 1385085.603 m.	MSL Elevation: PRS92 Coordinates Longitude: 124° 48' 56.69485" WGS84 Coordinates Longitude: 124° 49' 1.74020" PTM / PRS92 Coordinates Easting: 479974.965 m.	Ellipsoidal Hgt: 5.45500 m. Ellipsoidal Hgt: 63.99100 m. Zone: 5
Latitud Latitud Northi	ipality: MONDRAGON de: 12° 31' 32.33268" de: 12° 31' 27.72792" ng: 1385085.603 m. ng: 1,385,272.01	MSL Elevation: PRS92 Coordinates Longitude: 124° 48' 56.69485" WGS84 Coordinates Longitude: 124° 49' 1.74020" PTM / PRS92 Coordinates Easting: 479974.965 m. UTM / PRS92 Coordinates Easting: 697,302.11	Ellipsoidal Hgt: 5.45500 m. Ellipsoidal Hgt: 63.99100 m. Zone: 5 Zone: 51
Latitud Latitud Northi	ipality: MONDRAGON de: 12° 31' 32.33268" de: 12° 31' 27.72792" ng: 1385085.603 m. ng: 1,385,272.01	MSL Elevation: PRS92 Coordinates Longitude: 124° 48' 56.69485" WGS84 Coordinates Longitude: 124° 49' 1.74020" PTM / PRS92 Coordinates Easting: 479974.965 m. UTM / PRS92 Coordinates Easting: 697,302.11	Ellipsoidal Hgt: 5.45500 m. Ellipsoidal Hgt: 63.99100 m. Zone: 5 Zone: 51

Station Mark SMN-16 is located in Brgy. Bagasbas, Municipality of Mondragon, Province of Northern Samar, Island of Samar. to located the station, from Mondragon Town Proper, travel in North direction for about 10 km going to Brgy. Bagasbas. the station was established 30 m North from Bagasbas Elem. School, was about 1 m East of the Basketball court and 4 m west of the chapel.

Mark is the head of a 4" copper nail flushed in a 30X30 cm. cement block embedded in the ground protruding about 20 cm., with inscriptions "SMN-16; 2007; NAMRIA."

Requesting Party: UP-DREAM Purpose: OR Number: T.N.:

Reference 8084005 I 2015-1258

RUEL DM. BELEN, MNSA Director, Mapping And Geodesy Branch G

NAMRIA OFFICES: NAMINA OFFICES Main : Lawton Avenue, Fort Bonifacio, 1634 Taguig City, Philippines Tel. No.: (632) 810-4831 to 41 Branch : 421 Barraca St. San Nicolas, 1010 Manila, Philippines, Tel. No. (632) 241-3494 to 98 www.namria.gov.ph

ISO 9001: 2008 CERTIFIED FOR MAPPING AND GEOSPATIAL INFORMATION MANAGEMENT

Figure A-2.1. SMN-16

Location Description

SMN-22 From Lacang town proper, travel about 15 km. north going to Brgy. Simora. The monument is located inside the Elementary School, 5 m. east from the School's Entrance gate, 5 m. east from the school path way, 10 m. north from the school classroom, and 25 m. north from the chapel, where the station is located. Mark is the head of a 4" copper nail flushed in a 30X30 cm. cement block embedded in the ground protruding about 20 cm., with inscriptions "SMN-22; 2007; NAMRIA."

Requesting Party:Christopher CruzPurpose:ReferenceOR Number:8087193 IT.N.:2015-2547

RUEL DM. BELEN, MNSA Director, Mapping And Geodesy Branch G

NAMRIA OFFICES: Main : Lawton Avenue, Fort Bonilacio, 1634 Taguig City, Philippines Tel. No. (632) 810-4831 to 41 Branch : 421 Barraca St. San Nicolas, 1010 Manila, Philippines, Tel. No. (632) 241-3494 to 98 www.namria.gov.ph

ISO 9001: 2008 CERTIFIED FOR MAPPING AND GEOSPATIAL INFORMATION MANAGEMENT

Figure A-2.2 SMN-22

Location Description

From Rosario town proper going to Municipality of San Jose travel about 10 km. north. From the School Entrance Gate going to the monument is about 10 m. northwest, and from the School Stage going to the monument is about 2 m. east. From the Teacher's Lounge and Principal's Office up to the monument is about 5 m. south, where the monument was established. Mark is the head of a 4" copper nail flushed in a 30X30 cm. cement block embedded in the ground protruding about 20 cm., with inscriptions "SMN-12; 2007; NAMRIA."

 Requesting Party:
 UP-DREAM

 Purpose:
 Reference

 OR Number:
 8084005 I

 T.N.:
 2015-1259

RUEL DM. BELEN, MNSA Director, Mapping And Geodesy Branch

NAMRIA OFFICES: Main : Lawton Avenue, Fort Bonifacio, 1634 Taguig City, Philippines Tel. No. (632) 810-4831 to 41 Branch : 421 Barraca St. San Nicolas, 1010 Manila, Philippines, Tel. No. (632) 241-3494 to 98 www.namria.gov.ph

ISO 9001: 2008 CERTIFIED FOR MAPPING AND GEOSPATIAL INFORMATION MANAGEMENT

Figure A-2.3 SMN-12

Annex 3. Baseline Processing Reports of Control Points used in the LiDAR Survey

1. CMN-01

Table A-3.1. CMN-01

Processing Summary								
Observation	From	То	Solution Type	H. Prec. (Meter)	V. Prec. (Meter)	Geodetic Az.	Ellipsoid Dist. (Meter)	∆Height (Meter)
CMN-01 SMN-19 (B1)	SMN-19	CMN-01	Fixed	0.004	0.018	261°10'06"	19716.093	7.117
CMN-01 SMN-19 (B2)	SMN-19	CMN-01	Fixed	0.004	0.016	261°10'06"	1971 <mark>6.092</mark>	7.056

Acceptance Summary						
Processed	Passed	Flag	•	Fail	1	
2	2	0		0		

Vector Components (Mark to Mark)

From:	SMN-19				
G	rid	Lo	cal	Glo	bal
Easting	697302.106 m	Latitude	N12°31'32.33268"	Latitude	N12°31'27.72792"
Northing	1385272.014 m	Longitude	E124°48'56.69484"	Longitude	E124°49'01.74020"
Elevation	8.997 m	Height	5.456 m	Height	63.991 m

То:	CMN-01	MN-01						
Grid			Local			Global		
Easting	677840.326 n	Latitude	N12°29'5	3.60604"	Latitude		N12°29'48.99306"	
Northing	1382111.129 n	Longitud	le E124°38'1	1.46535"	Longitude		E124°38'16.51471"	
Elevation	14.613 n	Height		12.573 m	Height		70.742 m	
Vector								
∆Easting	-19461.7	80 m NS I	Fwd Azimuth		261°10'06"	ΔX	15632.874 m	
ΔNorthing	-3160.8	84 m Ellip	osoid Dist.		19716.093 m	ΔY	11643.556 m	
∆Elevation	5.6	15 m ΔHe	eight		7.117 m	ΔZ	-2960.605 m	

Standard Errors

Vector errors:					
σ ΔEasting	0.002 m	σ NS fwd Azimuth	0°00'00"	σΔΧ	0.005 m
$\sigma \Delta Northing$	0.002 m	σ Ellipsoid Dist.	0.002 m	σΔΥ	0.007 m
$\sigma \Delta Elevation$	0.009 m	σ ΔHeight	0.009 m	σ ΔΖ	0.003 m

Aposteriori Covariance Matrix (Meter²)

	Х	Y	Z
х	0.0000248767		
Y	-0.0000327811	0.0000524301	
Z	-0.0000118537	0.0000172626	0.0000085902

2. NS-61

Table A-3.2. NS-61

Vector Components (Mark to Mark)

From:	SM	N-16							
	Grid			Lo	cal			GI	obal
Easting		697302.106 m	Latit	tude	N12°31'3	2.33268"	Latitude		N12°31'27.72792"
Northing		1385272.014 m	Long	gitude	E124°48'5	6.69484"	Longitude		E124°49'01.74020"
Elevation		8.997 m	Heig	ght		5.456 m	Height		63.991 m
То:	NS	-61							
	Grid			Lo	cal			GI	obal
Easting		696390.555 m	Latit	tude	N12°31'1	7.86801"	Latitude		N12°31'13.26354"
Northing		1384821.249 m	Long	gitude	E124°48'20	6.40323"	Longitude		E124°48'31.44902"
Elevation		8.653 m	Heig	ght		5.208 m	Height		63.733 m
Vector									
∆Easting		-911.55	51 m	NS Fwd Azimuth			244°04'53"	ΔX	695.978 m
∆Northing		-450.76	65 m	Ellipsoid Dist.			1016.833 m	ΔY	601.027 m
∆Elevation		-0.34	15 m	∆Height			-0.248 m	ΔZ	-433.971 m

Standard Errors

Vector errors:					
σ ΔEasting	0.001 m	σ NS fwd Azimuth	0°00'00"	σΔΧ	0.001 m
$\sigma \Delta Northing$	0.001 m	σ Ellipsoid Dist.	0.001 m	σΔΥ	0.001 m
$\sigma \Delta Elevation$	0.001 m	σ ΔHeight	0.001 m	σ ΔΖ	0.001 m

Aposteriori Covariance Matrix (Meter²)

	Х	Y	Z
х	0.0000012353		
Y	-0.000007094	0.0000013533	
Z	-0.000003640	0.000003117	0.000005407

3. NS-100

Table A-3.3. NS-100

Vector Compo	onents (Mark to Mark)						2
From:	SMN-12						
	Grid		La	cal			Global
Easting	661608.826 m	Latit	ude	N12"31'53.63572"	Latitude		N12*31'49.00197*
Northing	1385703.370 m	Long	gitude	E124°29'14.55387"	Longitude		E124*29'19.60166"
Elevation	6.138 m	Heig	pht .	4.666 m	Height		62.383 m
To:	NS-100			-			(habel
	Gna		La	cai			Giodal
Easting	664407.825 m	Latit	ude	N12*31'15.60049"	Latitude		N12"31'10.97151"
Northing	1384550.595 m	Long	pitude	E124°30'47.05130"	Longitude		E124*30'52.09977*
Elevation	7.016 m	Heig	iht	5.524 m	Height		63.332 m
Vector							
ΔEasting	2798.99	10 m	NS Fwd Azimuth		112°42'26"	ΔX	-2445.519 m
ΔNorthing	-1152.77	'5 m	Ellipsoid Dist.	1	3027.308 m	ΔY	-1372.200 m
A Elevation	0.87	'8 m	ΔHeight		0.858 m	۸Z	-1140.653 m

Standard Errors

Vector errors:					1
σ ΔEasting	0.001 m	o NS fwd Azimuth	0*00'00*	σΔΧ	0.003 m
σ ΔNorthing	0.001 m	σ Ellipsoid Dist.	0.001 m	σΔΥ	0.004 m
σ ΔElevation	0.006 m	σ ΔHeight	0.006 m	σΔΖ	0.002 m

Aposteriori Covariance Matrix (Meter*)

	x	Y	z
x	0.0000121100		
Y	-0.0000138874	0.0000200970	
z	-0.0000045007	0.0000060416	0.0000024172

4. SI-08

Table A-3.4. SI-08

Vector Compo	nents (M	ark to Mark)							
From:	SM	N22 AM							
	Grid			Lo	cal			G	iobal
Easting		719951.311 m	Lati	tude	N12°28'2	7.20631"	Latitude		N12°28'22.63174'
Northing		1379746.868 m	Lon	gitude	E125°01'2	5.36070"	Longitude		E125°01'30.40861'
Elevation		2.366 m	Helg	ght		-1.704 m	Height		57.474 m
To:	SIO	8 AM							
	Grid			Lo	cal			G	lobal
Easting		718234.000 m	Lati	tude	N12°29'5	6.60889"	Latitude		N12°29'52.02685'
Northing		1382481.546 m	Lon	gitude	E125°00'2	9.18987"	Longitude		E125°00'34.23576
Elevation		4.378 m	Heig	ght		0.111 m	Height		59.186 m
Vector									
∆Easting		-1717.31	12 m	NS Fwd Azimuth			328°18'36"	ΔX	1728.971 m
ΔNorthing		2734.67	78 m	Ellipsoid Dist.			3228.557 m	ΔY	488.293 m
∆Elevation		2.01	12 m	∆Height			1.815 m	۸Z	2682.497 m

Standard Errors

Vector errors:					
σ ΔEasting	0.001 m	σ NS fwd Azimuth	0°00'00"	σΔX	0.004 m
σΔNorthing	0.001 m	σ Ellipsoid Dist.	0.001 m	σΔY	0.005 m
σ ΔElevation	0.006 m	σ∆Height	0.006 m	σΔZ	0.002 m

Aposteriori Covariance Matrix (Meter^a)

	x	Y	Z
x	0.0000134710		
Y	-0.0000157423	0.0000227334	
z	-0.0000044486	0.0000064680	0.0000024588

Data Acquisition Component Sub-Team	Designation	Name	Agency/ Affiliation
PHIL-LIDAR 1	Program Leader	ENRICO C. PARINGIT, D.ENG	UP-TCAGP
	Data Component	ENCE CTAR LAKIRI SARMIENTO	
Data Acquisition	Project Leader - I	ENGR. CZAR JAKIRI SARIVIIENTO	
Component Leader	Data Component Project Leader – I	ENGR. LOUIE P. BALICANTA	UP-TCAGP
	Chief Science Research Specialist (CSRS)	ENGR. CHRISTOPHER CRUZ	UP-TCAGP
Survey Supervisor	Supervising Science Research	LOVELY GRACIA ACUÑA	UP-TCAGP
	Specialist (Supervising SRS)	LOVELYN ASUNCION	UP-TCAGP
		FIELD TEAM	
	Senior Science Research Associate (SSRS)	PAULINE JOANNE ARCEO	UP-TCAGP
		ENGR. MILLIE SHANE REYES	
LIDAR Operation	RA	MARY CATHERINE ELIZABETH BALIGUAS	UP-TCAGP
		JONALYN GONZALES	
		MA. VERLINA TONGA	
Ground Survey, Data	RA	JONATHAN ALMALVEZ	
Download and Transfer		IRO NIEL ROXAS	
		SSG RAYMUND DOMINE	
	Airborne Security	SSG JOHN ERIC CACANINDIN	
LiDAR Operation		CAPT. CESAR SHERWIN ALFONSO	
		CAPT. RANDY LAGCO	ASIAN AEROSPACE
	Pilot	CAPT. FERDINAND DE OCAMPO	CORPORATION (AAC)
		CAPT. NIEL ACHILLES AGAWIN	AAC

Annex 4. The LiDAR Survey Team Composition

Table A-4.1. The LiDAR Survey Team Composition

Annex 5. Data Transfer Sheet for Catarman Floodolain

DATA TRANSFER SHEET

				DANG	11100												
ATE	FLIGHT NO.	MISSION NAME	SENSOR	The second secon	A LAS	10COUND	-	RAW	MISSION LOG			BASE S	TATION(S)	OPERATOR	FLIGHT	PLAN	
				Output LAS	KML (swath)	(SM)cont	FOS	IMAGES/CASI	LOGS	RANGE	DIGITIZER	BASE STATION(S)	Base Info (.txt)	(OPLOG)	Actual	KML	LOCATION
23-Aug	8180AC	3BLK33R235A	aquarius	BU	254	519	212	70.2	2.17/26.9	10.6	649	9.87	1KB	1KB	e	0	ZIDACIRAW
24-Aug	8182AC	ABI K33D026A	an indian											1	,	D	DATA
0		ADD TO	advanues	BU	202	451	213	2	BU	9.05	104	12.5	1KB	1KB	10	207	Z'IDACIRAW
24-Aug	8183AC	3BLK33STV236B	amianite.		VEC	Loc		11.22	61								DATA
			an and a		50	SOF	152	- shill	All Car	5.81	35.1	12.5	1KB	1KB	9	na	Z:/DAC/RAW
25-Aug	8184AC	3BLK33PS2237A	aquarius	90	60	170											DAIA
				2	70	1/3	ROL	14.7	47.7/31.1	2.97	12.6	9.69	1KB	1KB	4	44	Z:UDAC/RAW
25-Aug	8185AC	3BUNDLEADJUSTMENT23	dimention .						100.07 3							-	DATA
0		78	aniina	BU	40	105	74.1	11.5	C' JOJENI	2.04	11	9.59	1KB	1KB	4	4	Z'DACIRAW
26-Aug	8186AC	3RI KRRCDCT028A	operation of	1													DATA
			ontionho	BL	777	222	250	64.5	219	6.73	12.8	9.12	TKB	1KB	12	29	Z:NDACKRAW
27-Aud	8188AC	3HI K335230A	Dra indrine		-					T							DATA
			Contraction	BU	80	200	115	222	88.6	3.93	19.8	3.23	1KB	1KB	4	107	ZIDACIRAW
28-Aug	8190AC	3BLK33CD24DA	aduardus	e.	526		-										DATA
				2	617	not	222	59.8	BU	8.77	25.3	2	1KB	1KB	6/5	14	ZIDACIRAW

Received from

44 Name Signature

Received by

09/16/15 JOIDA F. PRIETO Name Signature

Figure A-5.1. Transfer Sheet for Catarman Floodplain - A

FLIGHT NO. MISS			RAN	V LAS				SICCION I OC			BASE 51	ATION(S)	OPERATOR	FLIGHT	PLAN	antina a
	SION NAME	SENSOR	Output LAS	KML (swath)	LOGS(MB)	POS	RAW	FILE/CASI	RANGE	DIGITIZER	BASE STATION(S)	Base info (.txt)	(OPLOG)	Actual	KMIL	LOCATION
ug 8137	CASILCTF213A	aquarius	BU	63	159	73.2	13.7	80.9	3.13	ца	1.79	1KB	1KB	ŝ	NA	Z./DAC/RAW DATA
ug 8142	AQUALCTF216A	aquarius	us.	36	140	101	na	BU	2.2	8.44	21.4	1KB	1KB	3/4	NA	Z:/DAC/RAW DATA
Nug 8154	3BLK331NO222A	aquarius	195	2350	505	185	ua	80	9.78	68	27.1	1KB	A REAL	11/14	NA	ZIDACIRAW
Nug 8156	3BLK331LNS223A	aquarius	eu	271	1.02	217	ua 1	đ	11.4	17.4	32.8	1KB	AKED THE	11	8	Z:/DAC/RAW DATA
Vug 8157	3BLK331NS2238	aquarius	па	205	1.01	169	na	a	14	26.3	34.9	1KB	1KB	9	NA	Z'IDACIRAW DATA
Aug 8158	3BLK331P224A	aquarius	cu Ua	299	635	217	Bu	eu	12.4	51.6	49.3	1KB	1KB	16	42	ZIDACIRAW DATA
Aug 8159	3BLK331NSPS224B	aquarius	82	135	943	77.3	an	eu	6.12	37.4	49.3	1KB	1KB	16	NA	Z-IDAC/RAW DATA
Aug 8160 3	3BLK331PQRS225A	aquarius	g	122	264	149	na	BU	5.68	30.4	12.6	1KB	1KB	15	122	Z:IDACIRAW DATA

DATA TRANSFER SHEET

9/8/15

F. PRIETO

A DIOL

Name

D. Janouril

Name Position Signature Figure A-5.2. Transfer Sheet for Catarman Floodplain - B

Annex 6. Flight logs for the flight missions

1. Flight Log for 7814AC Mission

Pilot: N. ALAWIN ODate: 21 FEB IS	CUAS 2 ALTM Model: 4-14-14	ALL 3 Mission Name-38LK 331-	rada attended		Flight Log No.: 7814A
0 Date: 41 FEB 15	8 Co-Pilot: F. DE 2 CAMPD	9 Route:	NJA: Ahai Han	Alrcraft Type: Cesnna T206H	6 Aircraft Identification: \$322
	12 Airport of Departur	e (Airport, City/Province):	12 Airport of Arrival ((Airport, City/Province):	
i Engine On: በጊዜ	14 Engine Off:	15 Total Engine Time:	16 Take off:	17 Landing:	18 Total Flight Time:
Weather	Raîny	17.23			
Flight Classification			21 Remarks		
a Billable	20.b Non Billable	20.c Others			
Acquisition Flight Erry Flight System Test Flight Calibration Flight	o Aircraft Test Flight o AAC Admin Flight o Others:	 UDAR System Mainti Aircraft Maintenanci Phil-UDAR Admin Ac. 	enance Suicc	seful chel thet flight; si de BLE 332I	worded a lince
Problems and Solutions					
O Weather Problem O System Problem					
O Aircraft Problem					
0 Pilot Problem 0 Others:					
Acquisition Flight Approved by Pav Acce D Signature over Printed Name (End User Representative)	Acquisition Flight Cer DEC Cochine Slignature over Primed	tified by Pilot-in- <u> </u>	Command	LIDAR Operator NCE BALLEVYS Signature over Primed Name	Alrcraft Mechanic/ UDAR Technician Signature over Printed Name

Figure A-6.1. Flight Log for Mission 7814AC

Figure A-6.2. Flight Log for Mission 7820AC

100				
2282				
ght log No. : 9322				
Fil Al traft identification	s Total Filght Time:	i.		A OPERIOF BALKONS Maure over Printed Name
206H 6	16			S Sig
e: Cesnna T	ovince);			
vírcraít Typ	ort, City/Pro Landing:			ed Name
5 P	rdval (Airp			In-Command
4 Type: VF	irport of Ar ake off:	31 I		Signal
Ver Tee	12 A 16 Ti	BLES		
3814 3814	Province):	res tog		cified by M
Mission N Route:	rport, City/ 5 Total Eng 03 + 5	YED UI		Ion Filipit Cer and MUD over Philte presentative
AQUA+	parture (Ai	T. SUPE		Acquisit
M Model:	port of De	Fuch		
ht Log SUMS 2 ALTT CO-Pillot:	Engine Of	CCESSFUL		ved by tame
C BAUG	34	ß	utions:	Filght Appro
ata Acqui ator: M	2857		s and Sol	Acquisition Acquisition

Figure A-6.3. Flight Log for Mission 7822AC

Figure A-6.4. Flight Log for Mission 7824AC

Lot Jakin Lap Lag Alterent Type: Conner 2001 Alterent Type: Conner 200								
Log Altrent of an intervention Altrent of an intervention 2 Altrent woole: 2 Altrent of an intervention 3 Altrent of an intervention 2 Altrent of an intervention 3 Altrent of an intervention 3 Altrent of an intervention 2 Altrent of control 3 Altrent of an intervention 3 Altrent of an intervention 2 Altrent of control 3 Altrent of an intervention 3 Altrent of an intervention 2 Altrent of control 3 Altrent of an intervention 3 Altrent of an intervention 2 Altrent of control 3 Altrent of an intervention 3 Altrent of an intervention 3 Altrent of control 3 Altrent of an intervention 3 Altrent of an intervention		T206H 6 Aircraft Identification: 7322		18 Total Flight Time:				Udar Operator Bondure Signature Jayor Printed Name
Log 2. ALTM Model: Cost 1 a Mission Name: 2. Althort of Departure (Althort, City/Province): 1. Althort of Departure (Althort, City/Province): 1. Total Engine Time: 1. A CLOUDY; FLICHT CAN CELLED DUE 1. A		4 Type: VFR 5 Aircraft Type: Cesnna	12 Airport of Arrival (Airport, City/Province):	16 Take off: 17 Landing:		THE WEATH ER		Place and minuted the second s
Log 2 ALTM Mode 22 ALTON of 32 ALTPON of 12 ALTPON of 4NY & CLOUDY M & CLOUDY d by		di: Casi a Mission Name:	Departure (Airport, City/Province):	15 Total Engine Time:	K	Y, FIGHT CANCELLED DUE		Acculation Flight Certified by
Apriove RAIN	on Flight Log	2 ALTM Mode 8 Co-Pilot:	2 12 Airport of	14 Engine Off:	FAINY & CLOUI	RAINY & CLOUD	us:	Approved by a the Name Name Name Name Name Name Name Nam

Figure A-6.5. Flight Log for Mission 7826AC

7828				
ght Log No. . 9322				
Fil 6 Aircraft Identification 18 Total Flight Time:			Udar Operator Date Cherator Signature due Printed Name	
ina T206H				
5 Aircraft Type: Cesn (Airport, City/Province) 17 Landing:			land	
4 Type: VFR 12 Airport of Arrivel 16 Take off:	LIES AND		Signal and a second	
1 380.331 9 9.0050 Name: JossA 9 10010 Name: JossA 9 10010 Name: JossA 15 7018 Engine Time: OS + 53	sulverter unes that		austrion Flight Certified by	
dei: AQUA CASI	uchīt.		Sisus Sisus	
Flight Log LeCD Z ALTM Mo. 8 Co-Pillot 12 Mirport o 14 Engine Off:	successful t	22	proved by b	
AR 1 Data Acquisition 1 Operator: RJ AF N. ACAW/N B 28, 2015 ne 00: Na 2	1971-0	blems and Solution	Acquisition Flight A	

Figure A-6.6. Flight Log for Mission 7828AC

LiDAR Surveys and Flood Mapping of Catarman River

22	
2064 - 6 Altorali Locardikation: 73 18 Total Flight Time:	Lidar Operator Mischer
4 Type: VFR 5 Alrcreft Type: Cesnia T20 Alroont of Arrivel (Alroon, Div/Province); Teke off: 17 Landing; LK 3311H & BUK 5310	Sign war how of the state
POUN 1 Junsoun kan a 384 331 OSI 2 Junsoun kan a: 1150000 2 Junio aparture fatoor, ClayProvince): 12 15 Touri Engine Time: 12 0 31 59 HT. SULVEYED UNES FOR B	Sanishad, Sajiri Lindilen by Bana Kanaturun Bana Pantan Kana
MS FEXES 2 2 July located GAWIN 3 Compare of D 01, 2015 Jacon 1949 5 Jacon 1949	no Saturi Dins: Dist on Pilipit, Approved by Manual Manue Ather Representative;

Figure A-6.7. Flight Log for Mission 7829A

Figure A-6.8. Flight Log for Mission 7839AC

9. Flight Log for 7834AC Mission

			LOB No .: 7834AC	tion: 9322								 -				UDAR Technician	ted Name	
		ų	Flight	6 Aircraft Identifica		18 Total Flight Time										Aircraft Mechanic/	Signature over Pri	
				5 Aircraft Type: Cesnna T206H	(Airport, City/Province):	17 Landing:				Need BLK331H QK						LIDAR Operator	Signature over Printed Name	
			1 T	4 iype: VFR	12 Airport of Arrival	16 Take off:		21 Remark		Guance	vities					Dinama di Alegoria	ver Printed Name	
			Alission Name.	9 Route:	(Airport, City/Province):	15 Total Engine Time: ל+טו			20.c Others	O LIDAR System Mainten	O Phil-LiDAR Admin Activ					led by Pilot-in-Ca	signature	
		Log	2 ALTM Model: A Q341ch	-Pilot: R. LAGCO	12 Airport of Departure	ngine Off: 0909	cloudy		b Non Billable	 Aircraft Test Flight AAC Admin Flight 	o Others:					Acquisition Flight Certif	Signature over Printed N (PAF Representative)	
. [*]		R 1 Data Acquisition Flight I	Derator: Mc BALIGNAS	1. AGAWIN 8 CO-	3 MAR 15	: 0n: 14 En 04.29	er	lassification	ble 20.t	cquisition Flight srry Flight	stem Test Flight Blibration Flight	 s and Solutions	eather Problem stem Problem	rcraft Problem lot Problem here		n Flight Approved by	over Printeo Name er Representative)	

Figure A-6.9. Flight Log for Mission 7834AC

Figure A-6.10. Flight Log for Mission 7838AC

11. Flight Log for 7839AC Mission

Flicht Loc No. 34444	6 Aircraft Identification:		18 Total Flight Time:			2 11 2		-				Altraaft Mechanic/ UDAR Technician Signature over Printed Name
	/FR 5 Aircraft Type: Cesnna T206H	<pre>\rrival (Airport, City/Province);</pre>	17 Landing:		emarks		Coursed BLK331 G	~ .				UDAR Operator MS Rate a Signature over Printed Name
	Mission Name: 384233) 6064 5 4 Type: V	oort, City/Province): 12 Airport of A	Total Engine Time: 16 Take off:	61. 0	21 R	c Others	O UDAR System Maintenance O Aircraft Maintenance O Phil-LIDAR Admin Activities			a'.	2 *	Pilot-In-Command
ight Log	2 ALTM Model: AQVA+CK1 3 A	12 Airport of Departure (Air	14 Engine Off: TAAR 1407	Fair		20.b Non Billable 20.	o Aircraft Test Flight o AAC Admin Flight o Others:					Acquisition Flight certified by TEC GK-MNI J PM Signature over Printed Name (PAF Representative)
PHIL-LIDAR 1 Data Acquisition Fli	7 Pilot: N. K. AWIN B	10 Date: 5 MAR 15	13 Engine On: 0445 1202	19 Weather	20 Flight Classification	20.a Billable	 Acquisition Flight Ferry Flight System Test Flight Calibration Flight 		22 Problems and Solutions	Weather Problem System Problem Altcraft Problem Pilot Problem Others: Others:		Acquisition Flight Approved by

Figure A-6.11. Flight Log for Mission 7839AC

	Flight Log No.: 7842 AU	s Aircraft Identification: 932२		8 Total Flight Time:										will unit Mechanic/ LIDAR Technician	Signature over Printed Name		
		5 Aircraft Type: Cesnna T206H	(Airport, City/Province):	17 Landing:				bin gunts; Dife the					 LIDAR Onerator	Ms REYES	Sighature over Printed Name		
	. *	4 Type: VFR	12 Airport of Arrival	l6 Take off:		21 Remarks		nce Covere				2 ⁻ ,	mand		er Printed Name		
		3 Mission Name: 321233130 0	irport, Gty/Province):	5 Total Engine Time:			:0.c Others	 UIDAR System Maintenai Aircraft Maintenance Phil-LIDAR Admin Activit 					by Pilot-In-Corr	a z	signature of	·	
	light Log	8 Co-Pilot: P. Lacks	12 Airport of Departure (A	14 Engine Off: le 국내	vindy		20.b Non Billable	o Aircraft Test Flight o AAC Admin Flight o Others:					Acquisition Flight Certified	JEC GRANNUL	olgnature over Printed Nar (PAF Representative)		
."	DAR 1 Data Acquisition F	K Uperator: MS REYE	e: 7 MAR IS	ine On: cu 19	ather	nt Classification	illable	 Acquisition Flight Ferry Flight System Test Flight Calibration Flight 	nems and Solutions	Weather Problem	Aircraft Problem	Others:	uisition Flight Approved by	1 Marb	add the sector of the sector o		

Figure A-6.12. Flight Log for Mission 7842AC

	Flight Log No.: नेपूर्य ८ तर्ण 6 Aircraft Identification:	18 Total Flight Time:			Alrcraft Machanic/ UDAR Technician Signature over Printed Name	
	5 Aircraft Type: Cesnna T206H val (Airport, City/Province):	17 Landing:	arks Real But 332L		UDAR Operator	
	ion Name: 384, 4331, 0644, 4 Type: VFR te: , City Province): 12 Airport of Arr	al Engine Time: 16 Take off: अभ्यूय	21 Ren hers LUDAR System Maintenance Aircraft Maintenance Phil-LIDAR Admin Activities		Pilotin Command H. Admurt Signifure over Printed Name	
	All TIM Model: Aquat Que 3 Miss 2 2 ALTM Model: Aquat Que 3 Miss 8 Co-Pilot: R. Juáco 9 Rout 12 Altropt of Departure (Altropt	14 Engine Off: b93み 15 Tot すぬご	20.6 Non Billable 20.6 Ot o Aircraft Test Flight o o AAC Admin Flight 0 o Others:0		Acquisition Flight Cartified by	
.*	11 Data Acquisition F perator: PN A んだい J・ A んかい イ M A へ IS	On: 0531 er assification	ole cquisition Flight sry Flight stem Test Flight ulibration Flight	s and Solutions eather Problem stem Problem ot Problem hers:	n filtht Approved by	

Figure A-6.13. Flight Log for Mission 7846AC

1

			0	
Flight Log No:: <i>8/37</i>	6 Aircraft Identification: 932 . 18 Total Flight Time:	ata on req	A broch with T	N/A Signature over Printed Name
	S Aircraft Type: CesnnaT206H Irport, City/Province): Mading: 17 Landing:	Acquired CASI d LCTF a	source of Carbon	Martin Buddle Name Signature over Printed Name
(AL)	ARCH 1 Type: VFR ARCH 1 Type: VFR 12 Airport of Arrival (A 16 Take off: 16 Take off:	21 Remarks intenance ince Activities		esar Altonia II issure over binted Name
2ad(S)	3 Mission Name: LCR 9 Route: Cal Farmed Airport, City/Province): 15 Total Engine Time:	20.c Others O LIDAR System Ma O Aircraft Maintena O Phil-LIDAR Admin	fied he	e)
bht Log	2 ALTM MODEL: AQARIUS 1101: R. LAGCO 12 AITPORT OF DEPARTURE (CATTARTANAN) 5 3 2 CH	Non Billable o Aircraft Test Flight o Arc Admin Flight o Others:	Acconsistence of Linear Const	Signature Peresentativ
A Program's Data Acquisition Fli	ut operator: N.C. BAUEGNS t: CS AUFONSD 111 8 co-P te: AUG 2015 14 co- 14 co-	ht Classification Billable 20.b X Acquisition Flight 5 Ferry Flight 5 System Test Flight 0 Calibration Flight	blems and Solutions Weather Problem System Problem Distraft Problem Others:	RI AND

Figure A-6.14. Flight Log for Mission 8137AC

15. Flight Log for 8142AC Mission 6 Aircraft Identification: 9322 Aircraft Mechanic/ Technician Signature over Printed Name Successful LCTF Calibration 18 Total Flight Time: Flight Log No.: 8/42 Par 15/16 L Q LUDAR Acquisition Surreyed & lines 5 Aircraft Type: Cesnna T206H signature over Minted Name 3 Itot: R. UAGCO 9 Route: Cafarmen - Cafarmen 12 Airport of Departure (Airport, Gity/Province): 12 Airport of Arrival (Airport, Gity/Province): 12 Airport of Departure (Airport, Gity/Province): 12 Airport of Arrival (Airport, Gity/Province): 12 Airport of Departure (Airport, Gity/Province): 12 Airport of Arrival (Airport, Gity/Province): 12 Airport of Departure (Airport, Gity/Province): 12 Airport of Arrival (Airport, Gity/Province): 12 Airport of Departure (Airport, Gity/Province): 12 Airport of Arrival (Airport, Gity/Province): 12 Airport of Departure (Airport, Gity/Province): 12 Airport of Arrival (Airport, Gity/Province): 12 Airport of Departure (Airport, Gity/Province): 12 Airport of Arrival (Airport, Gity/Province): 13 Airport of Departure (Airport, Gity/Province): 15 Airport Departure (Airport, Gity/Province): 14 Off: 15 Total Engine Time: 16 Take off: 16 Off: 0/453 9 / 9 P.F. Lidar Operator 21 Remarks 4 Type: VFR Pilot-in-Command Cesar LiDAR System Maintenance Aircraft Maintenance Phil-LiDAR Admin Activities 2 ALTM Model: AQUA 3 Mission Name: LCTF 20.c Others SE JUALS REUDON PAP Signature over Printed Name (PAF Representative) Acquisition Flight Certified by Aircraft Test Flight AAC Admin Flight Others: 7 Pilot: CS ALPONSO 11 8 CO-PILOT: R. LAGOO 20.b Non Billable 14 Engine Off: DREAM Program's Data Acquisition Flight Log 1 LIDAR Operator: R ARCED Acquisition Flight Approved by Signature over Phyted Name (End User Representative) Acquisition Flight Ferry Flight System Test Flight Calibration Flight Weather Problem 22 Problems and Solutions **Calibration Flight** Aircraft Problem System Problem o Weather Probler o System Problerr o Aircraft Problern o Pilot Problem o Others: 10 Date: Of AUG 2015 B 20 Flight Classification

Figure A-6.15. Flight Log for Mission 8142AC

A B

13 Engine On: 19 Weather

20.a Billable

Figure A-6.16. Flight Log for Mission 8156AC

Figure A-6.17. Flight Log for Mission 8183AC

164

Figure A-6.18. Flight Log for Mission 8185AC

Flight Log for 8188AC Mission Flight Log No .: 8188 AC Aircraft Mechanic/ UDAR Technician 5 Aircraft Type: CesnnaT206H 6 Aircraft I dentification: 9322 Signature over Printed Name 18 Total Flight Time: 2 +6| ۱ JURVEYED & lines of BLK33C JUNHUNG ENDAUR Signature over Printed Name 12 Airport of Arrival (Airport, Gty/Province): 17 Landing: 1557 H LIDAR Operator 21 Remarks Used requirements 11 (IDAR Operator: J. Gov2ALES 2 A(ITM Model: + CRS1 3 Mission Name:38LK333224/A 4 Type: VFR 7 Pilot: 26. ALTONCO 8 Co-Pilot: 8. Co-Pilot: 1.2 Airport of Departure (Airport, City/Province): 12 Airport of Arrival Automative (Airport, City/Province): 10 Date: Autosucf 27, 2015 12 Airport of Departure (Airport, City/Province): 12 Airport of Arrival Automative (Airport, City/Province): 12 Airport of Arrival Automative (Airport, City/Province): 13 Engine On: 14 Engine Off: 15 Total Engine Time: 15 Total Engine Time: 13 5% H Thornatho T. Alfanso II Signature over Printed Name Pilot-in-Command O LiDAR System Maintenance Aircraft Maintenance Phil-LIDAR Admin Activities SSG JULUE RENDON PAP Signature over Printed Name (PAF Representative) 20.c Others Acquisition Flight Certified by Chahn Aircraft Test Flight AAC Admin Flight Others: 20.b Non Billable FALK Data Acquisition Hight Log Acquisition Flight Approved by Signature over Printed Name (End User Representative) Ferry Flight System Test Flight Calibration Flight System Problem Aircraft Problem Pilot Problem Others: A Acquisition Flight Weather Problem 22 Problems and Solutions 13 Engine On: Am 1/ Alvion 20 Flight Classification 20.a Billable 19 Weather 000 0 0 0 0 0

U			
Flight Log No.: 8190 A 6 Aircraft Identification: 9322 18 Total Flight Time: 3+32	₩ 83CÞ		Alrcraft Mechanic/ LIDAR Technician Signature over Printed Name
S Alrcraft Type: Cesnna T206H (Alront, Clity/Province): CBYPARMA N 17 Landing: 17 Landing:	s Ureverter 21 lines of B		LIDAR Operator LIDAR Operator Signifure a der Prinka Name
4 Type: VFR 4 Type: VFR 12 Airport of Arrival 16 Take off: 16 Take off:	21 Remark 21 Remark C C cc cc cc cc		M. Donmand M. Don M. Done III Altonso III une over Plinted Name
1 1 1 1 1 1 1 1 1 1 1 1 1 1	20.c Others 0 IIDAR System Main 0 Aircraft Maintenan 0 Phil-tIDAR Admin A		ertified by Pilot- Low economy P.A.T C Signat ad Name ative)
light Log AdA 2.ALIM Model: 4.Cas 3.Co-Pilot: R. U-6.C0 12.Aliport of De pattur 12.Aliport of De pattur 14.Engine Off: PALM	20.b Non Billable O Aicraft Test Flight O AAC Admin Flight O Others:		Acquisition Flight C
Data Acquisition FI Data Acquisition FI Pilot: CS PLPbNSO IS Date:	Hight Classification a Billable A Acquisition Flight o Farry flight o System Tast Flight o Calibration Flight	 Problems and Solutions Weather Problem System Problem Aircraft Problem Pilot Problem Otters. 	Acquisition Fight Approved by Marker Signature Over Printed Hame (End User Representative)

Figure A-6.20. Flight Log for Mission 8190AC

Annex 7. Flight status reports

Catarman Mission February 21, 2015 to March 9, 2015, August 1-28, 2015

FLIGHT NO	AREA	OPERATOR	MISSION NAME	DATE FLOWN	REMARKS
7814	BLK331I	MC BALIGUAS	3BLK331I052A	21-Feb-15	Successful CASI Test Flight; surveyed 2 lines for BLK 3311
7820	BLK331I	MS REYES	3BLK331I055A	24-Feb-15	Surveyed 2linesfor Blk331I.
7822	BLK331I	MC BALIGUAS	3BLK331I056A	25-Feb-15	Surveyed 17lines forBlk331I.
7824	BLK331H	MC BALIGUAS	3BLK331H057A	26-Feb-15	Surveyed 13linesforBlk331H
7826	BLK331K	MS REYES	3BLK331K058A	27-Feb-15	Surveyed 7linesfor Blk331K.
7828	BLK331J	MC BALIGUAS	3BLK331J059A	28-Feb-15	Surveyed 4linesBlk331J.
7829	BLK331H	MS REYES	3BLK331H059B	28-Feb-15	Surveyed 12linesforBlk331H
7830	BLK331H &O	MS REYES	3BLK331HSO060A	01-Mar- 15	Surveyed 7linesfor Blk331H and11linesforBlk331O.
7834	BLK331H &K	MC BALIGUAS	3BLK331KSOS062A	03-Mar- 15	Surveyed 7linesforBlk331K and2linesfor Blk331H
7838	BLK331J&A	PJARCEO	3BLK331JSB064A	05-Mar- 15	Surveyed 5linesfor Blk331Jand1linefor Blk331A.
7839	BLK331G	MS REYES	3BLK331G064B	05-Mar- 15	Surveyed 7linesfor Blk331G.
7842	BLK331J	MS REYES	3BLK331JO066A	07-Mar- 15	Surveyed 11linesforBlk331J.
7846	BLK331L	PJARCEO	3BLK331L068A	09-Mar- 15	Surveyed 17linesforBlk331L.
8137	LCTF AREA	MC BALIGUAS	CASILCTF213A	01-Aug- 15	Successful casi and aquarius flight over lctf area
8142	LCTF AREA	PJ ARCEO	AQUALCTF216A	04-Aug- 15	Successful aquarius flight& Ictf calibration; surveyed 2 lines for blk I
8156	BLK331 L & N	MC BALIGUAS	3BLK331LNS223A	11-Aug- 15	Surveyed 17 lines for blk331n & l
8183AC	BLK 33TV	MV TONGA	3BLK33STV236B	24-Aug- 15	Surveyed blk 33tv; 36.34 sq.km.
8185AC	CATARMAN	MV TONGA	3BUNDLE ADJUSTMENT237B	25-Aug- 15	Bundle adjustment flight
8188AC	BLK 33BC	J GONZALES	3BLK33S239A	27-Aug- 15	Surveyed blk 33bc; 22.64 sq.km
8190AC	BLK 33CD	MV TONGA	3BLK33CD240A	28-Aug- 15	Surveyed blk 33cd; 56.18 sq.km

Table A-7.1. Flight Status Report
SWATH PER FLIGHT MISSION

Flight No. :
Area:
Mission Name:
Surveyed Area:

7820AC BLOCK 331I 3BLK331I055A 11km²

LINE#	ALT	PRF	FREQ	ANGLE	MP	DIV	RC	MPM	HDG	Plan File
1	680	50	45.00	18.00	OFF	NAR	ON	OFF	290.00	BLK331I.pln
1	677	50	45.00	18.00	OFF	NAR	ON	OFF	290.00	BLK331I.pln
1	681	50	45.00	18.00	OFF	NAR	ON	OFF	290.00	BLK331I.pln
2	675	50	45.00	18.00	OFF	NAR	ON	OFF	110.00	BLK331I.pln
2	677	50	45.00	18.00	OFF	NAR	ON	OFF	110.00	BLK331I.pln

Figure A-7.1. Swath for Flight No. 7820AC

FLIGHT NO.: 7822AC AREA: BLK331I MISSION NAME: 3BLK31I056A 86.23 km² SURVEYED AREA: BLK331N BLK331G Bobon Mondragon 🗣 BLK331H BLK3310 BLK331K **BLK3311** Catarman BLK331L BLK331J BLK331M 45° 124.439492°

INE#	ALT	PRF	FREQ	ANGLE	MP	DIV	RC	МРМ	HDG	Plan File
5	676	50	45.00	18.00	OFF	NAR	ON	OFF	110.00	BLK331I.pln
6	669	50	45.00	18.00	OFF	NAR	ON	OFF	110.00	BLK331I.pln
7	670	50	45.00	18.00	OFF	NAR	ON	OFF	110.00	BLK331I.pln
8	671	50	45.00	18.00	OFF	NAR	ON	OFF	110.00	BLK331I.pln
9	667	50	45.00	18.00	OFF	NAR	ON	OFF	110.00	BLK331I.pln
10	666	50	45.00	18.00	OFF	NAR	ON	OFF	110.00	BLK331I.pln
11	666	50	45.00	18.00	OFF	NAR	ON	OFF	110.00	BLK331I.pln
12	666	50	45.00	18.00	OFF	NAR	ON	OFF	110.00	BLK331I.pln
11	665	50	45.00	18.00	OFF	NAR	ON	OFF	290.00	BLK331I.pln
13	664	50	45.00	18.00	OFF	NAR	ON	OFF	290.00	BLK331I.pln
14	662	50	45.00	18.00	OFF	NAR	ON	OFF	290.00	BLK331I.pln
15	664	50	45.00	18.00	OFF	NAR	ON	OFF	110.00	BLK331I.pln
16	662	50	45.00	18.00	OFF	NAR	ON	OFF	110.00	BLK331I.pln
14	663	50	45.00	18.00	OFF	NAR	ON	OFF	290.00	BLK331I.pln
17	663	50	45.00	18.00	OFF	NAR	ON	OFF	290.00	BLK331I.pln
18	659	50	45.00	18.00	OFF	NAR	ON	OFF	110.00	BLK331I.pln
19	664	50	45.00	18.00	OFF	NAR	ON	OFF	290.00	BLK331I.pln
20	662	50	45.00	18.00	OFF	NAR	ON	OFF	290.00	BLK331I.pln

Figure A-7.2. Swath for Flight No. 7822AC

7824AC BLK331H 3BLK331H057A 78.35 km²

Figure A-7.3. Swath for Flight No. 7824AC

7826AC BLK331K 3BLK331K058A 41km²

LINE#	ALT	PRF	FREQ	ANGLE	MP	DIV	RC	MPM	HDG	Plan File	
14	670	50	50.00	18.00	OFF	NAR	ON	OFF	256.00	BLK331K.pln	
13	666	50	50.00	18.00	OFF	NAR	ON	OFF	76.00	BLK331K.pln	
12	674	50	50.00	18.00	OFF	NAR	ON	OFF	256.00	BLK331K.pln	
11	669	50	50.00	18.00	OFF	NAR	ON	OFF	76.00	BLK331K.pln	
7	675	50	50.00	18.00	OFF	NAR	ON	OFF	256.00	BLK331K.pln	
6	672	50	50.00	18.00	OFF	NAR	ON	OFF	76.00	BLK331K.pln	
5	679	50	50.00	18.00	OFF	NAR	ON	OFF	256.00	BLK331K.pln	

Figure A-7.4. Swath for Flight No. 7826AC

7828AC BLK331J 3BLK331J059A 83.36 km²

LINE#	ALT	PRF	FREQ	ANGLE	MP	DIV	RC	MPM	HDG	Plan File
25	679	50	50.00	18.00	OFF	NAR	ON	OFF	308.78	BLK331J.pln
24	674	50	50.00	18.00	OFF	NAR	ON	OFF	109.00	BLK331J.pln
23	680	50	50.00	18.00	OFF	NAR	ON	OFF	289.00	BLK331J.pln
22	676	50	50.00	18.00	OFF	NAR	ON	OFF	109.00	BLK331J.pln
21	677	50	50.00	18.00	OFF	NAR	ON	OFF	289.00	BLK331J.pln

Figure A-7.5. Swath for Flight No. 7828AC

7829AC BLK331H 3BLK331H059B 40.05 km²

LINE#	ALT	PRF	FREQ	ANGLE	MP	DIV	RC	MPM	HDG	Plan File
9	662	50	50.00	18.00	OFF	NAR	ON	OFF	290.00	BLK331H.pln
10	649	50	50.00	18.00	OFF	NAR	ON	OFF	110.00	BLK331H.pln
11	654	50	50.00	18.00	OFF	NAR	ON	OFF	290.00	BLK331H.pln
12	654	50	50.00	18.00	OFF	NAR	ON	OFF	110.00	BLK331H.pln
13	658	50	50.00	18.00	OFF	NAR	ON	OFF	290.00	BLK331H.pln
14	658	50	50.00	18.00	OFF	NAR	ON	OFF	110.00	BLK331H.pln
15	650	50	50.00	18.00	OFF	NAR	ON	OFF	290.00	BLK331H.pln
16	644	50	50.00	18.00	OFF	NAR	ON	OFF	110.00	BLK331H.pln
17	603	50	50.00	18.00	OFF	NAR	ON	OFF	290.00	BLK331H.pln
17	597	50	50.00	18.00	OFF	NAR	ON	OFF	110.00	BLK331H.pln
19	604	50	50.00	18.00	OFF	NAR	ON	OFF	290.00	BLK331H.pln
20	601	50	50.00	18.00	OFF	NAR	ON	OFF	110.00	BLK331H.pln

LINE#	ALT	PRF	FREQ	ANGLE	MP	DIV	RC	MPM	HDG	Plan File
9	662	50	50.00	18.00	OFF	NAR	ON	OFF	290.00	BLK331H.pln
11	654	50	50.00	18.00	OFF	NAR	ON	OFF	290.00	BLK331H.pln
12	658	50	50.00	18.00	OFF	NAR	ON	OFF	290.00	BLK331H.pln BLK331H.pln
14	658 650	50 50	50.00	18.00 18.00	OFF	NAR	ON	OFF	110.00 290.00	BLK331H.pln BLK331H.pln
16 17	644	50	50.00	18.00	OFF	NAR	ON	OFF	110.00	BLK331H.pln BLK331H.pln
17	597	50	50.00	18.00	OFF	NAR	ON	OFF	110.00	BLK331H.pln
20	601	50	50.00	18.00	OFF	NAR	ON	OFF	110.00	BLK331H.pln

Figure A-7.6. Swath for Flight No. 7829AC

LINE#	ALT	PRF	FREQ	ANGLE	MP	DIV	RC	МРМ	HDG	Plan File
46	673	50	50.00	18.00	OFF	NAR	ON	OFF	98.00	BLK331HON_MAR01.pln
46	684	50	50.00	18.00	OFF	NAR	ON	OFF	98.00	BLK331HON_MAR01.pln
45	672	50	50.00	18.00	OFF	NAR	ON	OFF	278.00	BLK331HON_MAR01.pln
44	669	50	50.00	18.00	OFF	NAR	ON	OFF	98.00	BLK331HON_MAR01.pln
47	673	50	50.00	18.00	OFF	NAR	ON	OFF	278.00	BLK331HON_MAR01.pln
43	675	50	50.00	18.00	OFF	NAR	ON	OFF	278.00	BLK331HON_MAR01.pln
44	669	50	50.00	18.00	OFF	NAR	ON	OFF	98.00	BLK331HON_MAR01.pln
42	669	50	50.00	18.00	OFF	NAR	ON	OFF	98.00	BLK331HON_MAR01.pln
41	672	50	50.00	18.00	OFF	NAR	ON	OFF	278.00	BLK331HON_MAR01.pln
40	669	50	50.00	18.00	OFF	NAR	ON	OFF	98.00	BLK331HON_MAR01.pln
39	671	50	50.00	18.00	OFF	NAR	ON	OFF	278.00	BLK331HON_MAR01.pln
38	670	50	50.00	18.00	OFF	NAR	ON	OFF	98.00	BLK331HON_MAR01.pln
37	672	50	50.00	18.00	OFF	NAR	ON	OFF	278.00	BLK331HON_MAR01.pln
37	671	50	50.00	18.00	OFF	NAR	ON	OFF	278.00	BLK331HON_MAR01.pln
21	673	50	50.00	18.00	OFF	NAR	ON	OFF	290.00	BLK331HON_MAR01.pln
22	672	50	50.00	18.00	OFF	NAR	ON	OFF	110.00	BLK331HON_MAR01.pln
23	673	50	50.00	18.00	OFF	NAR	ON	OFF	290.00	BLK331HON_MAR01.pln
24	670	50	50.00	18.00	OFF	NAR	ON	OFF	110.00	BLK331HON_MAR01.pln
25	673	50	50.00	18.00	OFF	NAR	ON	OFF	290.00	BLK331HON_MAR01.pln
26	662	50	50.00	18.00	OFF	NAR	ON	OFF	110.00	BLK331HON_MAR01.pln
27	662	50	50.00	18.00	OFF	NAR	ON	OFF	290.00	BLK331HON_MAR01.pln

Figure A-7.7. Swath for Flight No. 7830AC

7834AC BLK331H & K 3BLK331KSOS062 53.42 km²

LINE#	ALT	PRF	FREQ	ANGLE	MP	DIV	RC	MPM	HDG Plan Fi	le
15	704	50	50.00	18.00	OFF	NAR	ON	OFF	255.00 BLK331KO.p	ln
14	670	50	50.00	18.00	OFF	NAR	ON	OFF	75.00 BLK331KO.p	ln
10	674	50	50.00	18.00	OFF	NAR	ON	OFF	75.00 BLK331KO.p	ln
9	670	50	50.00	18.00	OFF	NAR	ON	OFF	75.00 BLK331KO.p	ln
9	571	50	50.00	18.00	OFF	NAR	ON	OFF	255.00 BLK331KO.p	ln
4	568	50	50.00	18.00	OFF	NAR	ON	OFF	255.00 BLK331KO.p	ln
5	573	50	50.00	18.00	OFF	NAR	ON	OFF	255.00 BLK331KO.p	ln
4	574	50	50.00	18.00	OFF	NAR	ON	OFF	255.00 BLK331KO.p	ln
3	569	50	50.00	18.00	OFF	NAR	ON	OFF	255.00 BLK331KO.p	ln
3	569	50	50.00	18.00	OFF	NAR	ON	OFF	255.00 BLK331KO.p	ln
2	575	50	50.00	18.00	OFF	NAR	ON	OFF	255.00 BLK331KO.p	ln
2	575	50	50.00	18.00	OFF	NAR	ON	OFF	255.00 BLK331KO.p	ln
59	574	50	50.00	18.00	OFF	NAR	ON	OFF	155.03 BLK331KO.p	ln
15	576	50	50.00	18.00	OFF	NAR	ON	OFF	75.00 BLK331KO.p	ln
13	576	50	50.00	18.00	OFF	NAR	ON	OFF	255.00 BLK331KO.p	ln
8	576	50	50.00	18.00	OFF	NAR	ON	OFF	75.00 BLK331KO.p	ln
80	578	50	50.00	18.00	OFF	NAR	ON	OFF	290.00 BLK331KO.p	ln
79	577	50	50.00	18.00	OFF	NAR	ON	OFF	110.00 BLK331KO.p	ln

Figure A-7.8. Swath for Flight No. 7834AC

7836AC BLK331O 3BLK331ON063 47.23 km²

LINE#	ALT	PRF	FREQ	ANGLE	MP	DIV	RC	MPM	HDG	Plan File	
9	670	50	50.00	18.00	OFF	NAR	ON	OFF	98.00	BLK331NO MAR	04.pln
7	564	50	50.00	18.00	OFF	NAR	ON	OFF	98.00	BLK331NO MAR	04.pln
5	566	50	50.00	18.00	OFF	NAR	ON	OFF	2/8.00 98.00	BLK331NO MAR BLK331NO MAR	04.pin 04.pin
4 3	567 565	50	50.00	18.00	OFF	NAR	ON	OFF	278.00 98.00	BLK331NO MAR BLK331NO MAR	04.pln 04.pln

Figure A-7.9. Swath for Flight No. 7836AC

Plan Fil	HDG	MPM	RC	DIV	MP	ANGLE	FREQ	PRF	ALT	LINE#
BLK331JB.pl	108.99	OFF	ON	NAR	OFF	18.00	50.00	50	671	16
BLK331JB.pl	288.99	OFF	ON	NAR	OFF	18.00	50.00	50	673	15
BLK331JB.pl	108.99	OFF	ON	NAR	OFF	18.00	50.00	50	670	14
BLK331JB.pl	288.99	OFF	ON	NAR	OFF	18.00	50.00	50	671	13
BLK331JB.pl	108.99	OFF	ON	NAR	OFF	18.00	50.00	50	668	12
BLK331JB.pl	297.00	OFF	ON	NAR	OFF	18.00	50.00	50	676	74
BLK331JB.pl	117.00	OFF	ON	NAR	OFF	18.00	50.00	50	675	72
BLK331JB.pl	297.00	OFF	ON	NAR	OFF	18.00	50.00	50	678	72
BLK331JB.pl	117.00	OFF	ON	NAR	OFF	18.00	50.00	50	675	71
BLK331JB.pl	297.00	OFF	ON	NAR	OFF	18.00	50.00	50	677	70
BLK331JB.pl	117.00	OFF	ON	NAR	OFF	18.00	50.00	50	675	69
BLK331JB.pl	297.00	OFF	ON	NAR	OFF	18.00	50.00	50	680	68
BLK331JB.pl	117.00	OFF	ON	NAR	OFF	18.00	50.00	50	673	66
BLK331JB.pl	297.00	OFF	ON	NAR	OFF	18.00	50.00	50	680	65
BLK331JB.pl	297.00	OFF	ON	NAR	OFF	18.00	50.00	50	679	65
BLK331JB.pl	117.00	OFF	ON	NAR	OFF	18.00	50.00	50	674	64

Figure A-7.10. Swath for Flight No. 7838AC

FLIGHT NO.:	
AREA:	
MISSION NAME:	
SURVEYED AREA:	

7839AC BLK331G 3BLK331G064B 30.43 km²

LINE#	ALT	PRF	FREQ	ANGLE	MP	DIV	RC	MPM	HDG	Plan File
10	675	50	50.00	18,00	OFF	NAR	ON	OFF	333.00	BLK331G.pln
9	674	50	50.00	18.00	OFF	NAR	ON	OFF	153.00	BLK331G.pln
8	669	50	50.00	18.00	OFF	NAR	ON	OFF	333.00	BLK331G.pln
7	671	50	50.00	18.00	OFF	NAR	ON	OFF	153.00	BLK331G.pln
6	670	50	50.00	18.00	OFF	NAR	ON	OFF	333.00	BLK331G.pln
5	665	50	50.00	18.00	OFF	NAR	ON	OFF	333.00	BLK331G.pln
4	662	50	50.00	18.00	OFF	NAR	ON	OFF	333.00	BLK331G.pln
3	665	50	50.00	18.00	OFF	NAR	ON	OFF	333.00	BLK331G.pln

Figure A-7.11. Swath for Flight No. 7839AC

FLIGHT NO.:
AREA:
MISSION NAME:
SURVEYED AREA:

7842AC BLK331J 3BLK331JO066 50.42 km²

			BLK331H BLK391]				Catarm	BLK3311 an	×	
		1						BLK331	L	
			BLK331J				-			
						-			BLK	331M
See A			COLUMN IN				L.	1	1.2.1	-
					No.					Northern Samar
						1 and	Acres 1	3		
/								10-01	a state and	
LINE#	ALT	PRE	FREO	ANGLE	MP	DIV	RC	MPM	HDG	Plan File
1	681	50	50.00	18.00	OFF	NAR	ON	OFF	289.00	BLK331J.pln
LINE#	ALT	PRF	FREQ	ANGLE	MP	DIV	RC	MPM	HDG	Plan File
1	677	50	50.00	18.00	OFF	NAR	ON	OFF	289.00	BLK331J.pln
L TNE#	ALT	PRF	FREO	ANGLE	MP	DTV	RC	MPM	HDG	Plan File
	677	50	50.00	18 00	OFF	NAP		055	289 00	BLK3311 DDD
î	677	50	50.00	18.00	OFF	NAR	ON	OFF	289.00	BLK331J.pln
1	678	50	50.00	18.00	OFF	NAR	ON	OFF	289.00	BLK331J.pln
1	678	50	50.00	18.00	OFF	NAR	ON	OFF	289.00	BLK331J.pln
î	678	50	50.00	18.00	OFF	NAR	ON	OFF	289.00	BLK331J.pln
1	678	50	50.00	18.00	OFF	NAR	ON	OFF	289.00	BLK331J.pln
1	678	50	50.00	18.00	OFF	NAR	ON	OFF	289.00	BLK331J.pln
	ALT	PPE	SU. UU	ANGLE	MP	DTV	PC	MPM	209.00	Plan File
	670	50	50.00	18.00		NAD			100.00	Dofault plp
0	679	50	50.00	18.00	OFF	NAR	ON	OFF	109.00	Default.pln
0	679	50	50.00	18.00	OFF	NAR	ON	OFF	109.00	Default.pln
2	675	50	50.00	18.00	OFF	NAR	ON	OFF	109.00	BLK331J.pln
1	677	50	50.00	18.00	OFF	NAR	ON	OFF	289.00	BLK331J.pln
3	677	50	50.00	18.00	OFF	NAR	ON	OFF	109.00	BLK331J.pln
3	677	50	50.00	18.00	OFF	NAR	ON	OFF	109.00	BLK331J.pln
LINE#	ALT	PRF	FREQ	ANGLE	MP	DIV	RC	MPM	HDG	Plan File
0	683	50	50.00	18.00	OFF	NAR	ON	OFF	109.00	Default.pln
4	680	50	50.00	18.00	OFF	NAR	ON	OFF	289.00	Default pln
5	683	50	50.00	18,00	OFF	NAR	ON	OFF	289.00	Default.pln
6	684	50	50.00	18.00	OFF	NAR	ON	OFF	109.00	Default.pln
7	692	50	50.00	18.00	OFF	NAR	ON	OFF	289.00	Default.pln
8	660	50	50.00	18.00	OFF	NAR	ON	OFF	109.00	Default pln
10	674	50	50.00	18.00	OFF	NAR	ON	OFF	109.00	Default.pln
11	675	50	50.00	18.00	OFF	NAR	ON	OFF	289.00	Default.pln
11	673	50	50.00	18.00	OFF	NAR	ON	OFF	289.00	Default.pln

Figure A-7.12. Swath for Flight No. 7842AC

7846AC BLK331L 3BLK331L068A 80.45 km²

LINE	E# ALT	PF	RF FF	REQ AN	IGLE	MP	DIV	RC	MPM	HDG	Plan File
1	695 <u>5</u> 0) 5	50.00	18.00 (OFF N	VAR	ON	OFF	73.00	BLK331	L.pln
1	680 5	50	50.00	18.00	OFF	NAR	ON	OFF	73.00	BLK33	1L.pln
23	671	50	50.00	18.00	OFF	NAR	ON	OFF	73.0	0 BLK3	31L.pln
22	677	50	50.00	18.00	OFF	NAR	ON	OFF	253.0	0 BLK3	31L.pln
21	671	50	50.00	18.00	OFF	NAR	ON	OFF	73.0	0 BLK3	31L.pln
20	679	50	50.00	18.00	OFF	NAR	ON	OFF	253.0	0 BLK3	31L.pln
19	665	50	50.00	18.00	OFF	NAR	ON	OFF	73.0	0 BLK3	31L.pln
18	677 5	50	50.00	18.00	OFF	NAR	ON	OFF	253.0	0 BLK3	31L.pln
17	672	50	50.00	18.00	OFF	NAR	ON	OFF	253.0	0 BLK3	31L.pln
16	672	50	50.00	18.00	OFF	NAR	ON	OFF	253.0	0 BLK3	31L.pln
15	667	50	50.00	18.00	OFF	NAR	ON	OFF	73.0	0 BLK3	31L.pln
14	678	50	50.00	18.00	OFF	NAR	ON	OFF	253.0	0 BLK3	31L.pln
13	672	50	50.00	18.00	OFF	NAR	ON	OFF	253.0	O BLK3	31L.pln
12	696	50	50.00	18.00	OFF	NAR	ON	OFF	73.0	0 BLK3	31L.pln
11	674	50	50.00	18.00	OFF	NAR	ON	OFF	73.0	0 BLK3	31L.pln
10	686	50	50.00	18.00	OFF	NAR	ON	OFF	253.0	O BLK3	31L.pln
9	670 5	50	50.00	18.00	OFF	NAR	ON	OFF	73.00	BLK33	1L.pln
8	679 5	0	50.00	18.00	OFF	NAR	ON	OFF	253.00	BLK33	1L.pln

Figure A-7.13. Swath for Flight No. 7846AC

Figure A-7.14. Swath for Flight No. 8137

FLIGHT NO.: AREA: MISSION NAME: ALT: SCAN FREQ: SCAN ANGLE: SURVEYED AREA: 8142 LCTF AREA AQUALCTF216A 600 m, 500m respectively 45 20 11.986 km²

Figure A-7.15. Swath for Flight No. 8142

FLIGHT NO.:
AREA:
MISSION NAME:
ALT:
SCAN FREQ:
SCAN ANGLE:
SURVEYED AREA:

8156 BLK L & N 3BLK331LNS223A 500 m 45 20 81.745 km²

Figure A-7.16. Swath for Flight No. 8156

Flight No. :	8183AC
Area:	BLK 33T
Mission Name:	3BLK33STV236B

START	STOP	LINE#	ALT	PRF	FREQ	ANGLE	MP	DIV	RC	MPM	HDG	Plan File
03:53:48.181	03:58:12.975	16	560	50	45.00	18.00	OFF	NAR	ON	OFF	177.00	BLK33R.pln
04:01:39.329	04:05:02.013	17	558	50	45.00	18.00	OFF	NAR	ON	OFF	357.00	BLK33R.pln
04:01:39.329	04:05:02.013	17	557	50	45.00	18.00	OFF	NAR	ON	OFF	357.00	BLK33R.pln
04:09:08.082	04:12:57.711	18	591	50	45.00	18.00	OFF	NAR	ON	OFF	177.00	BLK33R.pln
04:09:08.082	04:12:57.711	18	591	50	45.00	18.00	OFF	NAR	ON	OFF	177.00	BLK33R.pln
04:16:42.75	04:19:51.434	19	544	50	45.00	18.00	OFF	NAR	ON	OFF	357.00	BLK33R.pln
04:16:42.75	04:19:51.434	19	542	50	45.00	18.00	OFF	NAR	ON	OFF	357.00	BLK33R.pln
04:23:06.503	04:27:16.157	20	555	50	45.00	18.00	OFF	NAR	ON	OFF	177.00	BLK33R.pln
04:31:20.786	04:34:07.75	2	581	50	45.00	18.00	OFF	NAR	ON	OFF	358.00	BLK33S.pln
04:31:20.786	04:34:07.75	2	581	50	45.00	18.00	OFF	NAR	ON	OFF	358.00	BLK33S.pln
04:40:08.824	04:43:50.508	21	605	50	45.00	18.00	OFF	NAR	ON	OFF	180.00	BLK33S.pln
04:40:08.824	04:43:50.508	21	605	50	45.00	18.00	OFF	NAR	ON	OFF	180.00	BLK33S.pln
04:47:07.017	04:49:59.611	19	564	50	45.00	18.00	OFF	NAR	ON	OFF	360.00	BLK33S.pln
04:47:07.017	04:49:59.611	19	564	50	45.00	18.00	OFF	NAR	ON	OFF	360.00	BLK33S.pln
04:56:12.09	04:57:10.23	19	564	50	45.00	18.00	OFF	NAR	ON	OFF	360.00	BLK33S.pln
04:56:12.09	04:57:10.23	19	564	50	45.00	18.00	OFF	NAR	ON	OFF	360.00	BLK33S.pln
05:07:35.227	05:13:59.616	2	544	50	45.00	18.00	OFF	NAR	ON	OFF	256.00	voids.pln
05:17:27.09	05:22:29.163	3	542	50	45.00	18.00	OFF	NAR	ON	OFF	76.00	voids.pln
05:26:34.092	05:27:21.617	2	605	50	45.00	18.00	OFF	NAR	ON	OFF	76.00	voids.pln
05:31:07.091	05:37:37.304	4	529	50	45.00	18.00	OFF	NAR	ON	OFF	256.00	voids.pln
05:31:07.091	05:37:37.304	4	529	50	45.00	18.00	OFF	NAR	ON	OFF	256.00	voids.pln

Flight No. : Area: Mission Name:

8185AC CATARMAN 3BUNDLEADJUSTMENT237B

START	STOP	LINE#	ALT	PRF	FREQ	ANGLE	MP	DIV	RC	MPM	HDG	Plan	n File
01·15·13 673	01·16·13 223	9	589	50	15 00	18 00	OFF	MAR	ON	OFF	135 00	hundle	e===
04:48:47.362	04:50:39.362	1	581	50	45.00	18.00	OFF	NAR	ON	OFF	270.00	bundle	adjustment.pln
04:54:05.221	04:56:06.326	2	582	50	45.00	18.00	OFF	NAR	ON	OFF	90.00	bundle	adjustment.pln
05:00:10.155	05:02:05.889	3	600	50	45.00	18.00	OFF	NAR	ON	OFF	270.00	bundle	adjustment.pln
05:05:47.048	05:07:32.118	4	558	50	45.00	18.00	OFF	NAR	ON	OFF	90.00	bundle	adjustment.pln
05:05:47.048	05:07:32.118	4	558	50	45.00	18.00	OFF	NAR	ON	OFF	90.00	bundle	adjustment.pln
05:10:00.467	05:11:29.922	9	570	50	45.00	18.00	OFF	NAR	ON	OFF	180.00	bundle	adjustment.pln
05:10:00.467	05:11:29.922	9	570	50	45.00	18.00	OFF	NAR	ON	OFF	180.00	bundle	adjustment.pln
05:14:00.891	05:15:29.121	8	568	50	45.00	18.00	OFF	NAR	ON	OFF	360.00	bundle	adjustment.pln
05:19:26.96	05:21:00.645	7	557	50	45.00	18.00	OFF	NAR	ON	OFF	180.00	bundle	adjustment.pln
05:24:05.984	05:25:26.434	6	593	50	45.00	18.00	OFF	NAR	ON	OFF	360.00	bundle	adjustment.pln

Figure A-7.18. Swath for Flight No. 8185AC

Flight No. : Area: Mission Nam	e:		8188A BLK 33 3BLK33	C BC 3S239	9A							
					BLK,33E	'BLK	33D	7 km				
START	STOP	LINE#	ALT	PRF	FREQ	ANGLE	MP	DIV	RC	MPM	HDG	Plan File
06:28:01.65	06:31:39.779	1	580	50	45.00	18.00	OFF	NAR	ON	OFF	270.00	BLK33B.pln
06:34:57.243	06:38:44.686	2	575	50	45.00	18.00	OFF	NAR	ON	OFF	90.00	BLK33B.pln
06:41:51.085	06:45:35.094	5	574	50	45.00	10.00	OFF	NAR	ON	OFF	270.00	BLK33B.pln
06.48.42.823	06.52.18.792	4	574	50	45.00	18 00	OFF	MAR	ON	OFF	90.00	BLK33B plp
06:55:24.476	06:58:58.965	-	569	50	45.00	18.00	OFF	NAR	ON	OFF	90.00	BLK33B.pln
06:55:24.476	06:58:58.965	5	569	50	45.00	18.00	OFF	NAR	ON	OFF	90.00	BLK33B.nln
07:02:03.479	07:05:55.388	5	572	50	45.00	18.00	OFF	NAR	ON	OFF	270.00	BLK33B.pln
07:08:56.212	07:12:41.55	6	572	50	45.00	18.00	OFF	NAR	ON	OFF	90.00	BLK33B.pln
07:08:56.212	07:12:44.865	6	573	50	45.00	18.00	OFF	NAR	ON	OFF	90.00	BLK33B.pln
07:15:40.32	07:19:29.248	7	574	50	45.00	18.00	OFF	NAR	ON	OFF	270.00	BLK33B.pln
07:22:11.143	07:23:02.027	7	573	50	45.00	18.00	OFF	NAR	ON	OFF	270.00	BLK33B.pln
07:22:11.143	07:23:02.027	7	573	50	45.00	18.00	OFF	NAR	ON	OFF	270.00	BLK33B.pln

Figure A-7.19. Swath for Flight No. 8188AC

light No. : rea:		81 BI	90AC	'n								
lission Name:		38	31K330	CD240)A							
											-	
				1						-		
			-	-								
			No.									
			3		BLK 33	В						
		1.1	¢		0							
	-	- F										
				BL	(,33C							
	26.			-	in the							
	12		Ċ,	- 9	~		-			1		
	6.75									b.		
				1		(int a	200	-				
	1000					BLR	33		5			
	0.0	100		1				1. C				
	1.00	1										
	N											
	3.0		1									
	100											
							11.9) km				
			1	1		1	1.1	1				
							-					
CTART	6700	1 7115 0	A1 T	005	5550	41015	140	DTV	D.C.	Man	1100	
51AR1	510P	LINC#	AL I	======	FREQ						nuu	
22:13:37.98	22:15:58.084	22	575	50	45.00	18.00	OFF	NAR	ON	OFF	270.00	BLK33B.pln
22:19:06.297	22:21:21.611	21	576	50	45.00	18.00	OFF	NAR	ON	OFF	90.00	BLK33B.pln
22:24:15.65	22:26:48.368	20	577	50	45.00	18.00	OFF	NAR	ON	OFF	270.00	BLK33B.pln
22:30:03.877	22:32:36.581	19	578	50	45.00	18.00	OFF	NAR	ON	OFF	270.00	BLK33B.pln
22:35:38.949	22:38:22.773	18	576	50	45.00	18.00	OFF	NAR	ON	OFF	270.00	BLK33B.pln
22:41:31.122	22:44:21.811	17	576	50	45.00	18.00	OFF	NAR	ON	OFF	90.00	BLK33B.pln
22:47:15.915	22:50:12.298	15	577	50	45.00	18.00	OFF	NAR	ON	OFF	90.00	BLK33B.pln
22:59:22.74	23:02:34.369	14	578	50	45.00	18.00	OFF	NAR	ON	OFF	270.00	BLK33B.pln
22:59:22.74	23:02:34.369	14	578	50	45.00	18.00	OFF	NAR	ON	OFF	270.00	BLK33B.pln
23:05:40.198	23:09:00.617	13	578	50	45.00	18.00	OFF	NAR	ON	OFF	90.00	BLK33B.pln
23:05:40.198	23:09:00.617	13	578	50	45.00	18.00	OFF	NAR	ON	OFF	270 00	BLK33B.pln BLK33B pln
23:18:38.778	23:22:00.777	11	578	50	45.00	18.00	OFF	NAR	ON	OFF	270.00	BLK33B.pln
23:24:48.711	23:28:16.85	10	578	50	45.00	18.00	OFF	NAR	ON	OFF	90.00	BLK33B.pln
23:32:02.989	23:35:22.993	9	579	50	45.00	18.00	OFF	NAR	ON	OFF	270.00	BLK33B.pln
23:32:02.989	23:35:27.553	9	579	50	45.00	18.00	OFF	NAR	ON	OFF	90.00	BLK33B.pln
23:38:15.622	23:41:46.375	8	579	50	45.00	18.00	OFF	NAR	ON	OFF	90.00	BLK33B.pln
23:48:34.168	23:51:51.587	22	578	50	45.00	18.00	OFF	NAR	ON	OFF	270.00	BLK33B.pln
23:48:34.168	23:51:51.587	22	578	50	45.00	18.00	OFF	NAR	ON	OFF	270.00	BLK33B.pln
23:57:24.1	00:01:00.924	23	579	50	45.00	18.00	OFF	NAR	ON	OFF	90.00	BLK33B.pln
00:04:17.413	00:08:02.487	22	578	50	45.00	18.00	OFF	NAR	ON	OFF	270.00	BLK33B.nln
00:10:54.716	00:14:30.345	21	577	50	45.00	18.00	OFF	NAR	ON	OFF	90.00	BLK33B.pln
00:17:50.688	00:21:34.487	20	577	50	45.00	18.00	OFF	NAR	ON	OFF	90.00	BLK33B.pln
00:17:50.688	00:21:34.487	20	577	50	45.00	18.00	OFF	NAR	ON	OFF	90.00	BLK33B.pln
00:24:38.751	00:28:12.38	1	578	50	45.00	18.00	OFF	NAK	ON	OFF	90.00	BLK33B nln
00:24.38 /51	10:10:11 38		2/0	50		10.00	ULL	- APRIL	UN	JIL	50.00	occopo.htm
00:24:38.751 00:31:13.894	00:34:44.858	2	577	50	45.00	18.00	OFF	NAR	ON	OFF	90.00	BLK33B.pln
00:24:38.751 00:31:13.894 00:31:13.894	00:34:44.858 00:34:44.858	2	577 577	50 50	45.00	18.00 18.00	OFF OFF	NAR NAR	ON	OFF OFF	90.00 90.00	BLK33B.pln BLK33B.pln
00:24:38.751 00:31:13.894 00:31:13.894 00:37:36.962	00:28:12.38 00:34:44.858 00:34:44.858 00:38:02.857	2 2 1	577 577 580	50 50 50	45.00 45.00 45.00	18.00 18.00 18.00	OFF OFF OFF	NAR NAR NAR	ON ON ON	OFF OFF OFF	90.00 90.00 90.00	BLK33B.pln BLK33B.pln BLK33B.pln
00:24:38.751 00:31:13.894 00:31:13.894 00:37:36.962 00:42:00.386 00:42:00.386	00:28:12.38 00:34:44.858 00:34:44.858 00:38:02.857 00:45:14.21	2 2 1 3	577 577 580 578 578	50 50 50 50	45.00 45.00 45.00 45.00	18.00 18.00 18.00 18.00	OFF OFF OFF OFF	NAR NAR NAR NAR		OFF OFF OFF	90.00 90.00 90.00 90.00	BLK33B.pln BLK33B.pln BLK33B.pln BLK33B.pln BLK33B.pln

Figure A-7.20. Swath for Flight No. 8190AC

ANNEX 8. MISSION SUMMARY REPORT

Flight Area	Catarman						
Mission Name	BIk33C						
Inclusive Flights	8188A, 8190A						
Range data size	12.7 GB						
Base data size	10.23 MB						
POS	337 MB						
Image	82.1 GB						
Transfer date	September 16, 2015						
Solution Status							
Number of Satellites (>6)	Yes						
PDOP (<3)	Yes						
Baseline Length (<30km)	Yes						
Processing Mode (<=1)	No						
Smoothed Performance Metrics (in cm)							
RMSE for North Position (<4.0 cm)	1.1						
RMSE for East Position (<4.0 cm)	1.2						
RMSE for Down Position (<8.0 cm)	2.7						
Boresight correction stdev (<0.001deg)	NA						
IMU attitude correction stdev (<0.001deg)	NA						
GPS position stdev (<0.01m)	NA						
Minimum % overlap (>25)	31.83						
Ave point cloud density per sq.m. (>2.0)	2.24						
Elevation difference between strips (<0.20 m)	Yes						
Number of 1km x 1km blocks	66						
Maximum Height	385.10 m						
Minimum Height	48.51 m						
-							
Classification (# of points)							
Ground	9,989,786						
Low vegetation	9,034,151						
Medium vegetation	25,087,295						
High vegetation	45,990,289						
Building	711,168						
Orthophoto	No						
	Engr. Irish Cortez Engr. Chelou Prado						
Processed by	Maria Tamsyn Malabanan						

Figure 1.1.2 Smoothed Performance Metric Parameters

Figure 1.1.3. Best Estimated Trajectory

Figure 1.1.4. Coverage of LiDAR data

Figure 1.1.5. Image of data overlap

Figure 1.1.6. Density map of merged LiDAR data

Figure 1.1.7. Elevation difference between flight lines

Flight Area	Catarman
Mission Name	Blk33D
Inclusive Flights	8190AC
Range data size	8.77 GB
Base data size	7.00 MB
POS	222 MB
Image	59.9 GB
Transfer date	September 16, 2015
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	Yes
Processing Mode (<=1)	No
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	1.05
RMSE for East Position (<4.0 cm)	1.35
RMSE for Down Position (<8.0 cm)	2.7
Boresight correction stdev (<0.001deg)	0.00130
IMU attitude correction stdev (<0.001deg)	0.004101
GPS position stdev (<0.01m)	0.0040
Minimum % overlap (>25)	27.44
Ave point cloud density per sq.m. (>2.0)	1.89
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	51
Maximum Height	358.80 m
Minimum Height	51.48 m
Classification (# of points)	
Ground	11,883,995
Low vegetation	5,394,582
Medium vegetation	11,261,803
High vegetation	23,048,207
Building	290,822
Orthophoto	No
Processed by	Engr. Irish Cortez, Engr. Melanie Hingpit, Kathryn Claudine Zarate

Figure 1.2.1 Solution Status

Figure 1.2.2 Smoothed Performance Metric Parameters

Figure 1.2.4. Coverage of LiDAR data

Figure 1.2.5. Image of data overlap

Figure 1.2.6. Density map of merged LiDAR data

Figure 1.2.7. Elevation difference between flight lines

Flight Area	Catarman
Mission Name	Blk331G
Inclusive Flights	7839AC
Range data size	4.40 GB
POS	97.3 MB
Image	na
Transfer date	July 3, 2015
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	Yes
Processing Mode (<=1)	Yes
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	1.3
RMSE for East Position (<4.0 cm)	1.3
RMSE for Down Position (<8.0 cm)	1.8
Boresight correction stdev (<0.001deg)	0.000737
IMU attitude correction stdev (<0.001deg)	0.088325
GPS position stdev (<0.01m)	0.0169
Minimum % overlap (>25)	38.23
Ave point cloud density per sq.m. (>2.0)	1.82
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	68
Maximum Height	167.23 m
Minimum Height	47.84 m
Classification (# of points)	
Ground	17,092,721
Low vegetation	12,685,518
Medium vegetation	14,284,243
High vegetation	7,912,569
Building	74,477
Orthophoto	No
Processed by	Engr. Jennifer Saguran,Engr. Harmond Santos, Engr.Krisha Marie Bautista,

Figure 1.3.3 Best Estimated Trajectory

Figure 1.3.4 Coverage of LiDAR data

Figure 1.3.6 Density map of merged LiDAR data

Figure 1.6.7 Elevation difference between flight lines

Flight Area	Catarman
Mission Name	Blk331H
Inclusive Flights	7828AC,7829AC,7830AC,7834AC
Range data size	34.7 GB
POS	743 MB
Image	na
Transfer date	July 3, 2015
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	Yes
Processing Mode (<=1)	Yes
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	1.1
RMSE for East Position (<4.0 cm)	1.26
RMSE for Down Position (<8.0 cm)	3.7
Boresight correction stdev (<0.001deg)	0.000351
IMU attitude correction stdev (<0.001deg)	0.0032
GPS position stdev (<0.01m)	0.002648
Minimum % overlap (>25)	69.50
Ave point cloud density per sq.m. (>2.0)	3.16
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	113
Maximum Height	578.80 m
Minimum Height	56.39 m
Classification (# of points)	
Ground	41,920,729
Low vegetation	59,700,010
Medium vegetation	40,250,065
High vegetation	33,845,423
Building	2,814,214
Orthophoto	No
Processed by	Engr. Sheila-MayeSantillan, Engr. Irish Cortez, Engr. Melanie Hingpit, Engr. Mark Sueden Lyle Magtalas

Figure 1.4.1 Solution Status

Figure 1.4.2 Smoothed Performance Metric Parameters

Figure 1.4.4 Coverage of LiDAR data

Figure 1.4.5 Image of data overlap

Figure 1.4.6 Density map of merged LiDAR data

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

Figure 1.4.7Elevation difference between flight lines

Flight Area	Catarman
Mission Name	Blk331I
Inclusive Flights	7820AC,7822AC,7828AC
Range data size	22.15 GB
POS	507.4 MB
Image	na
Transfer date	July 3, 2015
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	Yes
Processing Mode (<=1)	Yes
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	1.7
RMSE for East Position (<4.0 cm)	1.7
RMSE for Down Position (<8.0 cm)	4.0
Boresight correction stdev (<0.001deg)	0.00466
IMU attitude correction stdev (<0.001deg)	0.003351
GPS position stdev (<0.01m)	0.0121
Minimum % overlap (>25)	46.22
Ave point cloud density per sq.m. (>2.0)	2.89
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	133
Maximum Height	303.60 m
Minimum Height	57.96 m
Classification (# of points)	
Ground	62,554,732
Low vegetation	28,776,426
Medium vegetation	48,696,744
High vegetation	150,270,590
Building	1,248,331
Orthophoto	No
Processed by	Engr. Kenneth Solidum, Engr. Melanie Hingpit, Engr. Mark Sueden Lyle Magtalas

Figure 1.5.2 Smoothed Performance Metric Parameters

Figure 1.5.4 Coverage of LiDAR data

Figure 1.5.6 Density map of merged LiDAR data

Figure 1.5.7 Elevation difference between flight lines

Flight Area	Catarman
Mission Name	Blk331J
Inclusive Flights	7828AC,7838AC,7842AC
Range data size	29.28 GB
POS	666 MB
Image	na
Transfer date	July 3, 2015
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	Yes
Processing Mode (<=1)	Yes
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	1.2
RMSE for East Position (<4.0 cm)	1.7
RMSE for Down Position (<8.0 cm)	4.0
Boresight correction stdev (<0.001deg)	0.000520
IMU attitude correction stdev (<0.001deg)	0.003152
GPS position stdev (<0.01m)	0.0079
Minimum % overlap (>25)	45.48
Ave point cloud density per sq.m. (>2.0)	2.84
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	201
Maximum Height	637.77 m
Minimum Height	60.22 m
Classification (# of points)	
Ground	48,996,763
Low vegetation	48,996,763
Medium vegetation	91,713,572
High vegetation	241,068,359
Building	4,924,915
Orthophoto	No
Processed by	Engr. AnalynNaldo, Engr. Chelou Prado, Maria Tamsyn Malabanan

Figure 1.6.2 Smoothed Performance Metric Parameters

Figure 1.6.4 Coverage of LiDAR data

Figure 1.6.6 Density map of merged LiDAR data

Figure 1.6.7Elevation difference between flight lines

Flight Area	Catarman
Mission Name	Blk331I_supplement
Inclusive Flights	7814AC
Range data size	1.68 GB
POS	55.1 MB
Image	na
Transfer date	July 13, 2015
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	Yes
Processing Mode (<=1)	Yes
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	0.09
RMSE for East Position (<4.0 cm)	1.14
RMSE for Down Position (<8.0 cm)	3.2
Boresight correction stdev (<0.001deg)	0.008971
IMU attitude correction stdev (<0.001deg)	0.013047
GPS position stdev (<0.01m)	0.0226
Minimum % overlap (>25)	20.77
Ave point cloud density per sq.m. (>2.0)	1.88
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	33
Maximum Height	375.84 m
Minimum Height	58.24 m
Classification (# of points)	
Ground	3,892,245
Low vegetation	1,376,404
Medium vegetation	2,133,113
High vegetation	3,400,527
Building	5,182
Orthophoto	No
Processed by	Engr. Kenneth Solidum, Engr. Velina Angela Bemida, Kathryn Claudine Zarate

Figure 1.7.3 Best Estimated Trajectory

Figure 1.7.4 Coverage of LiDAR data

Figure 1.7.6 Density map of merged LiDAR data

Figure 1.7.7 Elevation difference between flight lines

Flight Area	Catarman
Mission Name	Blk331K
Inclusive Flights	7824AC,7826AC,7834AC
Range data size	21.11 GB
POS	458 MB
Image	na
Transfer date	July 3, 2015
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	Yes
Processing Mode (<=1)	Yes
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	1.08
RMSE for East Position (<4.0 cm)	1.4
RMSE for Down Position (<8.0 cm)	3.35
Boresight correction stdev (<0.001deg)	0.000382
IMU attitude correction stdev (<0.001deg)	0.003024
GPS position stdev (<0.01m)	0.0034
Minimum % overlap (>25)	42.66
Ave point cloud density per sq.m. (>2.0)	2.49
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	188
Maximum Height	625.18 m
Minimum Height	52.42 m
Classification (# of points)	
Ground	81,066,901
Low vegetation	46,950,484
Medium vegetation	39,264,840
High vegetation	79,625,183
Building	2,199,303
Orthophoto	No
Processed by	Engr. Sheila-Maye Santillan, Engr. Melanie Hingpit, RyanDizon

Figure 1.8.2 Smoothed Performance Metric Parameters

Figure 1.8.4 Coverage of LiDAR data

Figure 1.8.6 Density map of merged LiDAR data

Figure 1.8.7Elevation difference between flight lines

Flight Area	Catarman
Mission Name	Blk331L
Inclusive Flights	7846AC
Range data size	14.9 GB
POS	225 MB
Image	na
Transfer date	July 3, 2015
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	Yes
Processing Mode (<=1)	Yes
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	1.04
RMSE for East Position (<4.0 cm)	1.0
RMSE for Down Position (<8.0 cm)	3.0
Boresight correction stdev (<0.001deg)	0.000404
IMU attitude correction stdev (<0.001deg)	0.001306
GPS position stdev (<0.01m)	0.0031
Minimum % overlap (>25)	40.05
Ave point cloud density per sq.m. (>2.0)	2.95
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	206
Maximum Height	531.87 m
Minimum Height	41.99 m
Classification (# of points)	
Ground	68,426,849
Low vegetation	24,906,844
Medium vegetation	66,893,807
High vegetation	201,192,687
Building	1,902,909
Orthophoto	No
Processed by	Engr. Irish Cortez, Engr. Melanie Hingpit, Engr. Melissa Fernandez

Figure 1.9.2 Smoothed Performance Metric Parameters

Figure 1.9.4 Coverage of LiDAR data

Figure 1.9.6 Density map of merged LiDAR data

Figure 1.9.7 Elevation difference between flight lines

Flight Area	Catarman
Mission Name	Blk331L_additional
Inclusive Flights	8156AC
Range data size	11.4 GB
Base data size	32.8 MB
POS	217 MB
Image	N/A
Transfer date	September 8, 2015
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	No
Baseline Length (<30km)	Yes
Processing Mode (<=1)	No
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	1.4498
RMSE for Fast Position (<4.0 cm)	1.3552
BMSE for Down Position (<8.0 cm)	4.226
	4.220
	0.000000
Boresignt correction stdev (<0.001deg)	0.000868
INU attitude correction stdev (<0.001deg)	0.002411
GPS position stdev (<0.01m)	0.0030
Minimum % overlap (>25)	40.41%
Ave point cloud density per sq.m. (>2.0)	2.29
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	206
Maximum Height	531.87
Minimum Height	41.99
Classification (# of points)	
Ground	68,426,849
Low vegetation	24,906,844
Medium vegetation	66,893,807
High vegetation	201,192,687
Building	1,902,909
-	
Orthophoto	None
Processed by	Engr. Irish Cortez, Engr. Justine
	Francisco, Maria Tamsyn Malabanan

Figure 1.10.2. Smoothed Performance Metric Parameters

Figure 1.10.4. Coverage of LiDAR data

Figure 1.10.6. Density Map of merged LiDAR data

Figure 1.10.7. Elevation Difference Between flight lines

Flight Area	Catarman
Mission Name	Blk33S
Inclusive Flights	8183AC
Range data size	5.81 GB
POS	152 MB
Image	39.2 GB
Transfer date	September 16, 2015
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	No
Processing Mode (<=1)	No
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	1.6
RMSE for East Position (<4.0 cm)	1.52
RMSE for Down Position (<8.0 cm)	3.1
Boresight correction stdev (<0.001deg)	0.003843
IMU attitude correction stdev (<0.001deg)	0.004672
GPS position stdev (<0.01m)	0.0032
Minimum % overlap (>25)	19.47
Ave point cloud density per sq.m. (>2.0)	2.13
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	46
Maximum Height	150.44 m
Minimum Height	51.23 m
Classification (# of points)	
Ground	5,195,017
Low vegetation	6,991,805
Medium vegetation	8,890,080
High vegetation	2,315,373
Building	296,581
Orthophoto	No
Processed by	Engr. Angelo Carlo Bongat, Engr. Mark Joshua Salvacion, Engr. Krisha Marie Bautista

Figure 1.11.2 Smoothed Performance Metric Parameters

Figure 1.11.4. Coverage of LiDAR data

Figure 1.11.6. Density map of merged LiDAR data

Figure 1.11.7. Elevation difference between flight lines

Flight Area	CatarmanReflights				
Mission Name	Blk 33F				
Inclusive Flights	8445AC				
Range data size	9.13 GB				
POS data size	216 MB				
Base data size	77.8 GB				
Image	40.3 MB				
Transfer date	August 4, 2016				
Solution Status					
Number of Satellites (>6)	Yes				
PDOP (<3)	Yes				
Baseline Length (<30km)	No				
Processing Mode (<=1)	Yes				
Smoothed Performance Metrics (in cm)					
RMSE for North Position (<4.0 cm)	1.4				
RMSE for East Position (<4.0 cm)	1.3				
RMSE for Down Position (<8.0 cm)	2.8				
Boresight correction stdev (<0.001deg)	0.000950				
IMU attitude correction stdev (<0.001deg)	0.020402				
GPS position stdev (<0.01m)	0.0247				
Minimum % overlap (>25)	48.86%				
Ave point cloud density per sq.m. (>2.0)	5.45				
Elevation difference between strips (<0.20 m)	Yes				
Number of 1km x 1km blocks	79				
Maximum Height	380.62 m				
Minimum Height	64.4 m				
Classification (# of points)					
Ground	18,157,872				
Low vegetation	11,687,930				
Medium vegetation	53,303,947				
High vegetation	179,792,188				
Building	4,191,667				
Orthophoto	No				
Processed by	Engr. Kenneth Solidum, AljonRieAraneta, Jovy Narisma				

Figure 1.12.2. Smoothed Performance Metric Parameters

Figure 1.12.4. Coverage of LiDAR Data

Figure 1.12.6. Density map of merged LiDAR datat

Figure 1.12.7. Elevation difference between flight lines

Annex 9. Catarman Model Basin Parameters

Ratio to Peak 0.3 Threshold Type Ratio to Peak **Recession Baseflow** Recession Constant 0.55 0.0962743 0.0613969 Discharge 2.3213011 1.8333 3.5575 4.0123 1.6373 2.3143 1.2228 2.8143 1.3013 1.8292 2.4694 5.3142 2.8865 (m3/s) 2.4259 5.3371 1.695 1.6963 1.0711.6357 1.958Initial 1.373 Table A-9.1. Catarman Model Basin Parameters Initial Type Discharge Coefficient 2.9456 Storage 1.86114.6059 3.2516 4.0846 0.80885 4.6118 4.0502 3.0747 2.5022 3.8625 2.7993 2.1058 3.0531 2.1291 1.0227 3.4564 11.176 5.2982 4.1682 2.373 2.715 **Clark Unit Hydropgraph** 6.137 Concentration Time of 2.8222 1.8708 2.5028 0.4956 1.8049 2.3668 1.7153 1.2903 2.1179 3.7604 2.8258 1.9924 1.3046 3.2465 0.62663 1.14042.4818 2.4954 2.5541 1.5332 1.4541.8846.848 Impervious 0 SCS Curve Number Number Curve 66 Abstraction 1.8693 1.8978 1.8789 1.6639 1.8789 3.1723 1.14982.5484 2.3828 1.9185 1.8593 1.8789 1.8789 1.8789 1.8789 1.8789 1.34441.5582 2.2699 1.8789 1.6133 1.8663 Initial 1.755Subbasin W1030 W1120 W1140 W1050 W1060 W1070 W1080 W1090 W1100 W1130 W1150 W1170 W1180 W 1000 W1020 W1040 W1110 W1160 W1010 W610 W630 W600 W620

	Ratio to Peak	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3
wol	Threshold Type	Ratio to Peak																								
ecession Base	Recession Constant	0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.55
	Initial Discharge (m3/s)	1.6142	4.2171	3.2121	0.71767	4.0044	2.4378	1.3375	2.2313	4.4326	1.2799	0.54987	0.21167	0.38546	1.2556	0.28927	3.7632	0.11286	1.536	0.0378334	1.2286	0.81941	6.871	2.687322	2.0803	1.2532
	Initial Type	Discharge																								
/dropgraph	Storage Coefficient	5.9972	7.3595	7.3488	4.1284	6.8615	13.017	2.6515	6.8327	13.958	3.1781	4.3903	2.3135	2.4271	6.7783	1.7367	6.8512	2.2536	8.1947	1.7068	3.1929	3.7839	10.007	5.7985	4.9509	4.2974
Clark Unit Hy	Time of Concentration	3.6747	4.5095	4.503	2.5297	4.2044	7.9762	1.6247	4.1867	8.553	1.9474	2.6901	1.4176	1.4872	4.1534	1.0642	4.1981	1.3809	5.0213	1.0458	1.9564	2.3186	6.1318	3.553	3.0336	2.6332
ber	Impervious	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Curve Num	Curve Number	66	66	66	66	66	66	66	66	66	66	66	66	66	66	66	66	66	66	66	66	66	66	66	66	66
SCS	Initial Abstraction	1.7536	2.0871	2.3453	1.9512	1.7643172	3.0657	1.437	2.7551	3.37	1.7294	4.2894	5.4713	2.0214	2.809	1.7357	1.8702	0.62825	3.3359	3.2193	1.4169	2.5056	1.8144	1.8742	2.495	4.6952
	Subbasin	W640	W650	W660	W670	W680	W690	W700	W710	W720	W730	W740	W750	W760	W770	W780	W790	W800	W810	W820	W830	W840	W850	W860	W870	W880

]			[]						
	Ratio to Peak	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3
flow	Threshold Type	Ratio to Peak										
Recession Base	Recession Constant	0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.55
	Initial Discharge (m3/s)	2.3835	2.4767	3.5295	1.6592	1.4546	0.75154	1.7916	2.8038	5.0309	0.59562	1.2202
	Initial Type	Discharge										
ydropgraph	Storage Coefficient	5.9805	6.8773	6.9534	3.8505	5.5602	4.1912	4.78	3.5486	11.166	3.0897	3.8651
Clark Unit H	Time of Concentration	3.6645	4.214	4.2606	2.3594	3.407	2.5682	2.9289	2.1744	6.8422	1.8932	2.3683
ber	Impervious	0	0	0	0	0	0	0	0	0	0	0
Curve Num	Curve Number	96	96	96	96	96	95	95	95	95	66	66
SCS	Initial Abstraction	4.0939	2.5674	1.8272	2.0586	2.2892	2.4107	1.8789	1.4602	1.5898	2.259	4.5614
	Subbasin	W890	006M	W910	W920	W930	W940	W950	W960	079W	W980	066M

Annex 10. Catarman Model Reach Parameters

Reach	Time Step Method	Length	Slope	Manning's n	Shape	Width	Side Slope
R520	Automatic Fixed Interval	6809.6	0.0028191	0.04	Trapezoid	21.297	45
R540	Automatic Fixed Interval	571.13	0.0127457	0.04	Trapezoid	8.8467	45
R560	Automatic Fixed Interval	9608.9	0.0043536	0.04	Trapezoid	11.463	45
R60	Automatic Fixed Interval	3206.3	8.28E-05	0.04	Trapezoid	59.08	45

Annex 11. Catarman Field Validation Points

	Validation	o ordinatos		Valida			
GPS	valuation	Journales	Model	tion	Error	Event /Date	Rain Roturn /
No.	Latitude	Longitude	(m)	Points (m)		Eventy Date	Scenario
1001	12.46066483	124.6421689	0.10	0.6	0.50	Ruby/December 6, 2014	100 Year
1010	12.49616177	124.6322961	0.51	0.6	0.09	Ruby/December 6, 2014	100 Year
1011	12.45840817	124.6426886	0.06	0.6	0.54	Ruby/December 6, 2014	100 Year
1021	12.45721282	124.6419602	0.10	0	-0.10	Ruby/December 6, 2014	100 Year
1031	12.45746328	124.6429007	0.04	1	0.96	Ruby/December 6, 2014	100 Year
1041	12.45518608	124.6425521	0.39	1	0.61	Ruby/December 6, 2014	100 Year
1051	12.45265148	124.6419579	0.49	1	0.51	Ruby/December 6, 2014	100 Year
1081	12.43233626	124.6369835	2.65	2	-0.65	Ruby/December 6, 2014	100 Year
1091	12.43230885	124.6363719	2.65	2	-0.65	Ruby/December 6, 2014	100 Year
1100	12.50720216	124.604334	0.50	1.1	0.60	Ruby/December 6, 2014	100 Year
1110	12.50376834	124.6208152	0.03	0	-0.03	Ruby/December 6, 2014	100 Year
1141	12.42665945	124.6369893	0.37	0.8	0.43	Ruby/December 6, 2014	100 Year
1151	12.42644948	124.636268	0.03	0.8	0.77	Ruby/December 6, 2014	100 Year
1161	12.42561783	124.6366775	0.03	1	0.97	Ruby/December 6, 2014	100 Year
1171	12.42484921	124.6360228	1.71	1	-0.71	Ruby/December 6, 2014	100 Year
1181	12.42445467	124.636906	2.18	2	-0.18	Ruby/December 6, 2014	100 Year
1201	12.42307912	124.6342149	2.34	1.5	-0.84	Ruby/December 6, 2014	100 Year
1210	12.49474498	124.6361435	0.03	0.9	0.87	Ruby/December 6, 2014	100 Year
1271	12.41644735	124.6235505	0.03	0.5	0.47	Ruby/December 6, 2014	100 Year
1281	12.41537011	124.616013	1.12	0.5	-0.62	Ruby/December 6, 2014	100 Year
1310	12.49357369	124.639941	2.07	1.3	-0.77	Ruby/December 6, 2014	100 Year
1410	12.49393512	124.6401273	2.07	1.3	-0.77	Ruby/December 6, 2014	100 Year
1441	12.39521415	124.6277713	1.97	1.1	-0.87	Ruby/December 6, 2014	100 Year
1510	12.49457566	124.6402429	0.80	1.3	0.50	Ruby/December 6, 2014	100 Year
1541	12.38214358	124.6252503	0.23	0.7	0.47	Ruby/December 6, 2014	100 Year
1551	12.38121042	124.6194005	0.03	0.7	0.67	Ruby/December 6, 2014	100 Year
1561	12.38057591	124.6189653	0.03	0.7	0.67	Ruby/December 6, 2014	100 Year
1601	12.49692762	124.6425894	0.72	0.9	0.18	Ruby/December 6, 2014	100 Year
1610	12.49267565	124.6402687	1.10	0.8	-0.30	Ruby/December 6, 2014	100 Year
1611	12.4978467	124.6424868	0.21	0.9	0.69	Ruby/December 6, 2014	100 Year
1621	12.49896267	124.6422916	0.03	0.7	0.67	Ruby/December 6, 2014	100 Year
1641	12.50025851	124.642086	0.11	0.7	0.59	Ruby/December 6, 2014	100 Year
1651	12.50112025	124.6418856	0.03	0.9	0.87	Ruby/December 6, 2014	100 Year
1661	12.50259748	124.6410001	0.04	0.9	0.86	Ruby/December 6, 2014	100 Year
1671	12.50336492	124.6403145	0.29	0.9	0.61	Ruby/December 6, 2014	100 Year
1681	12.50381135	124.6408091	0.40	1.3	0.90	Ruby/December 6, 2014	100 Year
1691	12.50378511	124.6413551	0.40	1.3	0.90	Ruby/December 6, 2014	100 Year
1701	12.50406515	124.6421047	0.69	1.3	0.61	Ruby/December 6, 2014	100 Year
1710	12.49440584	124.6420009	1.09	1.2	0.11	Ruby/December 6, 2014	100 Year
1711	12.50502873	124.6419341	0.48	1.4	0.92	Ruby/December 6, 2014	100 Year

Table A-11.1. Catarman Field Validation Points

	Validation C	Coordinates	Model	Valida-			Rain
GPS No.	Latitude	Longitude	Var (m)	tion Points (m)	Error	Event/Date	Return/ Scenario
1721	12.50559795	124.6426349	0.03	0	-0.03	Ruby/December 6, 2014	100 Year
1731	12.50621921	124.6428708	0.03	0	-0.03	Ruby/December 6, 2014	100 Year
1741	12.50646849	124.6439923	0.03	0	-0.03	Ruby/December 6, 2014	100 Year
1761	12.5065239	124.6422497	0.09	0	-0.09	Ruby/December 6, 2014	100 Year
1771	12.50677485	124.6411122	0.21	0.8	0.59	Ruby/December 6, 2014	100 Year
1781	12.50619926	124.6409428	0.23	0.8	0.57	Ruby/December 6, 2014	100 Year
1791	12.50564883	124.6407727	0.23	0.8	0.57	Ruby/December 6, 2014	100 Year
1801	12.50616037	124.6417511	0.27	0.8	0.53	Ruby/December 6, 2014	100 Year
1810	12.49348627	124.6423084	1.87	1.2	-0.67	Ruby/December 6, 2014	100 Year
1811	12.5054542	124.6414551	0.48	1.3	0.82	Ruby/December 6, 2014	100 Year
1831	12.50442239	124.640096	0.85	1.2	0.35	Ruby/December 6, 2014	100 Year
1841	12.50396473	124.638196	0.59	1	0.41	Ruby/December 6, 2014	100 Year
1851	12.50269186	124.6389179	0.03	1	0.97	Ruby/December 6, 2014	100 Year
1861	12.50202633	124.6379305	0.05	1	0.95	Ruby/December 6, 2014	100 Year
1871	12.50199859	124.6366507	0.29	1	0.71	Ruby/December 6, 2014	100 Year
1881	12.50115445	124.6400175	0.07	1	0.93	Ruby/December 6, 2014	100 Year
1891	12.49976121	124.6398799	0.07	0.9	0.83	Ruby/December 6, 2014	100 Year
1901	12.49868891	124.6397969	0.10	1	0.90	Ruby/December 6, 2014	100 Year
1910	12.49509299	124.6428249	1.11	1.2	0.09	Ruby/December 6, 2014	100 Year
1911	12.4969723	124.6397449	0.19	1	0.81	Ruby/December 6, 2014	100 Year
1921	12.49557504	124.6396714	1.61	0.9	-0.71	Ruby/December 6, 2014	100 Year
1931	12.49698152	124.6410697	0.36	1	0.64	Ruby/December 6, 2014	100 Year
1941	12.49861951	124.6414064	0.03	0.9	0.87	Ruby/December 6, 2014	100 Year
1951	12.5000643	124.6408344	0.05	0.9	0.85	Ruby/December 6, 2014	100 Year
1971	12.49702469	124.6390182	0.19	1	0.81	Ruby/December 6, 2014	100 Year
1981	12.49872856	124.6389727	0.03	1	0.97	Ruby/December 6, 2014	100 Year
1991	12.50015524	124.6390805	0.10	0.7	0.60	Ruby/December 6, 2014	100 Year
2001	12.49985374	124.6377989	0.21	0.7	0.49	Ruby/December 6, 2014	100 Year
2010	12.49612078	124.6427698	0.99	0.9	-0.09	Ruby/December 6, 2014	100 Year
2011	12.49778585	124.6374351	0.03	1	0.97	Ruby/December 6, 2014	100 Year
2021	12.49658891	124.6373972	0.94	1	0.06	Ruby/December 6, 2014	100 Year
2031	12.49922284	124.6366934	0.05	1	0.95	Ruby/December 6, 2014	100 Year
2041	12.49785525	124.6357688	0.26	0.9	0.64	Ruby/December 6, 2014	100 Year
2051	12.49647408	124.6360599	1.00	0.9	-0.10	Ruby/December 6, 2014	100 Year
2061	12.49848238	124.6342088	0.68	0.9	0.22	Ruby/December 6, 2014	100 Year
2071	12.4988532	124.6333974	0.03	0.9	0.87	Ruby/December 6, 2014	100 Year
2081	12.49945737	124.6349656	0.03	0.9	0.87	Ruby/December 6, 2014	100 Year
2091	12.50044584	124.6359561	0.24	0.9	0.66	Ruby/December 6, 2014	100 Year
2101	12.49971829	124.6323114	0.38	0.7	0.32	Ruby/December 6, 2014	100 Year
2110	12.49235555	124.6366608	0.03	0.8	0.77	Ruby/December 6, 2014	100 Year
2111	12.50277777	124.633689	0.05	0	-0.05	Ruby/December 6, 2014	100 Year
2121	12.50419616	124.634772	0.45	0.4	-0.05	Ruby/December 6, 2014	100 Year
2131	12.5048476	124.6325052	0.18	0.4	0.22	Ruby/December 6, 2014	100 Year

	Validation C	Coordinates	Model	Valida-			Rain
GPS No.	Latitude	Longitude	Var (m)	tion Points (m)	Error	Event/Date	Return/ Scenario
2141	12.50353659	124.6318607	0.03	0.5	0.47	Ruby/December 6, 2014	100 Year
2151	12.50206472	124.6311787	0.62	0.5	-0.12	Ruby/December 6, 2014	100 Year
2161	12.50093979	124.6294592	0.19	0.5	0.31	Ruby/December 6, 2014	100 Year
2171	12.50214594	124.6295735	0.24	0.5	0.26	Ruby/December 6, 2014	100 Year
2181	12.50373616	124.6303204	0.12	0.4	0.28	Ruby/December 6, 2014	100 Year
2191	12.50589886	124.6343002	0.83	0.4	-0.43	Ruby/December 6, 2014	100 Year
2201	12.50709663	124.6351602	0.41	0.4	-0.01	Ruby/December 6, 2014	100 Year
2210	12.4901309	124.6365752	0.90	0.8	-0.10	Ruby/December 6, 2014	100 Year
2211	12.50553173	124.6320054	0.35	0.4	0.05	Ruby/December 6, 2014	100 Year
2221	12.50499923	124.6291989	0.07	0.6	0.53	Ruby/December 6, 2014	100 Year
2231	12.50192366	124.6283472	0.03	0.4	0.37	Ruby/December 6, 2014	100 Year
2241	12.50372275	124.6273286	0.03	0.4	0.37	Ruby/December 6, 2014	100 Year
2251	12.50611017	124.6273305	0.48	0.6	0.12	Ruby/December 6, 2014	100 Year
2261	12.50628082	124.6254234	0.07	0.6	0.53	Ruby/December 6, 2014	100 Year
2271	12.50263452	124.6256445	0.30	0.4	0.10	Ruby/December 6, 2014	100 Year
2281	12.50092411	124.6335575	0.03	0.5	0.47	Ruby/December 6, 2014	100 Year
2291	12.50341564	124.6415632	0.82	1.3	0.48	Ruby/December 6, 2014	100 Year
2301	12.49763162	124.6461617	1.73	1	-0.73	Ruby/December 6, 2014	100 Year
2310	12.49001213	124.6397555	0.07	0.8	0.73	Ruby/December 6, 2014	100 Year
2321	12.50699395	124.653841	0.74	0.5	-0.24	Ruby/December 6, 2014	100 Year
2331	12.51075517	124.655237	0.10	0.5	0.40	Ruby/December 6, 2014	100 Year
2351	12.48387214	124.6619016	0.77	1.3	0.53	Ruby/December 6, 2014	100 Year
2361	12.48286949	124.6685345	2.21	1.5	-0.71	Ruby/December 6, 2014	100 Year
2371	12.48127459	124.6699855	0.26	0.5	0.24	Ruby/December 6, 2014	100 Year
2381	12.47771236	124.6723763	0.08	1	0.92	Ruby/December 6, 2014	100 Year
2391	12.47647863	124.672804	0.11	1	0.89	Ruby/December 6, 2014	100 Year
2401	12.47056679	124.6811264	1.57	1.1	-0.47	Ruby/December 6, 2014	100 Year
2410	12.48799964	124.6483518	1.45	0.8	-0.65	Ruby/December 6, 2014	100 Year
2411	12.4937513	124.6515458	0.54	0.7	0.16	Ruby/December 6, 2014	100 Year
2421	12.49789045	124.6274988	0.86	0.7	-0.16	Ruby/December 6, 2014	100 Year
2431	12.50621653	124.6084078	0.03	0.9	0.87	Ruby/December 6, 2014	100 Year
2441	12.50598033	124.610542	0.03	0.9	0.87	Ruby/December 6, 2014	100 Year
2451	12.50753777	124.612257	0.85	0.9	0.05	Ruby/December 6, 2014	100 Year
2461	12.50492211	124.6195993	0.73	0.4	-0.33	Ruby/December 6, 2014	100 Year
2471	12.50691969	124.6210313	0.03	0.4	0.37	Ruby/December 6, 2014	100 Year
2491	12.49557621	124.6418827	1.04	0.9	-0.14	Ruby/December 6, 2014	100 Year
2501	12.4903148	124.6631234	0.81	1.7	0.89	Ruby/December 6, 2014	100 Year
251	12.50578361	124.6123318	0.48	0.9	0.42	Ruby/December 6, 2014	100 Year
252	12.48750561	124.6505465	0.89	0.4	-0.49	Ruby/December 6, 2014	100 Year
261	12.49226619	124.6539538	1.59	0.7	-0.89	Ruby/December 6, 2014	100 Year
271	12.49518595	124.6499571	0.74	0.7	-0.04	Ruby/December 6, 2014	100 Year
281	12.4981259	124.6471744	0.72	1	0.28	Ruby/December 6, 2014	100 Year
291	12.4984398	124.6462351	1.26	1	-0.26	Ruby/December 6, 2014	100 Year

	Validation C	Coordinates	Model	Valida-			Rain
GPS No.	Latitude	Longitude	Var (m)	tion Points (m)	Error	Event/Date	Return/ Scenario
301	12.49842798	124.6454302	1.18	1	-0.18	Ruby/December 6, 2014	100 Year
310	12.505535	124.6184633	0.03	0.4	0.37	Ruby/December 6, 2014	100 Year
311	12.49763472	124.6448357	1.11	0.4	-0.71	Ruby/December 6, 2014	100 Year
321	12.49937279	124.6443668	1.17	1	-0.17	Ruby/December 6, 2014	100 Year
331	12.49934346	124.6454157	1.41	1	-0.41	Ruby/December 6, 2014	100 Year
341	12.50049454	124.646372	0.44	0.8	0.36	Ruby/December 6, 2014	100 Year
351	12.50166147	124.6472729	0.91	0.8	-0.11	Ruby/December 6, 2014	100 Year
361	12.50447435	124.6515653	0.86	0.8	-0.06	Ruby/December 6, 2014	100 Year
371	12.50756719	124.6546523	0.03	0.5	0.47	Ruby/December 6, 2014	100 Year
381	12.50957985	124.6552116	0.13	0.5	0.37	Ruby/December 6, 2014	100 Year
411	12.509749	124.6595367	0.03	0.5	0.47	Ruby/December 6, 2014	100 Year
431	12.50754775	124.6595888	0.03	0.5	0.47	Ruby/December 6, 2014	100 Year
441	12.49220752	124.6563825	0.72	0.7	-0.02	Ruby/December 6, 2014	100 Year
451	12.49087069	124.6595854	1.57	1.7	0.13	Ruby/December 6, 2014	100 Year
461	12.49114201	124.6613171	0.07	0.5	0.43	Ruby/December 6, 2014	100 Year
471	12.48937561	124.6633291	0.26	0.5	0.24	Ruby/December 6, 2014	100 Year
48	12.48928375	124.6641061	0.24	0.5	0.26	Ruby/December 6, 2014	100 Year
491	12.48770141	124.6642998	0.10	0.5	0.40	Ruby/December 6, 2014	100 Year
501	12.4864717	124.6653935	0.24	1	0.76	Ruby/December 6, 2014	100 Year
510	12.5066829	124.621852	0.26	0.4	0.14	Ruby/December 6, 2014	100 Year
511	12.48337224	124.6681551	0.36	1	0.64	Ruby/December 6, 2014	100 Year
521	12.48161456	124.6701553	0.23	0.5	0.27	Ruby/December 6, 2014	100 Year
531	12.47868039	124.6722136	0.61	1	0.39	Ruby/December 6, 2014	100 Year
541	12.47694206	124.6729767	0.11	1	0.89	Ruby/December 6, 2014	100 Year
551	12.47582057	124.6731075	0.03	1	0.97	Ruby/December 6, 2014	100 Year
561	12.4739188	124.6767174	0.12	0.5	0.38	Ruby/December 6, 2014	100 Year
571	12.47140439	124.6805637	2.20	1.5	-0.70	Ruby/December 6, 2014	100 Year
581	12.47088555	124.6806948	2.20	1.5	-0.70	Ruby/December 6, 2014	100 Year
591	12.47031986	124.6817836	1.57	1.1	-0.47	Ruby/December 6, 2014	100 Year
601	12.46860299	124.6828969	0.10	0.5	0.40	Ruby/December 6, 2014	100 Year
610	12.50849591	124.6228893	0.03	0.6	0.57	Ruby/December 6, 2014	100 Year
611	12.46880944	124.68201	0.78	0.5	-0.28	Ruby/December 6, 2014	100 Year
621	12.46611374	124.6803058	0.03	0.7	0.67	Ruby/December 6, 2014	100 Year
631	12.46569967	124.6791145	0.54	0.7	0.16	Ruby/December 6, 2014	100 Year
641	12.455301	124.6829568	0.03	0.6	0.57	Ruby/December 6, 2014	100 Year
651	12.45465727	124.6820155	2.12	1.5	-0.62	Ruby/December 6, 2014	100 Year
671	12.48414145	124.6620879	1.32	1.3	-0.02	Ruby/December 6, 2014	100 Year
681	12.48363761	124.6627048	0.79	1.3	0.51	Ruby/December 6, 2014	100 Year
691	12.48308918	124.6627368	0.69	1.3	0.61	Ruby/December 6, 2014	100 Year
701	12.47677652	124.6503983	0.05	0	-0.05	Ruby/December 6, 2014	100 Year
710	12.50315554	124.6243742	0.28	1.1	0.82	Ruby/December 6, 2014	100 Year
711	12.47566047	124.6547768	0.06	0	-0.06	Ruby/December 6, 2014	100 Year
721	12.46813671	124.6679135	0.40	1	0.60	Ruby/December 6, 2014	100 Year

	Validation C	Coordinates	Model	Valida-			Pain
GPS No.	Latitude	Longitude	Var (m)	tion Points (m)	Error	Event/Date	Return/ Scenario
731	12.46912502	124.669016	0.45	1	0.55	Ruby/December 6, 2014	100 Year
741	12.47088161	124.6713141	0.48	1	0.52	Ruby/December 6, 2014	100 Year
751	12.47325688	124.6719752	0.52	1	0.48	Ruby/December 6, 2014	100 Year
761	12.47788302	124.6464445	0.04	0	-0.04	Ruby/December 6, 2014	100 Year
771	12.47811763	124.6434529	0.06	0	-0.06	Ruby/December 6, 2014	100 Year
781	12.47844477	124.6384866	0.03	1	0.97	Ruby/December 6, 2014	100 Year
791	12.47837361	124.6378676	2.35	1.5	-0.85	Ruby/December 6, 2014	100 Year
801	12.48172394	124.6372649	0.84	1	0.16	Ruby/December 6, 2014	100 Year
810	12.50208593	124.6227528	0.51	1.1	0.59	Ruby/December 6, 2014	100 Year
811	12.48545598	124.6370373	0.43	1.2	0.77	Ruby/December 6, 2014	100 Year
821	12.4884194	124.6367199	0.03	0.8	0.77	Ruby/December 6, 2014	100 Year
831	12.48576854	124.6354551	0.22	1.2	0.98	Ruby/December 6, 2014	100 Year
841	12.48698509	124.6335847	0.03	0.5	0.47	Ruby/December 6, 2014	100 Year
851	12.48671394	124.6318537	0.03	0.5	0.47	Ruby/December 6, 2014	100 Year
861	12.47701692	124.6378262	0.39	1	0.61	Ruby/December 6, 2014	100 Year
871	12.47660184	124.6375638	0.39	1	0.61	Ruby/December 6, 2014	100 Year
881	12.473954	124.6388985	0.03	0.7	0.67	Ruby/December 6, 2014	100 Year
891	12.47190462	124.6408823	0.03	0.7	0.67	Ruby/December 6, 2014	100 Year
901	12.47344983	124.6418918	0.19	0.7	0.51	Ruby/December 6, 2014	100 Year
910	12.49596278	124.6305267	0.45	0.7	0.25	Ruby/December 6, 2014	100 Year
911	12.46669997	124.6410963	0.03	0.5	0.47	Ruby/December 6, 2014	100 Year
921	12.46534981	124.6413175	1.10	0.5	-0.60	Ruby/December 6, 2014	100 Year
931	12.46353664	124.6416954	1.11	0.5	-0.61	Ruby/December 6, 2014	100 Year
941	12.46220131	124.642014	1.13	0.5	-0.63	Ruby/December 6, 2014	100 Year
951	12.46209788	124.6433223	0.23	0.8	0.57	Ruby/December 6, 2014	100 Year
961	12.46303204	124.643771	0.03	0	-0.03	Ruby/December 6, 2014	100 Year
971	12.46121376	124.6437957	0.03	0	-0.03	Ruby/December 6, 2014	100 Year
981	12.45934183	124.6435711	0.03	0.6	0.57	Ruby/December 6, 2014	100 Year
1001	12.46066483	124.6421689	0.10	0.6	0.50	Ruby/December 6, 2014	100 Year

Annex 12. Educational Institutions affected by flooding in Catarman Flood Plain

Table A-12.1. Educational Institutions in Catarman, Ilocos Norte affected by flooding in Catarman Flood
Plain

NORTHERN SAMAR										
CATARM	ИАМ									
Duilding Nama	Deveneer	R	ainfall Scer	ario						
Building Name	Вагапдау	5-year	25-year	100-year						
Brgy. Airport Village Day Care Center	Acacia		Low	Low						
Catarman SPED Center	Acacia									
Brgy. Sampaguita Daycare Center	Baybay			Low						
Brgy. Cal-igang Elementary School	Cabayhan	Medium	High	High						
Brgy. Abaca Day Care Center	Cag-Abaca	Medium	High	High						
Generoso R. Frigillana Memorial School	Calachuchi	Low	Medium	Medium						
Brgy. Cag-abaca Elementary School	Cularima	Medium	High	High						
Brgy. Daganas Daycare Center	Daganas			Low						
Catarman National High School	Daganas									
Catarman National Senior High School	Daganas	Low	Low	Low						
Daganas Elementary School	Daganas	Low	Low	Low						
Catarman National High School	Dalakit		Low	Low						
Catarman National Senior High School	Dalakit	Medium	Medium	Medium						
Eastern Visayas Central College	Dalakit			Low						
Generoso R. Frigillana Memorial School	Dalakit	Medium	Medium	Medium						
Bangkerohan Elementary School	Galutan	Low	Medium	Medium						
Brgy. Bangkerohan Daycare Center	Galutan	Low	Medium	Medium						
Galutan National High School	Galutan			Low						
Galutan Elementary School	Hinatad									
Hinatad Elementary School	Hinatad	High	High	High						
Catarman Chamber Elementary School Foundation Inc.	lpil-Ipil									
Baybay Elementary School	Jose Abad Santos	Low	Low	Low						
Brgy. Baybay Daycare Center	Jose Abad Santos			Medium						
East Pacific Computer College	Jose Abad Santos		Low	Medium						
Catarman Central 1 School	Jose P. Rizal	Low	Low	Low						
Catarman SPED Center	Jose P. Rizal	Low	Medium	Medium						
Office of the Schools Division Super Intendent	Jose P. Rizal		Low	Low						
Colegio De San Lorenzo Ruiz De Manila of Northern Samar (House of Montessori)	Kasoy									
Eastern Visayas Central Colleges	Kasoy	Low	Low	Low						
Catarman Central 1 School	Lapu-Lapu	Low	Medium	Medium						
Brgy. Sampaguita Daycare Center	Mabolo									
Catarman Central 1 School	Mabolo	Low	Low	Low						
Poppy Learning Center Catarman Inc.	Mabolo									
St. Anthony Farm Institute of Technology	Mabolo									
Barangay Narra Day Care Center	Macagtas		Low	Medium						

NORTHERN SAMAR					
CATARMAN					
	Barangay	Rainfall Scenario			
Building Name		5-year	25-year	100-year	
Brgy. Molave Daycare Center	Macagtas		Medium	Medium	
Catarman Central 2 School	Macagtas		Medium	Medium	
Cawayan Integrated School	Macagtas		Low	Medium	
Macagtas Elementary School	Macagtas				
Bagong Bario Elementary School	Mckinley		Low	Medium	
McKinley Elementary School	Mckinley	Medium	Medium	Medium	
Colegio de San Lorenzo Ruiz de Manila of Northern Samar	Molave	Medium	Medium	Medium	
Eastern Visayas Central Colleges	Molave	Low	Low	Low	
St. Michael Academy	Molave				
Brgy. Old Rizal Daycare Center	Old Rizal	Low	Medium	Medium	
Old Rizal Elementary School	Old Rizal		Low	Low	
Polangi Elementary School	Polangi	Medium	High	High	
Polangi National High School	Polangi	Medium	High	High	
Catarman Central 1 School	Santol	Low	Low	Low	
Office of the Schools Division Super Intendent	Santol				
Gilalan-agan Elementary School	Somoge		High	High	
Somoge Elementary School	Somoge	Low	High	High	
Brgy. Washington Daycare Center	Washington				
Diocesan Catholic Center	Yakal				
Northern Samar Colleges	Yakal				
St. Michael Academy	Yakal	Low	Low	Low	

NORTHERN SAMAR

BOBON					
Duilding Manua	Barangay	Rainfall Scenario			
Building Name		5-year	25-year	100-year	
Arellano Elementary School	Arellano			Low	
Arellano Elementary School	Magsaysay				
Bobon School for Philippine Craftsmen	Magsaysay	Low	Low	Medium	
Ramon Magsaysay Elementary School	Magsaysay				

Annex 13. Medical Institutions affected by flooding in Catarman Flood Plain

CATARMAN Building Name Baranga Northern Samar Provincial Hospital Acacia	ay <mark>5-year</mark> an Medium	ainfall Scen 25-year	ario 100-year
Building Name Baranga Northern Samar Provincial Hospital Acacia	ay R 5-year an Medium	ainfall Scen 25-year	ario 100-year
Northern Samar Provincial Hospital Acacia	ay 5-year	25-year	100-year
Northern Samar Provincial Hospital Acacia	an Medium		•
, in the second s	an Medium	1 1	Low
Brgy. Cal-igang Health Center Cabayha		High	High
Brgy. Dalakit Health Center Calachuc	chi Low	Low	Low
Bluestar Maternity Clinic Dalakit	t		
Brgy. Sampaguita Health Center Galutar	n		
Catarman Doctor's Hospital Galutar	n	Medium	Medium
Our Lady of Peace Medical Clinic Galutar	n		
Brgy. Sampaguita Health Center Ipil-Ipil	I		
Leoncio Uy Memorial Hospital Ipil-Ipil	l Medium	Medium	Medium
Our Lady of Peace Medical Clinic Ipil-Ipil	I		
Northern Samar Provincial Hospital Kasoy	Low	Low	Low
Oserraos' Pediatric Clinic Mabolo	D C		
Catarman Animal Bite Clinic Molave	e	Medium	Medium
Brgy. Polangi Health Center Polang	i Low	High	High
Brgy. Polangi Rural Health Office II Polang	i	High	High
Our Lady of La Leche Clinic Santol		Low	Low
Brgy. Somoge Health Center Somoge	e Medium	High	High
Brgy. Washington Health Station Washingt	ton		
Happy Teeth Dental Clinic Yakal	Low	Medium	Medium
Novak's Medical Specialist Clinic Yakal			
Pacific Eye Institute Yakal			
Schistomiasis Control Center Yakal			

Table A-13.1. Medical Institutions in Catarman, Ilocos Norte affected by flooding in Catarman Flood Plain

NORTHERN SAMAR

BOBON				
Building Name	Barangay	Rainfall Scenario		
		5-year	25-year	100-year
Brgy. Magsaysay Health Center	Magsaysay			