Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

LiDAR Surveys and Flood Mapping of Catubig River

APRIL 201

University of the Philippines Training Center for Applied Geodesy and Photogrammetry Visayas State University

${f \mathbb C}$ University of the Philippines Diliman and Visayas State University 2017

Published by the UP Training Center for Applied Geodesy and Photogrammetry (TCAGP) College of Engineering University of the Philippines – Diliman Quezon City 1101 PHILIPPINES

This research project is supported by the Department of Science and Technology (DOST) as part of its Grants-in-Aid (GIA) Program and is to be cited as:

E.C. Paringit, and F.F. Morales. (Eds.). (2017), LiDAR Surveys and Flood Mapping Report of Catubig River. Quezon City: University of the Philippines Training Center on Geodesy and Photogrammetry-422pp.

The text of this information may be copied and distributed for research and educational purposes with proper acknowledgement. While every care is taken to ensure the accuracy of this publication, the UP TCAGP disclaims all responsibility and all liability (including without limitation, liability in negligence) and costs which might incur as a result of the materials in this publication being inaccurate or incomplete in any way and for any reason.

For questions/queries regarding this report, contact:

Engr. Florentino Morales, Jr.

Project Leader, PHIL-LiDAR 1 Program Visayas State University Baybay, Leyte, Philippines 6521 E-mail: ffmorales_jr@yahoo.com

Enrico C. Paringit, Dr. Eng.

Program Leader, PHIL-LiDAR 1 Program University of the Philippines Diliman Quezon City, Philippines 1101 E-mail: ecparingit@up.edu.ph

National Library of the Philippines ISBN: 978-621-430-199-7

TABLE OF CONTENTS

List of Tables	v
List of Figures	ix
List of Acronyms and Abbreviations	xii
CHAPTER 1' OVERVIEW OF THE PROGRAM AND CATUBIG RIVER	1
1.1 Background of the Phil-LiDAR 1 Program	
1.1 Duckground of the Catubig River Basin	<u>+</u> 1
CHADTER 2. LIDAR DATA ACOULISITION OF THE CATURIG FLOODDI AIN	2
2 1 Elight Plans	3
2.2 Fight Fidits	5 6
2.2 Ground base Stations	0
	1J 17
	⊥/ 10
2 1 Overview of the LIDAR Data Dre Drocossing	10
2.2 Transmittal of Acquired LiDAR Data	19 0C
2.2 Trainstant Computation	20
2.4 LiDAB Doint Cloud Computation	20 22
2.5 LiDAR Point Cloud Computation	Z5
2. C LiDAR Data Quality Checking	24
3.6 LIDAR Point Cloud Classification and Rasterization	29
3.7 LIDAR Image Processing and Orthophotograph Rectification	31
3.8 DEIVI Editing and Hydro-Correction	
3.9 Mosaicking of Blocks	34
3.10 Calibration and Validation of Mosaicked LIDAR DEM	36
3.11 Integration of Bathymetric Data into the LiDAR Digital Terrain Model	40
3.12 Feature Extraction	42
3.12.1 Quality Checking of Digitized Features' Boundary	42
3.12.2 Height Extraction	42
3.12.3 Feature Attribution	43
3.12.4 Final Quality Checking of Extracted Features	45
CHAPTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE CATUBIG RIVER BASIN	46
4.1 Summary of Activities	46
4.2 Control Survey	48
4.3 Baseline Processing.	56
4.4 Network Adjustment	57
4.5 Cross-section and Bridge As-Built Survey and Water Level Marking	60
4.6 Validation Points Acquisition Survey	/4
4. / Bathymetric Survey	/5
CHAPTER 5: FLOOD MODELING AND MAPPING	83
5.1 Data Used for Hydrologic Modeling	83
5.1.1 Hydrometry and Rating Curves	83
5.1.2 Precipitation	83
5.1.3 Rating Curves and River Outflow	84
5.2 RIDF Station	86
5.3 HMS Model	88
5.4 Cross-section Data	92
5.5 Flo 2D Model	93
5.6 Results of HMS Calibration	94
5.7 Calculated outflow hydrographys and Discharge values for different rainfall return periods	96
5.7.1 Hydrograph using the Rainfall Runoff Model	96
5.8 River Analysis (RAS) Model Simulation	97
5.9 Flow Depth and Flood Hazard	99
5.10 Inventory of Areas Exposed to Flooding of Affected Areas	106
5.11 Flood Validation	185
REFERENCES	188
ANNEXES	189
Annex 1. Technical Specifications of the LiDAR Sensors used in the Catubig Floodplain Survey.	
	189
Annex 2. NAMRIA Certification of Reference Points used in the LiDAR Survey	189 191
Annex 2. NAMRIA Certification of Reference Points used in the LiDAR Survey Annex 3. Baseline Processing Reports of Control Points used in the LiDAR Survey	189 191 194
Annex 2. NAMRIA Certification of Reference Points used in the LiDAR Survey Annex 3. Baseline Processing Reports of Control Points used in the LiDAR Survey Annex 4. The LiDAR Survey Team Composition	189 191 194 201

Annex 6. Flight Logs for the Flight Missions	210
Annex 7. Flight Status Reports	240
Annex 8. Mission Summary Reports	271
Annex 9. Catubig Model Basin Parameters	406
Annex 10. Catubig Model Reach Parameters	408
Annex 11. Catubig Field Validation Points	409
Annex 12. Educational Institutions Affected by Flooding in Catubig Floodplain	416
Annex 13. Medical Institutions Affected by Flooding in Catubig Floodplain	422

LIST OF TABLES

	2
lable 1. Flight planning parameters for the Aquarius LIDAR system	3
lable 2. Flight planning parameters for the Gemini LiDAR system	4
Table 3. Details of the recovered NAMRIA horizontal control point SMN-16, used as a base	
station for the LiDAR acquisition	7
Table 4. Details of the recovered NAMRIA horizontal control point SMN-12, used as a base	
station for the LiDAR acquisition	8
Table 5. Details of the recovered NAMRIA horizontal control point SMN-22, used as a base	
station for the LiDAR acquisition	9
Table 6. Details of the recovered NAMRIA horizontal control point SMN-3378 used as a base	
station for the LiDAR acquisition, with processed coordinates	10
Table 7. Details of the recovered NAMPIA vertical control point NS 21. used as a base	10
station for the LiDAD acquisition, with actablished apardinates	10
Station for the LIDAR acquisition, with established coordinates	. 10
Table 8. Details of the recovered NAIVIRIA Vertical control point NS-100, used as a base	
station for the LiDAR acquisition, with established coordinates	11
Table 9. Details of the recovered NAMRIA vertical control point NS-61, used as a base	
station for the LiDAR acquisition, with established coordinates	. 12
Table 10. Details of the recovered NAMRIA vertical control point CMN-01, used as a base	
station for the LiDAR acquisition, with established coordinates	. 13
Table 11. Details of the recovered NAMRIA vertical control point CMN-03, used as a base	
station for the LiDAR acquisition, with established coordinates	13
Table 12. Ground control points used during the LiDAR data acquisition	. 14
Table 13 Elight missions for the LiDAR data acquisition in the Catubig floodnlain	15
Table 14. Actual parameters used during the LiDAR data acquisition	16
Table 14. Actual parameters used during the LiDAN data acquisition	17
Table 15. List of municipalities and cities surveyed during the Catubig hoodplain LiDAR survey	1/
Table 10. Self-Calibration results for the Calubig nights	23
Table 17. List of LiDAR blocks for the Catubig floodplain	25
lable 18. Catubig classification results in TerraScan	29
Table 19. LiDAR blocks with their corresponding areas	32
Table 20. Shift values of each LiDAR block of the Catubig floodplain	34
Table 21. Calibration statistical measures	. 38
Table 22. Validation statistical measures	. 39
Table 23. Quality checking ratings for the Catubig building features	42
Table 24. Building features extracted for the Catubig floodplain	. 43
Table 25. Total length of extracted roads for the Catubig floodplain	43
Table 26. Number of extracted water bodies for the Catubig floodplain	44
Table 27. List of reference and control points occupied for the Catubig River Survey	49
Table 28. Baseline processing summary report for the Catubig River survey	.56
Table 29 Constraints applied to the adjustments of the control points	57
Table 30. Adjusted grid coordinates for the control points used in the Catubig floodolain survey	58
Table 31. Adjusted geodetic coordinates for control points used in the Catubig Roodplain survey	
validation	FO
Valluation	. 59
Table 22. Defense and existent resists used in the Catulais Diver Statis Company with their	
Table 32. Reference and control points used in the Catubig River Static Survey, with their	F0
Table 32. Reference and control points used in the Catubig River Static Survey, with their corresponding locations (Source: NAMRIA, UP-TCAGP) Table 32. Reference and control points used in the Catubig River Static Survey, with their corresponding locations (Source: NAMRIA, UP-TCAGP)	. 59
Table 32. Reference and control points used in the Catubig River Static Survey, with their corresponding locations (Source: NAMRIA, UP-TCAGP)Table 33. RIDF values for the Catarman Rain Gauge, computed by PAGASA	. 59 . 86
 Table 32. Reference and control points used in the Catubig River Static Survey, with their corresponding locations (Source: NAMRIA, UP-TCAGP) Table 33. RIDF values for the Catarman Rain Gauge, computed by PAGASA Table 34. Range of calibrated values for the Catubig River Basin model 	59 86 95
 Table 32. Reference and control points used in the Catubig River Static Survey, with their corresponding locations (Source: NAMRIA, UP-TCAGP) Table 33. RIDF values for the Catarman Rain Gauge, computed by PAGASA Table 34. Range of calibrated values for the Catubig River Basin model Table 35. Summary of the efficiency test of the Catubig HMS Model 	59 86 95 96
 Table 32. Reference and control points used in the Catubig River Static Survey, with their corresponding locations (Source: NAMRIA, UP-TCAGP) Table 33. RIDF values for the Catarman Rain Gauge, computed by PAGASA Table 34. Range of calibrated values for the Catubig River Basin model Table 35. Summary of the efficiency test of the Catubig HMS Model Table 36. Peak values of the Catubig HEC-HMS Model outflow, using the Tacloban RIDF 	59 86 95 96 97
 Table 32. Reference and control points used in the Catubig River Static Survey, with their corresponding locations (Source: NAMRIA, UP-TCAGP) Table 33. RIDF values for the Catarman Rain Gauge, computed by PAGASA Table 34. Range of calibrated values for the Catubig River Basin model Table 35. Summary of the efficiency test of the Catubig HMS Model Table 36. Peak values of the Catubig HEC-HMS Model outflow, using the Tacloban RIDF Table 37. Municipalities affected in the Catubig floodplain 	59 86 95 96 97 99
 Table 32. Reference and control points used in the Catubig River Static Survey, with their corresponding locations (Source: NAMRIA, UP-TCAGP) Table 33. RIDF values for the Catarman Rain Gauge, computed by PAGASA Table 34. Range of calibrated values for the Catubig River Basin model Table 35. Summary of the efficiency test of the Catubig HMS Model Table 36. Peak values of the Catubig HEC-HMS Model outflow, using the Tacloban RIDF Table 37. Municipalities affected in the Catubig floodplain Table 38. Affected areas in Jipapad, Eastern Samar during a 5-year rainfall return period 	59 86 95 96 97 99 106
 Table 32. Reference and control points used in the Catubig River Static Survey, with their corresponding locations (Source: NAMRIA, UP-TCAGP) Table 33. RIDF values for the Catarman Rain Gauge, computed by PAGASA Table 34. Range of calibrated values for the Catubig River Basin model Table 35. Summary of the efficiency test of the Catubig HMS Model Table 36. Peak values of the Catubig HEC-HMS Model outflow, using the Tacloban RIDF Table 37. Municipalities affected in the Catubig floodplain Table 38. Affected areas in Jipapad, Eastern Samar during a 5-year rainfall return period 	59 86 95 96 97 99 106 108
 Table 32. Reference and control points used in the Catubig River Static Survey, with their corresponding locations (Source: NAMRIA, UP-TCAGP) Table 33. RIDF values for the Catarman Rain Gauge, computed by PAGASA Table 34. Range of calibrated values for the Catubig River Basin model Table 35. Summary of the efficiency test of the Catubig HMS Model Table 36. Peak values of the Catubig HEC-HMS Model outflow, using the Tacloban RIDF Table 37. Municipalities affected in the Catubig floodplain Table 38. Affected areas in Jipapad, Eastern Samar during a 5-year rainfall return period Table 40. Affected areas in Catubig, Northern Samar during a 5-year rainfall return period 	59 86 95 96 97 99 106 108 108
 Table 32. Reference and control points used in the Catubig River Static Survey, with their corresponding locations (Source: NAMRIA, UP-TCAGP)	59 86 95 96 97 99 106 108 108 109
 Table 32. Reference and control points used in the Catubig River Static Survey, with their corresponding locations (Source: NAMRIA, UP-TCAGP)	59 95 95 97 99 106 108 108 109 109
 Table 32. Reference and control points used in the Catubig River Static Survey, with their corresponding locations (Source: NAMRIA, UP-TCAGP)	59 96 95 97 99 106 108 108 109 109
 Table 32. Reference and control points used in the Catubig River Static Survey, with their corresponding locations (Source: NAMRIA, UP-TCAGP)	59 96 97 99 106 108 109 109 110 115
 Table 32. Reference and control points used in the Catubig River Static Survey, with their corresponding locations (Source: NAMRIA, UP-TCAGP)	59 95 96 97 99 106 108 109 109 110 115
 Table 32. Reference and control points used in the Catubig River Static Survey, with their corresponding locations (Source: NAMRIA, UP-TCAGP)	59 96 97 99 106 108 109 109 110 115
 Table 32. Reference and control points used in the Catubig River Static Survey, with their corresponding locations (Source: NAMRIA, UP-TCAGP)	59 86 95 96 97 106 108 109 109 110 115 115
 Table 32. Reference and control points used in the Catubig River Static Survey, with their corresponding locations (Source: NAMRIA, UP-TCAGP). Table 33. RIDF values for the Catarman Rain Gauge, computed by PAGASA. Table 34. Range of calibrated values for the Catubig River Basin model. Table 35. Summary of the efficiency test of the Catubig HMS Model. Table 36. Peak values of the Catubig HEC-HMS Model outflow, using the Tacloban RIDF	59 95 95 97 99 106 108 109 109 110 115 115 116 116
 Table 32. Reference and control points used in the Catubig River Static Survey, with their corresponding locations (Source: NAMRIA, UP-TCAGP)	59 95 96 97 99 106 108 109 109 110 115 116 116 119

Table 50. Affected areas in Las Navas, Northern Samar during a 5-year rainfall return period......119 Table 51. Affected areas in Las Navas, Northern Samar during a 5-year rainfall return period......120 Table 52. Affected areas in Las Navas, Northern Samar during a 5-year rainfall return period......120 Table 53. Affected areas in Las Navas, Northern Samar during a 5-year rainfall return period......120 Table 54. Affected areas in Las Navas, Northern Samar during a 5-year rainfall return period......121 Table 55. Affected areas in Mapanas, Northern Samar during a 5-year rainfall return period124 Table 61. Affected areas in Silvino Lobos, Northern Samar during a 5-year rainfall return period131 Table 69. Affected areas in Laoang, Northern Samar during a 25-year rainfall return period......140 Table 70. Affected areas in Laoang, Northern Samar during a 25-year rainfall return period......140 Table 71. Affected areas in Laoang, Northern Samar during a 25-year rainfall return period......141 Table 72. Affected areas in Laoang, Northern Samar during a 25-year rainfall return period......141 Table 73. Affected areas in Las Navas, Northern Samar during a 25-year rainfall return period......144 Table 74. Affected areas in Las Navas, Northern Samar during a 25-year rainfall return period......144 Table 76. Affected areas in Las Navas, Northern Samar during a 25-year rainfall return period......145 Table 77. Affected areas in Las Navas, Northern Samar during a 25-year rainfall return period......145 Table 79. Affected areas in Las Navas, Northern Samar during a 25-year rainfall return period.............146 Table 81. Affected areas in Palapag, Northern Samar during a 25-year rainfall return period......151 Table 82. Affected areas in Palapag, Northern Samar during a 25-year rainfall return period......151 Table 83. Affected areas in Palapag, Northern Samar during a 25-year rainfall return period......152 Table 84. Affected areas in Palapag, Northern Samar during a 25-year rainfall return period......152 Table 86. Affected areas in Silvino Lobos, Northern Samar during a 25-year rainfall return period 156 Table 87. Affected areas in Matuguinao, Samar during a 25-year rainfall return period157 Table 88. Affected areas in Jipapad, Eastern Samar during a 100-year rainfall return period......158 Table 90. Affected areas in Catubig, Northern Samar during a 100-year rainfall return period......159 Table 91. Affected areas in Catubig, Northern Samar during a 100-year rainfall return period......160 Table 93. Affected areas in Catubig, Northern Samar during a 100-year rainfall return period......161 Table 95. Affected areas in Laoang, Northern Samar during a 100-year rainfall return period......165 Table 97. Affected areas in Laoang, Northern Samar during a 100-year rainfall return period......166 Table 98. Affected areas in Las Navas, Northern Samar during a 100-year rainfall return period............169 Table 99. Affected areas in Las Navas, Northern Samar during a 100-year rainfall return period............169 Table 100. Affected areas in Las Navas, Northern Samar during a 100-year rainfall return period....... 169 Table 101. Affected areas in Las Navas, Northern Samar during a 100-year rainfall return period.......170 Table 102. Affected areas in Las Navas, Northern Samar during a 100-year rainfall return period....... 170 Table 103. Affected areas in Las Navas, Northern Samar during a 100-year rainfall return period....... 170 Table 104. Affected areas in Las Navas, Northern Samar during a 100-year rainfall return period.......171 Table 105. Affected areas in Mapanas, Northern Samar during a 100-year rainfall return period174 Table 108. Affected areas in Palapag, Northern Samar during a 100-year rainfall return period............176 Table 109. Affected areas in Palapag, Northern Samar during a 100-year rainfall return period............177 Table 110. Affected areas in Pambujan, Northern Samar during a 100-year rainfall return period 180 Table 111. Affected areas in Silvino Lobos, Northern Samar during a 100-year rainfall return period ... 181

Table 113. Area covered by each warning level, with respect to the rainfall sce	enario184
Table 114. Actual flood depth vs. simulated flood depth in the Catubig floodp	lain187
Table 115. Summary of Accuracy Assessment in the Catubig River Basin	

LIST OF FIGURES

Figure 1. Location man of the Catultic Diver Dasin (in Argun)	h
Figure 1. Location map of the Catubig River Basin (in brown)	Z
Figure 2. Flight plans and base stations used to cover the Catubig floodplain survey	5
Figure 3. (a) GPS set-up over Sivin-16, situated inside the basketball court in Barangay Bagasbas,	
Municipality of Mondragon; and (b) NAMIRIA reference point SMN-16, as recovered	-
by the field team	/
Figure 4. (a) GPS set-up over Sivin-12, located inside a school in the infunicipality of Monuragon;	•
and (b) NAIVIRIA reference point SIVIN-12, as recovered by the field team	ð
Figure 5. (a) GPS set-up over SiviN-22, located in Barangay Simora Elementary School, Northern	~
Samar; and (b) NAMIRIA reference point SMIN-22, as recovered by the field team	9
Figure 6. (a) GPS set-up over NS-100, situated in the Geratag Bridge 1, Northern Samar; and	
(b) NAIVIRIA reference point NS-100, as recovered by the field team	. 11
Figure 7. (a) NS-61, as situated in the Muyaw Bridge, Mondragon, Northern Samar; and (b) NAMIRIA	40
reference point NS-61, as recovered by the field team	. 12
Figure 8. Actual LiDAR survey coverage of the Catubig floodplain	. 18
Figure 9. Schematic diagram for the Data Pre-Processing Component	. 20
Figure 10. Smoothed Performance Metric Parameters of Catubig Flight 8182AC	. 21
Figure 11. Solution Status Parameters of Catubig Flight 8182AC	. 22
Figure 12. The best estimated trajectory conducted over the Catubig floodplain	. 23
Figure 13. Boundaries of the processed LIDAR data over the Catubig floodplain	. 24
Figure 14. Image of data overlap for the Catubig floodplain	. 26
Figure 15. Pulse density map of merged LiDAR data for the Catubig floodplain	. 27
Figure 16. Elevation difference map between flight lines for the Catubig floodplain	. 28
Figure 17. Quality checking for Catubig flight 8182AC, using the Profile Tool of QT Modeler	. 29
Figure 18. (a) files for Catubig floodplain, and (b) classification results in TerraScan	. 30
Figure 19. Point cloud (a) before and (b) after classification	. 30
Figure 20. The production of (a) last return DSM and (b) DTM, (c) first return DSM and (d)	24
secondary DTM in some portion of the Catubig floodplain	. 31
Figure 21. Portions in the DTW of the Catubig floodplain – a bridge (a) before and (b) after manual	22
editing; and a road (c) before and (d) after data retrieval	. 33
Figure 22. Map of processed LIDAR data for the Catubig Hoodplain	. 35
Figure 23. Map of the Catubig floodplain, with the validation survey points in green	. 3/
Figure 24. Correlation plot between the validation survey points and the LiDAR data	. 38
Figure 25. Correlation plot between the valuation survey points and the LiDAR data	. 33
Figure 20. Map of the Catubig hoouplan, with bathymetric survey points in blue	.41 12
Figure 27. Diocks (in Dide) of Catubig Dunuing reactives that were subjected to QC	.42
Figure 20. Extracted reactives for the Catubig floouplain	. 45
LiDAR data validation survey (in red)	17
Figure 30 Catubig River static survey extent	.47 //9
Figure 31, GNSS receiver set-up, Trimble® SPS 882 at SMN-18, located inside Nepita Elementary	. 45
School in Barangay Nenita, Municipality of Mondragon, Northern Samar	50
Figure 32 GNSS hase set-up. Trimble [®] SPS 852 at NS-26. located near the approach of the	
Paticua Bridge in Barangay Polangi, Municipality of Catarman, Northern Samar	51
Figure 33, GNSS receiver set-up, Trimble® SPS 985 at NS-55, located at the approach of the	
Mondragon Bridge in Barangay Eco Poblacion, Municipality of Mondragon, Northern	
Samar	. 52
Figure 34. GNSS receiver set-up. Trimble [®] SPS 985 at NS-73. located at the approach of the	
Pambujan Bridge, in Barangay Dale, Municipality of San Roque, Northern Samar	. 53
Figure 35. GNSS receiver set-up. Trimble [®] SPS 882 at NS-81, located at the approach of the	
Burabod Bridge in Barangay Burabud, Municipality of Laoang, Northern Samar	. 54
Figure 36. GNSS receiver set-up. Trimble [®] SPS 852 at SMN-22. located at Simora Elementary	_
School in Barangay Simora, Municipality of Laoang, Northern Samar	. 55
Figure 37. Downstream side of the Rauis Bridge	. 60
Figure 38. As-built survey of the Rauis Bridge	. 60
Figure 39. Cross-section survey of the Rauis Bridge	. 61
Figure 40. Location map of the Rauis Bridge cross-section	. 62
Figure 41. Rauis Bridge cross-section diagram	. 63
Figure 42. Rauis Bridge data form	. 64
Figure 43. Las Navas Bridge, facing upstream	. 65
Figure 44. Cross-section survey for the Las Navas Bridge	. 66
Figure 45. As-Built survey of the Las Navas Bridge	. 66
Figure 46. Location map of the Las Navas Bridge cross-section	. 67
Figure 47. Las Navas Bridge cross-section diagram	. 68

Figure 48. Las Navas Bridge data form	69
Figure 49. Laoang cross-section area	70
Figure 50. Laoang cross-section survey	70
Figure 51. Laoang tributary cross-section	71
Figure 52. Water surface elevation markings on the riprap of the Catubig River	72
Figure 53. Water level markings on a house beside the Catubig River	73
Figure 54. Validation points acquisition survey set-up along the Catubig River Basin	74
Figure 55. Extent of the LiDAR ground validation survey of the Catubig River Basin	75
Figure 56. Bathymetric survey at the Catubig River using Hi-Target™ Echo Sounder	76
Figure 57. Extent of the bathymetric survey of the Catubig River	//
Figure 56. Catubig riverbed profile, in the midstream portion	70
Figure 59. Catubig riverbed profile, in the mustream portion	79 20
Figure 61. Catubig riverbed profile, in the Looang tributary	80 81
Figure 62 Catubig riverbed profile in the Bauis tributary	82
Figure 63. Location map of the Catubig HEC-HMS model, which was used for calibration	84
Figure 64. Cross-section plot of the Las Navas Bridge	85
Figure 65. Rating curve at the Las Navas Bridge	85
Figure 66. Rainfall and outflow data at the Las Navas Bridge, which were used for modeling	86
Figure 67. Location of the Catarman RIDF station, relative to the Catubig River Basin	87
Figure 68. Synthetic storm generated from a 24-hour period rainfall, for various return periods	87
Figure 69. Soil map of the Catubig River Basin (Source: DA)	88
Figure 70. Land cover map of the Catubig River Basin (Source: NAMRIA)	89
Figure 71. Slope map of the Catubig River Basin	90
Figure 72. Stream delineation Map of Catubig River Basin	91
Figure 73. The Catubig River Basin model, generated using HEC-HMS	92
Figure 74. River cross-section of the Catubig River, generated through the Arciviap HEC GeoRAS	02
Figure 75 A screenshot of a sub-catchment, with the computational area to be modeled	93
in the FLO-2D GDS Pro	94
Figure 76. Outflow hydrograph of the Catubig Bridge generated in the HEC-HMS model,	
compared with observed outflow	95
Figure 77. Outflow hydrograph at the Catubig Station generated using the Tacloban RIDF,	
simulated in HEC-HMS	97
Figure 78. Sample output map of the Catubig RAS Model	98
Figure 79. 100-year flow donth man for the Catubig floodplain	100
Figure 80. 100-year flood bazard map for the Catubig floodplain	101
Figure 82, 25-year flow denth man for the Catubig floodplain	102
Figure 83, 5-year flood hazard map for the Catubig floodplain	104
Figure 84, 5-year flow depth map for the Catubig floodplain	105
Figure 85. Affected areas in Jipapad, Eastern Samar during a 5-year rainfall return period	107
Figure 86. Affected areas in Catubig, Northern Samar during a 5-year rainfall return period	111
Figure 87. Affected areas in Catubig, Northern Samar during a 5-year rainfall return period	112
Figure 88. Affected areas in Catubig, Northern Samar during a 5-year rainfall return period	112
Figure 89. Affected areas in Catubig, Northern Samar during a 5-year rainfall return period	113
Figure 90. Affected areas in Catubig, Northern Samar during a 5-year rainfall return period	113
Figure 91. Affected areas in Laoang, Northern Samar during a 5-year rainfall return period	117
Figure 92. Affected areas in Laoang, Northern Samar during a 5-year rainfall return period	11/
Figure 93. Affected areas in Lacang, Northern Samar during a 5-year rainfall return period	118
Figure 94. Affected areas in Labang, Northern Samar during a 5-year rainfall return period	118
Figure 95. Affected areas in Las Navas, Northern Samar during a 5-year rainfall return period	121
Figure 90. Affected areas in Las Navas, Northern Samar during a 5-year rainfall return period	122
Figure 98. Affected areas in Las Navas, Northern Samar during a 5-year rainfall return period	122
Figure 99. Affected areas in Las Navas, Northern Samar during a 5-year rainfall return period	123
Figure 100. Affected areas in Las Navas. Northern Samar during a 5-year rainfall return period	124
Figure 101. Affected areas in Mapanas, Northern Samar during a 5-year rainfall return period	125
Figure 102. Affected areas in Palapag, Northern Samar during a 5-year rainfall return period	128
Figure 103. Affected areas in Palapag, Northern Samar during a 5-year rainfall return period	128
Figure 104. Affected areas in Palapag, Northern Samar during a 5-year rainfall return period	129
Figure 105. Affected areas in Palapag, Northern Samar during a 5-year rainfall return period	129
Figure 106. Affected areas in Pambujan, Northern Samar during a 5-year rainfall return period	130
Figure 107. Affected areas in Silvino Lobos, Northern Samar during a 5-year rainfall return period	131
Figure Tux, Attected proof in Maturunae, Samar during a Event raintall return period	
Figure 100. Affected areas in Matuguniao, Santa during a S-year faimain feturin period	132

Figure 110. Affected areas in Catubig, Northern Samar during a 25-year rainfall return period
Figure 111. Affected areas in Catubig, Northern Samar during a 25-year rainfail return period
Figure 112. Affected areas in Catubig, Northern Samar during a 25-year rainfail return period
Figure 113. Affected areas in Catubig, Northern Samar during a 25-year rainfall return period
Figure 114. Affected areas in Catubig, Northern Samar during a 25-year rainfall return period
Figure 115. Affected areas in Laoang, Northern Samar during a 25-year rainfall return period
Figure 116. Affected areas in Laoang, Northern Samar during a 25-year rainfall return period
Figure 117. Affected areas in Laoang, Northern Samar during a 25-year rainfall return period
Figure 118. Affected areas in Laoang, Northern Samar during a 25-year rainfall return period
Figure 119. Affected areas in Las Navas, Northern Samar during a 25-year rainfall return period 147
Figure 120. Affected areas in Las Navas, Northern Samar during a 25-year rainfall return period 147
Figure 121. Affected areas in Las Navas, Northern Samar during a 25-year rainfall return period 148
Figure 122. Affected areas in Las Navas, Northern Samar during a 25-year rainfall return period 148
Figure 123. Affected areas in Las Navas, Northern Samar during a 25-year rainfall return period 149
Figure 124. Affected areas in Las Navas, Northern Samar during a 25-year rainfall return period 149
Figure 125. Affected areas in Mapanas, Northern Samar during a 25-year rainfall return period 150
Figure 126. Affected areas in Palapag, Northern Samar during a 25-year rainfall return period
Figure 127. Affected areas in Palapag, Northern Samar during a 25-year rainfall return period
Figure 128. Affected areas in Palapag, Northern Samar during a 25-year rainfall return period
Figure 129. Affected areas in Palapag. Northern Samar during a 25-year rainfall return period
Figure 130. Affected areas in Pambuian. Northern Samar during a 25-year rainfall return period 155
Figure 131. Affected areas in Silvino Lobos. Northern Samar during a 25-year rainfall return
neriod 156
Figure 132 Affected areas in Matuguinao. Samar during a 25-year rainfall return period.
Figure 133 Affected areas in linanad Eastern Samar during a 100-year rainfall return period
Figure 134. Affected areas in Catubig. Northern Samar during a 100 year rainfall return period
Figure 135. Affected areas in Catubig, Northern Samar during a 100 year rainfall return period
Figure 135. Affected areas in Catubig, Northern Samar during a 100-year rainfall return period
Figure 130. Affected areas in Catubig, Northern Samar during a 100-year rainfall return period
Figure 157. Affected areas in Catubig, Northern Samar during a 100-year rainfall return period
Figure 138. Affected areas in Catubig, Northern Samar during a 100-year rainfall return period
Figure 139. Affected areas in Laoang, Northern Samar during a 100-year rainfall return period
Figure 140. Affected areas in Laoang, Northern Samar during a 100-year rainfail return period
Figure 141. Affected areas in Laoang, Northern Samar during a 100-year rainfall return period
Figure 142. Affected areas in Laoang, Northern Samar during a 100-year rainfail return period
Figure 143. Affected areas in Las Navas, Northern Samar during a 100-year rainfall return period 1/1
Figure 144. Affected areas in Las Navas, Northern Samar during a 100-year rainfall return period 172
Figure 145. Affected areas in Las Navas, Northern Samar during a 100-year rainfall return period 172
Figure 146. Affected areas in Las Navas, Northern Samar during a 100-year rainfall return period 173
Figure 147. Affected areas in Las Navas, Northern Samar during a 100-year rainfall return period 173
Figure 148. Affected areas in Las Navas, Northern Samar during a 100-year rainfall return period 174
Figure 149. Affected areas in Mapanas, Northern Samar during a 100-year rainfall return period 175
Figure 150. Affected areas in Palapag, Northern Samar during a 100-year rainfall return period 178
Figure 151. Affected areas in Palapag, Northern Samar during a 100-year rainfall return period 178
Figure 152. Affected areas in Palapag, Northern Samar during a 100-year rainfall return period 179
Figure 153. Affected areas in Palapag, Northern Samar during a 100-year rainfall return period 179
Figure 154. Affected areas in Pambujan, Northern Samar during a 100-year rainfall return period 181
Figure 155. Affected areas in Silvino Lobos, Northern Samar during a 100-year rainfall return
period
Figure 156. Affected areas in Matuguinao, Samar during a 100-year rainfall return period
Figure 157. Validation points for the 100-year flood depth map of the Catubig floodplain
Figure 158. Flood map depth vs. actual flood depth
0

*	
AAC	Asian Aerospace Corporation
Ab	abutment
ALTM	Airborne LiDAR Terrain Mapper
ARG	automatic rain gauge
AWLS	Automated Water Level Sensor
BA	Bridge Approach
BM	benchmark
BSWM	Bureau of Soils and Water Management
CAD	Computer-Aided Design
CN	Curve Number
CSRS	Chief Science Research Specialist
DA	Department of Agriculture
DAC	Data Acquisition Component
DEM	Digital Elevation Model
DENR	Department of Environment and Natural Resources
DOST	Department of Science and Technology
DPPC	Data Pre-Processing Component
DREAM	Disaster Risk and Exposure Assessment for Mitigation [Program]
DRRM	Disaster Risk Reduction and Management
DSM	Digital Surface Model
DTM	Digital Terrain Model
DVBC	Data Validation and Bathymetry Component
FMC	Flood Modeling Component
FOV	Field of View
GiA	Grants-in-Aid
GCP	Ground Control Point
GNSS	Global Navigation Satellite System
GPS	Global Positioning System
HEC-HMS	Hydrologic Engineering Center - Hydrologic Modeling System
HEC-RAS	Hydrologic Engineering Center - River Analysis System
НС	High Chord
HONS	H.O. Noveloso Surveying
IDW	Inverse Distance Weighted [interpolation method]
IMU	Inertial Measurement Unit
kts	knots
LAS	LiDAR Data Exchange File format
LC	Low Chord

LGU	local government unit
Lidar	Light Detection and Ranging
LMS	LiDAR Mapping Suite
m AGL	meters Above Ground Level
MMS	Mobile Mapping Suite
MSL	mean sea level
NAMRIA	National Mapping and Resource Information Authority
NSTC	Northern Subtropical Convergence
PAF	Philippine Air Force
PAGASA	Philippine Atmospheric Geophysical and Astronomical Services Administration
PDOP	Positional Dilution of Precision
РРК	Post-Processed Kinematic [technique]
PRF	Pulse Repetition Frequency
PSA	Philippine Statistics Authority
PTM	Philippine Transverse Mercator
QC	Quality Check
QT	Quick Terrain [Modeler]
RA	Research Associate
RBCO	River Basin Control Office
RIDF	Rainfall-Intensity-Duration- Frequency
RMSE	Root Mean Square Error
SAR	Synthetic Aperture Radar
SCS	Soil Conservation Service
SRTM	Shuttle Radar Topography Mission
SRS	Science Research Specialist
SSG	Special Service Group
ТВС	Thermal Barrier Coatings
UP-TCAGP	University of the Philippines – Training Center for Applied Geodesy and Photogrammetry
UTM	Universal Transverse Mercator
VSU	Visayas State University
WGS	World Geodetic System

LIST OF ACRONYMS AND ABBREVIATIONS

CHAPTER 1: OVERVIEW OF THE PROGRAM AND CATUBIG RIVER

Enrico C. Paringit, Dr. Eng., Dr. George Puno, and Eric Bruno

1.1 Background of the Phil-LiDAR 1 Program

The University of the Philippines Training Center for Applied Geodesy and Photogrammetry (UP-TCAGP) launched a research program in 2014 entitled "Nationwide Hazard Mapping using LiDAR" or Phil-LiDAR 1, supported by the Department of Science and Technology (DOST) Grants-in-Aid (GiA) Program. The program was primarily aimed at acquiring a national elevation and resource dataset at a sufficient resolution to produce information necessary to support the different phases of disaster management. Particularly, it targeted to operationalize the development of flood hazard models that would produce updated and detailed flood hazard maps for the major river systems in the country.

The program was also aimed at producing an up-to-date and detailed national elevation dataset suitable for a 1:5,000 scale mapping, with 50 cm and 20 cm horizontal and vertical accuracies, respectively. These accuracies were achieved through the use of the state-of-the-art Light Detection and Ranging (LiDAR) airborne technology procured by the project through the DOST. The methods applied in this report are thoroughly described in a separate publication entitled "Flood Mapping of Rivers in the Philippines Using Airborne LiDAR: Methods" (Paringit, et. al., 2017), available separately.

The implementing partner university for the Phil-LiDAR 1 Program is the Visayas State University (VSU). VSU is in charge of processing LiDAR data and conducting data validation reconnaissance, cross section, bathymetric survey, validation, river flow measurements, flood height and extent data gathering, flood modeling, and flood map generation for the twenty-eight (28) river basins in the Eastern Visayas Region. The university is located in Baybay City in the province of Leyte.

1.2 Overview of the Catubig River Basin

The Catubig River Basin covers three (3) municipalities in the province of Northern Samar – Catubig, Laoang, and Las Navas; and the Municipality of Matuguinao in the province of Samar. It also covers some portions of the Municipalities of Pambujan, Silvino Lobos, and Palapag in Northern Samar; and some portions of the Municipalities of San Jose de Buan, Maslog, and Jipapad in Samar. The Department of Environment and Natural Resources (DENR) River Basin Control Office (RCBO) states that the Catubig River Basin has a drainage area of 688km², and an estimated 1,037 cubic meters (MCM) in annual run-off (RCBO, 2015). The basin's main stem, the Catubig River, is among the twenty-eight (28) river systems in the Eastern Visayas Region.

Figure 1. Location map of the Catubig River Basin (in brown)

According to the 2015 national census of the Philippine Statistics Authority (PSA), the total population of residents within the immediate vicinity of the river is 25,219 persons, are distributed among barangays Guibwangan, Canuctan, Calingan, 2 (Poblacion), 7 (Poblacion), 8 (Poblacion), Viena Maria, Hiparayan, D. Mercader, Opong, Tangbo, and Lenoyahan in the Municipality of Catubig; and barangays Cagdara-O, Abaton, Simora, Bawang, La Perla, Bongliw, San Antonio, Vigo, Tarusan, Lawaan, Talisay, Baybay, Sangcol, Cagaasan, and Rawis in the Municipality of Laoang.

The major industries fueling the economy of the province include fishing and agriculture. The main products are traditional crops; such as, rice, corn, vegetables, and fruits (National Economic and Development Authority, 2011).

On December 17, 2016, about 7,333 families – consisting of 32,358 individuals – in Northern Samar were displaced by floods spawned by torrential rains (Gabriela, J. & Dejon, R., 2016).

CHAPTER 2: LIDAR DATA ACQUISITION OF THE CATUBIG FLOODPLAIN

Engr. Louie P. Balicanta, Engr. Christopher Cruz, Lovely Gracia Acuña, Engr. Gerome Hipolito, Engr. Christopher L. Joaquin, and Mary Catherine Elizabeth M. Baliguas

The methods applied in this Chapter were based on the DREAM methods manual (Sarmiento, et al., 2014) and further enhanced and updated in Paringit, et al. (2017).

2.1 Flight Plans

To initiate the LiDAR acquisition survey of the Catubig floodplain, the Data Acquisition Component (DAC) created flight plans within the delineated priority area for the floodplain in the province of Northern Samar. These missions were planned for fourteen (14) lines that ran for at most four and a half (4.5) hours, including take-off, landing and turning time. The Aquarius and Gemini LiDAR systems were used for the missions (See Annex 1 for the sensor specifications). The flight planning parameters for the LiDAR system are found in Table 1 and Table 2. Figure 2 illustrates the flight plans for the Catubig floodplain survey.

Block Name	Flying Height (m AGL)	Overlap (%)	Field of View (θ)	Pulse Repetition Frequency (PRF) (kHz)	Scan Frequency (Hz)	Average Speed (kts)	Average Turn Time (Minutes)
BLK33A	500	30	36	50	45	120	5
BLK33B	500	30	36	50	50	120	5
BLK33C	500	30	36	50	45	120	5
BLK33D	500	30	36	50	45	120	5
BLK33H	500	30	36	50	45	120	5
BLK33I	500	30	36	50	45	120	5
BLK33J	500	30	36	50	50	120	5
BLK33K	500	30	36	50	45	120	5
BLK33L	500	30	36	50	45	120	5
BLK33M	500	30	36	50	45	120	5
BLK33N	500	30	36	50	45	120	5
BLK33P	500	30	36	50	45	120	5
BLK33R	500,600	30	36	50	45	120	5
BLK33S	500	30	36	50	45	120	5
BLK33T	500	30	36	50	45	120	5
BLK33V	500	30	36	50	45	120	5
BLK331H	600	30	36	50	45	120	5
BLK331L	600	30	40	50	45	120	5
BLK331N	600	30	36,40	50	45	120	5
BLK331O	600	30	36,40	50	45	120	5
BLK331P	600	30	40	50	45	120	5

Table 1. Flight planning parameters for the Aquarius LiDAR system

Block Name	Flying Height (m AGL)	Overlap (%)	Field of View (θ)	Pulse Repetition Frequency (PRF) (kHz)	Scan Frequency (Hz)	Average Speed (kts)	Average Turn Time (Minutes)
BLK33K	900	30	50	125	40	120	5
BLK33L	900	30	50	125	40	120	5
BLK33E	900	30	50	125	40	120	5
BLK33G	900	30	50	125	40	120	5

Table 2. Flight planning parameters for the Gemini LiDAR system

Figure 2. Flight plans and base stations used to cover the Catubig floodplain survey

2.2 Ground Base Stations

The field team for this undertaking was able to recover three (3) NAMRIA horizontal ground control points: SMN-16 (SMN-19), SMN-22, and SMN-12 which are all of second (2nd) order accuracy. The field team also re-established one (1) ground control point, SMN-3378, a NAMRIA reference point of third 3rd order accuracy. The field team established ground control points CMN-01 and CMN-03. Four (4) NAMRIA benchmarks were recovered: NS-61, NS-81, NS-100, and SI-08, which are all of first (1st) order accuracy. These benchmarks were used as vertical reference points and were also established as ground control points. The certifications for the NAMRIA reference points and benchmarks are found in Annex 2; while the baseline processing reports for the established control points are found in Annex 3. These were used as base stations during the flight operations for the entire duration of the survey, held on February 21-March 9, 2015, and on August 1-28, 2015. The base stations were observed using dual frequency GPS receivers, TOPCON GR5, TRIMBLE SPS 852, and SPS 985. The flight plans and locations of the base stations used during the aerial LiDAR acquisition in the Catubig floodplain are shown in Figure 2. The composition of the project team is provided in Annex 4.

Figure 3 to Figure 7 exhibit the recovered NAMRIA reference points within the area. Table 3 to Table 11 provide the details about the NAMRIA control stations and established points. Table 12 lists all of the ground control points occupied during the acquisition, together with the corresponding dates of utilization.

Figure 3. (a) GPS set-up over SMN-16, situated inside the basketball court in Barangay Bagasbas, Municipality of Mondragon; and (b) NAMRIA reference point SMN-16, as recovered by the field team

Table 3. Details of the recovered NAMRIA horizontal control point SMN-16, used as a base station for the LiDAR acquisition

Station Name	SMN-16		
Order of Accuracy		2 nd	
Relative Error (horizontal positioning)		1 in 50,000	
	Latitude	12°31'32.33268" North	
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Longitude	124° 48'56.69485"East	
	Ellipsoidal Height	5.45500 meters	
Grid Coordinates, Philippine Transverse	Easting	479974.965 meters	
Mercator Zone 5 (PTM Zone 5 PRS 92)	Northing	1385085.603 meters	
	Latitude	12° 31' 27.72792" North	
Geographic Coordinates, World Geodetic	Longitude	124° 49' 1.74020"East	
	Ellipsoidal Height	63.99100 meters	
Grid Coordinates, Universal Transverse Mercator Zone 51 North (UTM 51N PRS 92)	Easting Northing	697302.11 meters 1385272.01 meters	

(a)

Figure 4. (a) GPS set-up over SMN-12, located inside a school in the Municipality of Mondragon; and (b) NAMRIA reference point SMN-12, as recovered by the field team

Table 4. Details of the recovered NAMRIA horizontal control point SMN-12, used as a base station for the LiDAR acquisition

Station Name	SMN-1(2)		
Order of Accuracy	2 nd		
Relative Error (horizontal positioning)		1 in 50,000	
	Latitude	12° 26' 15.70013" North	
Reference of 1992 Datum (PRS 92)	Longitude	124° 19' 13.39605" East	
	Ellipsoidal Height	5.45500 meters	
Grid Coordinates, Philippine Transverse	Easting	426111.163 meters	
Mercator Zone 5 (PTM Zone 5 PRS 92)	Northing	1375444.106 meters	
	Latitude	12° 26' 11.07561" North	
System 1984 Datum (WGS 84)	Longitude	124° 19' 18.45344" East	
	Ellipsoidal Height	64.58200 meters	
Grid Coordinates, Universal Transverse	Easting	643513.56 meters	
Mercator Zone 51 North (UTM 51N PRS 92)	Northing	1375224.53 meters	

(a)

Figure 5. (a) GPS set-up over SMN-22, located in Barangay Simora Elementary School, Northern Samar; and (b) NAMRIA reference point SMN-22, as recovered by the field team

Table 5. Details of the recovered NAMRIA horizontal control point SMN-22, used as a base station for the LiDAR acquisition

Station Name	SMN-22			
Order of Accuracy	2 nd			
Relative Error (horizontal positioning)		1 in 50,000		
	Latitude	12°28'27.20633" North		
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Longitude	125°1'25.36067" East		
	Ellipsoidal Height	-1.70407 meters		
Grid Coordinates, Philippine Transverse	Easting	502577.525meters		
Mercator Zone 5 (PTM Zone 5 PRS 92)	Northing	1379390.508meters		
	Latitude	12°28'22.63174" North		
Geographic Coordinates, World Geodetic	Longitude	125°1'30.408661" East		
	Ellipsoidal Height	57.47400 meters		
Grid Coordinates, Universal Transverse Mercator Zone 51 North (UTM 51N PRS 92)	Easting Northing	719951.32 meters 1379746.87 meters		

Table 6. Details of the recovered NAMRIA horizontal control point SMN-3378, used as a base station for the LiDAR acquisition, with processed coordinates

Station Name	SMN-3378			
Order of Accuracy	2 nd			
Relative Error (horizontal positioning)	1 in 50,000			
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Latitude	12° 26' 01.70620" North		
	Longitude	125° 02' 15.92453" East		
	Ellipsoidal Height	1.514 meters		
Grid Coordinates, Philippine Transverse	Easting	721612.775 meters		
Mercator Zone 5 (PTM Zone 5 PRS 92)	Northing	1375286.867 meters		
	Latitude	12° 26' 57.14186" North		
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Longitude	125° 02' 20.97581" East		
	Ellipsoidal Height	60.832 meters		

Table 7. Details of the recovered NAMRIA vertical control point NS-81, used as a base station for the LiDAR acquisition, with established coordinates

Station Name	NS-81			
Order of Accuracy	2 nd			
Relative Error (horizontal positioning)	1 in 50,000			
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Latitude	12° 32' 56.09555" North		
	Longitude	124° 58' 29.89302" East		
	Ellipsoidal Height	-0.487 meters		
Grid Coordinates, Philippine Transverse	Easting	714590.119 meters		
Mercator Zone 5 (PTM Zone 5 PRS 92)	Northing	1387970.443 meters		
	Latitude	12° 32' 51.49836" North		
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Longitude	124° 58' 34.93490" East		
	Ellipsoidal Height	58.377 meters		

Figure 6. (a) GPS set-up over NS-100, situated in the Geratag Bridge 1, Northern Samar; and (b) NAMRIA reference point NS-100, as recovered by the field team

Table 8. Details of the recovered NAMRIA vertical control point NS-100, used as a base station for the LiDAR acquisition, with established coordinates

Station Name	NS-100			
Order of Accuracy	2 nd			
Relative Error (horizontal positioning)	1 in 50,000			
	Latitude	12° 31' 15.60049" North		
Geographic Coordinates, Philippine Reference	Longitude	124° 30' 47.05130" East		
	Ellipsoidal Height	5.524 meters		
Grid Coordinates, Philippine Transverse	Easting	664407.825 meters		
Mercator Zone 5 (PTM Zone 5 PRS 92)	Northing	1384550.595meters		
	Latitude	12° 31' 10.97151" North		
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Longitude	124° 30' 52.09977" East		
	Ellipsoidal Height	63.332 meters		

Figure 7. (a) NS-61, as situated in the Muyaw Bridge, Mondragon, Northern Samar; and (b) NAMRIA reference point NS-61, as recovered by the field team

Table 9. Details of the recovered NAMRIA vertical control point NS-61, used as a base station for the
LiDAR acquisition, with established coordinates

Station Name	NS-61		
Order of Accuracy		2nd	
Relative Error (horizontal positioning)	1:50,000		
	Latitude	12°31'17.86801" North	
Geographic Coordinates, Philippine	Longitude	124°48'26.40323" East	
Reference of 1992 Datum (PRS 92)	Ellipsoidal Height	5.208 meters	
	Latitude	12°31'13.26354" North	
Geographic Coordinates, World Geodetic	Longitude	124°48'31.44902" East	
System 1984 Datum (WGS 84)	Ellipsoidal Height	63.733 meters	
Grid Coordinates, Philippine Transverse	Easting	696390.555 meters	
Mercator Zone 5 (PTM Zone 5 PRS 92)	Northing	1384821.249 meters	

Table 10. Details of the recovered NAMRIA vertical control point CMN-01, used as a base station for the LiDAR acquisition, with established coordinates

Station Name	CMN-01			
Order of Accuracy	2nd			
Relative Error (horizontal positioning)	1 in 50,000			
	Latitude	12° 29' 53.60604"		
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Longitude	124° 38′ 11.46535″		
	Ellipsoidal Height	12.573 meters		
	Latitude	12° 29' 48.99306" North 124°		
Geographic Coordinates, World Geodetic	Longitude	38' 16.51471" East 70.742		
	Ellipsoidal Height	meters		
Grid Coordinates, Universal Transverse Mercator Zone 51 North (UTM 51N WGS 1984)	Easting Northing	677840.326 meters 1382111.129 meters		

Table 11. Details of the recovered NAMRIA vertical control point CMN-03, used as a base station for the LiDAR acquisition, with established coordinates

Station Name	CMN-03			
Order of Accuracy	2nd			
Relative Error (horizontal positioning)	1	in 50,000		
	Latitude	12° 59′ 56.60839″		
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Longitude	125° 00' 19031"		
	Ellipsoidal Height	-0.122 meters		
	Latitude	12° 29' 52.02635" North		
Geographic Coordinates, World Geodetic	Longitude	125° 00' 34.23621" East		
System 1964 Datum (WG3 64)	Ellipsoidal Height	58.953 meters		
Grid Coordinates, Universal Transverse Mercator Zone 51 North (UTM 51N WGS 1984)	Easting Northing	718234.013 meters 1382481.531 meters		

Date Surveyed	Flight Number	Mission Name	Ground Control Points
01-Mar-15	7830AC	3BLK331HS006A	SMN-16 and NS-61
04-Mar-15	7836AC	3BLK331ON063A	SMN-16 and NS-61
10-Aug-15	8154AC	3BLK331NO222A	SMN-19 and CMN-01
11-Aug-15	8156 AC	3BLK331LNS223A	SMN-19 and CMN-01
11-Aug-15	8157AC	3BLK331NS223B	SMN-19 and CMN-01
12-Aug-15	8158AC	3BLK331P224A	SMN-22 and CMN-03
12-Aug-15	8159AC	3BLK331NSPS224B	SMN-22 and CMN-03
13-Aug-15	8160AC	3BLK331PQRS225A	SMN-22 and SI-08
23-Aug-15	8180AC	3BLK33R235A	SMN-16, SMN-12, NS-61 and NS-100
24-Aug-15	8182AC	3BLK33R236A	SMN-22 and SI-08
24-Aug-15	8183AC	3BLK33STV236B	SMN-22 and SI-08
25-Aug-15	8184AC	3BLK33PS2237A	SMN-22, SMN-16, SI-08 and NS-61
26-Aug-15	8186AC	3BLK33SPST238A	SMN-22 and SI-08
08-Apr-16	3913G	2BLK33LK099A	SMN-22 and NS-81
09-Apr-16	8426AC	3BLK33BC100A	SMN-22 and NS-81
09-Apr-16	3917G	2BLK33EG100A	SMN-22 and NS-81
09-Apr-16	8427AC	3BLK33CS100B	SMN-22 and NS-81
10-Apr-16	8428AC	3BLK33CSH101A	SMN-22 and NS-81
11-Apr-16	8431AC	3BLK33D102A	SMN-22 and NS-81
12-Apr-16	8433AC	3BLK33KSJ103A	SMN-22 and NS-81
13-Apr-16	8435AC	3BLK33IK104A	SMN-22 and NS-81
14-Apr-16	8437AC	3BLK33ISA105A	SMN-22 and NS-81
14-Apr-16	8438AC	3BLK33AS105B	SMN-22 and NS-81
16-Apr-16	8441AC	3BLK33N107A	SMN-22 and SMN-3378
16-Apr-16	8442AC	3BLK33MNS107B	SMN-22 and SMN-3378
17-Apr-16	8443AC	3BLK33MS108A	SMN-22 and SMN-3378
17-Apr-16	8444AC	3BLK33BSDS108B	SMN-22 and SMN-3378
18-Apr-16	8446AC	3BLK33JVKVS109B	SMN-19, SMN-22, SMN-3378 and NS-55
19-Apr-16	8447AC	3BLK33IVJV110A	SMN-22, SMN-3378
19-Apr-16	8448AC	3BLK33CVDV110B	SMN-22, SMN-3378

Table 12. Ground control points used during the LiDAR data acquisition

2.3 Flight Missions

A total of twenty (20) flight missions were conducted to complete LiDAR data acquisition in the Catubig floodplain, for a total of one hundred five hours and thirty-seven minutes (105+37) of flying time for RP-C9022 and RP-C9322. All missions were acquired using Aquarius and Gemini LiDAR systems. The flight logs of the missions are provided in Annex 6. Table 13 indicates the total area of actual coverage and the corresponding flying hours per mission; while Table 14 presents the actual parameters used during the LiDAR data acquisition.

Table 13	Flight missions	for the LiDAR	data acquisition	in the Catubi	g floodnlain
TUDIC 10.	ingric innooione		auta acquisition	in the catabi	Billoodpidili

Date	Flight	Flight	Surveved	Area Surveyed	Area Surveyed Outside the	No. of	Flying	Hours
Surveyed	Number	Plan Area (km²)	Area (km²)	within the Floodplain (km²)	Floodplain (km²)	Images (Frames)	H	Min
01-Mar-15	7830AC	166.23	86.45	20.18	66.26	NA	3	59
04-Mar-15	7836AC	101.48	43.38	9.36	34.02	NA	2	43
10-Aug-15	8154AC	211.75	78.70	17.28	61.42	NA	3	23
11-Aug-15	8156 AC	169.46	90.17	11.03	79.14	NA	3	41
11-Aug-15	8157AC	110.27	67.86	15.60	52.25	NA	2	47
12-Aug-15	8158AC	75.85	92.03	66.06	25.97	NA	2	29
12-Aug-15	8159AC	142.31	37.63	11.85	25.79	NA	2	29
13-Aug-15	8160AC	75.85	41.72	27.34	14.38	NA	2	41
23-Aug-15	8180AC	99.63	77.20	72.74	4.46	NA	8	47
24-Aug-15	8182AC	45.80	55.06	46.33	8.73	NA	3	35
24-Aug-15	8183AC	142.06	39.83	0.61	39.22	NA	2	41
25-Aug-15	8184AC	63.26	16.83	15.01	1.82	NA	3	53
26-Aug-15	8186AC	90.74	68.98	23.90	45.08	NA	4	17
08-Apr-16	3913G	176.37	140.11	70.19	69.93	NA	2	50
09-Apr-16	8426AC	131.67	116.90	90.86	26.05	NA	4	17
09-Apr-16	3917G	98.93	127.79	26.26	101.53	NA	4	23
09-Apr-16	8427AC	99.63	32.76	30.04	2.72	NA	1	59
10-Apr-16	8428AC	52.81	61.31	51.89	9.42	NA	4	17
11-Apr-16	8431AC	63.26	87.00	74.19	12.82	NA	4	13
12-Apr-16	8433AC	150.3	108.17	98.83	9.34	NA	4	11
13-Apr-16	8435AC	147.23	92.18	78.41	13.77	NA	4	11
14-Apr-16	8437AC	158.25	112.56	86.99	25.57	NA	4	29
14-Apr-16	8438AC	75.85	21.58	8.51	13.07	NA	1	41
16-Apr-16	8441AC	71.26	91.36	0.13	91.23	NA	4	29

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

16-Apr-16	8442AC	158.19	35.23	25.70	15.69	NA	2	17
17-Apr-16	8443AC	86.93	72.50	29.20	5.67	NA	4	11
17-Apr-16	8444AC	75.85	41.39	49.15	10.57	NA	2	17
18-Apr-16	8446AC	150.3	34.88	22.18	5.54	NA	1	59
19-Apr-16	8447AC	167.87	59.71	20.18	66.26	NA	3	59
19-Apr-16	8448AC	232.14	27.72	9.36	34.02	NA	2	29
TOTAL		3591.53	2058.99	1109.36	971.74	NA	105	37

Table 14. Actual parameters used during the LiDAR data acquisition

Flight Number	Flying Height (m AGL)	Overlap (%)	FOV (θ)	PRF (khz)	Scan Frequency (Hz)	Average Speed (kts)	Average Turn Time (Minutes)
7830AC	600	30	36	50	50	120	5
7836AC	600	30	36	50	50	120	5
8154AC	600	30	40	50	45	120	5
8156 AC	600	30	40	50	45	120	5
8157AC	600	30	40	50	45	120	5
8158AC	600	30	40	50	45	120	5
8159AC	600	30	40	50	45	120	5
8160AC	500	30	36	50	45	120	5
8180AC	600	30	36	50	45	120	5
8182AC	500	30	36	50	45	120	5
8183AC	500	30	36	50	45	120	5
8184AC	500	30	36	50	45	120	5
8186AC	500	30	36	50	45	120	5
3913G	900	30	50	125	40	120	5
8426AC	500	30	36	50	45	120	5
3917G	900	30	50	125	40	120	5
8427AC	500	30	36	50	45	120	5
8428AC	500	30	36	50	45	120	5
8431AC	500	30	36	50	45	120	5
8433AC	500	30	36	50	45	120	5
8435AC	500	30	36	50	45	120	5
8437AC	500	30	36	50	45	120	5
8438AC	500	30	36	50	45	120	5
8441AC	500	30	36	50	45	120	5
8442AC	500	30	36	50	45	120	5
8443AC	500	30	36	50	45	120	5
8444AC	500	30	36	50	45	120	5
8446AC	500	30	36	50	45	120	5
8447AC	500	30	36	50	45	120	5
8448AC	500	30	36	50	45	120	5

2.4 Survey Coverage

This certain LiDAR acquisition survey covered the Catubig floodplain, located in the province of Northern Samar. The list of municipalities and cities surveyed, with at least one (1) square kilometer coverage, is outlined in Table 15. The actual coverage of the LiDAR acquisition for the Catubig floodplain is presented in Figure 8. See Annex 7 for the flight status report.

Province	Municipality/ City	Area of Municipality/City (km2)	Total Area Surveyed (km2)	Percentage of Area Surveyed
	Las Navas	267.47	263.03	98.34%
	Gamay	95.17	87.35	91.78%
	Laoang	207.6	175.61	84.59%
	Catubig	217.59	169.37	77.84%
	Palapag	153.46	113.12	73.71%
	Pambujan	150.63	85.37	56.68%
	San Roque	166.51	74.46	44.72%
Northern Samar	Lapinig	57.03	15.53	27.22%
	Mapanas	143.56	22.8	15.88%
	Mondragon	322.75	49.32	15.28%
	Silvino Lobos	255.34	36.53	14.31%
	Catarman	255.77	28.9	11.30%
	Bobon	198.53	2.88	1.45%
Eastern Samar	Jipapad	173.29	31.16	17.98%
Samar	Matuguinao	368.83	38.38	10.41%
То	tal	3033.53	1193.81	39.35%

Table 15. List of municipalities and cities surveyed during the Catubig floodplain LiDAR survey

Figure 8. Actual LiDAR survey coverage of the Catubig floodplain

CHAPTER 3: LIDAR DATA PROCESSING OF THE CATUBIG Floodplain

Engr. Ma. Rosario Concepcion O. Ang, Engr. John Louie D. Fabila, Engr. Sarah Jane D. Samalburo, Engr. Harmond F. Santos, Engr. Gladys Mae Apat, Engr. Justine Y. Francisco, Engr. Karl Adrian P. Vergara, Engr. Vincent Louise DL. Azucena, Nereo Joshua G. Pecson, and Areanne Katrice K. Umali

The methods applied in this Chapter were based on the DREAM methods manual (Ang, et al., 2014) and further enhanced and updated in Paringit, et al. (2017).

3.1 Overview of the LIDAR Data Pre-Processing

The data transmitted by the DAC were checked for completeness based on the list of raw files required to proceed with the pre-processing of the LiDAR data. Upon acceptance of the LiDAR field data, georeferencing of the flight trajectory was done in order to obtain the exact location of the LiDAR sensor when the laser was shot. Point cloud georectification was performed to incorporate the correct position and orientation for each point acquired. The georectified LiDAR point clouds were subjected to quality checking to ensure that the required accuracies of the program, which are the minimum point density, and the vertical and horizontal accuracies, were met. The point clouds were then categorized into various classes before generating Digital Elevation Models (DEMs), such as the Digital Terrain Model (DTM) and the Digital Surface Model (DSM).

Using the elevation of points gathered from the field, the LiDAR-derived digital models were calibrated. Portions of the river that were barely penetrated by the LiDAR system were replaced by the actual river geometry, measured from the field by the Data Validation and Bathymetry Component (DVBC). LiDAR acquired temporally were then mosaicked to completely cover the target river systems in the Philippines. Orthorectification of images acquired simultaneously with the LiDAR data was accomplished through the help of the georectified point clouds, and the metadata containing the time that the image was captured.

These processes are summarized in the diagram in Figure 9.

3.2 Transmittal of Acquired LiDAR Data

The data transfer sheets for all the LiDAR missions for the Catubig floodplain can be found in Annex 5. The missions flown during the first survey conducted in June 2014 used the Airborne LiDAR Terrain Mapper (ALTM[™] Optech Inc.) Aquarius system. The missions acquired during the second survey in September 2015 and third survey in May 2016 were flown using the same system over Northern Samar. The DAC transferred a total of 247.20 Gigabytes of Range data, 4.88 Gigabytes of POS data, 2.20 Gigabytes of GPS base station data, and 647.1 Gigabytes of raw image data to the data server on June 25, 2014 for the first survey, on September 8, 2015 for the second survey, and on May 24, 2016 for the third survey. The Data Preprocessing Component (DPPC) verified the completeness of the transferred data. The whole dataset for the Catubig survey was fully transferred on June 4, 2016, as indicated on the data transfer sheets for the Catubig floodplain.

3.3 Trajectory Computation

The Smoothed Performance Metric parameters of the computed trajectory for Flight 8182AC, one of the Catubig flights, which are the North, East, and Down position RMSE values, are illustrated in Figure 10. The x-axis corresponds to the time of flight, which is measured by the number of seconds from the midnight of the start of the GPS week, which fell on August 24, 2015 at 00:00 hrs. on that week. The y-axis represents the RMSE value for that particular position.

Figure 10. Smoothed Performance Metric Parameters of Catubig Flight 8182AC

The time of flight was from 82000 seconds to 90500 seconds, which corresponds to the morning of August 24, 2015. The initial spike reflected on the data corresponds to the time that the aircraft was getting into position to start the acquisition, and the POS system was starting to compute for the position and orientation of the aircraft. Redundant measurements from the POS system quickly minimized the RMSE values of the positions. The periodic increase in RMSE values from an otherwise smoothly curving set of RMSE values corresponds to the turn-around period of the aircraft, when the aircraft makes a turn to start a new flight line. Figure 10 demonstrates that the North position RMSE peaked at 0.80 centimeters, the East position RMSE peaked at 1.60 centimeters, and the Down position RMSE peaked at 0.80 centimeters, which are within the prescribed accuracies described in the methodology.

Figure 11. Solution Status Parameters of Catubig Flight 8182AC

The Solution Status parameters of Flight 8182AC, one of the Catubig flights, which are the number of GPS satellites, Positional Dilution of Precision (PDOP), and the GPS processing mode used, are depicted in Figure 11. The graphs indicate that the number of satellites during the acquisition did not go down to 8. Majority of the time, the number of satellites tracked was between 8 and 12. The PDOP value did not go above the value of 2, which indicates optimal GPS geometry. The processing mode remained at the value of 0 for majority of the survey, with some peaks to up to 1, attributed to the turns performed by the aircraft. The value of 0 corresponds to a Fixed, Narrow-Lane mode, which is the optimum carrier-cycle integer ambiguity resolution technique available for POSPAC MMS. All of the parameters satisfied the accuracy requirements for optimal trajectory solutions, as indicated in the methodology. The computed best estimated trajectory for all Catubig flights is exhibited in Figure 12.

Figure 12. The best estimated trajectory conducted over the Catubig floodplain

3.4 LiDAR Point Cloud Computation

The produced LAS data contains 510 flight lines, with each flight line containing one (1) channel, since the Gemini and Aquarius systems both contain only one (1) channel. The summary of the self-calibration results for all flights over the Catubig floodplain, obtained through LiDAR processing in the LiDAR Mapping Suite (LMS) software, is given in Table 16.

Parameter	Absolute Value	Computed Value
Boresight Correction stdev	(<0.001degrees)	0.000477
IMU Attitude Correction Roll and Pitch Corrections stdev	(<0.001degrees)	0.000986
GPS Position Z-correction stdev	(<0.01meters)	0.0032

Optimum accuracy was obtained for all Catubig flights, based on the computed standard deviations of the corrections of the orientation parameters. The standard deviation values for the individual blocks are available in Annex 8: Mission Summary Reports.

3.5 LiDAR Data Quality Checking

The boundaries of the processed LiDAR data on top of an SAR Elevation Data over the Catubig floodplain are represented in Figure 13. The map shows gaps in the LiDAR coverage that are attributed to cloud coverage.

The total area covered by the Catubig missions is 1,318.30 square kilometers, comprised of twenty eight (28) flight acquisitions and twenty seven (27) blocks, as indicated in Table 17.

LiDAR Blocks	Flight Numbers	Area (sq.km)
Catarman_Blk33R	8182AC	51.64
Catarman_Blk33R_supplement	8183AC	20.81
Catarman_Blk33T	8186AC	27.82
Catarman_Blk33T_supplement	8186AC	5.91
Catarman_Blk33Q	8180AC	19.28
Catarman Blk22D supplement	8184AC	22.64
	8186AC	55.04
	8154AC	
Catarman DH/221N	8156AC	02 71
Catarman_Bik331N	8157AC	93.71
	8159AC	
Cotormon DH2210	7836AC	102.20
	7830AC	102.39
Catarman_Blk331O_supplement	8154AC	60.20
Catarman_reflights_Blk331O	3917G	34.91
Catarman_reflights_Blk331P_supplement	8437AC	17.98
Catarman_reflights_Blk331P	8438AC	44.94
Catarman_reflights_Blk331P_additional	8444AC	29.85
Catarman raflights DIV2210D	8426AC	122.09
	8427AC	132.08
Catarman_reflights_Blk33V	8428AC	56.81
Catarman_reflights_Blk33W	3913G	122.00
Catarman_reflights_Blk33X	8443AC	70.45
Catarman_reflights_Blk33Y	8441AC	89.40
Catarman_reflights_Blk33Y_supplement	8442AC	34.50
Catarman_reflights_Blk33T	3917G	51.24
Catarman_reflights_Blk33U	3917G	38.42
Catarman_reflights_Blk33P	8431AC	84.07
Catarmanreflights_Blk331R_additional	8448AC	14.17
Catarmanreflights_Blk331S_additional	8447AC	30.80
Catarman_reflights_Blk331T_ additional	8447AC	20.27
Catarman_reflights_Blk331U_ additional	8446AC	13.58
Catarman_reflights_Blk33W_ additional	3913G	17.43
TOTAL		1,318.30 sq.km

Table 17. List of LiDAR blocks for the Catubig floodplain

The overlap data for the merged LiDAR blocks, showing the number of channels that pass through a particular location, is presented in Figure 14. Since the Gemini and Aquarius systems both employ one (1) channel, it is expected to have an average value of 1 (blue) for areas where there is limited overlap, and a value of 2 (yellow) or more (red) for areas with three or more overlapping flight lines.

Figure 14. Image of data overlap for the Catubig floodplain

The overlap statistics per block for the Catubig floodplain can be found in Annex 8. One (1) pixel corresponds to 25.0 square meters on the ground. For this area, the minimum and maximum percent overlaps were 25.19% and 47.26%, respectively, which passed the 25% requirement.

The pulse density map for the merged LiDAR data, with the red parts showing the portions of the data that satisfy the two (2) points per square meter criterion, is illustrated in Figure 15. It was determined that all LiDAR data for the Catubig floodplain satisfy the point density requirement, and that the average density for the entire survey area is 3.35 points per square meter.

Figure 15. Pulse density map of merged LiDAR data for the Catubig floodplain

The elevation difference between overlaps of adjacent flight lines is shown in Figure 16. The default color range is from blue to red. Bright blue areas correspond to portions where elevations of a previous flight line, identified by its acquisition time, are higher by more than 0.20 meters relative to the elevations of its adjacent flight line. Bright red areas indicate portions where elevations of a previous flight line are lower by more than 0.20 meters relative to the time are lower by more than 0.20 meters relative to the time are lower by more than 0.20 meters relative to the time are lower by more than 0.20 meters where elevations of a previous flight red or bright blue colors were investigated further using the Quick Terrain (QT) Modeler software.

Figure 16. Elevation difference map between flight lines for the Catubig floodplain

A screen capture of the processed LAS data from a Catubig flight 8182AC loaded in the QT Modeler is provided in Figure 17. The upper left image shows the elevations of the points from two (2) overlapping flight strips traversed by the profile, illustrated by a dashed red line. The x-axis corresponds to the length of the profile. It is evident that there were differences in elevation, but the differences did not exceed the 20-centimeter mark. This profiling was repeated until the quality of the LiDAR data became satisfactory. No reprocessing was done for this LiDAR dataset.

Figure 17. Quality checking for Catubig flight 8182AC, using the Profile Tool of QT Modeler

3.6 LiDAR Point Cloud Classification and Rasterization

Pertinent Class	Total Number of Points
Ground	830,819,592
Low Vegetation	515,029,963
Medium Vegetation	1,062,344,741
High Vegetation	1,561,880,657
Building	19,572,108

Table 18. Catubig classification results in TerraScan

The tile system that TerraScan employed for the LiDAR data, as well as the final classification image for a block in the Catubig floodplain, are presented in Figure 18. A total of 2,418 1km by 1km tiles were produced. The number of points classified according to the pertinent categories is illustrated in Table 18. The point cloud had a maximum and minimum height of 734.77 meters and 2.06 meters, respectively.

The production of last return (V_ASCII) and the secondary (T_ ASCII) DTM, and the first (S_ ASCII) and last (D_ ASCII) return DSM of the area are illustrated in Figure 20, in top view display. The images show that the DTMs are a representation of the bare earth; while the DSMs reflect all features that are present, such as buildings and vegetation.

Figure 20. The production of (a) last return DSM and (b) DTM, (c) first return DSM and (d) secondary DTM in some portion of the Catubig floodplain

3.7 LiDAR Image Processing and Orthophotograph Rectification There are no available orthophotographs for the Catubig floodplain.

3.8 DEM Editing and Hydro-Correction

Twenty seven (27) mission blocks were processed for the Catubig floodplain. These blocks are composed of Catarman and Catarman_Reflights blocks, with a total area of 1,318.30 square kilometers. Table 19 lists the names and corresponding areas of the blocks, in square kilometers.

LiDAR Blocks	Area (sq.km)
Catarman_Blk33R	51.64
Catarman_Blk33R_supplement	20.81
Catarman_Blk33T	27.82
Catarman_Blk33T_supplement	5.91
Catarman_Blk33Q	19.28
Catarman_Blk33P_supplement	33.64
Catarman_Blk331N	93.71
Catarman_Blk331O	102.39
Catarman_Blk331O_supplement	60.20
Catarman_reflights_Blk331O	34.91
Catarman_reflights_Blk331P_supplement	17.98
Catarman_reflights_Blk331P	44.94
Catarman_reflights_Blk331P_additional	29.85
Catarman_reflights_Blk331QR	132.08
Catarman_reflights_Blk33V	56.81
Catarman_reflights_Blk33W	122.00
Catarman_reflights_Blk33X	70.45
Catarman_reflights_Blk33Y	89.40
Catarman_reflights_Blk33Y_supplement	34.50
Catarman_reflights_Blk33T	51.24
Catarman_reflights_Blk33U	38.42
Catarman_reflights_Blk33P	84.07
Catarman_reflights_Blk331R_additional	14.17
Catarman_reflights_Blk331S_ additional	30.80
Catarman_reflights_Blk331T_ additional	20.27
Catarman_reflights_Blk331U_ additional	13.58
Catarman_reflights_Blk33W_ additional	17.43
TOTAL	1,318.30 sq.km

Table 19. LiDAR blocks with their corresponding areas

Portions of the DTM before and after manual editing are exhibited in Figure 21. Areas without data along the water bodies had to be interpolated for hydrologic correction. The bridge (Figure 21a) was considered to be an obstruction to the flow of water along the river, and had to be removed (Figure 21b) in order to hydrologically correct the river. The road (Figure 21c) was misclassified and removed during the classification process, and had to be retrieved to complete the surface (Figure 21d) in order to allow for the correct flow of water.

Figure 21. Portions in the DTM of the Catubig floodplain – a bridge (a) before and (b) after manual editing; and a road (c) before and (d) after data retrieval

3.9 Mosaicking of Blocks

The Catarman_Blk331H block was used as the reference block at the start of mosaicking, as this was the first available block for processing in the Catubig floodplain. The shift values applied to the blocks during mosaicking are summarized in Table 20.

The mosaicked LiDAR DTM for the Catubig floodplain is represented in Figure 22. The Catubig flood plain is 76.03% covered by LiDAR data. Portions without LiDAR data were patched with the available IFSAR data.

Mission Blocks	Sł	Shift Values (meters)			
	x	У	Z		
Catarman_Blk33R	-15.00	-16.00	4.04		
Catarman_Blk33R_supplement	-15.00	-16.00	4.04		
Catarman_Blk33T	-15.00	-17.00	3.98		
Catarman_Blk33T_supplement	-14.00	-16.00	4.05		
Catarman_Blk33Q	-15.00	-16.00	3.86		
Catarman_Blk33P_supplement	-15.00	-17.00	3.84		
Catarman_Blk331N	0.00	0.00	0.05		
Catarman_Blk331O	0.00	0.00	0.00		
Catarman_Blk331O_supplement	0.00	0.00	0.15		
Catarman_reflights_Blk331O	-14.00	-17.00	3.57		
Catarman_reflights_Blk331P_supplement	16.00	-17.00	4.41		
Catarman_reflights_Blk331P	-14.00	-17.00	4.44		
Catarman_reflights_Blk331P_additional	-14.00	-17.00	4.24		
Catarman_reflights_Blk331QR	-15.00	-16.00	4.49		
Catarman_reflights_Blk33V	-14.00	-17.00	4.63		
Catarman_reflights_Blk33W	-14.00	-18.00	4.20		
Catarman_reflights_Blk33X	-1.00	1.00	0.28		
Catarman_reflights_Blk33Y	1.00	-1.00	0.04		
Catarman_reflights_Blk33Y_supplement	0.00	0.00	0.00		
Catarman_reflights_Blk33T	-15.00	-17.00	3.74		
Catarman_reflights_Blk33U	-14.00	-17.00	4.2		
Catarman_reflights_Blk33P	-14.00	-17.00	4.33		
Catarman_reflights_Blk331R_additional	-15.00	-16.00	4.42		
Catarman_reflights_Blk331S_additional	-14.00	-17.00	4.45		
Catarman_reflights_Blk331T_additional	-14.00	-16.00	4.70		
Catarman_reflights_Blk331U_additional	-14.00	-18.00	5.18		
Catarman_reflights_Blk33W_additional	-14.00	-18.00	4.20		

Table 20. Shift values of each LiDAR block of the Catubig floodplain

Figure 22. Map of processed LiDAR data for the Catubig floodplain

3.10 Calibration and Validation of Mosaicked LiDAR DEM

To undertake the data validation of the Mosaicked LiDAR DEMs, the DVBC conducted a validation survey along the Catubig floodplain. The extent of the validation survey done in Northern Samar to collect points with which the LiDAR dataset was validated is presented in Figure 23, with the validation survey points highlighted in green. A total of 14,268 survey points were gathered for all of the floodplains within the province of Northern Samar, where the Catubig floodplain is located. Random selection of 80% of the survey points resulted in 11,415 points, which were used for calibration.

A good correlation between the uncalibrated mosaicked LiDAR elevation values and the ground survey elevation values is reflected in Figure 24. Statistical values were computed from the extracted LiDAR values using the selected points, to assess the quality of data and to obtain the values for vertical adjustment. The computed height difference between the LiDAR DTM and the calibration elevation values is 2.79 meters, with a standard deviation of 0.18 meters. Calibration of the Catarman LiDAR data was done by subtracting the height difference value, 2.79 meters, from the Catubig mosaicked LiDAR data. Table 21 summarizes the statistical measurements of the compared elevation values between the LiDAR data and the calibration data.

Figure 23. Map of the Catubig floodplain, with the validation survey points in green

calibrated Catubig DTM. A good correlation between the calibrated mosaicked LiDAR elevation values and the ground survey elevation, which reflects the quality of the LiDAR DTM, is depicted in Figure 25. The computed RMSE between the calibrated LiDAR DTM and the validation elevation values is 0.16 meters, with a standard deviation of 0.15 meters, as indicated in Table 22.

Table 22. Validation statistical measures

Validation Statistical Measures	Value (meters)
RMSE	0.16
Standard Deviation	0.15
Average	-0.06
Minimum	-0.37
Maximum	0.25

3.11 Integration of Bathymetric Data into the LiDAR Digital Terrain Model

For bathy integration, centerline and zigzag data were available for Catubig, with 29,329 bathymetric survey points. The resulting raster surface produced was obtained through the Kernel interpolation with barriers method. After burning the bathymetric data to the calibrated DTM, assessment of the interpolated surface is represented by the computed RMSE value of 0.07 meters. The extent of the bathymetric survey done by the DVBC) in the Catubig floodplain, integrated with the processed LiDAR DEM, is shown in Figure 26.

Figure 26. Map of the Catubig floodplain, with bathymetric survey points in blue

3.12 Feature Extraction

The features salient in flood hazard exposure analysis include buildings, road networks, bridges, and water bodies within the floodplain area, with a 200-meter buffer zone. Mosaicked LiDAR DEM with a 1-meter resolution was used to delineate footprints of building features, which consist of residential buildings, government offices, medical facilities, religious institutions, and commercial establishments, among others. Road networks – comprised of main thoroughfares, such as highways, and municipal and barangay roads – are essential for routing disaster response efforts. These features are represented by a network of road centerlines.

3.12.1 Quality Checking of Digitized Features' Boundary

The Catubig floodplain, including its 200-meter buffer zone, has a total area of 652.20 square kilometers. Of this area, a total of 19.00 square kilometers, corresponding to a total of 3,634 building features, were considered for quality checking (QC). Figure 27 presented the QC blocks for the Catubig floodplain.

3.12.2 Height Extraction

Height extraction was done for 24,660 building features in the Catubig floodplain. Of these building features, 427 were filtered out after height extraction, resulting in 24,233 buildings with height attributes. The lowest building height is at 2.00 meters, while the highest building is at 7.61 meters.

3.12.3 Feature Attribution

The digitized features were marked and coded in the field using handheld GPS receivers. The attributes of non-residential buildings were first identified; and then all other buildings were coded as residential. An nDSM was generated using the LiDAR DEMs to extract the heights of the buildings. A minimum height of 2 meters was applied to filter out the terrain features that were digitized as buildings. Buildings that were not yet constructed during the time of LiDAR acquisition were noted as new buildings in the attribute table.

Table 24 summarizes the number of building features per type. Table 25 indicates the total length of each road type, and Table 26 specifies the number of water features extracted per type.

Facility Type	No. of Features
Residential	22,975
School	603
Market	3
Agricultural/Agro-Industrial Facilities	6
Medical Institutions	45
Barangay Hall	105
Military Institution	16
Sports Center/Gymnasium/Covered Court	53
Telecommunication Facilities	2
Transport Terminal	7
Warehouse	53
Power Plant/Substation	1
NGO/CSO Offices	4
Police Station	3
Water Supply/Sewerage	10
Religious Institutions	122
Bank	3
Factory	0
Gas Station	2
Fire Station	1
Other Government Offices	56
Other Commercial Establishments	163
Total	24,233

Table 24. Building features extracted for the Catubig floodplain

Table 25. Total length of extracted roads for the Catubig floodplain

Road Network Length (km)						
Floodplain	FloodplainBarangay RoadCity/ Municipal RoadProvincial RoadNational RoadOthers					
Catubig	183.82	18.92	6.02	45.36	0.00	254.12

Table 26. Number of extracted water bodies for the Catubig floodplain						
Water Body Type						
FloodplainRivers/Lakes/ToStreamsPondsSeaDamFish Pen						
Catubig	304	4	0	0	0	308

A total of one hundred and fifty (150) bridges and culverts over small channels that are part of the river network were also extracted for the floodplain.

3.12.4 Final Quality Checking of Extracted Features

All extracted ground features were completely given the required attributes. All these output features comprised the flood hazard exposure database for the floodplain. This completes the feature extraction phase of the project.

Figure 28 exhibits the Digital Surface Model (DSM) of the Catubig floodplain, overlaid with its ground features.

Figure 28. Extracted features for the Catubig floodplain

CHAPTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE CATUBIG RIVER BASIN

Engr. Louie P. Balicanta, Engr. Joemarie S. Caballero, Patrizcia Mae. P. dela Cruz, Engr. Kristine Ailene B. Borromeo, For. Dona Rina Patricia C. Tajora, Elaine Bennet Salvador, and For. Rodel C. Alberto

The methods applied in this Chapter were based on the DREAM methods manual (Balicanta, et al., 2014) and further enhanced and updated in Paringit, et al. (2017).

4.1 Summary of Activities

The H.O. Noveloso Surveying (HONS) team conducted field surveys on November 22-23, 2016, November 30, 2016, December 7-15, 2016, and January 6, 2017 in the Catubig River. On the other hand, the DVBC conducted field surveys in the river on August 28-September 5, and October 17-26, 2016. The scope of work of the surveys conducted are as follows: (i.) initial reconnaissance; (ii.) control survey for the establishment of a control point; (iii.) cross-section and bridge as-built survey at the Las Navas Bridge in Barangay Rebong, Municipality of Las Navas, Northern Samar; and at the Rauis Bridge in Barangay Rawis, Municipality of Laoang, Northern Samar; and (iv.) bathymetric survey from the river's three (3) upstream sides located in Barangay Guibwangan, Municipality of Catubig; and in Barangay Cagaasan, and Barangay Talisay in the Municipality of Laoang, Northern Samar. The bathymetric survey extended until the mouth of the river located in Barangay Baybay, Laoang, Northern Samar, spanning an approximate length of 36.51 kilometers using a HI-Target[™] Single Beam Echo Sounder and Hi-Target[™] GNSS in RTK survey technique. The extent of the entire survey is illustrated in the map in Figure 29.

4.2 Control Survey

The GNSS network used for Catubig River Basin is composed of four (4) loops established on September 2, 2016, occupying the following control points: (i.) SMN-18, a 2nd order GCP in Barangay Nenita, Municipality of Mondragon, Northern Samar; (ii.) NS-26, a 1st order BM in Barangay Polangi, Municipality of Catarman; (iii.) NS-55, a 1st order BM in Barangay Eco Poblacion, Municipality of Mondragon; (iv.) NS-73, a 1st order BM in Barangay Dale, Municipality of San Roque; and (v.) NS-81, a 1st order BM located in Barangay Burabud, Municipality of Laoang. All of these are located in the province of Northern Samar.

A NAMRIA-established control point, SMN-22, located in Barangay Simora, Municipality of Laoang, was also utilized as a marker.

The summary of reference and control points and their corresponding locations is provided in Table 27; while the established GNSS network is illustrated in Figure 30.

Figure 30. Catubig River static survey extent

Table 27. List of reference and control points occupied for the Catubig River Survey

		Geographic Coordinates (WGS 84)						
Control Point	Order of Accuracy	Latitude	Latitude Longitude		MSL Elevation (m)	Date Established		
SMN-18	2 nd Order, GCP	12°28'28.14643"	124°48'26.98399"	64.624	8.910	09-07-16		
NS-26	Acc. Class at 95%CL: 4cm	12°23'08.14503"	124°37′40.19430″	70.990	13.480	09-01-16		
NS-55	Acc. Class at 95%CL: 4cm	12°30'53.61856"	124°45'01.76667"	61.077	5.710	05-02-16		
NS-73	Acc. Class at 95%CL: 6cm	12°32'52.45862"	124°54'30.80700"	60.314	5.945	09-01-16		
NS-81	Acc. Class at 95%CL: 6cm	12°32'50.94301"	124°58'34.46636"	59.293	5.105	04-14-16		
SMN-22	Used as Marker	-	-	-	-	09-04-15		

The GNSS set-ups on the recovered reference points and established control points in the Catubig River are exhibited in Figure 31 to Figure 36. Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

Figure 32. GNSS base set-up, Trimble[®] SPS 852 at NS-26, located near the approach of the Paticua Bridge in Barangay Polangi, Municipality of Catarman, Northern Samar Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

Figure 34. GNSS receiver set-up, Trimble[®] SPS 985 at NS-73, located at the approach of the Pambujan Bridge, in Barangay Dale, Municipality of San Roque, Northern Samar

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

Figure 36. GNSS receiver set-up, Trimble® SPS 852 at SMN-22, located at Simora Elementary School in Barangay Simora, Municipality of Laoang, Northern Samar

4.3 Baseline Processing

The GNSS baselines were processed simultaneously in TBC by observing that all baselines have fixed solutions, with horizontal and vertical precisions within the +/- 20-centimeter and +/- 10-centimeter requirement, respectively. In cases where one or more baselines did not meet all of these criteria, masking was performed. Masking is the removal of portions of the baseline data using the same processing software. It is repeatedly processed until all baseline requirements are met. If the reiteration yields out of the required accuracy, a re-survey is initiated. The baseline processing results of the control points in the Catubig River Basin, generated by the TBC software, are summarized in Table 28.

Observation	Date of Obser- vation	Solution Type	H.Prec. (Meter)	V.Prec. (Meter)	Geodetic Az.	Ellipsoid Dist. (Meter)	Height (Meter)
NS-73 SMN-18 (B2)	09-02-16	Fixed	0.007	0.019	53°30'34"	13661.419	-4.222
NS-26 SMN-18 (B5)	09-02-16	Fixed	0.003	0.015	243°17'56"	21869.739	6.334
NS-55 NS- 26 (B7)	09-02-16	Fixed	0.003	0.014	223°00'23"	19555.744	9.752
NS-73 NS- 55 (B8)	09-02-16	Fixed	0.005	0.013	258°00'58"	17563.299	0.841
NS-55 SMN-18 (B9)	09-02-16	Fixed	0.004	0.015	305°48'50"	7640.620	-3.409
NS-73 NS- 81 (B11)	09-02-16	Fixed	0.003	0.013	90°21′20″	7355.805	-1.057
NS-73 SMN-22 (B18)	09-02-16	Fixed	0.009	0.017	123°16'30"	15138.600	-2.047
SMN-22 SMN-18 (B19)	09-02-16	Fixed	0.004	0.015	270°28′32″	23643.589	6.262
SMN-22 NS-81 (B20)	09-02-16	Fixed	0.004	0.016	327°20′08″	9814.890	0.918
NS-73 SMN-22 (B21)	09-02-16	Fixed	0.004	0.014	123°16'30"	15138.605	-1.963

Table 28. Baseline processing summary report for the Catubig River survey

As reflected in Table 28, a total of ten (10) baselines were processed. The values of all the reference points, except SMN-22, were held fixed for the coordinate and elevation values. All of the baselines passed the required accuracy.

4.4 Network Adjustment

After the baseline processing procedure, network adjustment was performed using the TBC software. Looking at the adjusted grid coordinates table of the TBC-generated Network Adjustment Report, it is observed that the square root of the sum of the squares of x and y must be less than 20 centimeters, and z less than 10 centimeters, or in equation form:

$$\sqrt{((x_e)^2 + (y_e)^2)}$$
<20cm and $z_e < 10 \ cm$

Where:

x is the Easting Error,

 y_{e} is the Northing Error, and

z is the Elevation Error

for each control point. See the Network Adjustment Report presented in Table 29 to Table 32 for complete details.

The six (6) control points – NS-26, NS-55, NS-73, NS-81, SMN-18, and SMN-22 – were occupied and observed simultaneously to form a GNSS loop. The coordinates of SMN-18 and the elevation values of all benchmarks were held fixed during the processing of the control points, as demonstrated in Table 29. Through these reference points, the coordinates and elevation values of the unknown control points were computed.

Point ID	Туре	East σ (Meter)	North σ (Meter)	Height σ (Meter)	Elevation σ (Meter)	
SMN-18	Global	Fixed	Fixed			
NS-26	Grid					
NS-55	Grid					
NS-73	Grid					
NS-81	Grid				Fixed	
Fixed = 0.000001 (Meter)						

Table 29. Constraints applied to the adjustments of the control points

The list of adjusted grid coordinates; i.e., Northing, Easting, Elevation, and computed standard errors of the control points in the network, is indicated in Table 30. All of the fixed control points did not yield values for grid and elevation errors.

Table 30. Adjusted grid coordinates for the control points used in the Catubig floodplain survey							
Point ID	Easting (Meter)	Easting Error (Meter)	Northing (Meter)	Northing Error (Meter)	Elevation (Meter)	Elevation Error (Meter)	Constraint
SMN-18	696441.22698	?	1379691.63306	?	8.9098	0.031	LL
NS-26	676970.19397	0.007	1369731.98493	0.006	13.4801	?	е
NS-55	690214.51511	0.008	1384120.46061	0.006	5.7095	?	е
NS-73	707369.75759	0.009	1387891.68118	0.006	5.9447	?	е
NS-81	714726.67255	0.011	1387899.30448	0.008	5.1053	?	е
SMN-22	720088.05329	0.009	1379675.96886	0.006	3.45269	0.067	

With the mentioned equation, for horizontal accuracy and for vertical accuracy, the computations for accuracy are as follows:

а.	SMN-18 Horizontal Accuracy Vertical Accuracy	= =	Fixed 3.1 cm < 10 cm
b.	NS-26 Horizontal Accuracy	= = =	√((0.7)² + (0.6)² √ (0.49 + 0.36) 0.92 < 20 cm
	Vertical Accuracy	=	Fixed
c.	NS-55 Horizontal Accuracy	= =	$V((0.8)^2 + (0.6)^2)$ V(0.64 + 0.36)
	Vertical Accuracy	=	Fixed
d.	NS-73 Horizontal Accuracy	_	$\sqrt{((0.9)^2 + (0.6)^2)}$
	Tion Zontan Accuracy	=	$\sqrt{(0.81 + 0.36)}$ 1.08 < 20 cm
	Vertical Accuracy	=	Fixed
e.	NS-81 Horizontal Accuracy	= = =	V((1.1) ² + (0.8) ² V (1.21 + 0.64) 1.36 cm < 20 cm
	Vertical Accuracy	=	Fixed
f.	SMN-22 Horizontal Accuracy	= = =	√((0.9) ² + (0.6) ² √ (0.81 + 0.36) 1.08 cm < 20 cm
	Vertical Accuracy	=	6.7 cm < 10 cm

Following the given formula, the horizontal and vertical accuracy results of the two (2) occupied control points are within the required precision.
Point ID	Latitude	Longitude	Ellipsoid Height (Meter)	Height Error (Meter)	Constraint
SMN-18	N12°28'28.14643"	E124°48'26.98399"	64.6235	0.031	LL
NS-26	N12°23'08.14503"	E124°37'40.1943"	70.99005	?	е
NS-55	N12°30′53.61856″	E124°45'01.76667"	61.0772	?	е
NS-73	N12°32'52.45862"	E124°54'30.807"	60.31401	?	е
NS-81	N12°32'50.94301"	E124°58'34.46636"	59.29264	?	е
SMN-22	N12°28'22.07678"	E125°01'29.94039"	58.56371	0.067	

Table 31. Adjusted geodetic coordinates for control points used in the Catubig River floodplain validation

The corresponding geodetic coordinates of the observed points are within the required accuracy, as shown in Table 31. Based on the results of the computations, the accuracy conditions are satisfied; hence, the required accuracy for the program was met.

The computed coordinates of the reference and control points utilized in the Catubig River GNSS Static Survey are indicated in Table 32.

Con- trol Point	Order of Accu- racy	Geographic	Coordinates (WGS 8	UTM ZONE 51 N			
		Latitude	Longitude	Ellip- soidal Height (m)	Northing (m)	Easting (m)	BM Ortho (m)
SMN- 18	2nd Order, GCP	12°28'28.14643"	124°48'26.98399"	64.624	1379691.633	696441.227	8.910
NS-26	Acc. Class at 95%CL: 4cm	12°23'08.14503"	124°37′40.19430″	70.990	1369731.985	676970.194	13.480
NS-55	Acc. Class at 95%CL: 4cm	12°30′53.61856″	124°45'01.76667"	61.077	1384120.461	690214.515	5.710
NS-73	Acc. Class at 95%CL: 6cm	12°32′52.45862″	124°54'30.80700"	60.314	1387891.681	707369.758	5.945
NS-81	Acc. Class at 95%CL: 6cm	12°32'50.94301"	124°58'34.46636"	59.293	1387899.304	714726.673	5.105
SMN- 22	Used as Marker	12°28′22.07678″	125°01′29.94039″	58.564	1379675.969	720088.053	3.453

Table 32. Reference and control points used in the Catubig River Static Survey, with their correspondinglocations (Source: NAMRIA, UP-TCAGP)

4.5 Cross-section and Bridge As-Built Survey and Water Level Marking

The cross-section and bridge as-built surveys at the downstream side of the Rauis Bridge, located along the tributary of the Catubig River, were conducted on December 15, 2016 in Barangay Rawis, Laoang, Northern Samar (Figure 37). A GNSS Receiver, Hi-Target™ V30 GNSS, in RTK survey technique was utilized for this survey, as illustrated in Figure 38 and Figure 39.

Figure 37. Downstream side of the Rauis Bridge

Figure 38. As-built survey of the Rauis Bridge

Figure 39. Cross-section survey of the Rauis Bridge

The length of the cross-sectional line surveyed in the Rauis Bridge is about 93 meters with two hundred seventy-one (271) cross-sectional points, using the control point UP-CATU-11 as the GNSS base station. The location map, cross-section diagram, and bridge data form are presented in Figure 40 to Figure 42.

Figure 40. Location map of the Rauis Bridge cross-section

Figure 42. Rauis Bridge data form

The cross-section and bridge as-built surveys of the Las Navas Bridge, which is at the upstream part of the Catubig River, were conducted on January 6, 2017 at the downstream side of the bridge in Barangay Rebong, Las Navas, Northern Samar (Figure 43). A Sokkia[™] Set CX-105 Total Station and a GNSS receiver, Hi-Target[™] V30 GNSS, in RTK survey technique were utilized for this survey, as depicted in Figure 44 and Figure 45. The Automated Water Level System (AWLS) is located on the upstream side of the bridge; and its elevation was measured at 13.803 meters above MSL.

Figure 43. Las Navas Bridge, facing upstream

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

Figure 44. Cross-section survey for the Las Navas Bridge

Figure 45. As-Built survey of the Las Navas Bridge

The length of the cross-sectional line surveyed in the Las Navas Bridge is about 122 meters with two hundred thirteen (213) cross-sectional points, using the control point UP-CATU-1 as the GNSS base station. The location map, cross-section diagram, and bridge data form are provided in Figure 46 to Figure 48.

Figure 46. Location map of the Las Navas Bridge cross-section

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

Figure 47. Las Navas Bridge cross-section diagram

Figure 48. Las Navas Bridge data form

The cross-section of the Laoang River, a tributary of the Catubig River, was also acquired on December 15, 2016 in Barangay Baybay, Laoang, Northern Samar (Figure C-21). A Hi-Target ™ V30 GNSS was utilized for this survey, as demonstrated in Figure 50.

Figure 49. Laoang cross-section area

Figure 50. Laoang cross-section survey

The length of the cross-sectional line surveyed in the Laoang River is about 517.899 meters with four hundred twenty-six (426) cross-sectional points, using the control point UP-CATU-11 as the GNSS base station. The cross-section diagram is shown in Figure 51.

Figure 51. Laoang tributary cross-section

The water surface elevation of the Catubig River was determined using a Hi-Target[™] V30 GNSS on November 28, 2015 at 13:35 hrs. at the riprap of the Catubig River, near the Catubig Public Market in Barangay Poblacion, Catubig, Northern Samar. The elevation value obtained was 3.002 meters in MSL. This was translated into markings on the river's riprap 2 meters away from the hanging bridge, as shown in Figure 52. The marking served as a reference for flow data gathering and depth gauge deployment of the VSU Phil-LiDAR Team.

Figure 52. Water surface elevation markings on the riprap of the Catubig River

The water surface elevation of the Catubig River at the Las Navas Bridge was also determined, using a Sokkia™ Set-CX Total Station on January 6, 2017 at 14:00 hrs. The value obtained was 1.729 meters in MSL. This was translated into markings on the foundation of a house along the Catubig River, as exhibited in Figure 53.

Figure 53. Water level markings on a house beside the Catubig River

4.6 Validation Points Acquisition Survey

The validation points acquisition survey was conducted on August 31, 2016, and on September 2-3, 2016 using a survey-grade GNSS Rover receiver, Trimble[®] SPS 882. The receiver was mounted in front of a vehicle, as depicted in Figure 54. It was secured with a nylon rope to ensure that it was horizontally and vertically balanced. The antenna height was 1.907 meters, measured from the ground up to the bottom of the notch of the GNSS Rover receiver. The PPK technique utilized for the conduct of the survey was set to continuous topo mode with NS-26, SMN-18, and SMN-22 occupied as the GNSS base stations during the conduct of the survey.

Figure 54. Validation points acquisition survey set-up along the Catubig River Basin

The survey took three (3) routes. The first route started in Barangay Molave and went south, covering thirteen (13) barangays in the Municipality of Catarman, ending in Barangay Cervantes. The second route started in Barangay Bugko, headed south and ended in Barangay Nenita in the Municipality of Mondragon. The third route started in Barangay Bantayan, Municipality of San Roque, and traveled east, covering twelve (12) barangays in the Municipalities of Laoang, Pambujan, and San Roque, ending in Barangay Rawis, Municipality of Laoang. The third route then went south, covering eighteen (18) more barangays, and finally ended in Barangay Sagudsuron in the Municipality of Catubig. The survey gathered a total of 13,816 points with an approximate length of 79 kilometers, using NS-26, SMN-18, and SMN-22 as the GNSS base stations for the entire extent validation points acquisition survey. This is illustrated in the map in Figure 55.

4.7 Bathymetric Survey

A bathymetric survey of the Catubig River was executed on December 7-14, 2016 using a Hi-Target[™] Single Beam Echo Sounder, as seen in Figure 56. The survey started in three (3) different locations: in (i.) Barangay Guibwangan, Catubig, Northern Samar, with coordinates 12°23′22.2617″N, 125°03′14.6123″E; in (ii.) Barangay Cagaasan, Laoang, Northern Samar, with coordinates 12°34′17.7372″N, 125°01′25.0851″E; and in (iii.) Barangay Talisay, Laoang, Northern Samar, with coordinates 12°33′19.0979″N, 125°00′34.1537″E. The survey ended at the mouth of the river in Barangay Baybay, Laoang, Northern Samar, with coordinates 12°34′07.4587″N, 125°00′26.0784″E. The control points UP-CATU-3, UP-CATU-5, UP-CATU-8, UP-CATU-9, and UP-CATU-11 were used as the GNSS base stations all throughout the survey.

Figure 56. Bathymetric survey at the Catubig River using Hi-Target™ Echo Sounder

The bathymetric survey for the Catubig River gathered a total of 29,955 points covering 36.51 kilometers of the river. The survey traversed Barangays Guibwangan, Canuctan, Calingnan, 2 (Poblacion), 7 (Poblacion), 8 (Poblacion), Viena Maria, Hiparayan, D. Mercader, Opong, Tangbo, and Lenoyahan in the Municipality of Catubig; and Barangays Cagdara-O, Abaton, Simora, Bawang, La Perla, Bongliw, San Antonio, Vigo, Tarusan, Lawaan, Talisay, Baybay, Sangcol, Cagaasan, and Rawis in the Municipality of Laoang. The scope is illustrated in the map in Figure 57. CAD drawings were also produced to illustrate the riverbed profile of the Catubig River, presented in Figure 58 to Figure 62. The profiles demonstrate that the highest and lowest elevation had a 20.529-meter difference. The highest elevation observed was -2.519 meters below MSL, located in Barangay Tangbo, Catubig, Northern Samar. The lowest elevation observed was -23.048 meters below MSL, located in Barangay Simora, Laoang, Northern Samar.

Figure 57. Extent of the bathymetric survey of the Catubig River

Figure 58. Catubig riverbed profile, in the upstream portion

Figure 60. Catubig riverbed profile, downstream portion

Figure 61. Catubig riverbed profile, in the Laoang tributary

Figure 62. Catubig riverbed profile, in the Rauis tributary

CHAPTER 5: FLOOD MODELING AND MAPPING

Dr. Alfredo Mahar Lagmay, Christopher Uichanco, Sylvia Sueno, Marc Moises, Hale Ines, Miguel del Rosario, Kenneth Punay, and Neil Tingin

The methods applied in this Chapter were based on the DREAM methods manual (Lagmay, et al., 2014) and further enhanced and updated in Paringit, et al. (2017).

5.1 Data Used for Hydrologic Modeling

5.1.1 Hydrometry and Rating Curves

Rainfall, water level, and flow in a certain period of time, which are all components and data that may affect the hydrologic cycle of the Catubig River Basin, were monitored, collected, and analyzed.

5.1.2 Precipitation

Precipitation data was taken from one automatic rain gauge (ARG) temporarily installed by the VSU Phil-LiDAR 1 Flood Modeling Component (FMC). This was the Las Navas ARG, with the location map provided in Figure 63.

Total rain from Las Navas rain gauge was 130 millimeters. It peaked at 18.5 millimeters on January 20, 2017 at 13:45 hrs. The lag time between the peak rainfall and discharge was nineteen (19) hours and fifty-five (55) minutes.

Figure 63. Location map of the Catubig HEC-HMS model, which was used for calibration

5.1.3 Rating Curves and River Outflow

A rating curve was computed using the prevailing cross-section (Figure 64) at the Las Navas Bridge in Barangay Rebong, Las Navas, Northern Samar (12.343127° N, 125.034024° E) to establish the relationship between the observed water levels (H) from the Las Navas Bridge Automated Water Level Sensor (AWLS) HOBO Depth Gauge and the combined discharge (Q) from the baseflow and bankful.

For the Las Navas Bridge, the rating curve is expressed as $Q = 122.59e^{0.199385h}$, as shown in Figure 65.

Figure 64. Cross-section plot of the Las Navas Bridge

Figure 65. Rating curve at the Las Navas Bridge

This rating curve equation was used to compute for the river outflow at the Las Navas Bridge, for the calibration of the HEC-HMS model presented in Figure 66.

Figure 66. Rainfall and outflow data at the Las Navas Bridge, which were used for modeling

5.2 RIDF Station

The Philippine Atmospheric Geophysical and Astronomical Services Administration (PAGASA) computed for the Rainfall Intensity Duration Frequency (RIDF) values for the Catarman Rain Gauge (Table 33). This station was selected based on its proximity to the Catubig watershed (Figure 67). The RIDF rainfall amount for twenty-four (24) hours was converted into a synthetic storm by interpolating and re-arranging the values such that certain peak values were attained at a certain time. The extreme values for this watershed were computed based on a 52-year record.

COMPUTED EXTREME VALUES (in mm) OF PRECIPITATION									
T (yrs)	10 mins	20 mins	30 mins	1 hr	2 hrs	3 hrs	6 hrs	12 hrs	24 hrs
2	22.5	34.2	42.4	57.5	80.9	96.4	125.2	156.6	180
5	29.9	45.4	56.2	77	110.3	135.9	183.5	229.5	255.4
10	34.7	52.8	65.4	90	129.7	162	222.1	277.8	305.4
15	37.5	57	70.5	97.3	140.7	176.7	243.9	305.1	333.6
20	39.4	60	74.2	102.4	148.4	187.1	259.1	324.1	353.3
25	40.9	62.2	76.9	106.3	154.3	195	270.9	338.8	368.5
50	45.5	69.2	85.5	118.4	172.6	219.5	307.1	384.1	415.3
100	50	76.1	94	130.5	190.7	243.8	343	429	461.8

Table 33. RIDF values for the Catarman Rain Gauge, computed by PAGASA

5.3 HMS Model

The soil shapefile was taken from the Bureau of Soils and Water Management (BSWM) under the Department of Agriculture (DA). The land cover dataset is from the National Mapping and Resource information Authority (NAMRIA). These soil datasets were taken before 2004. The soil and land cover maps of the Catubig River Basin are presented in Figures 69 and 70, respectively.

Figure 69. Soil map of the Catubig River Basin (Source: DA)

Figure 70. Land cover map of the Catubig River Basin (Source: NAMRIA)

The soil classes identified in the Catubig River Basin were clay, clay loam, and undifferentiated soil. The land cover types identified were shrub lands, open forests, closed forests, and cultivated land.

Figure 71. Slope map of the Catubig River Basin

Using the SAR-based DEM, the Catubig basin was delineated and further subdivided into sub-basins. The model consists of twenty-five (25) sub-basins, twelve (12) reaches, and twelve (12) junctions, as illustrated in Figure 73. The main outlet is at the Catubig Bridge. See Annex 10 for the Catubig Model Reach Parameters.

5.4 Cross-section Data

Riverbed cross-sections of the watershed were necessary in the HEC-RAS model set-up. The cross-section data for the HEC-RAS model were derived from the LiDAR DEM data. These were defined using the Arc GeoRAS tool and post-processed in ArcGIS (Figure 74).

Figure 74. River cross-section of the Catubig River, generated through the ArcMap HEC GeoRAS tool

5.5 Flo 2D Model

The automated modeling process allowed for the creation of a model with boundaries that are almost exactly coincidental with that of the catchment area. As such, they have approximately the same land area and location. The entire area was divided into square grid elements, 10 meters by 10 meters in size. Each element was assigned a unique grid element number, which served as its identifier. The elements were then attributed with the parameters required for modeling, such as x- and y- coordinates of centroid, names of adjacent grid elements, Manning's coefficient of roughness, infiltration, and elevation values. The elements were arranged spatially to form the model, allowing the software to simulate the flow of water across the grid elements in eight (8) directions (i.e., north, south, east, west, northeast, northwest, southeast, and southwest).

Based on the elevation and flow direction, it was observed that the water will generally flow from the south of the model to the north, following the main channel. As such, boundary elements in those particular regions of the model were assigned as inflow and outflow elements, respectively.

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

The simulation was then run through the FLO-2D GDS Pro. This particular model had a computer run time of 79.87109 hours. After the simulation, the FLO-2D Mapper Pro was utilized to transform the simulation results into spatial data that shows the flood hazard levels, as well as the extent and inundation of the flood. Assigning the appropriate flood depth and velocity values for Low, Medium, and High generated the flood hazard map. Most of the default values given by the FLO-2D Mapper Pro were used, except for those in the Low hazard level. For this particular level, the minimum h (Maximum depth) was set at 0.2 meters, while the minimum vh (product of maximum velocity (v) and maximum depth (h)) was set at 0 m²/s.

The creation of a flood hazard map from the model also automatically generated a flow depth map, depicting the maximum amount of inundation for every grid element. The legend used by default in the Flo-2D Mapper was not considered to be a good representation of the range of flood inundation values, so a different legend was used for the layout. In this particular model, the inundated parts covered a maximum land area of 99085920.00 m².

There was a total of 74222659.77 m³ of water that entered the model. Of this amount, 27389593.99 m³ was due to rainfall, while 46833065.78 m³ was inflow from other areas outside the model. 14963672.00 m³ of this water was lost to infiltration and interception, while 47964971.16 m³ was stored by the floodplain. The rest, amounting to up to 11294038.50 m³, was outflow.

5.6 Results of HMS Calibration

After calibrating the Catubig HEC-HMS river basin model, its accuracy was measured against the observed values. Figure 76 depicts the comparison between the two (2) discharge data. The Catubig Model Basin Parameters are available in Annex 9.

Figure 76. Outflow hydrograph of the Catubig Bridge generated in the HEC-HMS model, compared with observed outflow

	Table 34. R	ange of calibrated values	s for the Catubig River Basin mode	el
Hydrologic Element	Calculation Type	Method	Parameter	Range of Calibrated Values
	1.055	SCS Curve number	Initial Abstraction (mm)	6 - 37
	L035	SCS Curve number	Curve Number	68 - 88
Pacin	Transform	Clark Unit Hydrograph	Time of Concentration (hr)	0.2 - 12
Dasiii	ITALISIOTTI		Storage Coefficient (hr)	0.3 - 19
	Pacoflow	Recossion	Recession Constant	0.4
	Dasenow	Recession	Ratio to Peak	0.48
Reach	Routing	Muskingum-Cunge	Manning's Coefficient	0.04

Enumerated in Table 34 are the adjusted ranges of values of the parameters used in calibrating the model.

The initial abstraction defines the amount of precipitation that must fall before surface runoff. The magnitude of the outflow hydrograph increases as the initial abstraction decreases. The range of values from 6 – 37 millimeters for the initial abstraction means that there is a minimal to average amount of infiltration or rainfall interception by vegetation.

The curve number is the estimate of the precipitation excess of soil cover, land use, and antecedent moisture. The magnitude of the outflow hydrograph increases as the curve number increases. A range of 68 - 88 for the curve number is advisable for Philippine watersheds, depending on the soil and land cover of the area (M. Horritt, personal communication, 2012).

The time of concentration and the storage coefficient are the travel time and the index of temporary storage of runoff in a watershed. The range of calibrated values from 0.2 hours to 19 hours determines the reaction time of the model, with respect to the rainfall. The peak magnitude of the hydrograph decreases

when these parameters are increased.

The recession constant is the rate at which the baseflow recedes between storm events; and ratio to peak is the ratio of the baseflow discharge to the peak discharge. A recession constant of 0.4 indicates that the basin is unlikely to quickly return to its original discharge, and will be higher instead. A ratio to peak of 0.48 indicates a steeper to average slope of receding limb of the outflow hydrograph.

A Manning's roughness coefficient of 0.04 corresponds to the common roughness of the Catubig watershed, which is determined to be cultivated with mature field crops (Brunner, 2010).

RMSE	6.9
r ²	0.96
NSE	0.94
PBIAS	-0.93
RSR	0.25

Table 35. Summary of the efficiency test of the Catubig HMS Model

The Root Mean Square Error (RMSE) method aggregates the individual differences of these two measurements. It was computed as 6.9 (m3/s).

The Pearson correlation coefficient (r2) assesses the strength of the linear relationship between the observations and the model. A coefficient value close to 1 signifies an almost perfect match of the observed discharge and the resulting discharge from the HEC HMS model. Here, it was measured at 0.96.

The Nash-Sutcliffe (E) method was also used to assess the predictive power of the model. Here, the optimal value is 1. The model attained an efficiency coefficient of 0.94.

A positive Percent Bias (PBIAS) indicates a model's propensity towards under-prediction. Negative values indicate a bias towards over-prediction. The optimal value is 0. In the model, the PBIAS is -0.93.

The Observation Standard Deviation Ratio (RSR) is an error index. A perfect model attains a value of 0 when the error units of the values are quantified. The model has an RSR value of 0.25.

5.7 Calculated outflow hydrographys and Discharge values for different rainfall return periods

5.7.1 Hydrograph using the Rainfall Runoff Model

The summary graph in Figure 77 shows the Catubig outflow using the Catarman RIDF curves in five (5) different return periods (i.e., 5-year, 10-year, 25-year, 50-year, and 100-year rainfall time series), based on the data from PAGASA. The simulation results reveal a significant increase in outflow magnitude as the rainfall intensity increases, for a range of durations and return periods.

Figure 77. Outflow hydrograph at the Catubig Station generated using the Tacloban RIDF, simulated in HEC-HMS

A summary of the total precipitation, peak rainfall, peak outflow, and time to peak of the Catubig discharge using the Catarman RIDF curves in five (5) different return periods is shown in Table 36.

RIDF Period	Total Precipitation (mm)	Peak rainfall (mm)	Peak outflow (m3/s)	Time to Peak
5-Year	255.4	29.9	707.8	10 hours, 30 minutes
10-Year	305.4	34.7	891.4	10 hours, 10 minutes
25-Year	368.5	40.9	1127.8	9 hours, 50 minutes
50-Year	415.3	45.5	1304.9	9 hours, 40 minutes
100-Year	461.8	50	1482.7	9 hours, 20 minutes

Table 36. Peak values of the Catubig HEC-HMS Model outflow, using the Tacloban RIDF

5.8 River Analysis (RAS) Model Simulation

The HEC-RAS flood model produced a simulated water level at every cross-section, for every time step, for every flood simulation created. The resulting model will be used in determining the flooded areas within the model. The simulated model will be an integral part in determining the extent of the real-time flood inundation of the river, after it has been automated and uploaded on the DREAM website. For this publication, only a sample output map river is presented, since only the VSU-FMC base flow was calibrated. The sample generated map of the Catubig River using the calibrated HMS base flow is provided in Figure 78.

Figure 78. Sample output map of the Catubig RAS Model

5.9 Flow Depth and Flood Hazard

The resulting flood hazard and flow depth maps for the 5-year, 25-year, and 100-year rain return scenarios of the Catubig floodplain are exhibited in Figures 79 to 84. The floodplain, with an area of 371.89 square kilometers, covers nine (9) municipalities; namely, Jipapad, Catubig, Laoang, Las Navas, Mapanas, Palapag, Pambujan, Silvino Lobos and Sablayan. Table 37 specifies the percentage of area affected by flooding per municipality.

Municipality	Total Area	Area Flooded	% Flooded
Jipapad	173.29	1.57	0.90%
Catubig	217.59	174.68	80.28%
Laoang	207.60	118.88	57.26%
Las Navas	267.47	235.92	88.20%
Mapanas	143.56	42.04	29.29%
Palapag	153.46	137.13	89.36%
Pambujan	150.63	7.82	5.19%
Silvino Lobos	255.34	18.45	7.22%
Matuguinao	368.83	4.78	1.30%

Table 37. Municipalities affected in the Catubig floodplain

Figure 79. 100-year flood hazard map for the Catubig floodplain

Figure 80. 100-year flow depth map for the Catubig floodplain

Figure 81.25-year flood hazard map for the Catubig floodplain

Figure 82. 25-year flow depth map for the Catubig floodplain

Figure 83. 5-year flood hazard map for the Catubig floodplain

Figure 84. 5-year flow depth map for the Catubig floodplain

5.10 Inventory of Areas Exposed to Flooding of Affected Areas

Listed below are the barangays affected in the Catubig River Basin, grouped accordingly by municipality. For the said basin, nine (9) municipalities consisting of one hundred and seventy-two (172) barangays are expected to experience flooding when subjected to a 5-year rainfall return period.

For the 5-year return period, 0.81% of the Municipality of Jipapad, with an area of 173.29 square kilometers, will experience flood levels of less than 0.20 meters; while 0.05% of the area will experience flood levels of 0.21 to 0.50 meters. Meanwhile, 0.04%, 0.01%, 0.0001%, and 0.05% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Table 38 depicts the areas affected in Jipapad, in square kilometers, by flood depth per barangay.

Affected Area (sq. km.)	Area of affected bar (in sq.	rangays in Jipapad km.)
by flood depth (in m.)	Cagmanaba	San Roque
0.03-0.20	0.81	0.59
0.21-0.50	0.041	0.05
0.51-1.00	0.035	0.03
1.01-2.00	0.014	0.0038
2.01-5.00	0.0002	0
> 5.00	0.095	0

Table 38. Affected areas in Jipapad, Eastern Samar during a 5-year rainfall return period

Figure 85. Affected areas in Jipapad, Eastern Samar during a 5-year rainfall return period

For the Municipality of Catubig, with an area of 217.59 square kilometers, 53.63% will experience flood levels of less than 0.20 meters. 4.93% of the area will experience flood levels of 0.21 to 0.50 meters. Meanwhile, 5.79%, 6.32%, 3.39%, and 0.44% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Tables 39-43 depict the affected areas, in square kilometers, by flood depth per barangay.

	Tał	ble 39. Affected	areas in Catub	ig, Northern Sa	mar during a 5-	year rainfall ret	urn period		
Affected area (sq. km.)				Area of affecte	d barangays in (Catubig (in sq. l	cm.)		
by flood depth (in m.)	Anongo	Barangay 1	Barangay 2	Barangay 3	Barangay 4	Barangay 5	Barangay 6	Barangay 7	Barangay 8
0.03-0.20	2.82	0.49	0.055	0.018	0.019	0.025	0.024	0.018	0.012
0.21-0.50	0.73	0.081	0.019	0.012	0.012	0.0087	0.0059	0.0084	0.0033
0.51-1.00	1.3	0.039	0.02	0.0011	0	0	0	0.012	0.0054
1.01-2.00	1.06	0.0082	0.034	0.0014	0.0032	0.0027	0.00011	0.024	0.031
2.01-5.00	0.28	0.00031	0.029	0	0.00057	0.0019	0.0056	0.0098	0.031
> 5.00	0.054	0	0	0	0	0	0	0	0

Table 40. Affected areas in Catubig, Northern Samar during a 5-year rainfall return period

Affected area (so km)				Area of affect	ted barangavs in	Catubig (in s	a. km.)		
by flood depth (in m.)	Bonifacio	Boring	Cagbugna	Cagmanaba	Cagogobngan	Calingnan	Canuctan	Claro M. Recto	D. Mercader
0.03-0.20	1.04	0.56	0.35	0.81	1.12	1.29	1.21	7.37	1.38
0.21-0.50	0.3	0.0081	0.13	0.041	0.17	0.25	0.32	0.31	0.092
0.51-1.00	0.68	0.0049	0.14	0.035	0.29	0.2	0.18	0.3	0.081
1.01-2.00	0.83	0.0056	0.12	0.014	0.28	0.26	0.32	0.14	0.1
2.01-5.00	0.13	0.001	0.001	0.0002	0.14	0.11	0.21	0.038	0.095
> 5.00	0	0	0	0.095	0	0	0	0.0019	0

Affected area (sq. km.)			Ar	ea of affected.	barangays in Ca	itubig (in sq. k	cm.)		
by flood depth (in m.)	Guibwangan	Hinagonoyan	Hiparayan	Hitapi-An	Inoburan	Irawahan	Lenoyahan	Libon	Magongon
0.03-0.20	0.29	1.41	5.78	5.93	0.27	5.46	0.46	0.13	7.64
0.21-0.50	0.099	0.079	0.35	0.35	0.086	0.35	0.42	0.012	0.4
0.51-1.00	0.054	0.074	0.33	0.42	0.21	0.35	0.82	0.047	0.32
1.01-2.00	0.073	0.04	0.24	0.37	0.66	0.4	9.0	0.49	0.48
2.01-5.00	0.062	0.0056	0.19	0.11	0.5	0.52	0.11	0.67	0.35
> 5.00	0	0	0.03	0	0	0.19	0	0	0

Table 41. Affected areas in Catubig, Northern Samar during a 5-year rainfall return period

Table 42. Affected areas in Catubig, Northern Samar during a 5-year rainfall return period

Affected area (sq. km.)			Area o	f affected ba	rangays in C	atubig (in	sq. km.)		
by flood depth (in m.)	Magtuad	Manering	Nabulo	Nagoocan	Nahulid	Opong	Osang	Osmeña	P. Rebadulla
0.03-0.20	0.88	11.7	2.12	1.5	0.17	13.99	2.33	0.71	9.51
0.21-0.50	0.12	0.35	0.076	0.2	0.062	1.23	0.15	0.21	0.33
0.51-1.00	0.15	0.19	0.078	0.38	0.11	0.87	0.12	0.42	0.24
1.01-2.00	0.66	0.23	0.086	0.2	0.6	0.6	0.1	0.95	0.17
2.01-5.00	0.43	0.44	0.026	0.038	0.17	0.29	0.025	0.22	0.18
> 5.00	0	0.27	0	0.0012	0.00052	0	0	0.029	0.15

		Table 43. A	ffected areas i	n Catubig, North	ıern Samar	during a 5-ye	ar rainfall r	eturn peri	ро		
Affected area (sg. km.)				Area of a	affected bar	angays in Cat	ubig (in sa.	km.)			
by flood depth (in m.)	Roxas	Sagudsuron	San Antonio	San Francisco	San Jose	San Vicente	Santa Fe	Sulitan	Tangbo	Tungodnon	Vienna Maria
0.03-0.20	6.19	2.13	2.65	6.5	2.19	0.85	1.37	0.54	3.42	1.2	0.77
0.21-0.50	0.39	0.16	0.59	0.37	0.27	0.15	0.33	0.047	0.86	0.082	0.096
0.51-1.00	0.55	0.12	0.91	0.37	0.4	0.37	0.25	0.096	0.85	0.053	0.15
1.01-2.00	0.32	0.2	0.7	0.27	0.39	0.3	0.087	0.28	0.62	0.084	0.31
2.01-5.00	0.18	0.11	0.25	0.045	0.12	0.084	0.04	0.48	0.36	0.016	0.28
> 5.00	0.0032	0	0.073	0.001	0.0062	0.046	0.015	0	0	0	0

Figure 86. Affected areas in Catubig, Northern Samar during a 5-year rainfall return period

For the Municipality of Laoang, with an area of 207.60 square kilometers, 35.70% will experience flood levels of less than 0.20 meters. 10.11% of the area will experience flood levels of 0.21 to 0.50 meters. Meanwhile, 7.49%, 4.39%, 0.85%, and 0.25% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Tables 44-47 depict the affected areas, in square kilometers, by flood depth per barangay.

ō
<u>.o</u>
5
ă
E
2
ē
5
40
.⊆.
ŋ
2
a
é
1
ഹ
a
60
.⊆
5
F
Ľ
a
3
a
S
<u> </u>
5
ے
ヒ
0
Z
-
l Co
a,
Ó
p
1
<u>ا</u>
S
g
2
σ
σ
E
ច
Ð
Ť
4
4
4
e
ρ
J.

						-	
Affected Area (sq. km.)		Are	ea of affected	l barangays in	Laoang (in	sq. km.)	
by flood depth (in m.)	Abaton	Atipolo	Bawang	Bobolosan	Bongliw	Burabud	Cabagngan
0.03-0.20	7.19	3.02	3.28	2.27	2.22	1.34	3.19
0.21-0.50	1.07	0.94	1.09	0.69	2.12	0.37	1.09
0.51-1.00	1.35	0.27	1.57	0.38	1.47	0.25	0.8
1.01-2.00	0.62	0.2	0.81	0.28	0.85	0.029	0.16
2.01-5.00	0.095	0.0011	0.0019	0	0	0.0002	0.058
> 5.00	0.0036	0	0	0	0	0	0.012

Table 45. Affected areas in Laoang, Northern Samar during a 5-year rainfall return period

Affected Area (sq. km.)		Area	a of affected k	oarangavs in La	oang (in sa.	km.)	
by flood depth (in m.)	Cabago-An	Cabulaloan	Cagdara-O	Cangcahipos	Catigbian	E. J. Dulay	Gibatangan
0.03-0.20	2.06	0.74	2.39	2.81	2.06	3.48	1.58
0.21-0.50	0.99	0.88	0.15	0.63	0.52	0.19	0.11
0.51-1.00	0.57	0.82	0.15	0.57	0.33	0.29	0.12
1.01-2.00	0.064	0.55	0.21	0.25	0.5	0.16	0.12
2.01-5.00	0.0051	0.095	0.065	0.0096	0.063	0.11	0.14
> 5.00	0	0.0052	0.0032	0	0	0.033	0.029

San Antonio 2.65 0.25 0.59 0.91 0.7 Rombang 0.38 0.45 0.42 0.13 4.31 Area of affected barangays in Laoang (in sq. km.) 0.0034 Rawis 0.12 2.11 0.49 0 Palmera 0.0016 0.066 0.019 1.140.04 Oleras 5.33 0.38 0.13 0.59 0.21 Lawaan 0.058 4.84 0.38 1.930 La Perla 0.032 1.27 0.43 0.89 0.81 Affected Area (sq. km.) by flood depth (in m.) 0.03-0.20 0.21-0.50 0.51-1.00 1.01-2.00 2.01-5.00

Table 46. Affected areas in Laoang, Northern Samar during a 5-year rainfall return period

~
õ
0
5
Ψ
0
_
-
=
-
e
_
—
-
σi,
÷
·=
σ
_
L.
=
10
Φ
>
Ξī.
S CO
- /
σ
50
Ĉ
.=
<u> </u>
5
0
L.
=
<u>io</u>
2
σ
(Â
•,
_
· ·
E
SLD
lern
hern
thern
rthern
orthern
Vorthern
Northern
, Northern
g, Northern
ig, Northern
ng, Northerr
ang, Northerr
oang, Northerr
ioang, Northerr
aoang, Northerr
Laoang, Northerr
I Laoang, Northerr
n Laoang, Northerr
in Laoang, Northern
s in Laoang, Northerr
as in Laoang, Northern
eas in Laoang, Northern
eas in Laoang, Northerr
ireas in Laoang, Northern
areas in Laoang, Northern
f areas in Laoang, Northern
d areas in Laoang, Northern
ed areas in Laoang, Northern
ted areas in Laoang, Northern
cted areas in Laoang, Northern
ected areas in Laoang, Northern
fected areas in Laoang, Northern
ffected areas in Laoang, Northern
Affected areas in Laoang, Northern
Affected areas in Laoang, Northern
'. Affected areas in Laoang, Northern
7. Affected areas in Laoang, Northern
47. Affected areas in Laoang, Northern
947. Affected areas in Laoang, Northern
e 47. Affected areas in Laoang, Northern
ole 47. Affected areas in Laoang, Northern
ible 47. Affected areas in Laoang, Northern
able 47. Affected areas in Laoang, Northerr

Affected Area (sq. km.)		Ar	ea of affectec	l barangays ir	i Laoang (in	sq. km.)	
by flood depth (in m.)	Sibunot	Simora	Talisay	Tarusan	Tinoblan	Vigo	Yapas
0.03-0.20	3.03	2.36	0.92	1.63	1.72	2.26	2.91
0.21-0.50	0.55	0.57	0.045	2.85	0.32	1.08	0.25
0.51-1.00	0.57	0.75	0.12	0.28	0.67	0.83	0.21
1.01-2.00	0.3	0.27	0	0.19	0.43	0.78	0.13
2.01-5.00	0.089	0.088	0	0	0.25	0.1	0.055
> 5.00	0.0076	0.27	0	0	0.0095	0	0

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

0.073

0.055

0

0

0.019

0

0

> 5.00

Barangays

Figure 94. Affected areas in Laoang, Northern Samar during a 5-year rainfall return period

For the Municipality of Las Navas, with an area of 267.47 square kilometers, 60.88% will experience flood levels of less than 0.20 meters. 7.09% of the area will experience flood levels of 0.21 to 0.50 meters. Meanwhile, 8.13%, 7.43%, 6.47%, and 2.04% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Tables 48-54 depict the affected areas, in square kilometers, by flood depth per barangay.

Table 48.	. Affected are	eas in Las N	avas, Northe	ern Samar du	ring a 5-yeaı	rainfall retur	n period	
Affected Area (sq. km.)			A	ffected Bara	ngays in Las	Navas		
by flood depth (in m.)	Balugo	Bugay	Bugtosan	Bukid	Bulao	Caputoan	Catoto-Ogan	Cuenco
0.03-0.20	0.32	2.04	2.18	3.04	2.02	4.25	15.62	5
0.21-0.50	0.026	0.31	0.55	0.45	0.84	0.23	1.81	0.27
0.51-1.00	0.13	0.62	9.0	0.57	1.07	0.26	1.75	0.26
1.01-2.00	0.58	1.08	0.35	0.66	0.28	0.18	1.24	0.3
2.01-5.00	1.43	0.37	0.12	0.18	0.062	0.012	0.23	0.17
> 5.00	0.00023	0.065	0.13	0	0	0	0.0005	0.011

Table 49 Affected areas in Las Navas Northern Samar during a 5-vear rainfall return period

	רוורנינים מות							
Affected Area (sq. km.)			Aff	ected Bara	angays in Las N	Javas		
by flood depth (in m.)	Dapdap	Del Pilar	Dolores	Epaw	Geguinta	Geracdo	Guyo	H. Jolejole
0.03-0.20	1.57	0.55	3.3	2.29	0.91	0.17	0.97	1.73
0.21-0.50	0.073	0.023	0.26	0.11	0.25	0.04	0.075	0.22
0.51-1.00	0.095	0.031	0.16	0.14	0.31	0.19	0.042	0.19
1.01-2.00	0.19	0.068	0.072	0.13	0.37	0.45	0.18	0.14
2.01-5.00	0.98	1.22	0.0039	0.29	0.13	0.4	0.52	0.022
> 5.00	0.68	0.58	0	0.28	0.036	0.011	0.016	0

Table 50. Affected areas in Las Navas, Northern Samar during a 5-year rainfall return period

Affected Area (sq. km.)			Area of affe	cted baranga	ys in Las Nava	as (in sq. km.)		
by flood depth (in m.)	H. Jolejole District	Hangi	Imelda	L. Empon	Lakandula	Lourdes	Lumala-Og	Mabini
0.03-0.20	0.037	2.12	1.76	1.93	2.21	4.83	0.81	2.98
0.21-0.50	0.012	0.37	0.16	0.26	0.15	0.52	0.05	0.54
0.51-1.00	0.045	0.39	0.19	0.28	0.15	0.71	0.15	0.45
1.01-2.00	0.16	1.03	0.15	0.21	0.13	0.22	0.45	0.23
2.01-5.00	0.082	2.84	0.066	0.13	0.12	0.005	1.09	0.16
> 5.00	0.043	0.26	0	0.13	0.0014	0	0.13	0.14

Table 51	1. Affected are	as in Las Nava	as, Northern Sa	amar during	g a 5-year ra	ainfall return	period	
Affected Area (sq. km.)		Ar	ea of affected	barangays	in Las Nava	as (in sq. km	(
by flood depth (in m.)	Macarthur	Magsaysay	Matelarag	Osmeña	Paco	Palanas	Perez	Poponton
0.03-0.20	4.42	2.05	1.29	0.71	2.68	7.12	4.32	3.16
0.21-0.50	0.59	0.41	0.15	0.21	0.45	0.88	0.67	0.25
0.51-1.00	0.57	0.5	0.14	0.42	0.48	0.78	0.81	0.42
1.01-2.00	0.25	0.23	0.52	0.95	0.33	0.53	0.46	0.49
2.01-5.00	0.077	0.077	0.91	0.22	0.22	0.036	0.16	0.11

Table 52. A	Affected area	s in Las Nav	as, Norther	n Samar dı	uring a 5-ye	ar rainfall ret	urn period	
Affected Area (sq. km.)		A	rea of affec	ted baran	gays in Las I	Vavas (in sq.	km.)	
by flood depth (in m.)	Quezon	Quirino	Rebong	Rizal	Roxas	Rufino	Sag-Od	San Andres
0.03-0.20	2.16	8.26	0.36	3.85	6.19	3.25	2.28	3.34
0.21-0.50	0.45	0.88	0.037	0.4	0.39	0.14	0.089	0.27
0.51-1.00	0.44	1.17	0.069	0.56	0.55	0.11	0.068	0.21
1.01-2.00	0.19	0.82	0.44	0.44	0.32	0.082	0.046	0.19
2.01-5.00	0.0034	0.32	0.95	0.1	0.18	0.008	0.014	0.2
> 5.00	0	0.086	0.087	0.061	0.0032	0.0018	0	0.002

Table 53. Affected areas in Las Navas, Northern Samar during a 5-year rainfall return period

			V	and here		1 1 1		
Arrected Area (sq. km.)			Агеа от апе	screa paranga	ys in Las Na	vas (in sq. k	Û.	
by flood depth (in m.)	San Antonio	San Fernando	San Francisco	San Isidro	San Jorge	San Jose	San Miguel	Santo Tomas
0.03-0.20	2.65	1.25	6.5	14.95	1.89	2.19	3.68	1.73
0.21-0.50	0.59	0.72	0.37	1.01	0.21	0.27	0.57	0.35
0.51-1.00	0.91	0.33	0.37	1.23	0.13	0.4	0.95	0.21
1.01-2.00	0.7	0.071	0.27	0.94	0.03	0.39	0.39	0.11
2.01-5.00	0.25	0.0048	0.045	0.62	0.0004	0.12	0.15	0.0068
> 5.00	0.073	0	0.001	1.73	0	0.0062	0.04	0

0.07

0.046

0.00031

0.11

0.029

0.13

0.0019

0.051

> 5.00

Affected Area (sq. km.)	Area of a	fected barangay	ys in Las Navas (in sq. km.)
by flood depth (in m.)	Tagab-Iran	Tagan-Ayan	Taylor	Victory
0.03-0.20	0.84	5.37	1.22	2.48
0.21-0.50	0.044	0.56	0.22	0.19
0.51-1.00	0.068	0.53	0.26	0.28
1.01-2.00	0.81	0.33	0.36	0.33
2.01-5.00	1.22	0.46	0.14	0.074
> 5.00	0.24	0.021	0.11	0.03

Table 54. Affected areas in Las Navas, Northern Samar during a 5-year rainfall return period

Figure 100. Affected areas in Las Navas, Northern Samar during a 5-year rainfall return period

For the Municipality of Mapanas, with an area of 143.56 square kilometers, 17.62% will experience flood levels of less than 0.20 meters. 0.76% of the area will experience flood levels of 0.21 to 0.50 meters. Meanwhile, 0.64%, 0.65%, 0.63%, and 0.38% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Table 55 depicts the affected areas, in square kilometers, by flood depth per barangay.

Affected Area (sq. km.)	Area of affected I	parangays in Map	anas (in sq. km.)
by flood depth (in m.)	Magtaon	San Jose	Siljagon
0.03-0.20	0.04	2.19	23.07
0.21-0.50	0	0.27	0.82
0.51-1.00	0	0.4	0.52
1.01-2.00	0	0.39	0.55
2.01-5.00	0	0.12	0.78
> 5.00	0	0.0062	0.54

Table 55. Affected areas in Mapanas, Northern Samar during a 5-year rainfall return period

Figure 101. Affected areas in Mapanas, Northern Samar during a 5-year rainfall return period

For the Municipality of Palapag, with an area of 153.46 square kilometers, 62.11% will experience flood levels of less than 0.20 meters. 6.04% of the area will experience flood levels of 0.21 to 0.50 meters. Meanwhile, 4.49%, 3.36%, 2.14%, and 0.72% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Tables 56-59 depict the affected areas, in square kilometers, by flood depth per barangay.

Table 56. Affected areas in Palapag, Northern Samar during a 5-year rainfall return period

Affected Area (sq. km.)	-		Aff	ected Barangay	s in Palapag		
by flood depth (in m.)	Asum	Bagacay	Bangon	Benigno S. Aquino, Jr.	Cabariwan	Cabatuan	Campedico
0.03-0.20	0.59	25.63	8.81	0.31	1.75	0.42	1.15
0.21-0.50	0.24	26.0	0.48	0.22	0.13	0.0061	0.054
0.51-1.00	0.1	0.59	0.51	0.2	0.12	0.0016	0.023
1.01-2.00	0.012	0.48	0.48	0.11	0.035	0	0.044
2.01-5.00	0	0.74	0.72	0.0009	0.075	0	0
> 5.00	0	0.45	0.21	0	0	0	0

Table 57. Affected areas in Palapag, Northern Samar during a 5-year rainfall return period

Affected Area (sq. km.)			Affect	ed Barangays in	Palapag		
by flood depth (in m.)	Capacujan	Jangtud	Laniwan	Mabaras	Magsaysay	Manajao	Mapno
0.03-0.20	8.84	2.19	0.14	2.94	2.05	0.87	4.24
0.21-0.50	0.38	0.24	0.049	0.31	0.41	0.24	0.45
0.51-1.00	0.24	0.19	0.14	0.21	0.5	0.11	0.2
1.01-2.00	0.29	0.086	0.18	0.093	0.23	0.095	0.059
2.01-5.00	0.31	0.002	0.05	0.0068	0.077	0	0.014
> 5.00	0.006	0	0.0078	0	0.0019	0	0

$\overline{\mathbf{n}}$
rio
l pe
nrn
ret
=
Ъ
.⊆
G
a
ě
1
a,
۵0
.⊆
Ъ
σ
a
Ē
ā
2
5
Ę
Ľ
2
۲,
ğ
ä
<u>la</u>
Ра
Ē
s.
ğ
Ĩ
7
ĕ
ŭ
ffe
Ā
ø.
ñ
<u>e</u>
de
Ĕ

Affected Area (sq. km.)			Affected	Barangays in Pa	llapag		
by flood depth (in m.)	Maragano	Matambag	Monbon	Nagbobtac	Napo	Natawo	Nipa
0.03-0.20	1.32	0.86	2.65	6.5	3.48	1.6	2.47
0.21-0.50	0.041	0.27	0.6	0.36	0.72	0.37	0.075
0.51-1.00	0.0086	0.39	0.048	0.41	0.58	0.19	0.0078
1.01-2.00	0.0044	0.3	0.0061	0.35	0.54	0.071	0
2.01-5.00	0.0005	0.045	0	0.15	0.68	0.0001	0
> 5.00	0	0	0	0.0095	0.12	0	0

Table 59. Affected areas in Palapag, Northern Samar during a 5-year rainfall return period

Affected Area (sq. km.)					Affected Bar	angays in Pala	pag			
by flood depth (in m.)	Osmeña	Pangpang	Paysud	Sangay	Simora	Sinalaran	Sumoroy	Talolora	Tambangan	Tinampo
0.03-0.20	0.71	2.83	1.73	4.43	2.36	1.25	0.81	0.8	0.59	0.99
0.21-0.50	0.21	0.29	0.39	0.26	0.57	0.069	0.22	0.37	0.28	0.0085
0.51-1.00	0.42	0.15	0.1	0.26	0.75	0.073	0.092	0.12	0.16	0.00098
1.01-2.00	0.95	0.04	0.061	0.15	0.27	0.039	0.082	0.09	0.0079	0
2.01-5.00	0.22	0	0.012	0.067	0.088	0	0.00016	0.014	0.011	0
> 5.00	0.029	0	0	0.0001	0.27	0	0	0	0	0

For the Municipality of Pambujan, with an area of 150.63 square kilometers, 4.81% will experience flood levels of less than 0.20 meters. 0.19% of the area will experience flood levels of 0.21 to 0.50 meters. Meanwhile, 0.10%, 0.07%, and 0.03% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, and more than 2 meters, respectively. Table 60 depicts the affected areas, in square kilometers, by flood depth per barangay.

Affected Area (sq. km.)		Affected B	arangays in Pam	bujan
by flood depth (in m.)	Geparayan	Ginulgan	Inanahawan	Sixto T. Balanguit, Sr.
0.03-0.20	1.95	1.43	0.74	3.12
0.21-0.50	0.1	0.049	0.023	0.11
0.51-1.00	0.056	0.028	0.017	0.053
1.01-2.00	0.034	0.021	0.0036	0.043
2.01-5.00	0.0029	0.0058	0.00049	0.039
> 5.00	0	0	0	0

Table 60. Affected areas in Pambujan, Northern Samar during a 5-year rainfall return period

Figure 106. Affected areas in Pambujan, Northern Samar during a 5-year rainfall return period
For the Municipality of Silvino Lobos, with an area of 255.34 square kilometers, 6.13% will experience flood levels of less than 0.20 meters. 0.30% of the area will experience flood levels of 0.21 to 0.50 meters. Meanwhile, 0.39%, 0.34%, and 0.06% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, and more than 2 meters, respectively. Table 61 depicts the affected areas, in square kilometers, by flood depth per barangay.

Affected Area (sq. km.)		Affected Barangays in Si	lvino Lobos
by flood depth (in m.)	Balud	Geparayan de Turag	Senonogan de Tubang
0.03-0.20	0.045	9.27	6.34
0.21-0.50	0.0013	0.46	0.31
0.51-1.00	0.0011	0.6	0.39
1.01-2.00	0.0042	0.53	0.34
2.01-5.00	0.0005	0.055	0.11
> 5.00	0	0	0

Table 61. Affected areas in Silvino Lobos, Northern Samar during a 5-year rainfall return period

For the Municipality of Matuguinao, with an area of 368.83 square kilometers, 1.14% will experience flood levels of less than 0.20 meters. 0.05% of the area will experience flood levels of 0.21 to 0.50 meters. Meanwhile, 0.05%, 0.03%, and 0.009% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, and more than 2 meters, respectively. Table 62 depicts the affected areas, in square kilometers, by flood depth per barangay.

Affected Area (sq. km.)	Affected Baranga	ys in Matuguinao
by flood depth (in m.)	Camonoan	Ligaya
0.03-0.20	4.1	0.12
0.21-0.50	0.2	0.0015
0.51-1.00	0.2	0.00047
1.01-2.00	0.12	0.0002
2.01-5.00	0.033	0
> 5.00	0	0

Table 62. Affected areas in Matuguinao, Samar during a 5-year rainfall return period

For the 25-year return period, 0.79% of the Municipality of Jipapad, with an area of 173.29 square kilometers, will experience flood levels of less than 0.20 meters, while 0.05% of the area will experience flood levels of 0.21 to 0.50 meters. Meanwhile, 0.05%, 0.02%, 0.0002%, and 0.10% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Table 63 depicts the areas affected in Jipapad, in square kilometers, by flood depth per barangay.

Affected Area (sq. km.)	Affected Barang	ays in Jipapad
by flood depth (in m.)	Cagmanaba	San Roque
0.03-0.20	0.79	0.58
0.21-0.50	0.043	0.045
0.51-1.00	0.037	0.043
1.01-2.00	0.022	0.0062
2.01-5.00	0.0003	0
> 5.00	0.18	0

Table 63. Affected areas in Jipapad, Eastern Samar during a 25-year rainfall return period

For the Municipality of Catubig, with an area of 217.59 square kilometers, 51.43% will experience flood levels of less than 0.20 meters. 4.07% of the area will experience flood levels of 0.21 to 0.50 meters. Aeonthy and 2.22%, 7.41%, 6.68%, and 0.75% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Tables 64-68 depict the affected areas, in square kilometers, by flood depth per barangay.

	Tabl	le 64. Affected ¿	areas in Catubi£	g, Northern San	าar during a 25-	-year rainfall ret	urn period		
Affected Area (sq. km.)				Area of affected	d barangays in	Catubig (in sq.	km.)		
by flood depth (in m.)	Anongo	Barangay 1	Barangay 2	Barangay 3	Barangay 4	Barangay 5	Barangay 6	Barangay 7	Barangay 8
0.03-0.20	2.55	0.47	0.042	0.012	6600.0	0.007	0.0064	0.000049	0.0056
0.21-0.50	0.41	0.087	0.0073	0.0038	0.0065	0.01	0.011	0.0064	0.0031
0.51-1.00	0.65	0.038	0.022	0.013	0.014	0.016	0.013	0.018	0.006
1.01-2.00	1.98	0.018	0.023	0.0009	0	0	0.00042	0.029	0.016
2.01-5.00	0.62	0.0036	0.062	0.0019	0.0037	0.0046	0.0057	0.015	0.046
> 5.00	0.075	0	0.0039	0	0	0	0.000017	0.0024	0.0047

Table 65. Affected areas in Catubig, Northern Samar during a 25-year rainfall return period

Affected Area (sq. km.)				Area of aft	fected barangays	in Catubig (in	sq. km.)		
by flood depth (in m.)	Bonifacio	Boring	Cagbugna	Cagmanaba	Cagogobngan	Calingnan	Canuctan	Claro M. Recto	D. Mercader
0.03-0.20	0.9	0.56	0.28	0.79	1.03	1.15	1.04	7.25	1.37
0.21-0.50	0.12	0.01	0.08	0.043	0.12	0.21	0.27	0.33	0.08
0.51-1.00	0.29	0.0056	0.081	0.037	0.22	0.13	0.18	0.29	0.043
1.01-2.00	1.13	0.0059	0.25	0.022	0.29	0.33	0.31	0.22	0.12
2.01-5.00	0.52	0.0024	0.058	0.0003	0.34	0.29	0.45	0.057	0.14
> 5.00	0.0054	0	0	0.18	0	0	0	0.0053	0

	Table	66. Affected area	as in Catubig, N	orthern Samar	during a 25-ye	ar rainfall returr	ı period		
Affected Area (sq. km.)			Are	a of affected b	arangays in Cat	ubig (in sq. km			
by flood depth (in m.)	Guibwangan	Hinagonoyan	Hiparayan	Hitapi-An	Inoburan	Irawahan	Lenoyahan	Libon	Magongon
0.03-0.20	0.19	1.39	5.59	5.8	0.19	5.22	0.31	0.11	7.5
0.21-0.50	0.092	0.077	0.34	0.35	0.037	0.27	0.16	0.0049	0.42
0.51-1.00	0.11	0.072	0.35	0.32	0.06	0.36	0.61	0.0096	0.27
1.01-2.00	0.092	0.065	0.36	0.54	0.41	0.5	1.06	0.075	0.39
2.01-5.00	0.098	0.0095	0.2	0.17	1.02	0.6	0.27	1.14	0.62
> 5.00	0	0	0.084	0	0.0016	0.3	0	0	0

Table 67. Affected areas in Catubig, Northern Samar during a 25-year rainfall return period

Affected Area (sq. km.)				Area of affecte	ed barangays ir	n Catubig (in so	q. km.)		
by flood depth (in m.)	Magtuad	Manering	Nabulo	Nagoocan	Nahulid	Opong	Osang	Osmeña	P. Rebadulla
0.03-0.20	0.79	11.4	2.06	1.44	0.12	13.64	2.28	0.6	9.32
0.21-0.50	0.083	0.43	0.077	0.13	0.035	1.16	0.17	0.12	0.35
0.51-1.00	0.093	0.2	0.051	0.32	0.083	0.97	0.11	0.098	0.25
1.01-2.00	0.17	0.21	0.087	0.37	0.26	0.75	0.14	0.48	0.21
2.01-5.00	1.05	0.49	0.091	0.064	0.58	0.45	0.035	1.21	0.24
> 5.00	0.069	0.45	0.012	0.0015	0.033	0.0028	0	0.0025	0.2

		Table 68. Affe	cted areas in	Catubig, Nori	chern Samar	during a 25-ye	ear rainfall ret	turn perioo			
Affected Area (sq. km.)				Area o	f affected b	arangays in Ca	tubig (in sq.	km.)			
by flood depth (in m.)	Roxas	Sagudsuron	San Antonio	San Francisco	San Jose	San Vicente	Santa Fe	Sulitan	Tangbo	Tungodnon	Vienna Maria
0.03-0.20	6.02	2.01	2.4	6.37	2.03	0.78	1.23	0.48	3.24	1.21	0.72
0.21-0.50	0.38	0.16	0.37	0.37	0.26	0.06	0.25	0.03	0.7	0.08	0.073
0.51-1.00	0.4	0.11	0.4	0.37	0.32	0.17	0.3	0.027	0.51	0.052	0.12
1.01-2.00	0.6	0.16	1.31	0.37	0.43	0.59	0.24	0.13	1.12	0.083	0.18
2.01-5.00	0.23	0.29	0.6	0.08	0.33	0.13	0.06	0.78	0.54	0.015	0.52
> 5.00	0.0067	0	0.097	0.0039	0.017	0.059	0.019	0.0012	0	0	0.0001

For the Municipality of Laoang, with an area of 207.60 square kilometers, 32.91% will experience flood levels of less than 0.20 meters. 7.97% of the area will experience flood levels of 0.21 to 0.50 meters. Meanwhile, 8.45%, 7.0008%, 2.16%, and 0.36% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Tables 69-72 depict the affected areas, in square kilometers, by flood depth per barangay.

Affected Area (sq. km.)		Are	ea of affected	d barangays ir	Laoang (in	sq. km.)	
by flood depth (in m.)	Abaton	Atipolo	Bawang	Bobolosan	Bongliw	Burabud	Cabagngan
0.03-0.20	7.01	2.56	3.15	2.26	1.58	1.29	2.91
0.21-0.50	0.82	1.39	0.61	0.7	1.16	0.4	96.0
0.51-1.00	1.17	0.27	1.2	0.38	2.45	0.26	26.0
1.01-2.00	1.01	0.21	1.35	0.29	1.19	0.038	0.37
2.01-5.00	0.31	0.0012	0.44	0	0.29	0.0004	0.07
> 5.00	0.0073	0	0	0	0	0	0.015

Table 69. Affected areas in Laoang, Northern Samar during a 25-year rainfall return period

Table 70. Affected areas in Laoang, Northern Samar during a 25-year rainfall return period

Affected Area (sq. km.)		Area	a of affected l	oarangays in La	oang (in sq. l	km.)	
by flood depth (in m.)	Cabago-An	Cabulaloan	Cagdara-O	Cangcahipos	Catigbian	E. J. Dulay	Gibatangan
0.03-0.20	2.06	0.48	2.35	2.52	1.86	3.35	1.49
0.21-0.50	0.98	0.56	0.11	0.63	0.51	0.14	0.11
0.51-1.00	0.58	0.97	0.092	0.57	0.38	0.15	0.14
1.01-2.00	0.067	0.88	0.31	0.55	0.46	0.4	0.17
2.01-5.00	0.0051	0.19	0.084	0.047	0.27	0.18	0.15
> 5.00	0	0.007	0.0062	0	0	0.038	0.055

S
<u>.o</u>
5
ĕ
2
Ľ
Ξ
ž
Ľ
_
a
÷
.⊆
ത
J
ā
ð
~
Ó
2
B
bo
č
÷E
5
ō
Ē
σ
3
Ē
S
S
rn S
iern S
thern S
orthern S
lorthern S
Northern S
g, Northern S
ng, Northern S
ang, Northern S
oang, Northern S
aoang, Northern S
Laoang, Northern S
n Laoang, Northern S
in Laoang, Northern S
as in Laoang, Northern S
eas in Laoang, Northern S
reas in Laoang, Northern S
areas in Laoang, Northern S
d areas in Laoang, Northern S
ed areas in Laoang, Northern S
cted areas in Laoang, Northern S
ected areas in Laoang, Northern S
ffected areas in Laoang, Northern S
Affected areas in Laoang, Northern S
. Affected areas in Laoang, Northern S
Affected areas in Laoang, Northern S
71. Affected areas in Laoang, Northern S
e 71. Affected areas in Laoang, Northern S
ole 71. Affected areas in Laoang, Northern S
able 71. Affected areas in Laoang, Northern S

Affected Area (sq. km.)		Are	ea of affected	l barangays ir	n Laoang (in	sq. km.)	
by flood depth (in m.)	La Perla	Lawaan	Oleras	Palmera	Rawis	Rombang	San Antonio
0.03-0.20	1.11	4.79	5.04	1.12	2.11	4.11	2.4
0.21-0.50	0.25	1.93	0.41	0.072	0.49	0.26	0.37
0.51-1.00	0.63	0.42	0.56	0.05	0.12	0.28	0.4
1.01-2.00	1.27	0.069	0.45	0.026	0.0034	0.67	1.31
2.01-5.00	0.18	0	0.15	0.0031	0	0.34	9.0
> 5.00	0	0	0.058	0	0	0.069	0.097

Table 72. Affected areas in Laoang, Northern Samar during a 25-year rainfall return period

Affected Area (sq. km.)		Ar	ea of affected	l barangays ir	i Laoang (in	sq. km.)		
by flood depth (in m.)	Sibunot	Simora	Talisay	Tarusan	Tinoblan	Vigo	Yapas	
0.03-0.20	2.77	2.23	0.92	1.07	1.58	1.33	2.88	
0.21-0.50	0.43	0.44	0.045	1.23	0.15	1.18	0.21	
0.51-1.00	0.7	0.54	0.12	2.39	0.43	1.18	0.15	
1.01-2.00	0.5	0.67	0	0.27	0.84	0.94	0.22	
2.01-5.00	0.14	0.15	0	0.0034	0.36	0.42	0.1	
> 5.00	0.016	0.36	0	0	0.018	0	0	

Barangays

For the Municipality of Las Navas, with an area of 267.47 square kilometers, 57.03% will experience flood levels of less than 0.20 meters. 5.67% of the area will experience flood levels of 0.21 to 0.50 meters. Meanwhile, 7.49%, 9.94%, 8.58%, and 3.23% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Tables 73-79 depict the affected areas, in square kilometers, by flood depth per barangay.

Affected Area (sq. km.)			Area of affe	ected barang	ays in Las Na	avas (in sq. kı	ш.)	
by flood depth (in m.)	Balugo	Bugay	Bugtosan	Bukid	Bulao	Caputoan	Catoto-Ogan	Cuenco
0.03-0.20	0.3	1.96	1.76	2.9	1.75	4.16	15	4.8
0.21-0.50	0.021	0.27	0.49	0.36	0.63	0.22	1.61	0.25
0.51-1.00	0.041	0.54	0.71	0.54	1.11	0.27	1.87	0.28
1.01-2.00	0.39	1.28	0.66	0.79	0.71	0.26	1.72	0.38
2.01-5.00	1.72	0.36	0.17	0.32	0.081	0.033	0.43	0.28
> 5.00	0.016	0.064	0.15	0	0	0	0.0091	0.031

Table 73. Affected areas in Las Navas, Northern Samar during a 25-year rainfall return period

Table 74. Affected areas in Las Navas, Northern Samar during a 25-year rainfall return period

Affected Area (sq. km.)		4	rrea of affec	ted barang	gays in Las Na	vas (in sq. kn	n.)	
by flood depth (in m.)	Dapdap	Del Pilar	Dolores	Epaw	Geguinta	Geracdo	Guyo	H. Jolejole
0.03-0.20	1.38	0.47	3.21	2.12	0.8	0.15	0.88	1.64
0.21-0.50	0.05	0.019	0.3	0.092	0.15	0.027	0.084	0.2
0.51-1.00	0.073	0.025	0.18	0.1	0.25	0.09	0.077	0.2
1.01-2.00	0.14	0.049	0.094	0.14	0.48	0.47	0.069	0.18
2.01-5.00	0.5	0.55	0.02	0.31	0.28	0.5	0.61	0.068
> 5.00	1.45	1.36	0.0001	0.47	0.041	0.027	0.034	0

Table	75. Affected an	eas in Las Na	avas, Northeri	n Samar durir	וg a 25-year r	ainfall return	period	
Affected Area (sq. km.)			Area of affe	cted baranga	ys in Las Nava	as (in sq. km.)		
by flood depth (in m.)	H. Jolejole District	Hangi	Imelda	L. Empon	Lakandula	Lourdes	Lumala-Og	Mabini
0.03-0.20	0.042	1.65	1.71	1.66	2.14	4.68	0.81	2.03
0.21-0.50	0.018	0.21	0.12	0.15	0.13	0.39	0.058	0.33
0.51-1.00	0.047	0.26	0.17	0.22	0.15	0.79	0.15	0.54
1.01-2.00	0.16	0.73	0.24	0.47	0.18	0.41	0.5	0.93
2.01-5.00	0.068	3.65	0.09	0.28	0.14	0.014	1.05	0.49
> 5.00	0.042	0.35	0	0.16	0.016	0	0.1	0.2

Table 76. Affected areas in Las Navas. Northern Samar during a 25-vear rainfall return period

				0			5))	
Affected Area (sq. km.)		Ar	ea of affected	barangays	in Las Nava	as (in sq. km.	_	
by flood depth (in m.)	Macarthur	Magsaysay	Matelarag	Osmeña	Расо	Palanas	Perez	Poponton
0.03-0.20	4.06	1.94	1.28	0.6	2.33	6.69	4.01	2.99
0.21-0.50	0.37	0.27	0.21	0.12	0.24	0.81	0.47	0.21
0.51-1.00	0.61	0.48	0.2	0.098	0.42	0.73	0.61	0.33
1.01-2.00	0.7	0.47	0.57	0.48	0.72	0.71	0.97	0.59
2.01-5.00	0.14	0.12	0.77	1.21	0.42	0.41	0.31	0.3
> 5.00	0.065	0.0068	0.11	0.0025	0.13	0.002	0.074	0.084

Table 77. Affected areas in Las Navas, Northern Samar during a 25-year rainfall return period

	50.5000.				1 0	0		
Affected Area (sq. km.)		4	vrea of affec	ted barang	gays in Las I	Vavas (in sq.	km.)	
by flood depth (in m.)	Quezon	Quirino	Rebong	Rizal	Roxas	Rufino	Sag-Od	San Andres
0.03-0.20	2.04	7.87	0.35	3.58	6.02	3.2	2.25	3.18
0.21-0.50	0.35	0.66	0.043	0.33	0.38	0.15	0.091	0.23
0.51-1.00	0.53	0.88	0.065	0.52	0.4	0.13	0.076	0.29
1.01-2.00	0.31	1.41	0.44	0.62	0.6	0.1	0.059	0.24
2.01-5.00	0.015	0.6	0.95	0.27	0.23	0.012	0.018	0.26
> 5.00	0	0.11	0.088	0.073	0.0067	0.0028	0	0.011

Table 78. Affected areas in Las Navas, Northern Samar during a 25-year rainfall return period

Affected Area (sq. km.)			Area of affe	cted baranga	iys in Las Na	vas (in sq. k	m.)	
by flood depth (in m.)	San Antonio	San Fernando	San Francisco	San Isidro	San Jorge	San Jose	San Miguel	Santo Tomas
0.03-0.20	2.4	1.03	6.37	14.19	1.84	2.03	3.48	1.59
0.21-0.50	0.37	0.57	0.37	0.85	0.2	0.26	0.4	0.33
0.51-1.00	0.4	0.59	0.37	1.21	0.18	0.32	0.71	0.23
1.01-2.00	1.31	0.16	0.37	1.33	0.043	0.43	0.92	0.15
2.01-5.00	0.6	0.013	0.08	0.71	0.0006	0.33	0.23	0.11
> 5.00	0.097	0	0.0039	2.19	0	0.017	0.049	0

Table 79. Affected areas in Las Navas, Northern Samar during a 25-year rainfall return period

Affected Area (sq. km.)	Area of af	fected barangay	/s in Las Navas (i	in sq. km.)
by flood depth (in m.)	Tagab-Iran	Tagan-Ayan	Taylor	Victory
0.03-0.20	0.74	5.14	0.99	2.36
0.21-0.50	0.033	0.44	0.1	0.13
0.51-1.00	0.035	0.48	0.24	0.23
1.01-2.00	0.081	0.46	0.46	0.45
2.01-5.00	1.75	0.53	0.39	0.17
> 5.00	0.59	0.23	0.14	0.043

For the Municipality of Mapanas, with an area of 143.56 square kilometers, 17.15% will experience flood levels of less than 0.20 meters. 0.82% of the area will experience flood levels of 0.21 to 0.50 meters. Meanwhile, 0.60%, 0.69%, 0.85%, and 0.59% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Table 80 depicts the affected areas, in square kilometers, by flood depth per barangay.

Affected Area (sq. km.)	Affected	Barangays in M	apanas
by flood depth (in m.)	Magtaon	San Jose	Siljagon
0.03-0.20	0.04	2.03	22.55
0.21-0.50	0	0.26	0.91
0.51-1.00	0	0.32	0.54
1.01-2.00	0	0.43	0.56
2.01-5.00	0	0.33	0.89
> 5.00	0	0.017	0.83

Table 80. Affected areas in Mapanas, Northern Samar during a 25-year rainfall return period

flood levels of 0.21 to 0.50 meters. Meanwhile, 4.57%, 3.93%, 2.99%, and 0.98% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Tables 81-84 depict the affected areas, in square kilometers, by flood depth per barangay. For the Municipality of Palapag, with an area of 153.46 square kilometers, 60.21% will experience flood levels of less than 0.20 meters. 6.31% of the area will experience

Affected Area (sg. km.)	-	Ar	ea of affect	ed barangays in	Palapag (in sq	. km.)	
by flood depth (in m.)	Asum	Bagacay	Bangon	Benigno S. Aquino, Jr.	Cabariwan	Cabatuan	Campedico
0.03-0.20	0.53	25.4	8.62	0.22	1.74	0.42	1.13
0.21-0.50	0.2	1.03	0.42	0.19	0.11	0.0084	0.063
0.51-1.00	0.21	0.59	0.44	0.26	0.15	0.002	0.029
1.01-2.00	0.026	0.5	0.56	0.18	0.039	0.0001	0.052
2.01-5.00	0	0.74	0.83	0.004	0.076	0	0
> 5.00	0	0.6	0.34	0	0	0	0

Table 81. Affected areas in Palapag, Northern Samar during a 25-year rainfall return period

Table 82. Affected areas in Palapag, Northern Samar during a 25-year rainfall return period

Т

Affected Area (sq. km.)		Are	ea of affected	l barangays in F	alapag (in sq.	km.)	
by flood depth (in m.)	Capacujan	Jangtud	Laniwan	Mabaras	Magsaysay	Manajao	Mapno
0.03-0.20	8.78	2.14	0.13	2.87	1.94	0.69	4.24
0.21-0.50	0.4	0.23	0.046	0.32	0.27	0.35	0.45
0.51-1.00	0.22	0.19	0.12	0.22	0.48	0.15	0.2
1.01-2.00	0.3	0.16	0.21	0.13	0.47	0.13	0.059
2.01-5.00	0.33	0.0038	0.052	0.0071	0.12	0.0001	0.014
> 5.00	0.03	0	0.0093	0	0.0068	0	0

Affected Area (sq. km.)		Area	of affected b	arangays in Pal	apag (in sq.	km.)	
by flood depth (in m.)	Maragano	Matambag	Monbon	Nagbobtac	Napo	Natawo	Nipa
0.03-0.20	1.31	0.79	2.07	6.44	3.34	1.49	2.45
0.21-0.50	0.051	0.27	1.13	0.36	0.61	0.33	0.094
0.51-1.00	0.013	0.44	0.088	0.41	0.67	0.31	0.0092
1.01-2.00	0.0051	0.31	0.0095	0.4	0.64	0.11	0
2.01-5.00	0.001	0.045	0	0.17	0.72	0.0001	0
> 5.00	0	0	0	0.0096	0.15	0	0

Table 83. Affected areas in Palapag, Northern Samar during a 25-year rainfall return period

Table 84. Affected areas in Palapag, Northern Samar during a 25-year rainfall return period

Affected Area (sq. km.)			-	Area of a	ffected baran	gays in Palap	ag (in sq. km.)			
by flood depth (in m.)	Osmeña	Pangpang	Paysud	Sangay	Simora	Sinalaran	Sumoroy	Talolora	Tambangan	Tinampo
0.03-0.20	0.6	2.68	1.71	4.42	2.23	1.17	0.55	0.74	0.57	0.98
0.21-0.50	0.12	0.35	0.4	0.24	0.44	0.12	0.44	0.41	0.22	0.018
0.51-1.00	0.098	0.2	0.11	0.27	0.54	0.061	0.13	0.14	0.26	0.0018
1.01-2.00	0.48	0.085	0.064	0.16	0.67	0.073	0.1	0.093	0.0089	0
2.01-5.00	1.21	0	0.012	0.068	0.15	0	0.0012	0.016	0.012	0
> 5.00	0.0025	0	0	0.0001	0.36	0	0	0	0	0

For the Municipality of Pambujan, with an area of 150.63 square kilometers, 4.73% will experience flood levels of less than 0.20 meters. 0.21% of the area will experience flood levels of 0.21 to 0.50 meters. Meanwhile, 0.12%, 0.08%, 0.04%, and 0.002% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Table 85 depicts the affected areas, in square kilometers, by flood depth per barangay.

Affected Area (sq. km.)	_	Affected Ba	arangays in Pan	nbujan
by flood depth (in m.)	Geparayan	Ginulgan	Inanahawan	Sixto T. Balanguit, Sr.
0.03-0.20	1.91	1.41	0.73	3.08
0.21-0.50	0.11	0.055	0.028	0.12
0.51-1.00	0.066	0.031	0.019	0.06
1.01-2.00	0.042	0.025	0.0053	0.05
2.01-5.00	0.0075	0.0099	0.00071	0.049
> 5.00	0	0	0	0.0031

Table 85. Affected areas in Pambujan, Northern Samar during a 25-year rainfall return period

For the Municipality of Silvino Lobos, with an area of 255.34 square kilometers, 6.001% will experience flood levels of less than 0.20 meters. 0.29% of the area will experience flood levels of 0.21 to 0.50 meters. Meanwhile 0.35%, 0.46%, and 0.13% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, and more than 2 meters, respectively. Table 86 depicts the affected areas, in square kilometers, by flood depth per barangay.

Affected Area (sq. km.)		Affected Barangays in Si	lvino Lobos
by flood depth (in m.)	Balud	Geparayan de Turag	Senonogan de Tubang
0.03-0.20	0.044	9.08	6.2
0.21-0.50	0.0012	0.44	0.29
0.51-1.00	0.0014	0.54	0.36
1.01-2.00	0.0037	0.71	0.46
2.01-5.00	0.0018	0.14	0.18
> 5.00	0	0	0

Table 86. Affected areas in Silvino Lobos, Northern Samar during a 25-year rainfall return period

For the Municipality of Matuguinao, with an area of 368.83 square kilometers, 1.13% will experience flood levels of less than 0.20 meters. 0.05% of the area will experience flood levels of 0.21 to 0.50 meters. Meanwhile, 0.05%, 0.05%, and 0.01% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, and more than 2 meters, respectively. Table 87 depicts the affected areas, in square kilometers, by flood depth per barangay.

Affected Area (sq. km.)	Area of affected barangays i	n Matuguinao (in sq. km.)
by flood depth (in m.)	Camonoan	Ligaya
0.03-0.20	4.04	0.12
0.21-0.50	0.2	0.0011
0.51-1.00	0.2	0.00087
1.01-2.00	0.17	0.0001
2.01-5.00	0.052	0.0002
> 5.00	0	0

Table 87. Affected areas in Matuguinao, Samar during a 25-year rainfall return period

For the 100-year return period, 0.78% of the municipality of Jipapad, with an area of 173.29 square kilometers, will experience flood levels of less than 0.20 meters. 0.05% of the area will experience flood levels of 0.21 to 0.50 meters. Meanwhile, 0.05%, 0.02%, 0.0002%, and 0.15% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Table 88 depicts the areas affected in Jipapad, in square kilometers, by flood depth per barangay.

Affected Area (sq. km.)	Areas affected barangays	in Jipapad (in sq. km.)
by flood depth (in m.)	Cagmanaba	San Roque
0.03-0.20	0.79	0.57
0.21-0.50	0.044	0.045
0.51-1.00	0.037	0.048
1.01-2.00	0.029	0.011
2.01-5.00	0.0004	0
> 5.00	0.26	0

Table 88. Affected areas in Jipapad, Eastern Samar during a 100-year rainfall return period

flood levels of 0.21 to 0.50 meters. Meanwhile, 3.39%, 6.58%, 9.39%, and 1.36% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Tables 89-93 depict the affected areas, in square kilometers, by flood depth per barangay. For the Municipality of Catubig, with an area of 217.59 square kilometers, 50.13% will experience flood levels of less than 0.20 meters. 3.74% of the area will experience

			D		þ		-		
Affected Area (sq. km.)				Area of affecte	d barangays in	Catubig (in sq.	km.)		
by flood depth (in m.)	Anongo	Barangay 1	Barangay 2	Barangay 3	Barangay 4	Barangay 5	Barangay 6	Barangay 7	Barangay 8
0.03-0.20	2.43	0.45	0.034	0.0097	0.0064	0.0031	0.002	0	0.0042
0.21-0.50	0.34	0.092	0.0044	0.0034	0.0059	0.007	0.004	0.000047	0.0014
0.51-1.00	0.45	0.041	0.0071	0.0057	0.01	0.015	0.019	0.011	0.0049
1.01-2.00	1.42	0.027	0.03	0.011	0.0082	0.0081	0.0054	0.03	0.011
2.01-5.00	1.54	0.0055	0.069	0.0028	0.0037	0.0046	0.0051	0.02	0.034
> 5.00	0.1	0	0.014	0	0	0	0.00059	0.0098	0.026

horiod rainfall raturn 1001 ζ 4toN areas in Catubio Table 80 Affacted

Table 90. Affected areas in Catubig, Northern Samar during a 100-year rainfall return period

Affected Area (sq. km.)				Area of aff	fected barangays	in Catubig (in	sq. km.)		
by flood depth (in m.)	Bonifacio	Boring	Cagbugna	Cagmanaba	Cagogobngan	Calingnan	Canuctan	Claro M. Recto	D. Mercader
0.03-0.20	0.85	0.55	0.24	0.79	0.98	1.08	0.95	7.17	1.36
0.21-0.50	0.078	0.012	0.078	0.044	0.092	0.22	0.24	0.34	0.077
0.51-1.00	0.13	0.0056	0.041	0.037	0.15	0.093	0.15	0.27	0.035
1.01-2.00	0.74	0.0065	0.21	0.029	0.29	0.25	0.27	0.28	0.06
2.01-5.00	1.16	0.003	0.18	0.0004	0.49	0.46	0.64	0.073	0.22
> 5.00	0.016	0	0	0.26	0.0075	0.0076	0	0.012	0.0014

	Tab	le 91. Affected ar	eas in Catubig,	Northern Sam	ar during a 100-	-year rainfall ret	urn period		
Affected Area (sq. km.)			Are	a of affected b	arangays in Cat	ubig (in sq. km			
by flood depth (in m.)	Guibwangan	Hinagonoyan	Hiparayan	Hitapi-An	Inoburan	Irawahan	Lenoyahan	Libon	Magongon
0.03-0.20	0.14	1.37	5.49	5.7	0.15	5.1	0.26	0.1	7.39
0.21-0.50	0.044	0.077	0.32	0.37	0.027	0.23	0.061	0.004	0.42
0.51-1.00	0.13	0.065	0.33	0.28	0.022	0.33	0.25	0.0082	0.26
1.01-2.00	0.13	0.086	0.44	0.57	0.11	0.51	1.17	0.019	0.25
2.01-5.00	0.12	0.014	0.23	0.26	1.25	0.71	0.67	1.04	0.87
> 5.00	0.004	0	0.12	0.0008	0.16	0.38	0	0.17	0.014

Table 92. Affected areas in Catubig, Northern Samar during a 100-year rainfall return period

Affected Area (sq. km.)				Area of affecte	d barangays in	Catubig (in sq	l. km.)		
by flood depth (in m.)	Magtuad	Manering	Nabulo	Nagoocan	Nahulid	Opong	Osang	Osmeña	P. Rebadulla
0.03-0.20	0.72	11.18	2.02	1.41	0.11	13.35	2.25	0.54	9.2
0.21-0.50	0.057	0.48	0.078	0.11	0.021	1.1	0.17	0.093	0.38
0.51-1.00	0.075	0.21	0.043	0.22	0.062	1.03	0.11	0.091	0.25
1.01-2.00	0.11	0.21	0.064	0.47	0.16	0.78	0.16	0.11	0.22
2.01-5.00	1.14	0.45	0.16	0.11	0.7	0.71	0.041	1.59	0.29
> 5.00	0.15	0.64	0.018	0.0016	0.067	0.013	0	0.079	0.24

		Table 93. Aff	ected areas ir	ו Catubig, Nor	thern Samar	during a 100-ye	ear rainfall re	turn period			
Affected Area (sq. km.)				Area	of affected b	arangays in Ca	tubig (in sq. l	ст.)			
by flood depth (in m.)	Roxas	Sagudsuron	San Antonio	San Francisco	San Jose	San Vicente	Santa Fe	Sulitan	Tangbo	Tungodnon	Vienna Maria
0.03-0.20	5.91	1.95	2.27	6.29	1.91	0.75	1.17	0.44	3.1	1.21	0.68
0.21-0.50	0.4	0.15	0.32	0.37	0.23	0.06	0.2	0.028	0.57	0.079	0.056
0.51-1.00	0.32	0.094	0.27	0.36	0.28	0.058	0.21	0.019	0.38	0.052	0.099
1.01-2.00	0.7	0.13	1.02	0.44	0.45	0.57	0.38	0.048	1.1	0.083	0.15
2.01-5.00	0.3	0.39	1.17	0.11	0.48	0.29	0.098	0.78	0.95	0.016	0.59
> 5.00	0.014	0.005	0.12	0.0066	0.041	0.068	0.022	0.13	0	0	0.041

Figure 138. Affected areas in Catubig, Northern Samar during a 100-year rainfall return period

For the Municipality of Laoang, with an area of 207.60 square kilometers, 31.35% will experience flood levels of less than 0.20 meters. 7.53% of the area will experience flood levels of 0.21 to 0.50 meters. Meanwhile, 7.55%, 8.44%, 3.59%, and 0.44% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Tables 94-97 depict the affected areas, in square kilometers, by flood depth per barangay.

Table 94. Affe	cted areas ii	n Laoang, N	orthern Sama	ar during a 10	0-year rainfa	ll return perioo	
Affected Area (sq. km.)		Ar	ea of affecteo	l barangays ir	n Laoang (in	sq. km.)	
by flood depth (in m.)	Abaton	Atipolo	Bawang	Bobolosan	Bongliw	Burabud	Cabagngan
0.03-0.20	6.88	1.81	3.08	2.26	1.19	1.24	2.75
0.21-0.50	0.7	2.11	0.52	0.7	1	0.43	0.83
0.51-1.00	0.91	0.28	0.85	0.38	2.04	0.27	0.98
1.01-2.00	1.42	0.22	1.77	0.29	1.88	0.045	0.62
2.01-5.00	0.41	0.0012	0.53	0	0.55	0.00085	0.1
> 5.00	0.0094	0	0	0	0	0	0.018

Table 95. Affected areas in Laoang, Northern Samar during a 100-year rainfall return period

		ò					
Affected Area (sq. km.)		Area	a of affected k	barangays in La	oang (in sq.	km.)	
by flood depth (in m.)	Cabago-An	Cabulaloan	Cagdara-O	Cangcahipos	Catigbian	E. J. Dulay	Gibatangan
0.03-0.20	2.05	0.44	2.32	2.35	1.74	3.28	1.43
0.21-0.50	0.97	0.29	0.11	0.62	0.49	0.13	0.11
0.51-1.00	0.6	0.9	0.061	0.51	0.41	0.11	0.13
1.01-2.00	0.069	1.11	0.23	0.74	0.42	0.31	0.18
2.01-5.00	0.0053	0.35	0.24	0.11	0.42	0.37	0.18
> 5.00	0	0.007	0.007	0	0	0.049	0.072

Table 96. Affected areas in Laoang, Northern Samar during a 100-year rainfall return period

				50			5
Affected Area (sq. km.)		Arc	ea of affectec	l barangays ir	i Laoang (in	sq. km.)	
by flood depth (in m.)	La Perla	Lawaan	Oleras	Palmera	Rawis	Rombang	San Antonio
0.03-0.20	1.04	4.74	4.95	1.1	2.11	4.03	2.27
0.21-0.50	0.18	1.95	0.34	0.078	0.49	0.24	0.32
0.51-1.00	0.37	0.43	0.31	0.058	0.12	0.22	0.27
1.01-2.00	1.37	0.089	0.74	0.031	0.0034	0.61	1.02
2.01-5.00	0.48	0	0.24	0.0055	0	0.56	1.17
> 5.00	0	0	0.084	0	0	0.077	0.12

Table 97. Affected areas in Laoang, Northern Samar during a 100-year rainfall return period

Affected Area (sq. km.)		Are	ea of affected	l barangays ir	n Laoang (in	sq. km.)	
by flood depth (in m.)	Sibunot	Simora	Talisay	Tarusan	Tinoblan	Vigo	Yapas
0.03-0.20	2.63	2.16	0.92	0.86	1.53	1.07	2.86
0.21-0.50	0.34	0.36	0.045	1.06	0.11	0.91	0.2
0.51-1.00	0.67	0.45	0.12	2.68	0.24	1.17	0.13
1.01-2.00	0.67	0.86	0	0.3	0.94	1.33	0.25
2.01-5.00	0.22	0.21	0	0.053	0.53	0.57	0.14
> 5.00	0.023	0.42	0	0	0.027	0	0

Figure 142. Affected areas in Laoang, Northern Samar during a 100-year rainfall return period

For the Municipality of Las Navas, with an area of 267.47 square kilometers, 54.85% will experience flood levels of less than 0.20 meters. 4.86% of the area will experience flood levels of 0.21 to 0.50 meters. Meanwhile, 6.19%, 9.58%, 11.85%, and 4.23% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Tables 98-104 depict the affected areas, in square kilometers, by flood depth per barangay.

Table 98.	Affected are	as in Las Na	ivas, Norther	n Samar dur	ing a 100-ye	ar rainfall retu	ırn period	
Affected Area (sq. km.)			Area of affe	ected barang	ays in Las N	avas (in sq. kı	n.)	
by flood depth (in m.)	Balugo	Bugay	Bugtosan	Bukid	Bulao	Caputoan	Catoto-Ogan	Cuenco
0.03-0.20	0.27	1.86	1.42	2.77	1.61	4.09	14.6	4.69
0.21-0.50	0.015	0.2	0.3	0.27	0.47	0.22	1.43	0.24
0.51-1.00	0.016	0.25	0.58	0.41	0.92	0.25	1.74	0.27
1.01-2.00	0.063	0.65	1.11	0.47	1.16	0.31	1.97	0.4
2.01-5.00	1.97	1.44	0.36	0.98	0.12	0.067	0.89	0.38
> 5.00	0.16	0.083	0.16	0	0	0	0.025	0.047

Table 99 Affected areas in Las Navas Northern Samar during a 100-vear rainfall return period

	שי אוברובח מ				uning a 100-y		rain perioa	
Affected Area (sq. km.)			Area of at	ffected bara	ngays in Las I	Vavas (in sq.	km.)	
by flood depth (in m.)	Dapdap	Del Pilar	Dolores	Epaw	Geguinta	Geracdo	Guyo	H. Jolejole
0.03-0.20	1.24	0.41	3.14	1.99	0.77	0.12	0.82	1.57
0.21-0.50	0.043	0.017	0.32	0.084	0.071	0.008	0.075	0.18
0.51-1.00	0.062	0.018	0.2	0.07	0.17	0.014	0.091	0.16
1.01-2.00	0.11	0.041	0.12	0.12	0.42	0.12	0.082	0.17
2.01-5.00	0.36	0.16	0.029	0.31	0.52	0.94	0.63	0.21
> 5.00	1.77	1.82	0.0002	0.67	0.058	0.063	0.042	0

Table 100. Affected areas in Las Navas, Northern Samar during a 100-vear rainfall return period

						-		
Affected Area (sq. km.)		Ar	ea of affecte	d barangays i	in Las Navas (in sq. km.)		
by flood depth (in m.)	H. Jolejole District	Hangi	Imelda	L. Empon	Lakandula	Lourdes	Lumala-Og	Mabini
0.03-0.20	0.027	1.52	1.68	1.57	2.09	4.6	0.72	1.87
0.21-0.50	0.0017	0.18	0.098	0.12	0.12	0.32	0.031	0.17
0.51-1.00	0.0041	0.18	0.16	0.16	0.14	0.74	0.038	0.39
1.01-2.00	0.039	0.6	0.26	0.42	0.21	0.6	0.16	1.03
2.01-5.00	0.26	3.53	0.13	0.49	0.17	0.027	1.36	0.83
> 5.00	0.053	0.61	0	0.19	0.023	0.0001	0.35	0.22
Tat	ole 101. Affected areas	in Las Navas	, Northern S	amar during	a 100-year rai	nfall return po	eriod	

ורהרה עורם לאי אווויל		A	rea of affecte	d barang	ays in Las I	Vavas (in sq.)	km.)	
y flood depth (in m.)	Macarthur	Magsaysay	Matelarag	Osmeñ	a Pacc	Palana	s Perez	Poponton
0.03-0.20	3.92	1.87	1.1	0.54	2.22	6.44	3.86	2.9
0.21-0.50	0.33	0.24	0.13	0.093	0.18	0.79	0.43	0.18
0.51-1.00	0.55	0.34	0.091	0.091	0.26	0.69	0.48	0.28
1.01-2.00	0.77	0.65	0.21	0.11	0.75	0.76	0.87	0.57
2.01-5.00	0.3	0.17	1.35	1.59	0.69	0.67	0.72	0.47
> 5.00	0.073	0.011	0.26	0.079	0.17	0.011	0.088	0.095
Affected Area (sq. km.		A	rea of affecte	d barang:	ays in Las I	Vavas (in sq.	km.)	
by flood depth (in m.)	Quezon	Quirino	Rebong	Rizal	Roxas	Rufino	Sag-Od	San Andres
0.03-0.20	1.98	7.67	0.29	3.45	5.91	3.17	2.23	3.09
0.21-0.50	0.32	0.6	0.027	0.3	0.4	0.16	0.096	0.21
0.51-1.00	0.5	0.7	0.03	0.49	0.32	0.14	0.079	0.31
1.01-2.00	0.42	1.41	0.076	0.66	0.7	0.12	0.069	0.27
2.01-5.00	0.033	1.01	1.38	0.43	0.3	0.019	0.021	0.31
> 5.00	0	0.13	0.12	0.08	0.014	0.0038	0	0.022

				5		-		
Affected Area (sq. km.)			Area of affecte	d barangays in	Las Navas (in	sq. km.)		
by flood depth (in m.)	San Antonio	San Fernando	San Francisco	San Isidro	San Jorge	San Jose	San Miguel	Santo Tomas
0.03-0.20	2.27	0.91	6.29	13.68	1.81	1.91	3.37	1.51
0.21-0.50	0.32	0.38	0.37	0.8	0.19	0.23	0.35	0.3
0.51-1.00	0.27	0.54	0.36	1.07	0.21	0.28	0.47	0.21
1.01-2.00	1.02	0.45	0.44	1.41	0.056	0.45	1.17	0.15
2.01-5.00	1.17	0.091	0.11	0.95	0.0013	0.48	0.36	0.24
> 5.00	0.12	0	0.0066	2.56	0	0.041	0.056	0.000048

Table 104. Affected areas in Las Navas, Northern Samar during a 100-year rainfall return period

Affected Area (sq. km.)	Area of af	fected barangay	/s in Las Navas (in sq. km.)
by flood depth (in m.)	Tagab-Iran	Tagan-Ayan	Taylor	Victory
0.03-0.20	0.67	4.97	0.93	2.29
0.21-0.50	0.023	0.38	0.063	0.13
0.51-1.00	0.029	0.4	0.15	0.19
1.01-2.00	0.068	0.47	0.46	0.42
2.01-5.00	1.22	0.58	0.57	0.31
> 5.00	1.21	0.48	0.15	0.049

Figure 148. Affected areas in Las Navas, Northern Samar during a 100-year rainfall return period

For the Municipality of Mapanas, with an area of 143.56 square kilometers, 16.81% will experience flood levels of less than 0.20 meters. 0.85% of the area will experience flood levels of 0.21 to 0.50 meters. Meanwhile, 0.59%, 0.70%, 0.95%, and 0.79% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Table 105 depicts the affected areas, in square kilometers, by flood depth per barangay.

Table 105. Affected areas in Mapanas, Northern Samar during a 100-year rainfall return period

Affected Area (sq. km.)	Affected	Barangays in M	apanas
by flood depth (in m.)	Magtaon	San Jose	Siljagon
0.03-0.20	0.04	1.91	22.18
0.21-0.50	0	0.23	0.99
0.51-1.00	0	0.28	0.56
1.01-2.00	0	0.45	0.56
2.01-5.00	0	0.48	0.88
> 5.00	0	0.041	1.1

Figure 149. Affected areas in Mapanas, Northern Samar during a 100-year rainfall return period

For the Municipality of Palapag, with an area of 153.46 square kilometers, 59.01% will experience flood levels of less than 0.20 meters. 6.45% of the area will experience flood levels of 0.21 to 0.50 meters. Meanwhile, 4.66%, 4.24%, 3.46%, and 1.24% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Tables 106-109 depict the affected areas, in square kilometers, by flood depth per barangay.

Table 106. Aft	ected areas	s in Palapag,	Northern Sa	ımar during a 10	0-year raintall	return period	
Affected Area (sq. km.)		Ar	ea of affect	ed barangays in	Palapag (in sq	. km.)	
by flood depth (in m.)	Asum	Bagacay	Bangon	Benigno S. Aquino, Jr.	Cabariwan	Cabatuan	Campedico
0.03-0.20	0.5	25.21	8.49	0.17	1.73	0.42	1.11
0.21-0.50	0.19	1.1	0.41	0.17	0.096	0.0094	0.07
0.51-1.00	0.25	0.59	0.38	0.28	0.16	0.0028	0.033
1.01-2.00	0.041	0.49	0.56	0.22	0.048	0.0002	0.056

~
8
÷Ĕ
e
0
E
3
Ъ
Ē
IE
ΨË
ല
ے
g
8
Ļ
ŏ
Ä
σ
þ
.⊆
E
러
2
ਭ
E
ਕ
S
Ē
ē
÷
Ę
2
bù
ä
g
-
å
_
·=
SE
ĕ
F
~
ed
cted
ected
ffected
Affected
7. Affected
07. Affected
107. Affected
le 107. Affected
ble 107. Affected
Table 107. Affected

ladie 107. A	inected areas i	n Palapag, N	lorthern sam	ar auring a luc	-уеаг гаіптан г	eturn perioa	
Affected Area (sq. km.)		Are	a of affected	barangays in F	alapag (in sq.	km.)	
by flood depth (in m.)	Capacujan	Jangtud	Laniwan	Mabaras	Magsaysay	Manajao	Mapno
0.03-0.20	8.73	2.11	0.13	2.84	1.87	0.59	4.24
0.21-0.50	0.41	0.2	0.045	0.31	0.24	0.39	0.45
0.51-1.00	0.22	0.19	0.096	0.24	0.34	0.19	0.2
1.01-2.00	0.28	0.21	0.24	0.16	0.65	0.15	0.059
2.01-5.00	0.37	0.0056	0.056	0.0093	0.17	0.0053	0.014
> 5.00	0.044	0	0.011	0	0.011	0	0
					-		

~
×
<u>.</u>
-
ē
d
~
5
5
Ę
Ð
2
=
, ro
÷
<u> </u>
a'
2
_
σ
e
Ņ
4
×
2
-
σ
- DO
3
.⊆
_
σ
۲
σ
č
a.
S
C
Ξ
Ġ
he
the
orthe
lorthe
Northe
, Northe
g, Northe
ag, Northe
pag, Northe.
apag, Northe
alapag, Northe
^p alapag, Northe
Palapag, Northe
n Palapag, Northe
in Palapag, Northe
is in Palapag, Northe
as in Palapag, Northe
eas in Palapag, Northe
areas in Palapag, Northe
areas in Palapag, Northe
d areas in Palapag, Northe
ed areas in Palapag, Northe
sted areas in Palapag, Northe
ected areas in Palapag, Northe
fected areas in Palapag, Northe
offected areas in Palapag, Northe
Affected areas in Palapag, Northe
. Affected areas in Palapag, Northe
 Affected areas in Palapag, Northe.
08. Affected areas in Palapag, Northe
108. Affected areas in Palapag, Northe
e 108. Affected areas in Palapag, Northe
le 108. Affected areas in Palapag, Northe
ble 108. Affected areas in Palapag, Northe
able 108. Affected areas in Palapag, Northe
Table 108. Affected areas in Palapag, Northe

Affected Area (sq. km.)		Area	of affected ba	Irangays in Pa	lapag (in sq.	km.)	
by flood depth (in m.)	Maragano	Matambag	Monbon	Nagbobtac	Napo	Natawo	Nipa
0.03-0.20	1.3	0.74	1.7	6.4	3.28	1.42	2.43
0.21-0.50	0.059	0.27	1.47	0.35	0.47	0.29	0.11
0.51-1.00	0.017	0.48	0.14	0.41	0.69	0.37	0.012
1.01-2.00	0.0056	0.32	0.017	0.41	0.77	0.16	0.0002
2.01-5.00	0.0014	0.046	0	0.21	0.74	0.0012	0
> 5.00	0	0	0	0.0097	0.18	0	0

0 0

00

0.077

0.0078

0.94 0.44

0.75 0.71

0 0

2.01-5.00 > 5.00

	Table 1	109. Affected	areas in Pa	lapag, Northe	rn Samar duri	ing a 100-yeai	rainfall return	n period		
Affected Area (sq. km.)				Area of a	ffected baran	gays in Palap	ag (in sq. km.)			
by flood depth (in m.)	Osmeña	Pangpang	Paysud	Sangay	Simora	Sinalaran	Sumoroy	Talolora	Tambangan	Tinampo
0.03-0.20	0.54	2.57	1.7	4.41	2.16	1.1	0.45	0.7	0.55	0.96
0.21-0.50	0.093	0.42	0.4	0.23	0.36	0.18	0.47	0.41	0.19	0.032
0.51-1.00	0.091	0.21	0.11	0.26	0.45	0.069	0.19	0.17	0.31	0.0021
1.01-2.00	0.11	0.12	0.065	0.19	0.86	0.086	0.12	0.094	0.01	0
2.01-5.00	1.59	0	0.012	0	0	0	0	0	0.012	0
> 5.00	0.079	0	0	0	0	0	0	0	0	0
	-									

For the Municipality of Pambujan, with an area of 150.63 square kilometers, 4.68% will experience flood levels of less than 0.20 meters. 0.23% of the area will experience flood levels of 0.21 to 0.50 meters. Meanwhile, 0.13%, 0.09%, 0.05%, and 0.008% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Table 110 depicts the affected areas, in square kilometers, by flood depth per barangay.

Affected Area (sq. km.)		Affected B	arangays in Pan	nbujan
by flood depth (in m.)	Geparayan	Ginulgan	Inanahawan	Sixto T. Balanguit, Sr.
0.03-0.20	1.89	1.39	0.72	3.05
0.21-0.50	0.12	0.062	0.033	0.13
0.51-1.00	0.076	0.035	0.02	0.063
1.01-2.00	0.047	0.026	0.0077	0.054
2.01-5.00	0.012	0.016	0.00089	0.052
> 5.00	0	0	0	0.012

Table 110. Affected areas in Pambujan, Northern Samar during a 100-year rainfall return period

Figure 154. Affected areas in Pambujan, Northern Samar during a 100-year rainfall return period

For the Municipality of Silvino Lobos, with an area of 255.34 square kilometers, 5.91% will experience flood levels of less than 0.20 meters. 0.28% of the area will experience flood levels of 0.21 to 0.50 meters. Meanwhile, 0.33%, 0.52%, and 0.19% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, and more than 2 meters, respectively. Table 111 depicts the affected areas, in square kilometers, by flood depth per barangay.

Table 111. Affected areas in Silvino Lobos, Northern Samar during a 100-year rainfall return period

Affected Area (sq. km.)		Affected Barangays in Si	lvino Lobos
by flood depth (in m.)	Balud	Geparayan de Turag	Senonogan de Tubang
0.03-0.20	0.044	8.94	6.11
0.21-0.50	0.0011	0.44	0.28
0.51-1.00	0.0014	0.5	0.33
1.01-2.00	0.0033	0.8	0.52
2.01-5.00	0.0028	0.23	0.25
> 5.00	0	0	0

Figure 155. Affected areas in Silvino Lobos, Northern Samar during a 100-year rainfall return period

For the Municipality of Matuguinao, with an area of 368.83 square kilometers, 1.12% will experience flood levels of less than 0.20 meters. 0.06% of the area will experience flood levels of 0.21 to 0.50 meters. Meanwhile, 0.05%, 0.06%, and 0.02% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, and more than 2 meters, respectively. Table 112 depicts the affected areas, in square kilometers, by flood depth per barangay.

Table 112. Affected areas in Matuguinao, Samar during a 100-year rainfall return period

Affected Area (sq. km.)	Affected Baranga	ys in Matuguinao
by flood depth (in m.)	Camonoan	Ligaya
0.03-0.20	3.99	0.12
0.21-0.50	0.21	0.001
0.51-1.00	0.18	0.0011
1.01-2.00	0.21	0.0001
2.01-5.00	0.073	0.0002
> 5.00	0	0

Figure 156. Affected areas in Matuguinao, Samar during a 100-year rainfall return period

Among the barangays in the Municipality of Jipapad, Cagmanaba is projected to have the highest percentage of area that will experience flood levels, at 0.57%. On the other hand, San Roque posted the percentage of area that may be affected by flood depths, at 0.39%.

Among the barangays in the Municipality of Catubig, Opong is projected to have the highest percentage of area that will experience flood levels, at 7.80%. On the other hand, Manering posted the percentage of area that may be affected by flood depths, at 6.06%.

Among the barangays in the Municipality of Laoang, Abaton is projected to have the highest percentage of area that will experience flood levels, at 4.98%. On the other hand, Lawaan posted the percentage of area that may be affected by flood depths, at 3.47%.

Among the barangays in the Municipality of Las Navas, Catoto-Ogan is projected to have the highest percentage of area that will experience flood levels, at 7.72%. On the other hand, San Isidro posted the percentage of area that may be affected by flood depths, at 7.66%.

Among the barangays in the Municipality of Mapanas, Siljagon is projected to have the highest percentage of area that will experience flood levels, at 18.31%. On the other hand, San Jose posted the percentage of area that may be affected by flood depths, at 2.35%.

Among the barangays in the Municipality of Palapag, Bagacay is projected to have the highest percentage of area that will experience flood levels, at 18.79%. On the other hand, Bangon posted the percentage of area that may be affected by flood depths, at 7.30%.

Among the barangays in the Municipality of Pambujan, Sixto T. Balanguit, Sr. is projected to have the highest percentage of area that will experience flood levels, at 2.23%. On the other hand, Geparayan posted the percentage of area that may be affected by flood depths, at 1.42%.

Among the barangays in the Municipality of Silvino Lobos, Geparayan de Turag is projected to have the highest percentage of area that will experience flood levels, at 4.27%. On the other hand, Senonogan de Tubang posted the percentage of area that may be affected by flood depths, at 2.93%.

Among the barangays in the Municipality of Matuguinao, Camonoan is projected to have the highest percentage of area that will experience flood levels, at 1.26%. On the other hand, Ligaya posted the percentage of area that may be affected by flood depths, at 0.03%.

The generated flood hazard maps for the Catubig floodplain were also used to assess the vulnerability of the educational and medical institutions in the floodplain. Using the flood depth units of PAGASA for the flood hazard maps – "Low", "Medium", and "High" – the affected institutions were given an individual assessment for each flood hazard scenario (i.e., 5-year, 25-year, and 100-year).

	Area	Covered in sq	. km.
Warning Level	5 year	25 year	100 year
Low	64.34	54.73	51.01
Medium	87.77	96.45	88.52
High	59.50	85.36	111.70
Total	211.61	236.54	251.23

Table 113. Area covered by each warning level, with respect to the rainfall scenario

Of the one hundred and sixty-seven (167) identified educational institutions in the Catubig floodplain, thirty (30) were assessed to be exposed to Low-level flooding during a 5-year scenario. On the other hand, forty-two (42) schools were assessed to be exposed to Medium-level flooding, and fifteen (15) to High-level flooding in the same scenario. In the 25-year scenario, twenty-one (21) schools were assessed to be exposed to Medium-level flooding, and twenty-three (23) to be exposed to Low-level flooding. For the 100-year scenario, twenty-two (22) schools were assessed to be subjected to Low-level flooding, and forty (40) schools were expected to experience Medium-level flooding. In the same scenario, forty-five (45) schools were found to be exposed to High-level flooding. See Annex 12 for a detailed enumeration of the schools exposed to flooding within the Catubig floodplain.

Of the seven (7) identified medical institutions in the Catubig floodplain, one (1) was assessed to be exposed to Medium-level flooding in the 5-year scenario. In the 25-year and 100-year scenarios, one (1) institution was found to be exposed to Low-level flooding; and one (1) was expected to experience High-level flooding. See Annex 13 for a detailed enumeration of medical institutions exposed to flooding within the Catubig floodplain.

5.11 Flood Validation

In order to check and validate the extent of flooding in different river systems, there is a need to perform validation survey work. For this purpose, field personnel gathered secondary data regarding flood occurrences in the respective areas within the major river systems in the Philippines.

From the flood depth maps produced by the Phil-LiDAR 1 Program, multiple points representing the different flood depths for different scenarios were identified for validation.

The validation personnel then went to the specified points identified in the river basin to gather data regarding the actual flood levels in each location. Data gathering was conducted through assistance from a local DRRM office to obtain maps or situation reports about the past flooding events, or through interviews with some residents with knowledge or experience of flooding in a particular area.

After which, the actual data from the field were compared with the simulated data to assess the accuracy of the flood depth maps produced, and to improve on the results of the flood map. The points in the flood map versus the corresponding validation depths are illustrated in Figure 158.

The flood validation consists of one hundred and eighty-three (183) points, randomly selected all over the Catubig floodplain (Figure 157). It attained an RMSE value of 1.75. Table 114 outlines a contingency matrix of the comparison. The validation points are found in Annex 11.

Figure 157. Validation points for the 100-year flood depth map of the Catubig floodplain

Figure 158. Flood map depth vs. actual flood depth

	Table 114	4. Actual floo	d depth vs. s	imulated floc	od depth in th	ne Catubig flo	odplain	
CATI				Modeled	Flood Depth	(m)		
CAIL	JRIG BASIN	0-0.20	0.21-0.50	0.51-1.00	1.01-2.00	2.01-5.00	> 5.00	Total
Ê	0-0.20	28	11	8	8	12	1	68
th (0.21-0.50	11	4	3	5	8	2	33
Dep	0.51-1.00	7	1	2	11	4	1	26
po	1.01-2.00	6	1	2	9	33	2	53
I Flo	2.01-5.00	0	0	0	0	3	0	3
tua	> 5.00	0	0	0	0	0	0	0
Ac	Total	52	17	15	33	60	6	183

The overall accuracy generated by the flood model is estimated at 25.14%, with forty-six (46) points correctly matching the actual flood depths. In addition, there were seventy-one (71) points estimated one (1) level above and below the correct flood depths. Meanwhile, there were twenty-seven (27) points and thirty-eight (38) points estimated two (2) levels above and below, and three (3) or more levels above and below the correct flood levels. A total of four (4) points were overestimated, while a total of twenty-eight (28) points were underestimated in the modeled flood depths of the Catubig River Basin. Table 155 depicts the summary of the accuracy assessment of the Catubig survey.

	No. of Points	%
Correct	46	25.14
Overestimated	109	59.56
Underestimated	28	15.30
Total	183	100.00

Table 115. Summary of Accuracy Assessment in the Catubig River Basin

REFERENCES

Ang M.O., Paringit E.C., et al. 2014. *DREAM Data Processing Component Manual*. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Balicanta L.P., Paringit E.C., et al. 2014. DREAM Data Validation Component Manual. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Brunner, G. H. 2010a. HEC-RAS River Analysis System Hydraulic Reference Manual. Davis, CA: U.S. Army Corps of Engineers, Institute for Water Resources, Hydrologic Engineering Center

Lagmay A.F., Paringit E.C., et al. 2014. *DREAM Flood Modeling Component Manual*. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Paringit E.C, Balicanta L.P., Ang, M.O., Sarmiento, C. 2017. *Flood Mapping of Rivers in the Philippines Using Airborne Lidar: Methods*. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Sarmiento C., Paringit E.C., et al. 2014. DREAM Data Acquisition Component Manual. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

UP TCAGP 2016, Acceptance and Evaluation of Synthetic Aperture Radar Digital Surface Model (SAR DSM) and Ground Control Points (GCP). Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

ANNEXES

Annex 1. Technical Specifications of the LiDAR Sensors used in the Catubig Floodplain Survey

Table A-1.1. Speci	fications of the Aquarius sensor
Parameter	Specification
Operational altitude	300-600 m AGL
Laser pulse repetition rate	33, 50. 70 kHz
Scan rate	0-70 Hz
Scan half-angle	0 to ± 25 °
Laser footprint on water surface	30-60 cm
Depth range	0 to > 10 m (for k < 0.1/m)
Topographic mode	
Operational altitude	300-2500
Range Capture	Up to 4 range measurements, including 1st, 2nd, 3rd, and last returns
Intensity capture	12-bit dynamic measurement range
Position and orientation system	POS AVTM 510 (OEM) includes embedded 72-channel GNSS receiver (GPS and GLONASS)
Data Storage	Ruggedized removable SSD hard disk (SATA III)
Power	28 V, 900 W, 35 A
Image capture	5 MP interline camera (standard); 60 MP full frame (optional)
Full waveform capture	12-bit Optech IWD-2 Intelligent Waveform Digitizer (optional)
Dimensione and weight	Sensor:250 x 430 x 320 mm; 30 kg;
Dimensions and weight	Control rack: 591 x 485 x 578 mm; 53 kg
Operating temperature	0-35°C
Relative humidity	0-95% no-condensing

Parameter	Specification					
Operational envelope (1,2,3,4)	150-4000 m AGL, nominal					
Laser wavelength	1064 nm					
Horizontal accuracy (2)	1/5,500 x altitude, (m AGL)					
Elevation accuracy (2)	<5-35 cm, 1 σ					
Effective laser repetition rate	Programmable, 33-167 kHz					
	POS AV™ AP50 (OEM);					
Position and orientation system	220-channel dual frequency GPS/GNSS/Galileo/L-Band receiver					
Scan width (WOV)	Programmable, 0-50°					
Scan frequency (5)	Programmable, 0-70 Hz (effective)					
Sensor scan product	1000 maximum					
Beam divergence	Dual divergence: 0.25 mrad (1/e) and 0.8 mrad (1/e), nominal					
Roll compensation	Programmable, ±5° (FOV dependent)					
Range capture	Up to 4 range measurements, including 1st, 2nd, 3rd, and last returns					
Intensity capture	Up to 4 intensity returns for each pulse, including last (12 bit)					
Video Camera	Internal video camera (NTSC or PAL)					
Image capture	Compatible with full Optech camera line (optional)					
Full waveform capture	12-bit Optech IWD-2 Intelligent Waveform Digitizer (optional)					
Data storage	Removable solid state disk SSD (SATA II)					
Power requirements	28 V; 900 W;35 A(peak)					
Dimonsions and weight	Sensor: 260 mm (w) x 190 mm (l) x 570 mm (h); 23 kg					
	Control rack: 650 mm (w) x 590 mm (l) x 530 mm (h); 53 kg					
Operating temperature	-10°C to +35°C (with insulating jacket)					
Relative humidity	0-95% no-condensing					

Table A-1.2. Specifications of the Gemini sensor

Annex 2. NAMRIA Certification of Reference Points used in the LiDAR Survey

1. **SMN-16** Republic of the Philippines Department of Environment and Natural Resources NATIONAL MAPPING AND RESOURCE INFORMATION AUTHORITY July 03, 2015 CERTIFICATION To whom it may concern: This is to certify that according to the records on file in this office, the requested survey information is as follows -Province: NORTHERN SAMAR Station Name: SMN-16 Order: 2nd Island: VISAYAS Barangay: BAGASBAS Municipality: MONDRAGON MSL Elevation: PRS92 Coordinates Latitude: 12º 31' 32.33268" Longitude: 124º 48' 56.69485" Ellipsoidal Hgt: 5.45500 m. WGS84 Coordinates Latitude: 12º 31' 27.72792" Longitude: 124º 49' 1.74020" Ellipsoidal Hgt: 63.99100 m. PTM / PRS92 Coordinates Northing: 1385085.603 m. Easting: 479974.965 m. Zone: 5 UTM / PRS92 Coordinates Northing: 1,385,272.01 Easting: 697,302.11 Zone: 51

SMN-1

Location Description

Station Mark SMN-16 is located in Brgy. Bagasbas, Municipality of Mondragon, Province of Northern Samar, Island of Samar. to located the station, from Mondragon Town Proper, travel in North direction for about 10 km going to Brgy. Bagasbas. the station was established 30 m North from Bagasbas Elem. School, was about 1 m East of the Basketball court and 4 m west of the chapel.

Mark is the head of a 4" copper nail flushed in a 30X30 cm. cement block embedded in the ground protruding about 20 cm., with inscriptions "SMN-16; 2007; NAMRIA."

Requesting Party: UP-DREAM Purpose: Reference OR Number: 8084005 I T.N.: 2015-1258

RUEL DM. BELEN, MNSA Director. Mapping And Geodesy Branch 6

NAMRIA OFFICES: Main : Lawton Avenue, Fort Bonifacio, 1634 Taguig City, Philippines Tel. No.: (632) 810-4831 to 41 Branch : 421 Barraca St. San Nicolas, 1010 Manila, Philippines, Tel. No. (632) 241-3494 to 98 www.namria.gov.ph

ISO 9001: 2008 CERTIFIED FOR MAPPING AND GEOSPATIAL INFORMATION MANAGEMENT

Figure A-2.1. SMN-16

CLEMICARDM NEWARDMA SO ROJ 202 CIF/4701/12/09/814 NAMRIA OFFICES: Main : Lawton Avenue, Fort Bonifacio, 1634 Taguig City, Philippines Tel. No.: (632) 810-4831 to 41 Branch : 421 Barraca St. San Nicolas, 1010 Manila, Philippines, Tel. No. (632) 241-3494 to 98 www.namria.gov.ph

ISO 9001: 2008 CERTIFIED FOR MAPPING AND GEOSPATIAL INFORMATION MANAGEMENT

Figure A-2.2. SMN-22

SMN-12

3.

July 03, 2015

CERTIFICATION

To whom it may concern:

This is to certify that according to the records on file in this office, the requested survey information is as follows -

	Province: NORTHERN SAMAR	
	Station Name: SMN-12	
	Order: 2nd	
Island: VISAYAS Municipality: SAN JOSE	Barangay: POBLACION MSL Elevation: <i>PRS92 Coordinates</i>	
Latitude: 12º 26' 15.70013"	Longitude: 124º 19' 13.39605"	Ellipsoidal Hgt: 7.02900 m.
	WGS84 Coordinates	
Latitude: 12º 26' 11.07561"	Longitude: 124º 19' 18.45344"	Ellipsoidal Hgt: 64.58200 m.
	PTM / PRS92 Coordinates	
Northing: 1375444.106 m.	Easting: 426111.163 m.	Zone: 5
	UTM / PRS92 Coordinates	
Northing: 1,375,224.53	Easting: 643,513.56	Zone: 51

Location Description

From Rosario town proper going to Municipality of San Jose travel about 10 km. north. From the School Entrance Gate going to the monument is about 10 m. northwest, and from the School Stage going to the monument is about 2 m. east. From the Teacher's Lounge and Principal's Office up to the monument is about 5 m. south, where the monument was established. Mark is the head of a 4" copper nail flushed in a 30X30 cm. cement block embedded in the ground protruding about 20 cm., with inscriptions "SMN-12; 2007; NAMRIA."

Requesting Party:UP-DREAMPurpose:ReferenceOR Number:8084005 IT.N.:2015-1259

RUEL DM. BELEN, MNSA Director, Mapping And Geodesy Branch 6

NAMRIA OFFICES: Main : Lawton Avenue, Fort Bonifacio, 1634 Taguig City, Philippines Tel. No. (632) 810-4831 to 41 Branch : 421 Barraca St. San Nicolas, 1010 Manila, Philippines, Tel. No. (632) 241-3494 to 98 www.namria.gov.ph

ISO 9001: 2008 CERTIFIED FOR MAPPING AND GEOSPATIAL INFORMATION MANAGEMENT

Figure A-2.3. SMN-12

Annex 3. Baseline Processing Reports of Control Points used in the LiDAR Survey

1. CMN-01

Table A-3.1. CMN-01

			Processing	Summary				
Observation	From	То	Solution Type	H. Prec. (Meter)	V. Prec. (Meter)	Geodetic Az.	Ellipsoid Dist. (Meter)	∆Height (Meter)
CMN-01 SMN-19 (B1)	SMN-19	CMN-01	Fixed	0.004	0.018	261°10'06"	19716.093	7.117
CMN-01 SMN-19 (B2)	SMN-19	CMN-01	Fixed	0.004	0.016	261°10'06"	19716.092	7.056

	Acceptance	e Summary			
Processed	Passed	Flag	▶	Fail	1
2	2	0		0	

Vector Components (Mark to Mark)

From:	SMN-19	SMN-19						
	Grid	Lo	ocal	Global		obal		
Easting	697302.106 m	Latitude	N12°31'32	2.33268"	Latitude		N12°31'27.72792"	
Northing	1385272.014 m	Longitude	E124°48'56	6.69484"	Longitude		E124°49'01.74020"	
Elevation	8.997 m	Height		5.456 m	Height		63.991 m	
To:	CMN-01							
Grid		Local		Global				
Easting	677840.326 m	Latitude	N12°29'53	3.60604"	0604" Latitude		N12°29'48.99306"	
Northing	1382111.129 m	Longitude	E124°38'11	124°38'11.46535" Longitude			E124°38'16.51471"	
Elevation	14.613 m	Height	1	2.573 m	2.573 m Height		70.742 m	
Vector								
∆Easting	-19461.78	0 m NS Fwd Azimuth			261°10'06"	ΔX	15632.874 m	
ΔNorthing	-3160.88	84 m Ellipsoid Dist.			19716.093 m	ΔΥ	11643.556 m	
∆Elevation	5.61	l5 m <mark>ΔHeight</mark>			7.117 m	ΔZ	-2960.605 m	

Standard Errors

Vector errors:					
σ ∆Easting	0.002 m d	σ NS fwd Azimuth	0°00'00"	σΔΧ	0.005 m
$\sigma \Delta Northing$	0.002 m d	σ Ellipsoid Dist.	0.002 m	σΔΥ	0.007 m
σ ΔElevation	0.009 m d	σ ΔHeight	0.009 m	σ ΔΖ	0.003 m

	Х	Y	Z
Х	0.0000248767		
Y	-0.0000327811	0.0000524301	
Z	-0.0000118537	0.0000172626	0.000085902

2. CMN-03

Table A-3.2. CMN-03 Processing Summary								
Observation	From	То	Solution Type	H. Prec. (Meter)	V. Prec. (Meter)	Geodetic Az.	Ellipsoid Dist. (Meter)	∆Height (Meter)
SMN-22 CMN-03 (B1)	SMN-22	CMN-03	Fixed	0.003	0.013	328°18'36"	3228.537	1.582
SMN-22 CMN-03 (B2)	SMN-22	CMN-03	Fixed	0.003	0.011	328°18'36"	3228.533	1.564

Acceptance Summary							
Processed Passed Flag 🏲 Fail 🏲							
2	2	0		0			

Vector Components (Mark to Mark)

From:	SMN-22							
G	rid	Lo	ocal		Global		obal	
Easting	719951.311 m	Latitude	N12°28'27	7.20631"	Latitude		N12°28'22.63174"	
Northing	1379746.868 m	Longitude	E125°01'25	5.36070"	Longitude		E125°01'30.40861"	
Elevation	2.366 m	Height	-	1.704 m	Height		57.474 m	
To: CMN-03								
G	rid	Lo	Local		Global		obal	
Easting	718234.013 m	Latitude	N12°29'56	6.60839"	Latitude		N12°29'52.02635"	
Northing	1382481.531 m	Longitude	E125°00'29	9.19031"	19031" Longitude		E125°00'34.23621"	
Elevation	4.145 m	Height	-	0.122 m	2 m Height		58.953 m	
Vector								
∆Easting	-1717.29	8 m NS Fwd Azimuth			328°18'36"	ΔΧ	1729.089 m	
∆Northing	2734.66	3 m Ellipsoid Dist.			3228.537 m	ΔY	488.102 m	
∆Elevation	1.77	9 m ΔHeight			1.582 m	ΔZ	2682.431 m	

Standard Errors

Vector errors:					
σ ΔEasting	0.001 m	σ NS fwd Azimuth	0°00'00"	σΔΧ	0.004 m
$\sigma \Delta Northing$	0.001 m	σ Ellipsoid Dist.	0.001 m	σΔΥ	0.005 m
$\sigma \Delta Elevation$	0.006 m	σ ΔHeight	0.006 m	σΔZ	0.002 m

	Х	Y	Z
х	0.0000131932		
Y	-0.0000175996	0.0000266165	
Z	-0.0000049526	0.0000073425	0.0000030832

3. NS-61

Table A-3.3. NS-61

Vector Components (Mark to Mark)

From:	SMN-16	SMN-16							
C	Grid		Loc	cal		Global		lobal	
Easting	697302.106 m	Latitude		N12°31'3	2.33268"	Latitude		N12°31'27.72792"	
Northing	1385272.014 m	Longitud	de	E124°48'5	6.69484"	Longitude		E124°49'01.74020"	
Elevation	8.997 m	Height			5.456 m	Height		63.991 m	
To: NS-61									
Grid		Local		Global		lobal			
Easting	696390.555 m	Latitude		N12°31'1	7.86801"	Latitude		N12°31'13.26354"	
Northing	1384821.249 m	Longitud	de	E124°48'20	6.40323"	323" Longitude		E124°48'31.44902"	
Elevation	8.653 m	Height			5.208 m	n Height		63.733 m	
Vector									
∆Easting	-911.55	1 m NS Fwd Azimuth			244°04'53"	ΔX	695.978 m		
ΔNorthing	-450.76	5 m Ellipsoid Dist.			1016.833 m	ΔY	601.027 m		
∆Elevation	-0.34	l5 m ΔHe	eight			-0.248 m	ΔZ	-433.971 m	

Standard Errors

Vector errors:							
σ ∆Easting	0.001 m o NS fwd Azimuth	0°00'00" σ ΔΧ	0.001 m				
$\sigma \Delta Northing$	0.001 m σ Ellipsoid Dist.	0.001 m σΔY	0.001 m				
σ ΔElevation	0.001 m σ ΔHeight	0.001 m σ ΔΖ	0.001 m				

	Х	Y	Z
х	0.0000012353		
Y	-0.000007094	0.0000013533	
Z	-0.000003640	0.000003117	0.000005407

4. NS-81

Table A-3.4. NS-81

Vector	Components	(Mark to	Mark)
	Componionito	fundance en	

From:	SMN-22	SMN-22						
Grid			Lo	cal		Global		
Easting	719951.311 m	Latitu	ıde	N12°28'2	7.20631"	Latitude		N12°28'22.63174"
Northing	1379746.868 m	Longi	itude	E125°01'2	5.36070"	Longitude		E125°01'30.40861"
Elevation	2.366 m	Heigh	ht		-1.704 m	Height		57.474 m
To:	NS-81							
Grid		Local		Global		obal		
Easting	714590.119 m	Latitu	ıde	N12°32'5	6.09555"	Latitude		N12°32'51.49836"
Northing	1387970.443 m	Longi	itude	E124°58'2	9.89302"	Longitude		E124°58'34.93490"
Elevation	4.192 m	Heigh	ht		-0.487 m	Height		58.377 m
Vector								
∆Easting	-5361.19	92 m N	NS Fwd Azimuth			327°20'13"	ΔX	5365.935 m
ΔNorthing	8223.57	75 m E	Ellipsoid Dist.			9814.994 m	ΔY	1573.580 m
∆Elevation	1.82	26 m 2	∆Height			1.217 m	ΔZ	8066.253 m

Standard Errors

Vector errors:					
σ∆Easting	0.002 m	σ NS fwd Azimuth	0°00'00"	σΔX	0.004 m
σ ΔNorthing	0.001 m	σ Ellipsoid Dist.	0.001 m	σΔΥ	0.005 m
σ ΔElevation	0.007 m	σ ∆Height	0.007 m	σΔZ	0.002 m

	x	Y	Z
x	0.0000158482		
Y	-0.0000178008	0.0000299576	
Z	-0.0000062225	0.0000079062	0.0000036553

5. NS-100

Table A-3.5. NS-100

From:	SMN-12					
Grid				Global		
Easting	661608.826 m	Latitude	N12*31'53.63572*	Latitude		N12*31'49.00197*
Northing	1385703.370 m	Longitude	E124°29'14.55387"	Longitude		E124*29'19.60166*
Elevation	6.138 m	Height	4.666 m	Height		62.383 m
To:	NS-100					
Grid			Global			
Easting	664407.825 m	Latitude	N12*31'15.60049*	Latitude		N12"31'10.97151"
Northing	1384550.595 m	Longitude	E124°30'47.05130"	Longitude		E124*30'52.09977*
Elevation	7.016 m	Height	5.524 m	Height		63.332 m
Vector						
ΔEasting	2798.95	0 m NS Fwd A	zimuth	112°42'26"	ΔX	-2445.519 m
ΔNorthing	-1152.77	5 m Ellipsoid C	Dist.	3027.308 m	ΔY	-1372.200 m
AElevation	0.87	8 m AHelaht		0.858 m	AZ	-1140.653 m

Standard Errors

Vector errors:					2
σ ΔEasting	0.001 m	or NS fivel Azimuth	0*00'00*	σΔΧ	0.003 m
σ ΔNorthing	0.001 m	σ Ellipsoid Dist.	0.001 m	σΔΥ	0.004 m
σ ΔElevation	0.006 m	σ ΔHeight	0.006 m	σΔZ	0.002 m

	x	Y	Z
x	0.0000121100		
Y	-0.0000138874	0.0000200970	
z	-0.0000045007	0.0000060416	0.0000024172

6. SI-08

Table A-3.6. SI-08

Vector Components (Mark to Mark)

From:	SMM	N22 AM							
Grid				Local			Global		
Easting		719951.311 m	Latit	tude	N12°28'27	.20631"	Latitude		N12°28'22.63174"
Northing		1379746.868 m	Lon	gitude	E125°01'25	5.36070"	Longitude		E125°01'30.40861"
Elevation		2.366 m	Helg	ght	-	1.704 m	Height		57.474 m
To:	SI08	3 AM							
Grid			Local		Global				
Easting		718234.000 m	Latit	tude	N12°29'56	60889"	Latitude		N12°29'52.02685"
Northing		1382481.546 m	Lon	gitude	E125°00'29	.18987"	Longitude		E125°00'34.23576"
Elevation		4.378 m	Heig	ght		0.111 m	Height		59.186 m
Vector									
∆Easting		-1717.31	12 m	NS Fwd Azimuth			328°18'36"	ΔX	1728.971 m
ΔNorthing		2734.67	78 m	Ellipsoid Dist.			3228.557 m	ΔY	488.293 m
∆Elevation		2.01	12 m	∆Height			1.815 m	ΔZ	2682.497 m

Standard Errors

Vector errors:						
σ ΔEasting	0.001 m	σ NS fwd Azimuth	0°00'00"	σΔΧ	0.004 m	
σΔNorthing	0.001 m	σ Ellipsoid Dist.	0.001 m	σΔY	0.005 m	
σ ΔElevation	0.006 m	σΔHeight	0.006 m	σΔZ	0.002 m	

	x	Y	Z
x	0.0000134710		
Y	-0.0000157423	0.0000227334	
z	-0.0000044486	0.0000064680	0.0000024588

7. SMN-3378

Table A-3.7. SMN-3378

Vector Components (Mark to Mark)

From:	5MN-22					
Grid		Local		Global		
Easting	719951.311 m	Latitude	N12°28'27.20631"	Latitude	N12°28'22.63174"	
Northing	1379746.868 m	Longitude	E125°01'25.36070"	Longitude	E125°01'30.40861"	
Elevation	2.366 m	Height	-1.704 m	Height	57.474 m	

To:		SMN-3378	SMN-3378						
Grid		Local		Global					
Easting		721512.775 m	Latitude	N12°26'01.70520"	Latitude	N12°25'57.14186'			
Northing		1375286.867 m	Longitude	E125°02'15.92453"	Longitude	E125°02'20.97581'			
Elevation		5.208 m	Height	1.514 m	Height	60.832 m			
Vector									

Vector								
Δ Easting	1561.463 m	NS Fwd Azimuth	161°08'29"	ΔX	-1805.737 ı	m		
∆ Northing	-4460.001 m	Ellipsoid Dist.	4724.481 m	ΔY	-84.519 r	m		
Δ Elevation	2.842 m	Δ Height	3.219 m	ΔZ	-4364.957 ı	m		

Standard Errors

Vector errors:						
$\sigma \Delta$ Easting	0.002 m (v NS fwd Azimuth	0°00'00"	σΔΧ	0.004	n
σΔNorthing	0.001 m (σ Ellipsoid Dist.	0.001 m	σΔΥ	0.005	n
$\sigma \Delta$ Elevation	0.006 m d	σΔHeight	0.006 m	σΔΖ	0.002	n

Aposteriori Covariance Matrix (Meter*)

	х	Y	Z
х	0.0000134646		
Y	-0.0000139256	0.0000212735	
Z	-0.0000056176	0.0000065331	0.0000039306

Annex 4. The LIDAR Survey Team Composition Table A-4.1. LiDAR Survey Team Composition					
Data Acquisition Component Sub-Team Designation		Name	Agency/ Affiliation		
PHIL-LIDAR 1	Program Leader	ENRICO C. PARINGIT, D.ENG	UP-TCAGP		
Data Acquisition Component Leader	Data Component Project Leader - I	ENGR. CZAR JAKIRI SARMIENTO	UP-TCAGP		
	Data Component Project Leader – I	ENGR. LOUIE P. BALICANTA	UP-TCAGP		
Survey Supervisor	Chief Science Research Specialist (CSRS)	ief Science Research Specialist (CSRS) ENGR. CHRISTOPHER CRUZ			
	Supervising Science Research Specialist	LOVELY GRACIA ACUñA	UP-TCAGP		
	(Supervising SRS)	LOVELYN ASUNCION	UP-TCAGP		
FIELD TEAM					
LiDAR Operation	Senior Science Research Specialist (SSRS)	PAULINE JOANNE ARCEO	UP-TCAGP		
	Senior Science Research Specialist	AUBREY PAGADOR/ ENGR. IRO NIEL ROXAS	UP-TCAGP		
	Senior Science Research Specialist	JASMINE ALVIAR	UP-TCAGP		
	Research Associate (RA)	MARY CATHERINE ELIZABETH BALIGUAS	UP-TCAGP		
	RA	SANDRA POBLETE	UP-TCAGP		
	RA	JONALYN GONZALES	UP-TCAGP		
	RA	MA. VERLINA TONGA	UP-TCAGP		
	RA	ENGR. MILLIE SHANE REYES	UP-TCAGP		
Ground Survey, Data Download and Transfer	RA	JONATHAN ALAMALVEZ	UP-TCAGP		
	RA	FRANK NICOLAS ILEJAY	UP-TCAGP		
	RA	REGINA AEDRIANNE FELISMINO	UP-TCAGP		

....

LiDAR Operation		SSG JULIUS RENDON	PHILIPPINE AIR FORCE (PAF)						
	Airborne Security	SSG JOHN ERIC CACANINDIN	PAF						
		SSG SANDY UY	PAF						
		CAPT. RAUL CZ SAMAR III	ASIAN AEROSPACE CORPORATION (AAC)						
	Pilot	CAPT. RANDY LAGCO	AAC						
		CAPT. JERICO JECIEL	AAC						
		CAPT. MARK LAWRENCE TANGONAN	AAC						
		CAPT. NIEL ACHILLES AGAWIN	AAC						
		CAPT. CESAR SHERWIN ALFONSO	AAC						
									7
-------------------	--	-------------------	--------------	--------------	-------------------	-------------------	---------------	--	---
	SERVER	CIDAC/RAW DATA	DAC/RAW	DACKAW	CIDACIRAW DATA	CIDAC/RAW DATA			4
	KML	NA	AN	NA	AN	NA			
	FLIGHT F	8/9	7	7	13/8/9	46			
	PERATOR LOGS OPLOG)	1KB	1KB	1KB	2KB	1KB			
	N(S) O	1KB	1KB	1KB	1KB	1KB		1116	
	BASE STATIC BASE ATION(S) Bas	184	195 ×	195 🗸	195 /	123			
	IGITIZER	NA	272 /	69.2 /	NA	143⁄		Bang Bang	
	D	14.1	15.1	4.13	22.4	6.8	eived by	a then the	
	ION LOG ECASI F	NA	61.2	51.2 /	NA	106	Rec	Name Name Name Name Name Name Name Name	
t SHEET 5/2016	taw Miss Esicasi II	NA	38.6	6.8	AN	34.5 /			
A TRANSFER	OS IMAG	63	261 6	103 / 1	255 /	255 / 3			
DAT	Le construction de la constructi	892	327 /	603	54 /	530 /			
	ML LC	86	70 8	A A	41 / 1	3 / 16	F	et al	
	RAW LAS ut LAS (sw	AA 1	AN IN	AN N	4A 2	AN I	Received from		
	Outp	z	S/CASI 1	S/CASI 1	z	z		Name Signa	
	SENS	GEM	AQUARIU	AQUARIU	GEMI	GEMI			
	MISSION NAME	2BLK33LK099A	3BLK33BC100A	3BLK33CS100B	2BLK33EG100A	3BLK33CSH101A			
	FLIGHT NO.	3913G	8426AC	8427AC	3917G	8428AC			
	DATE	April 8,2016	April 9,2016	April 9,2016	April 9,2016	April 10,2016			

	SENSOR Output LAS K	AQUARIUS NA	AQUARIUS NA	AQUARIUS NA	AQUARIUS NA	AQUARIUS NA	AQUARIUS NA	AQUARIUS NA	AQUARIUS NA	AQUARIUS	AQUARIUS NA	AQUARIUS NA	AQUARIUS NA	AQUARIUS NA	I I I I I I I I I I I I I I I I I I I	
	AS ML (swath)	28 84	231 543	223 1.08	105 236	251 516	145 842	264 541	135/346 353	133 279	439 400	103 218	156 586	371 700		
DATA T 6/25/2	B) POS	56.4	220	187	118	231	138	221	153	127	212	97.3	223	225		
RANSFER SHEL 2014(catarman)	RAW	NA	63.1	52.1	27.2	50.5	37	65	39.8	29.8	104	21.9	49.9	76.4	Received by hemo Action	
6	AISSION LOG FILE/CASI LOGS	\$V	772	123	86.7	119	119/121	170	112	79.9	119	87.2	128	131	the standard	
	RANGE	1.49	96.6	9.37	5.11	10.7	6.27	11.1	6.63	5.82	8.48	4.4	10.1	14.9	7(3/15	
	BITIZER BAS	21.5 3.6	179 6.9	160 7.1	84.5 4.9	106 13.	111 13.	201 7.8.	107 9.0	51.4 4.5	140 13	77.7 13	148 8.2	275 6.4t		
	ASE STATION(S)	1KB	7 1KB	1 1KB	2 1KB	1 1KB	1 1KB	2 1KB	4 1KB	9 1KB	1KB	1KB	7 1KB	3 1KB	-	
	oPERATOR LOGS	1KB	2KB	1KB	2KB	1KB	1KB	2KB	1KB	2KB	1KB	1KB	2KB	1KB	-	
	FLIGHT	4	4	4/6	ŝ	3/4	5/11	11	5/13/4	8	8	4	÷	4		
	r Plan	NA	NA	13	NAZ	NAZ	NA	247/264 Z	NA	NA	NA	NAZ	NAZ	NAZ		
	SERVER LOCAT	Z-IDACIRAWDATA	Z'IDACIRAWDATA	Z:\DAC\RAWDATA	Z: IDACIRAWDATA	Z: IDACIRAWDATA	Z: IDACIRAWDATA	Z:\DAC\RAWDATA	Z: UDACIRAWDATA	Z: \DAC\RAWDATA	2: VDACIRAWDÁTA	2: IDACIRAWDATA	2: UDACIRAWDATA	2.IDACIRAWDATA		

Figure A-5.2. Data Transfer Sheet for Catubig Floodplain – B

Figure A-5.3. Data Transfer Sheet for Catubig Floodplain – C

Figure A-5.4. Data Transfer Sheet for Catubig Floodplain – D

-									
	SERVER	Z:\DAC\RAW DATA	Z:\DAC\RAW DATA	Z:\DAC\RAW DATA	Z:\DAC\RAW DATA	Z:\DAC\RAW DATA			
N	KML	NA	NA	NA	NA	NA			
FLIGHT	Actual	F.	46	7	23	NA			
	DPERATOR LOGS (OPLOG)	1KB	1KB	1KB	1KB	1KB			
(S)NUL	ase Info (.txt)	1KB	1KB	1KB	1KB	1KB		14/16	
BASE STAT	BASE STATION(S) B	89.9	77.8	77.8	86.7	86.7		5 4	
	DIGITIZER	98.2	39.3	38.7	151	73.8	id by		
	RANGE	6.53	9.13	4.64	9.16	4.52	Receive	ignature ignature	
	FILE/CASI LOGS	NA	305	305	68.7	NA		z σ ω	
(MAN 6/3/2010	RAW	NA	40.3	19.5	19.5	NA			
CATAR	POS	90.5	216	108	226	132			
	rogs	355	564	295	590	294			
SA	ML (swath)	158	214	110	212	312	from	Emile Al	
RAW L	Dutput LAS	NA	NA	NA	NA	NA	Received	aime ignature c	
	SENSOR	AQUA/CASI	AQUA/CASI	AQUA/CASI	AQUA/CASI	AQUA/CASI		- 1 1 1	
	MISSION NAME	3BLK33BSDS108B	3BLK33F109A	3BLK33JVKVS109B	3BLK33IVJV110A	3BLK33CVDV110B			
	FLIGHT NO.	8444AC	8445AC	8446AC	8447AC	8448AC			
	DATE	April 17, 2016	April 18, 2016	April 18, 2016	April 19, 2016	April 19, 2016			

F		>	>	>	>	>	>	>	>													
	LOCATION	Z:\DAC\RAV DATA																				
PLAN	KML	NA	NA	NA	NA	NA	301	301	301													
FLIGHT	Actual	љ	46	13	13	11	-00	æ	80													
ODEDATOD	UPERATOR LOGS (OPLOG)	1KB	NA	1KB	1KB	1KB	1KB	1KB	1KB													
(S)NOI	ase Info (.txt)	1KB				4/02/1																
BASE STAI	BASE STATION(S) B	118	127	159	175	175	91.8	91.8	89.9		4	5	61									
	DIGITIZER	NA	NA	NA	239	46.7	221	83.9	187	d by		Sug)	200	0								
	RANGE	12.5	13.8	12.3	14.5	3.11	12.8	5.04	10.7	Received	-	me A	gnature	-								
SOLIDE	FILE/CASI LOGS	NA	NA	NA	177	NA	267	74.1	803			Z	2 S									
2	RAW AGES/CASI	NA	44.9	NA	64.7	15.8	64.7	15.8	43.8													
	POS	237	245	240	268	83.7	246	122	249													
	rogs	710	707	706	793	222	702	259	629													
st	ML (swath)	297	367	302	643	90	301	411	251	from		etund .	- COL)								
RAW L	output LAS K	NA	Received		ame fa																	
	SENSOR	QUA/CASI			z	r w																
	MISSION NAME	3BLK33D102A	3BLK33KSJ103A	3BLK33IK104A	3BLK33ISA105A 4	3BLK33AS105B 4	3BLK33N107A	3BLK33MNS107B	3BLK33MS108A													
	FLIGHT NO.	8431AC	8433AC	8435AC	8437AC	8438AC	8441AC	8442AC	8443AC													
	PATE	pril 11, 2016	vpril 12, 2016	vpril 13, 2016	vpril 14, 2016	vpril 14, 2016	vpril 16, 2016	April 16, 2016	vpril 17, 2016													

Figure A-5.6. Data Transfer Sheet for Catubig Floodplain – F

									1
	SERVER	Z:\DAC\RAW	Z:\DAC\RAW	Z:\DAC\RAW DATA	Z:\DAC\RAW DATA	Z:\DAC\RAW DATA			
	PLAN	NA	NA	NA	NA	NA			
	FLIGHT	8/9	7	7	13/8/9	46			
	OPERATOR	(OPLOG) 1KB	1KB	1KB	2KB	1KB			
	(S)NO	1KB	1kB)	(IKB	1KB /	1KB		1116	
	BASE STAT BASE	184	195 📈	195 /	195 /	123		No and A	
	MGITIZER	NA S	272 /	69.2 /	VN	143		S S S S S S S S S S S S S S S S S S S	
	ANGE D	14.1	15.1	4.13	22.4	8.9	eived by	titure attrice to the second s	
	ION LOG	NA NA	61.2	61.2	NA	106	Rec	S S P C S S S P C S S S S S S S S S S S	
5/2016	taw MISS Esicasi	- V	68.6	6.8 /	NA	94.5 /			
TARMAN 5/5	DS IMAG	83	61 6	03 / 1	55 /	55 / 3			
CA	e SS	2	2 / 2	1	54 2	80 / 2			
		30 (H) (2)	82	20	11	25		4	
	RAW LAS	186 186	37	ž	24	19	sceived from	a a a a a a a a a a a a a a a a a a a	
		VA	CASI NA	ASI NA	NA	NA	ä	Name Position Signaturi	
	SENSOR	GEMINI	AQUARIUS/C	AQUARIUS/C	GEMINI	GEMINI			
	NAME	K099A	C100A	S100B	G100A	SH101A			
	NOISSIM	2BLK33L	3RI K33P	3BLK33C	2BLK33E	3BLK33C			
	LIGHT NO.	3913G	8426AC	8427AC	3917G	8428AC			
	<u> </u>	2016	2016	2016	2016	0,2016			
	DAT	April 8,	April 9,	April 9,	April 9,	April 10			

3. Flight Log for 8154AC Mission

Ubbit Operator: Mission Name: 30L8334-5 Type: Vrn SNircart Type: Cennar2004 6 Alrcart Identification Pilor: CAPADAUX0 II 8 Co-Pilor 13 Ropert OlyProvince): 2 Alrcart Type: Cennar2004 6 Alrcart Identification Dis: Accord Paragon 13 Ropert OlyProvince): 2 Alrcart Type: Cennar2004 6 Alrcart Identification 3 Right Co Accord Paragon 13 Ropert OlyProvince): 13 Alrcart Type: Cennar2004 6 Alrcart Identification 3 Right Co Oright Classification 3 Right 2 Roper OlyProvince): 13 Roper OlyProvince): <td< th=""><th></th><th>UISITION FIGHT LOG</th><th></th><th>A2001</th><th></th><th>C10</th></td<>		UISITION FIGHT LOG		A2001		C10
Right Cartholic IC Altrono II (a cartine R UAGO) Bloute: Cart Altrono I Arrival	LIDAR Operator: MS	Reyes 2 ALTM Model: CAS	3 Mission Name: 38LK 33	12L - 4 Type: VFR	5 Aircraft Type: CesnnaT206H	6 Aircraft Identification: 9322
DB(E) IZ Altroport of Arrival (Altron, City/Province): IZ Altroport of Arrival (Altron, City/Province): IB (End at Contraction Fight IA Engine Off. IZ Altroport of Arrival (Altron, City/Province): IB (End at Contraction Fight IA Engine Off. IZ Altroport of Arrival (Altron, City/Province): IB (End at Contraction Fight IA Engine Off. IZ Altroport of Arrival (Altron, City/Province): IB (End at Contraction Fight O (Light + Contraction Fight) IX End at Contraction Fight IB (End at Contraction Fight) O Ancent Tract fight O Ancent Tract fight IX End at Contraction Fight IX A Contraction Fight O Ancent Tract fight O INULOAR System Maintenance IX End at Contraction Fight IX A Contraction Fight O Ancent Tract fight O INULOAR Admin Activities IX End Activities IX A Contraction Fight O Ancent Tract fight O INULOAR Admin Activities IX A Contraction Fight IX A Contraction Fight O Ancent Tractifier IX A Contractifier IX A Contractifier IX A Contraction Fight O Ancent Tractifier IX A Contractifier IX A Contractifier IX A Contractifier O Ancent Tractifier IX A Contractifier IX A Contractifier IX A Contractifier O Ancent Tractifier IX A Contractifier IX A Contractifier IX A Contractin Fight O Ancent Tractifie	Pilot: CC ALTONICO	II & Co-Pilot: R LAGOD	9 Route: Car-Ca	Ļ		
Engine On: Is Flag off: Is Take off: Is	Date: NU6 205	12 Airport of Departure (Airport, City/Province):	12 Airport of Arrival	(Airport, City/Province):	
We after fright Classification 20.0 No Billable 20.0 Cutters 21.1 Remarks 21.1 Remarks A site of the content registion registic registric registing registing registing registion registing r	Engine On: Dield H	14 Engine Off:	15 Total Engine Time: 3 + 2-3	16 Take off:	17 Landing: 934	18 Total Flight Time: $3 + 13$
Flight Classification 2.1 Remarks 2.1 Remarks 2.1 Remarks Ja Bildle 20.0 Mon Billable 20.0 Others 2.0.0 Mon Billable 20.0 Mon Billable Image: System Text Flight Image: System Text Flight Image: System Maintenance Image: System Maintenance Image: System Maintenance Image: System Text Flight Image: System Text Flight Image: System Maintenance Image: System Maintenance Image: System Maintenance Image: System Text Flight Image: System Text Flight Image: System Maintenance Image: System Maintenance Image: System Maintenance Image: System Froblem Image: System Problem Image: System Problem Image: System Problem Image: System Problem Image: System Problem Image: System Problem Image: System Problem Image: System Problem Image: System Problem Image: System Problem Image: System Problem Image: System Problem Image: System Problem Image: System Problem Image: System Problem Image: System Problem Image: System Problem Image: System Problem Image: System Problem Image: System Problem Image: System Problem Image: System Problem Image: System Problem Image: System Problem Image: System Problem Image: System Problem Image: System Problem Image: System Problem Image: System Problem	Weather					
Consistion flight Calibratine flight Calibration flight Calibration flight Calibration flight Constraint flight Calibration flight Calibration flight Calibration flight Calibration flight Calibration flight Calibration flight Calibration flight Calibration flight Calibration flight Calibration flight Calibration flight Calibration flight Calibration flight Calibration flight Constraint Calibration flight Calibration flight Calibration flight Calibration flight Constraint Calibration Calibration Calibration flight Calibration Constraint Calibration Calibration Calibration Montalingtance Constraint Calibration Calibration Montalingtance Montalingtance Constraint Calibration Calibration Montalingtance Montalingtance	Flight Classification a Rillable	And Bullehord	20 c Others	21 Remark	yed BIK 331 N	10
Problems and Solutions • Weather Problem • Weather Problem • System Problem • System Problem • Nicraft Problem • Nicraft Problem • Nicraft Problem • Nicraft Problem • Others:	 Manage Acquisition Flight Ferry Flight System Test Flight Calibration Flight 	 Aircraft Test Flight AAC Admin Flight Others: 	 LiDAR System Main LiDAR System Main Aircraft Maintenanc PhII-LIDAR Admin A 	tenance tetivities		
algorithms fuel in interview of the second sec	Acquisition Flight, Approve 11 1911 - Approve 51 1911 - Approve 1614 Usbe Revenentation	od by Acquisition Flight Cer Sec. Jour Rev Signature over Printee (PAF Reveentable)	illed by Pilot Dool (2014) Eggen Name Signa	in-Command In-Command E. E. A. M. H. H. H. S. D. F. B. Lune over Frinted Name	Lidar Operator M S M EY ES Signature over Printed Nam	Alicraft Mechanic/ Technician

Figure A-6.3. Flight Log for Mission 8154AC

Figure A-6.4. Flight Log for Mission 8156AC

Figure A-6.5. Flight Log for Mission 8157AC

6. Flight Log for 8158AC Mission

PLACEHOLDER

Figure A-6.6. Flight Log for Mission 8158AC

7. Flight Log for 8159AC Mission

Figure A-6.7. Flight Log for Mission 8159AC

Flight Log for 8160AC Mission

Figure A-6.8. Flight Log for Mission 8160AC

9. F	light Log	for 8	180A	C Mi	ssio	n								
	4	22												
	Flight Log No.: 87 80	6 Aircraft I dentification: RP-C9.	18 Total Elleht Time.	3737		k wal					× .	Aircraft Mechanic/ UDAR Technician		
		5 Aircraft Type: Cesnna T206H	I (Airport, Gty/Province):	+ 8460		Completed RL						LIDAR Operator WV TONGA		
		K33B 23A 4 Type: VFR	12 Airport of Arriva	00114	21 Remark		daintenance nance tin Activities				2*	Ilot-in-Command Ilot-in-Command CLL A Howe W		
		+ 3 Mission Name:241	e (Airport, City/Province): Certern ar 15 Total Engine Time	WIND 3747		20.c Others	 LIDAR System N Aircraft Mainte Phil-LIDAR Adm 					rtified by P	Vel	
	ht Log	2 ALTM Model: Anun 20-Pilot: P. Logue ASI	Engine Off	PARATA CLUDUDY PAND		20.b Non Billable	o Aircraft Test Flight o AAC Admin Flight o Others:					Acquisition Flight Cer SSC JULINF R	(PAF Representati	
	Data Acquisition Flig	1 LIDAR Operator TV, Tong 7 Pilot: C. Alfonso Bl	10 Date: August =3 7.	0406 H	20 Flight Classification	20.a Billable	Acquisition Flight Ferry Flight System Test Flight Calibration Flight	22 Problems and Solutions	O Weather Problem	O System Problem O Aircraft Problem	o Others:	Acquisition Flight Approved by	(End'User Representative)	

Figure A-6.9. Flight Log for Mission 8180AC

Figure A-6.10. Flight Log for Mission 8182AC

Flight Log No.: 818.4 A.C	6 Aircraft Identification: EP- C93 VV	18 Total Flight Time: さ イイふ					Aircraft Mechanic/ LIDAR Technician	
	5 Aircraft Type: Cesnna T206H Airport, City/Province):	17 Landing:	•	BURVEYED BLK 33PS	e.		LIDAR Operator	
	4 Type: VFR	16 Take off: 0719 升	21 Remarks		aintenance ance n Activities		ot-in-Command C. M. M. M. M. C. M. C. M. C. M. nature over Printed Name	
	As 3 Mission Name: 9 Route: Caturation (Airport, City/Province):	15 Total Engine Time: 3 + 53		20.c Others	O LIDAR System M O Aircraft Mainten O Phil-LIDAR Admi		titled by Pil	
ht Log	25 2 ALTM Model: Aquato Co-Pilot: C - Lasco 12 Airport of Departure	tengine Off: [(07] [+ FAIR		20.b Non Billable	 Aircraft Test Flight AAC Admin Flight Others: 		Acquisition Flight Ce Signature over Printer (PAF Representati	
Data Acquisition Filg	R Operator: J. March 1 :: C. M. Laso 81	sine On: 0714 U	ht Classification	Sillable	Acquisition Flight Ferry Flight System Test Flight Calibration Flight	blems and Solutions Weather Problem System Problem Altrcraft Problem Pilot Problem Others:	uisition Fight Approved by	

Figure A-6.12. Flight Log for Mission 8184AC

Figure A-6.13. Flight Log for Mission 8186AC

14. Flight Log for 3913G Mission

PLACEHOLDER

Figure A-6.14. Flight Log for Mission 3913G

15. Flight Log for 8426AC Mission

PLACEHOLDER

Figure A-6.15. Flight Log for Mission 8426AC

Figure A-6.16. Flight Log for Mission 3917G

Figure A-6.17. Flight Log for Mission 8427AC

10.: 8428	1: 9322												Technician		ited Name		
Flight Log N	6 Aircraft Identificatior		18 Total Flight Time:	1+49			<330						Aircraft Mechanic/	ι	Signature over Prir		
1100000 V	5 Aircraft Type: Cesnna I 206H	(Airport, City/Province):	17 Landing:	1354 H			Surveyed to lines in BU	u L					Lidar Operator	pagelelinund	Signature over Printed Name		
-	SCSIDDE 4 Type: VFR	12 Airport of Arrival	16 Take off:	1 205 H		21 Remark		tenance .e ctivities					n-command	the Year	are over Printed Name		
	Mission Name: 3BLK 3	rport, City/Province):	5 Total Engine Time:	1+59			0.c Others	 LIDAR System Maint Aircraft Maintenanc Phil-LiDAR Admin A 					d by Pilot-i	12	ne Signatu		
Adding to	ND 2 ALTM Model: CASI 3	12 Airport of Departure (Air	A Findine Off	1359 #	Partly Cloudy	-	20.b Non Billable	 Aircraft Test Flight AAC Admin Flight Others: 					Acquisition Fljgfjt Certified	ALL	Signature over Printed Nan (PAF Representative)		
ata Acquisition Flight Log	LIDAR Operator: R HELLSMIN	Date: APPE DO 2 MI	3 Engine On·	1200 H	9 Weather	0 Flight Classification	0.a Billable	 Acquisition Flight Ferry Flight System Test Flight Calibration Flight 	2 Problems and Solutions	O Weather Problem	 System Problem Aircraft Problem 	0 Pilot Problem 0 Others:	Acquisition Flight Approved by	" Regiver	Figuration Control Con		

Figure A-6.18. Flight Log for Mission 8428AC

	ГІ	Igi		ו אַכ	01 0	431	AC	IVIISSIUII			
Fight Log No.: 8430	6 Aircraft Identification: 20- 75.22			18 Total Flight Time:	lot L						Aircraft Mechanic/ Technician
	5 Aircraft Type: Cesnna T206H	Almost Ch.(Denterly	without, dity Frovince):	17 Landing:							Lider Operators M. M. M
ATTACH ATTACHED	SU102H 4 Lype: VFR	Catarman	Catarm an	10 Take off: 0720 H		21 Remarks		itenance ce kctivities			command Brited Name
3 Miccion Name 201403	CALIBO INTERIOR CORPORATION	9 Koute: Catarman -			-		20.c Others	 LIDAR System Main Aircraft Maintenann Phil-LIDAR Admin A 			and by
BAUGUES ZALTM Model:	lo compose in the cher	12 Aimort of Departure	Cotorman	N26 H	Porthy CLOUDY		20.b Non Billable	 Aircraft Test Flight AAC Admin Flight Others: 			Acquisition FlightlCertific 55 Servicy V Signature dur Printed Na [PAF Representative]
LUDAR Operator: M.CE	Pilot & Land	0 Date:	April 1, 2016 3 Engine On:	H 5120	9 Weather	0 Flight Classification	0.a Billable	 Acquisition Flight Ferry Flight System Test Flight Calibration Flight 	Problems and Solutions	 Weather Problem System Problem Aircraft Problem Pilot Problem Others: 	Actulation Flight Approved by

Figure A-6.19. Flight Log for Mission 8431AC

Figure A-6.20. Flight Log for Mission 8433AC

Fli	ght	Lo	g	for	843!	5AC	Mi	ssio	n	1 I.			
	Flight Log No.: 8435	6 Aircraft Identification: 29-7322			18 Total Flight Time: 4 4 D1			veyed				Aircraft Mechanic/ Technician	
		5 Aircraft Type: Cesnna T206H		(Airport, City/Province):	17 Landing: 1415 H		s	pleted BUK33X and sur	nes in BLK331			Lidar Operajor Nurt N M & DALLUNS Signature over Printed Name	
		e: 3BUK331K104A 4 Type: VFR	man-catarman	vince): 12 Airport of Arrival	Time: 16 Take off:		21 Remark	Com	ystem Maintenance & 11 Maintenance AR Admin Activities			Pilot-in-Command AMOD 8: MCIA Signature over Printed Name	
		del: CASI 3 Mission Nam	Jerral 9 Route: Cotto	f Departure (Airport, City/Prov	H 15 Total Engine			20.c Others	ast Flight o LiDAR S In Flight o Aircraft o Phil-LiD			tition Flight Lertified by	
	Flight Log	Or: MCE Polliques 2 ALTM MO	ace 8 Co-Pilot: 3.	12 Airport of 24	A H 14 Engine Off:	Cloudy	ation	20.b Non Billable	ion Flight o Aircraft 1 ght o Arc.Adm Test Flight o Others: _ ion Flight	Solutions	r Problem Problem Problem blem	t Aproved by Acquis A DDV TS Signati A DDV TS Signati A the Name Signati A the Name (PA)	
	Data Acquisition	1 LIDAR Operato	7 Pilot: 2. La	10 Date: April 13	13 Engine On:	19 Weather	20 Flight Classifice	20.a Billable	 Acquisit Ferry Flij System 1 Calibrati 	22 Problems and	o Weather o System I o Aircraft I o Pilot Pro o Others:	Acquisition Fligh	

Figure A-6.21. Flight Log for Mission 8435AC

Figure A-6.22. Flight Log for Mission 8437AC

23. Flight Log for 8438AC Mission

Figure A-6.23. Flight Log for Mission 8438AC

Figure A-6.24. Flight Log for Mission 8441AC

Figure A-6.25. Flight Log for Mission 8442AC

Figure A-6.26. Flight Log for Mission 8443AC

Figure A-6.27. Flight Log for Mission 8444AC

Figure A-6.28. Flight Log for Mission 8446AC

Figure A-6.29. Flight Log for Mission 8447AC
48	2										tian	ع د
No.: 84	n: 932										ic/ Technic	Printed Nar
light Log	ntificatio			1t Time: 2 + 19							raft Mechai	ature over
	rcraft Ide			otal Flig							Airc	<u>ي:</u>
	H 6 Ai			18 1								ame
	nnaT206	:[lamore	ar Printed N
	Type: Ces	/Province	e	126 H							lar Operato	gnature ove
	Aircraft	nort Ctv	Catalme	7 Landin							Lie	भी <u>छ</u>
	R 5	rivol (Air	10/ 10/11	H H		emarks						e
	t Type: VF	Not of V		ke off: 1207		21 R					pu	rinted Nam
dow	antin	10mmpho	112 71	16 Tal				tenance ce ctivities			-in-domma	ature over the
	38UK39CI	main - Q	:/apu	ime:				atem Main Aaintenan R Admin A			Pilot	Signi
	n Name	Cortan	ITY/ Provi	Engine 7 2 +2			ers	LIDAR Sy Aircraft N Phil-LIDA				
	3 Missio	9 Route:	Airport, C	15 Total			20.c Oth	000			tified by	V.J.
	RUPIRIUS-1	2	parture () Cotto		6			ight			r Flight Cert	wer Printed
	Model:	J. JECIE	ort of Del	H	Cloud		ble	aft Test Fl Admin Fli ers:	-		Acquisition	7.5 (A) Signature o (PAF Re
	2 ALTM	ollott	12 Airp	gine Off: 1431	Irtly		o Non Billa	0 Airc 0 AAC 0 Oth				
	TISMIND	8 Co-F	.0	14 En	Po		20.1				ł by	e)
aht log	R. FE	0)	19, 201	2 H		ion		on Flight ht est Flight on Flight	olutions	Problem roblem roblem blem	 It Approved	Antesentativ
	Derator	R. LAG	April	On: N_D	er .	lassificat	ble	cquisitic erry Flig ystem Te alibratic	ns and 5	Veather System P Aircraft F Ailot Pro	tionfligh	. DO User Rep

Figure A-6.30. Flight Log for Mission 8448AC

Annex 7.	Annex 7. Flight Status Reports Table A-7.1. Flight Status Report												
		FLIGHT	STATUS REPORT										
FLIGHT NO	AREA	MISSION	OPERATOR	DATE FLOWN	REMARKS								
7830AC	BLK331H & O	3BLK331HSO060A	MS REYES	01-MAR- 15	SURVEYED 7 LINES FOR BLK331H AND 11 LINES FOR BLK331O.								
7836AC	BLK 3310	3BLK331ON063A	MS REYES	04-MAR- 15	SURVEYED 7 LINES FOR BLK 3310.								
8154AC	BLK331 N &O	3BLK331NO222A	MS REYES	10-AUG- 15	SURVEYED 13 LINES FOR BLK N AND O								
8156AC	BLK331 L & N	3BLK331LNS223A	MC BALIGUAS	11-AUG- 15	SURVEYED 17 LINES FOR BLK331N & L								
8157AC	BLK331N2	3BLK331NS223B	MS REYES	11-AUG- 15	SURVEYED 13 LINES FOR BLK331N								
8158AC	BLK331P	3BLK331P224A	MS REYES	12-AUG- 15	SURVEYED 14 LINES FOR BLK331P								
8159AC	BLK331N & P	3BLK331NSPS224B	MC BALIGUAS	12-AUG- 15	SURVEYED 8 LINES FOR BLK331N & P								
8160AC	BLK331 PQRS	3BLK331PQRS225A	PJ ARCEO	13-AUG- 15	URVEYED 8 LINES FOR BLK331P,Q,R & S								
8180AC	BLK 33Q	3BLK33R235A	MV TONGA	AUG 23	COMPLETED BLK 33Q; 75.28 SQ.KM								
8182AC	BLK 33R	3BLK33R236A	J. GONZALES	AUG 24	SURVEYED BLK 33R; 53.56 SQ.KM								
8183AC	BLK 33TV	3BLK33STV236B	MV TONGA	AUG 24	SURVEYED BLK 33TV; 36.34 SQ.KM.								
8184AC	BLK 33PS	3BLK33PS2237A	J. GONZALES	AUG 25	SURVEYED BLK 33PS; 15.8 SQ.KM								
8186AC	BLK 33PS AND TS	3BLK33SPST238A	MV TONGA	AUG 26	SURVEYED BLK 33PTS; 71.47 SQ.KM								
3913G	BLK33L, K	2BLK33LK099A	MCE BALIGUAS	8-Apr-16	Surveyed BLK33L and BLK33K								
8426AC	BLK33B, C	3BLK33BC100A	MCE BALIGUAS	09 APR 2016	Surveyed 8 lines in BLK33B and 11 lines in BLK33C								
3917G	BLK33E, G	2BLK33EG100A	A PAGADOR	09 APR 2016	COMPLETED BLK33E AND BLK33G								
8427AC	BLK33B, C	3BLK33CS100B	R FELISMINO	09 APR 2016	Surveyed in BLK33C								
8428AC	3BLK33C	3BLK33CSH101A	R FELISMINO	09 APR 2016	Surveyed 6 lines in BLK33C								
8431AC	BLK33D	3BLK33D102A	MCE BALIGUAS	11 APR 2016	Completed BLK33D								
8433AC	BLK33J, K	3BLK33KSJ103A	R FELISMINO	12 APR 2016	Surveyed 3 lines in BLK33K and 15 lines in BLK33J								

8435AC	BLK33I, K	3BLK33IK104A	MCE BALIGUAS	13 APR 2016	Completed BLK33K and surveyed 8 lines in BLK33I
8437AC	BLK33A, I	3BLK33ISA105A	R FELISMINO	14 APR 2016	Completed BLK33I and surveyed BLK33A
8438AC	BLK33A	3BLK33AS105B	MCE BALIGUAS	14 APR 2016	Completed BLK33A
8441AC	BLK33N	3BLK33N107A	MCE BALIGUAS	16 APR 2016	Surveyed 26 lines in BLK33N
8442AC	BLK33M, N	3BLK33MNS107B	R FELISMINO	16 APR 2016	Completed BLK33N and surveyed 8 lines in BLK33M
8443AC	BLK33M	3BLK33MS108A	R FELISMINO	17 APR 2016	Completed BLK33M
8444AC	BLK33B, D	3BLK33BSDS108B	MCE BALIGUAS	17 APR 2016	Completed BLK33B and covered voids over BLK33D
8446AC	BLK33J, K	3BLK33JVKVS109B	MCE BALIGUAS	17 APR 2016	Covered voids over BLK33J and BLK33K
8447AC	BLK33I, J	3BLK33IVJV110A	MCE BALIGUAS	19 APR 2016	Covered scattered voids over survey area
8448AC	BLK33C, D	3BLK33CVDV110B	R FELISMINO	19 APR 2016	Covered voids over BLK33B and BLK33C

Figure A-7.1. Swath for Flight No. 7830AC

					_							
9	670	50	50.00	18.00	OFF	NAR	ON	OFF	98.00	BLK331NO	MAR	04.pln
8	565	50	50.00	18.00	OFF	NAR	ON	OFF	278.00	BLK331NO	MAR	04.pln
7	564	50	50.00	18.00	OFF	NAR	ON	OFF	98.00	BLK331NO	MAR	04.pln
6	570	50	50.00	18.00	OFF	NAR	ON	OFF	278.00	BLK331NO	MAR	04.pln
5	566	50	50.00	18.00	OFF	NAR	ON	OFF	98.00	BLK331NO	MAR	04.pln
4	567	50	50.00	18.00	OFF	NAR	ON	OFF	278.00	BLK331NO	MAR	04.pln
3	565	50	50.00	18.00	OFF	NAR	ON	OFF	98.00	BLK331NO	MAR	04.pln

Figure A-7.2. Swath for Flight No. 7836AC

8154 BLK N & O 3BLK331NO222A SCAN FREQ: 45 22.194 km²

Figure A-7.3. Swath for Flight No. 8154

8156 BLK L & N 3BLK331LNS223A SCAN FREQ: 45 81.745 km²

Figure A-7.4. Swath for Flight No. 8156

8157 BLK 331N 3BLK331NS223B SCAN FREQ: 45 63.5 km²

Figure A-7.5. Swath for Flight No. 8157

8158 BLK 331P 3BLK331P224A SCAN FREQ: 45 82.74 km²

Figure A-7.6. Swath for Flight No. 8158

8159 BLK N & P 3BLK331NSPS224B SCAN FREQ: 45 33.81 km²

Figure A-7.7. Swath for Flight No. 8159

8160 BLK PQRS 3BLK331PQRS225A SCAN FREQ: 45 40.40 km²

Figure A-7.8. Swath for Flight No. 8160

Flight No. : 8180AC Area: BLK 33Q Mission Name: 3BLK33R235A

SWATH

START	STOP	LINE#	ALT	PRF	FREQ	ANGLE	MP	DIV	RC	MPM	HDG	Plan File
22:42:41.456	22:50:48.077	1	581	50	45.00	18.00	OFF	NAR	ON	OFF	176.00	BLK31C.pln
22:53:46.121	22:59:34.088	2	579	50	45.00	18.00	OFF	NAR	ON	OFF	356.00	BLK31C.pln
23:03:17.597	23:11:34.019	3	581	50	45.00	18.00	OFF	NAR	ON	OFF	176.00	BLK31C.pln
23:14:50.318	23:20:38.985	4	581	50	45.00	18.00	OFF	NAR	ON	OFF	356.00	BLK31C.pln
23:24:39.249	23:33:00.706	5	584	50	45.00	18.00	OFF	NAR	ON	OFF	176.00	BLK31C.pln
23:36:04.355	23:41:49.288	6	579	50	45.00	18.00	OFF	NAR	ON	OFF	356.00	BLK31C.pln
23:45:46.312	23:54:05.884	7	585	50	45.00	18.00	OFF	NAR	ON	OFF	356.00	BLK31C.pln
23:57:10.358	00:03:04.221	8	579	50	45.00	18.00	OFF	NAR	ON	OFF	176.00	BLK31C.pln
00:07:23.71	00:15:19.062	9	584	50	45.00	18.00	OFF	NAR	ON	OFF	176.00	BLK31C.pln
00:07:23.71	00:15:19.062	9	584	50	45.00	18.00	OFF	NAR	ON	OFF	176.00	BLK31C.pln
00:18:29.746	00:24:06.4	11	579	50	45.00	18.00	OFF	NAR	ON	OFF	356.00	BLK31C.pln
00:28:12.363	00:36:09.401	12	583	50	45.00	18.00	OFF	NAR	ON	OFF	176.00	BLK31C.pln
00:39:56.065	00:41:47.364	12	581	50	45.00	18.00	OFF	NAR	ON	OFF	356.00	BLK31C.pln
00:47:35.437	00:53:36.961	13	577	50	45.00	18.00	OFF	NAR	ON	OFF	356.00	BLK31C.pln
00:57:24.509	01:05:13.402	14	588	50	45.00	18.00	OFF	NAR	ON	OFF	176.00	BLK31C.pln

Figure A-7.9. Swath for Flight No. 8180AC

Flight No. :		8182AC	2									
Aroot			- -									
Area:		BLK 33F	٢									
Mission Nam	e:	3BLK33	R236A									
					SWA	АТН						
					5007							
		_										
		12	1 A	1		216			1			
			3		- Alterate	and a			and set			
		2			n n			Pai	apag Isla			
		1							14			
								19	3			
								A.				
			Semirara	Islands	5							
		1	-						1 Au			
		1						Palapa	ig			
		183				BL	K 33R					
								,	0 K 22T			
		1		100					DER 551			
		the second							Fer/			
					a service				n .			
			Asi -		1		Ш,					
				5			17					
		6					WY -					
		12	A.	NL 22	'BLK 330	2	MU					
		16. 1					ų.					
		5				WORNY ^e						
						Millit.		The s	18 - A - A			
						LINE -						
								2 3	ar di			
			°BLH	(33PS		T		the second	924			
								84	-			
		1							2 24			
		1			Catubia			1	6			
		13			Carabig			1				
				Rel		4	0.004					
					5.16 km	lma	ge © 201: © 201	5 Google	strium			
						Data SIO,	NOAA, U	S. Navy N	IGA, GEBC			
START	ST	OP LINE#	ALT	PRF	FREQ	ANGLE	MP	DIV	RC	MPM	HDG	Plan File
								100000				
22:47:20.029	22:53:11.9	61 1	581	50	45.00	18.00	OFF	NAR	ON	OFF	177.00	BLK33R.pln
22:57:05.24	23:01:29.9	98 1	576	50	45.00	18.00	OFF	NAR	ON	OFF	357.00	BLK33R.pln
23:05:40.102	23:11:50.8	04 2	581	50	45.00	18.00	OFF	NAR	ON	OFF	177.00	BLK33R.pln
23:15:09.103	23:19:19.8	42 3	578	50	45.00	18.00	OFF	NAR	ON	OFF	357.00	BLK33R.pln
23:15:09.103	23:19:19.8	42 3	578	50	45.00	18.00	OFF	NAR	ON	OFF	357.00	BLK33R.pln
23:23:36.901	23:29:25.2	79 4	581	50	45.00	18.00	OFF	NAR	ON	OFF	177.00	BLK33R.pln
23:32:25.423	23:36:30.3	51 5	580	50	45.00	18.00	OFF	NAR	ON	OFF	177.00	BLK33R.pln
73.10.11 285	23.16.13 3	18 6	579	50	15 00	18 00	OFF	MAR	ON	OFF	357 00	RIV33R nln

		_										
23:15:09.103	23:19:19.842	3	578	50	45.00	18.00	OFF	NAR	ON	OFF	357.00	BLK33R.pln
23:15:09.103	23:19:19.842	3	578	50	45.00	18.00	OFF	NAR	ON	OFF	357.00	BLK33R.pln
23:23:36.901	23:29:25.279	4	581	50	45.00	18.00	OFF	NAR	ON	OFF	177.00	BLK33R.pln
23:32:25.423	23:36:30.351	5	580	50	45.00	18.00	OFF	NAR	ON	OFF	177.00	BLK33R.pln
23:40:41.285	23:46:13.318	6	579	50	45.00	18.00	OFF	NAR	ON	OFF	357.00	BLK33R.pln
23:49:12.248	23:52:58.936	7	579	50	45.00	18.00	OFF	NAR	ON	OFF	177.00	BLK33R.pln
23:56:59.355	00:02:12.459	8	580	50	45.00	18.00	OFF	NAR	ON	OFF	357.00	BLK33R.pln
00:05:13.113	00:08:57.971	9	579	50	45.00	18.00	OFF	NAR	ON	OFF	177.00	BLK33R.pln
00:13:04.88	00:18:00.149	10	578	50	45.00	18.00	OFF	NAR	ON	OFF	357.00	BLK33R.pln
00:21:05.008	00:24:45.247	11	576	50	45.00	18.00	OFF	NAR	ON	OFF	177.00	BLK33R.pln
00:28:36.045	00:33:12.044	12	579	50	45.00	18.00	OFF	NAR	ON	OFF	357.00	BLK33R.pln
00:36:34.078	00:40:06.642	13	578	50	45.00	18.00	OFF	NAR	ON	OFF	357.00	BLK33R.pln
00:36:34.078	00:40:06.642	13	578	50	45.00	18.00	OFF	NAR	ON	OFF	357.00	BLK33R.pln
00:44:55.355	00:46:56.975	23	589	50	45.00	18.00	OFF	NAR	ON	OFF	269.67	BLK33R.pln
00:53:26.608	00:57:51.887	14	578	50	45.00	18.00	OFF	NAR	ON	OFF	177.00	BLK33R.pln
00:53:26.608	00:57:51.887	14	577	50	45.00	18.00	OFF	NAR	ON	OFF	357.00	BLK33R.pln
01:01:07.261	01:04:46.574	15	575	50	45.00	18.00	OFF	NAR	ON	OFF	357.00	BLK33R.pln

Figure A-7.10. Swath for Flight No. 8182AC

Figure A-7.11. Swath for Flight No. 8183AC

Flight No. :	81	84AC										
Area:	BL	K 33PS										
Mission Name	e: 3B	LK33PS	5237A									
					SWA	TH						
					8-SI		33P	LK 330 S				
START	STOP	LINE#	ALT	PRF	FREQ	ANGLE	MP	DIV	RC	MPM	HDG	Plan File
01:56:46.391 01:56:46.391	01:58:54.885 01:58:54.885	25 25	571 569	50 50	45.00 45.00	18.00 18.00	OFF OFF	NAR NAR	ON ON	OFF OFF	176.00 176.00	BLK33PS.pln BLK33PS.pln

01:56:46.391	01:58:54.885	25	571	50	45.00	18.00	OFF	NAR	ON	OFF	176.00	BLK33PS.pln
01:56:46.391	01:58:54.885	25	569	50	45.00	18.00	OFF	NAR	ON	OFF	176.00	BLK33PS.pln
02:02:13.324	02:04:01.024	24	572	50	45.00	18.00	OFF	NAR	ON	OFF	176.00	BLK33PS.pln
02:07:59.028	02:10:07.777	23	580	50	45.00	18.00	OFF	NAR	ON	OFF	356.00	BLK33PS.pln
02:13:29.571	02:15:21.025	22	580	50	45.00	18.00	OFF	NAR	ON	OFF	176.00	BLK33PS.pln
02:18:40.954	02:20:47.139	21	579	50	45.00	18.00	OFF	NAR	ON	OFF	356.00	BLK33PS.pln
02:24:09.288	02:26:03.187	20	583	50	45.00	18.00	OFF	NAR	ON	OFF	176.00	BLK33PS.pln
02:29:11.061	02:31:22.61	19	579	50	45.00	18.00	OFF	NAR	ON	OFF	356.00	BLK33PS.pln
02:34:40.364	02:36:35.399	18	581	50	45.00	18.00	OFF	NAR	ON	OFF	356.00	BLK33PS.pln
02:40:04.608	02:42:11.607	17	579	50	45.00	18.00	OFF	NAR	ON	OFF	356.00	BLK33PS.pln
02:45:21.186	02:47:23.435	16	577	50	45.00	18.00	OFF	NAR	ON	OFF	356.00	BLK33PS.pln
02:45:21.186	02:47:23.435	16	577	50	45.00	18.00	OFF	NAR	ON	OFF	356.00	BLK33PS.pln
02:45:21.186	02:47:23.435	16	577	50	45.00	18.00	OFF	NAR	ON	OFF	356.00	BLK33PS.pln
02:50:30.96	02:51:35.714	16	577	50	45.00	18.00	OFF	NAR	ON	OFF	176.00	BLK33PS.pln

Figure A-7.12. Swath for Flight No. 8184AC

Figure A-7.13. Swath for Flight No. 8186AC

START	STOP	LINE#	ALT	PRF	FREQ	ANGLE	MP	DIV	RC	MPM	HDG	Plan File
01:27:19.932	01:30:32.616	45	575	50	45.00	18.00	OFF	NAR	ON	OFF	180.00	BLK33PS.pln
01:34:05.62	01:37:13.584	43	572	50	45.00	18.00	OFF	NAR	ON	OFF	180.00	BLK33PS.pln
01:34:05.62	01:37:13.584	43	572	50	45.00	18.00	OFF	NAR	ON	OFF	180.00	BLK33PS.pln
01:40:41.233	01:43:55.447	42	571	50	45.00	18.00	OFF	NAR	ON	OFF	180.00	BLK33PS.pln
01:40:41.233	01:43:55.447	42	571	50	45.00	18.00	OFF	NAR	ON	OFF	180.00	BLK33PS.pln
01:47:43.271	01:50:46.2	41	571	50	45.00	18.00	OFF	NAR	ON	OFF	360.00	BLK33PS.pln
01:54:31.513	01:57:36.103	40	569	50	45.00	18.00	OFF	NAR	ON	OFF	180.00	BLK33PS.pln
02:01:06.131	02:04:16.131	39	569	50	45.00	18.00	OFF	NAR	ON	OFF	360.00	BLK33PS.pln
02:07:40.08	02:10:52.204	38	570	50	45.00	18.00	OFF	NAR	ON	OFF	360.00	BLK33PS.pln
02:07:40.08	02:10:52.204	38	570	50	45.00	18.00	OFF	NAR	ON	OFF	360.00	BLK33PS.pln
02:14:08.203	02:17:12.472	37	567	50	45.00	18.00	OFF	NAR	ON	OFF	360.00	BLK33PS.pln
02:20:40.266	02:23:46.205	36	570	50	45.00	18.00	OFF	NAR	ON	OFF	180.00	BLK33PS.pln
02:20:40.266	02:23:46.205	36	570	50	45.00	18.00	OFF	NAR	ON	OFF	180.00	BLK33PS.pln
02:27:01.169	02:30:17.803	35	570	50	45.00	18.00	OFF	NAR	ON	OFF	360.00	BLK33PS.pln
02:33:35.522	02:36:52.696	34	569	50	45.00	18.00	OFF	NAR	ON	OFF	360.00	BLK33PS.pln
02:40:19.24	02:43:29.524	33	567	50	45.00	18.00	OFF	NAR	ON	OFF	360.00	BLK33PS.pln
02:40:19.24	02:43:29.524	33	567	50	45.00	18.00	OFF	NAR	ON	OFF	360.00	BLK33PS.pln
02:46:05.209	02:47:17.628	33	566	50	45.00	18.00	OFF	NAR	ON	OFF	356.00	BLK33PS.pln
02:52:13.312	02:54:31.841	15	570	50	45.00	18.00	OFF	NAR	ON	OFF	176.00	BLK33PS.pln
02:58:06.245	03:00:16.28	14	566	50	45.00	18.00	OFF	NAR	ON	OFF	356.00	BLK33PS.pln
03:03:35.049	03:05:42.873	12	567	50	45.00	18.00	OFF	NAR	ON	OFF	176.00	BLK33PS.pln
03:09:10.422	03:11:15.807	11	571	50	45.00	18.00	OFF	NAR	ON	OFF	176.00	BLK33PS.pln
03:09:10.422	03:11:15.807	11	571	50	45.00	18.00	OFF	NAR	ON	OFF	176.00	BLK33PS.pln
03:14:28.381	03:16:46.42	10	572	50	45.00	18.00	OFF	NAR	ON	OFF	176.00	BLK33PS.pln
03:14:28.381	03:16:46.42	10	572	50	45.00	18.00	OFF	NAR	ON	OFF	176.00	BLK33PS.pln
03:20:19.879	03:22:26.564	9	566	50	45.00	18.00	OFF	NAR	ON	OFF	356.00	BLK33PS.pln
03:20:19.879	03:22:26.564	9	567	50	45.00	18.00	OFF	NAR	ON	OFF	356.00	BLK33PS.pln
03:25:54.493	03:28:08.632	8	569	50	45.00	18.00	OFF	NAR	ON	OFF	176.00	BLK33PS.pln
03:31:40.146	03:33:52.565	7	568	50	45.00	18.00	OFF	NAR	ON	OFF	356.00	BLK33PS.pln
03:37:08.81	03:39:34.214	6	571	50	45.00	18.00	OFF	NAR	ON	OFF	176.00	BLK33PS.pln
03:43:10.738	03:45:23.882	5	567	50	45.00	18.00	OFF	NAR	ON	OFF	356.00	BLK33PS.pln
03:43:10.738	03:45:23.882	5	567	50	45.00	18.00	OFF	NAR	ON	OFF	356.00	BLK33PS.pln
03:48:30.252	03:50:53.566	4	568	50	45.00	18.00	OFF	NAR	ON	OFF	176.00	BLK33PS.pln
03:48:30.252	03:50:53.566	4	568	50	45.00	18.00	OFF	NAR	ON	OFF	176.00	BLK33PS.pln
												đ
03:54:18.845	03:56:54.184	3	564	50	45.00	18.00	OFF	NAR	ON	OFF	356.00	BLK33PS.pln
03:59:20.394	04:00:43.848	3	570	50	45.00	18.00	OFF	NAR	ON	OFF	356.00	BLK33PS.pln
04:12:39.675	04:15:49.025	32	559	50	45.00	18.00	OFF	NAR	ON	OFF	180.00	BLK33PS.pln
04:19:12.989	04:22:33.853	31	561	50	45.00	18.00	OFF	NAR	ON	OFF	360.00	BLK33PS.pln
04:19:12.989	04:22:33.853	31	561	50	45.00	18.00	OFF	NAR	ON	OFF	360.00	BLK33PS.pln
04:25:18.062	04:26:51.537	31	560	50	45.00	18.00	OFF	NAR	ON	OFF	360.00	BLK33PS.pln
04:36:32.504	04:42:03.573	5	559	50	45.00	18.00	OFF	NAR	ON	OFF	256.00	voids.pln
94.44.34 292	94.45.12 672	5	577	50	45 00	18 00	OFF	NAR	ON	OFF	256 00	voids nln
V4.44.34.232	04.45.12.072	2	211	20	45.00	10.00	0.1	THE IL	JI	0.1	250.00	vorus.prii

Figure A-7.14. Swath for Flight No. 3913G

3917G BLK33E, G 2BLK33EG100A SCAN FREQ: 40 119.023 km2

Figure A-7.15. Swath for Flight No. 3917G

FLIGHT NO.: AREA:

MISSION NAME:

8427AC BLK33B, C 101.68 km2 3BLK33BC100A

Figure A-7.17. Swath for Flight No. 8428AC

FLIGHT NO.: AREA: MISSION NAME:

8431AC BLK33D 83.84 km2 3BLK33D102A

Figure A-7.18. Swath for Flight No. 8431AC

Figure A-7.19. Swath for Flight No. 8433AC

Figure A-7.20. Swath for Flight No. 8435AC

Figure A-7.21. Swath for Flight No. 8437AC

FLIGHT NO.: AREA:

MISSION NAME:

8438AC BLK33A 19.12 km2 3BLK33AS105B

Figure A-7.22. Swath for Flight No. 8438AC

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

Figure A-7.23. Swath for Flight No. 8441AC

Figure A-7.24. Swath for Flight No. 8442AC

Figure A-7.25. Swath for Flight No. 8443AC

FLIGHT NO.: AREA:

MISSION NAME:

8444AC BLK33B,D 36.67 km2 3BLK33BSDS108B

Figure A-7.26. Swath for Flight No. 8444AC

Figure A-7.27. Swath for Flight No. 8446AC

Figure A-7.28. Swath for Flight No. 8447AC

Figure A-7.29. Swath for Flight No. 8448AC

Table A-8.1. Mission Report for Mission Blk33R **Flight Area** Catarman **Mission Name** Blk33R **Inclusive Flights** 8182AC Range data size 9.06 GB Base data size 12.5 MB POS 213 MB N/A Image Transfer date September 16, 2015 Solution Status Number of Satellites (>6) Yes PDOP (<3) Yes Baseline Length (<30km) Yes Processing Mode (<=1) No Smoothed Performance Metrics (in cm) RMSE for North Position (<4.0 cm) 8.5 RMSE for East Position (<4.0 cm) 8.5 RMSE for Down Position (<8.0 cm) 1.75 Boresight correction stdev (<0.001deg) 0.001617 IMU attitude correction stdev (<0.001deg) 0.004697 GPS position stdev (<0.01m) 0.0147 Minimum % overlap (>25) 43.00 Ave point cloud density per sq.m. (>2.0) 2.17 Elevation difference between strips (<0.20 m) Yes Number of 1km x 1km blocks 80 Maximum Height 259.61 m **Minimum Height** 46.93 m Classification (# of points) Ground 27,458,375 Low vegetation 17,523,866 Medium vegetation 31,096,821 High vegetation 26,149,486 Building 311,790 Orthophoto No Engr. Analyn Naldo, Engr. Christy Processed by Lubiano, Jovy Narisma

Annex 8. Mission Summary Reports

Figure A-8.2. Smoothed Performance Metric Parameters

Figure A-8.3. Best Estimated Trajectory

Figure A-8.4. Coverage of LiDAR data

Figure A-8.6. Density map of merged LiDAR data

Figure A-8.7. Elevation difference between flight lines

Table A-8.2. Mission Report for Mission Blk33R_supplement	
Flight Area	Catarman
Mission Name	Blk33R_supplement
Inclusive Flights	8183AC
Range data size	5.81 GB
Base data size	12.5 MB
POS	152 MB
Image	39.2 GB
Transfer date	September 16, 2015
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	Yes
Processing Mode (<=1)	No
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	0.92
RMSE for East Position (<4.0 cm)	0.74
RMSE for Down Position (<8.0 cm)	2.0
Boresight correction stdev (<0.001deg)	0.006076
IMU attitude correction stdev (<0.001deg)	0.059937
GPS position stdev (<0.01m)	0.0033
Minimum % overlap (>25)	24.29
Ave point cloud density per sq.m. (>2.0)	2.31
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	29
Maximum Height	257.76 m
Minimum Height	49.03 m
Classification (# of points)	
Ground	14,710,746
Low vegetation	11,215,923
Medium vegetation	12,961,937
High vegetation	3,879,560
Building	265,392
Orthophoto	No
Processed by	Engr. Angelo Carlo Bongat, Engr. Christy Lubiano, Maria Tamsyn Malabanan

Figure A-8.9. Smoothed Performance Metric Parameters

Figure A-8.11. Coverage of LiDAR data

Figure A-8.12. Image of data overlap

Figure A-8.13. Density map of merged LiDAR data

Figure A-8.14. Elevation difference between flight lines

Flight Area	Catarman
Mission Name	Blk33T
Inclusive Flights	8186AC
Range data size	6.73 GB
Base data size	9.12 MB
POS	250 MB
Image	64.5 MB
Transfer date	September 16, 2015
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	No
Baseline Length (<30km)	Yes
Processing Mode (<=1)	No
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	0.9375
RMSE for East Position (<4.0 cm)	1.0568
RMSE for Down Position (<8.0 cm)	2.2538
Boresight correction stdev (<0.001deg)	0.002200
IMU attitude correction stdev (<0.001deg)	0.005333
GPS position stdev (<0.01m)	0.0268
Minimum % overlap (>25)	25.19%
Ave point cloud density per sq.m. (>2.0)	2.36
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	49
Maximum Height	290.45
Minimum Height	46.45
Classification (# of points)	
Ground	18,534,697
Low vegetation	10,330,306
Medium vegetation	16,402,099
High vegetation	4,443,251
Building	-
Orthophoto	None
Processed by	Engr. Kenneth Solidum, Engr. Mark Joshua Salvacion, Kathryn Claudyn Zarate

Figure A-8.16. Smoothed Performance Metric Parameters

Figure A-8.18. Coverage of LiDAR data

Figure A-8.20. Density Map of merged LiDAR data

Figure A-8.21. Elevation Difference Between flight lines

Table A-8.4. Mission Report for Mission BLK 33T_supplement		
Flight Area	Catarman	
Mission Name	BLK 33T_supplement	
Inclusive Flights	8186AC	
Range data size	6.73 GB	
POS	250 MB	
Base data size	9.12 MB	
Image	64.5 MB	
Transfer date	September 16, 2015	
Solution Status		
Number of Satellites (>6)	Yes	
PDOP (<3)	No	
Baseline Length (<30km)	Yes	
Processing Mode (<=1)	No	
Smoothed Performance Metrics (in cm)		
RMSE for North Position (<4.0 cm)	0.9 cm	
RMSE for East Position (<4.0 cm)	1.1 cm	
RMSE for Down Position (<8.0 cm)	2.2 cm	
Boresight correction stdev (<0.001deg)	0.002200	
IMU attitude correction stdev (<0.001deg)	0.005333	
GPS position stdev (<0.01m)	0.0268	
Minimum % overlap (>25)	7.29%	
Ave point cloud density per sq.m. (>2.0)	2.13	
Elevation difference between strips (<0.20 m)	Yes	
Number of 1km x 1km blocks	25	
Maximum Height	356.43	
Minimum Height	43.3	
Classification (# of points)		
Ground	2344560	
Low vegetation	1245305	
Medium vegetation	2895693	
High vegetation	4096142	
Building	9796	
Orthophoto	No	
	Engr. Kenneth A. Solidum,	
Processed by	Engr. Antonio B. Chua Jr.	
	Maria Tamsyn Malabanan	

Figure A-8.23. Smoothed Performance Metric Parameters

Figure A-8.27. Density map of merged LIDAR data

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

Figure A-8.28. Elevation difference between flight lines

Flight Area	Catarman
Mission Name	Bik330
	8180AC
Bange data size	10.6 GB
Base data size	9.87 MB
POS	212 MB
Image	70.2 GB
Transfer date	September 16, 2015
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	No
Processing Mode (<=1)	Yes
<u> </u>	
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	1.02
RMSE for East Position (<4.0 cm)	1.15
RMSE for Down Position (<8.0 cm)	2.4
Boresight correction stdev (<0.001deg)	0.00022
IMU attitude correction stdev (<0.001deg)	0.066526
GPS position stdev (<0.01m)	0.0223
Minimum % overlap (>25)	23.49
Ave point cloud density per sq.m. (>2.0)	2.01
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	107
Maximum Height	263.08 m
Minimum Height	53.32 m
Classification (# of points)	
Ground	15,461,146
Low vegetation	4,541,182
Medium vegetation	7,736,833
High vegetation	7,201,019
Building	148,669
Orthophoto	No
Processed by	Engr. Jommer Medina, Aljon Rei Araneta, Jovy Narisma

Figure A-8.30. Smoothed Performance Metric Parameters

Figure A-8.31. Best Estimated Trajectory

Figure A-8.32. Coverage of LiDAR data

Figure A-8.33. Image of data overlap

Figure A-8.34. Density map of merged LiDAR data

Figure A-8.35. Elevation difference between flight lines

Table A-8.6. Mission Report for Mission Blk33P_supplement	
Flight Area	Catarman
Mission Name	Blk33P_supplement
Inclusive Flights	8184AC, 8186AC
Range data size	9.7 GB
Base data size	19.71 MB
POS	359 MB
Image	36.9 GB
Transfer date	September 16, 2015
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	Yes
Processing Mode (<=1)	Yes
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	0.95
RMSE for East Position (<4.0 cm)	1.1
RMSE for Down Position (<8.0 cm)	2.4
Boresight correction stdev (<0.001deg)	0.002572
IMU attitude correction stdev (<0.001deg)	0.663990
GPS position stdev (<0.01m)	0.0484
Minimum % overlap (>25)	11.37
Ave point cloud density per sq.m. (>2.0)	2.02
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	56
Maximum Height	261.76 m
Minimum Height	53.30 m
Ŭ	
Classification (# of points)	
Ground	10,690,203
Low vegetation	12,825,101
Medium vegetation	29,768.416
High vegetation	12.914.546
Building	324.684
Orthophoto	Νο
Drocossed by	Engr. Jennifer Saguran, Engr. Velina
Processed by	Angela Bemida, Jovy Narisma

Figure A-8.37. Smoothed Performance Metric Parameters

125°0'0

Figure A-8.38. Best Estimated Trajectory

Figure A-8.39. Coverage of LiDAR data

Figure A-8.40. Image of data overlap

Figure A-8.41. Density map of merged LiDAR data

Figure A-8.42. Elevation difference between flight lines

Flight Area	Catarman	
Mission Name	Blk331N	
Inclusive Flights	8157AC,8156AC	
Range data size	25.4 GB	
Base data size	67.7 MB	
POS	386 MB	
Image	NA	
Transfer date	September 8, 2015	
Solution Status		
Number of Satellites (>6)	Yes	
PDOP (<3)	Yes	
Baseline Length (<30km)	No	
Processing Mode (<=1)	No	
Smoothed Performance Metrics (in cm)		
RMSE for North Position (<4.0 cm)	1.1653	
RMSE for East Position (<4.0 cm)	1.2712	
RMSE for Down Position (<8.0 cm)	3.085	
Boresight correction stdev (<0.001deg)	0.001879	
IMU attitude correction stdev (<0.001deg)	0.003677	
GPS position stdev (<0.01m)	0.0030	
Minimum % overlap (>25)	35.78%	
Ave point cloud density per sq.m. (>2.0)	2.20	
Elevation difference between strips (<0.20 m)	Yes	
Number of 1km x 1km blocks	150	
Maximum Height	164.21	
Minimum Height	58.70	
Classification (# of points)		
Ground	36,546,278	
Low vegetation	39,124,561	
Medium vegetation	75,292,893	
High vegetation	20,120,535	
Building	907,283	
Orthophoto	None	
Processed by	Engr. Regis Guhiting, Engr. Melanie Hingpit, Engr. Ma. Ailyn Olanda	

Table A-8.7. Mission Report for Mission Blk331N

Figure A-8.44. Smoothed Performance Metric Parameters

Figure A-8.45. Best Estimated Trajectory

Figure A-8.46. Coverage of LiDAR data

Figure A-8.48. Density Map of merged LiDAR data

Figure A-8.49. Elevation Difference Between flight lines

	VII32101 DIC2210
Flight Area	Catarman
Mission Name	Blk331O
Inclusive Flights	7830AC, 7836AC
Range data size	16.92 GB
POS	348 MB
Image	na
Transfer date	July 3, 2015
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	Yes
Processing Mode (<=1)	Yes
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	1.0
RMSE for East Position (<4.0 cm)	1.36
RMSE for Down Position (<8.0 cm)	3.2
Boresight correction stdev (<0.001deg)	0.000468
IMU attitude correction stdev (<0.001deg)	0.001769
GPS position stdev (<0.01m)	0.0036
Minimum % overlap (>25)	38.89
Ave point cloud density per sq.m. (>2.0)	2.89
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	146
Maximum Height	318.23 m
Minimum Height	55.58 m
Classification (# of points)	
Ground	97,621,027
Low vegetation	44,030,503
Medium vegetation	38,753,556
High vegetation	33,405,153
Building	2,661
Orthonhoto	No
Gradphoto	Engr Irish Cortez, Engr Mark Joshua
Processed by	Salvacion, Engr. Krisha Marie Bautista

Figure A-8.51. Smoothed Performance Metric Parameters

Figure A-8.53. Coverage of LiDAR data

Figure A-8.55. Density map of merged LiDAR data

Figure A-8.56, Elevation difference between flight lines
Elight Aroa	Catarman	
Mission Namo		
	BIK3310_supplement	
Pango data cizo	0.79 CP	
	3.70 GB	
P03		
Transfer data	N/A	
	September 8, 2015	
Colution Status		
Solution Status	Vec	
	Yes	
	Yes	
Baseline Length (<30km)	Yes	
Processing Mode (<=1)	No	
Smoothed Performance Metrics (in cm)		
RMSE for North Position (<4.0 cm)	0.9612	
RMSE for East Position (<4.0 cm)	1.4965	
RMSE for Down Position (<8.0 cm)	3.5715	
Boresight correction stdev (<0.001deg)	0.000683	
IMU attitude correction stdev (<0.001deg)	0.002528	
GPS position stdev (<0.01m)	0.0034	
Minimum % overlap (>25)	37.42%	
Ave point cloud density per sq.m. (>2.0)	2.64	
Elevation difference between strips (<0.20 m)	n) Yes	
Number of 1km x 1km blocks	93	
Maximum Height 253.49		
Minimum Height	52.21	
Classification (# of points)		
Ground	51,112,338	
Low vegetation	29,763,575	
Medium vegetation	29,143,624	
High vegetation	5,682,557	
Building	-	
5		
Orthophoto	None	
1	Engr. Irish Cortez, Engr. Mark Joshua	
Processed by	Salvacion, Kathryn Claudyn	
	Zarate	

Table A-8.9.	Mission	Report for	Mission	Blk3310	supplement
				_	

Figure A-8.58. Smoothed Performance Metric Parameters

Figure A-8.59. Best Estimated Trajectory

Figure A-8.60. Coverage of LiDAR data

Figure A-8.62. Density Map of merged LiDAR data

Figure A-8.63. Elevation Difference Between flight lines

Flight Area	Catarman Reflights	
Mission Name	Blk 3310	
Inclusive Flights	3917G	
Range data size	22.4 GB	
POS data size	255 MB	
Base data size	195 MB	
Image	NA	
Transfer date	May 11, 2016	
Solution Status		
Number of Satellites (>6)	Yes	
PDOP (<3)	Yes	
Baseline Length (<30km)	Yes	
Processing Mode (<=1)	No	
Smoothed Performance Metrics (in cm)		
RMSE for North Position (<4.0 cm)	1,215	
BMSE for Fast Position (<4.0 cm)	1.810	
RMSE for Down Position (<8.0 cm)	3.612	
Boresight correction stdev (<0.001deg)	0.000824	
IMU attitude correction stdev (<0.001deg)	0.002066	
GPS position stdev (<0.01m)	0.0129	
Minimum % overlap (>25)	24.93%	
Ave point cloud density per sq.m. (>2.0)	4.41	
Elevation difference between strips (<0.20 m) Yes		
Number of 1km x 1km blocks	57	
Maximum Height 282.75 m		
Minimum Height	54.24 m	
Classification (# of points)		
Ground	9.468.129	
Low vegetation	4.080.365	
Medium vegetation	53 608 692	
High vegetation	68 936 471	
Building	1.105	
	,	
Orthophoto	No	
Processed by	Engr. Kenneth Solidum, Aljon Rei Araneta, Jovy Narisma	

Figure A-8.65. Smoothed Performance Metric Parameters

Figure A-8.67. Coverage of LiDAR Data

Figure A-8.69. Density map of merged LiDAR data

Figure A-8.70. Elevation difference between flight lines

Flight Area	Catarman Reflights	
Mission Name	Blk 331P supplement	
Inclusive Flights	8438AC	
Range data size	3.11 GB	
POS data size	53.7 MB	
Base data size	175 MB	
Image	15.8 MB	
Transfer date	June 4, 2016	
Solution Status		
Number of Satellites (>6)	Yes	
PDOP (<3)	Yes	
Baseline Length (<30km)	Yes	
Processing Mode (<=1)	No	
-		
Smoothed Performance Metrics (in cm)		
RMSE for North Position (<4.0 cm)	0.89	
RMSE for East Position (<4.0 cm)	1.055	
RMSE for Down Position (<8.0 cm)	3.75	
Boresight correction stdev (<0.001deg)	0.001103	
IMU attitude correction stdev (<0.001deg)	0.003520	
GPS position stdev (<0.01m)	0.0248	
Minimum % overlap (>25)	35.82	
Ave point cloud density per sq.m. (>2.0)	1.81	
Elevation difference between strips (<0.20 m)	Yes	
Number of 1km x 1km blocks	49	
Maximum Height	132.74 m	
Minimum Height	43.78 m	
Classification (# of points)		
Ground	11,121,460	
Low vegetation	8,502,938	
Medium vegetation	5,828,995	
High vegetation	1,905,952	
Building	68,615	
Orthophoto	No	
Processed by	Engr. Analyn Naldo, Aljon Rei Araneta, Alex John Escobido	

Table A-8.11. Mission Report for Mission Blk 331P_supplement

Figure A-8.72. Smoothed Performance Metric Parameters

Figure A-8.73. Best Estimated Trajectory

Figure A-8.74. Coverage of LiDAR Data

Figure A-8.76. Density map of merged LiDAR data

Figure A-8.77. Elevation difference between flight lines

Table A-8.12. Mission Report for Mission Blk 331P		
Flight Area	Catarman_Reflights	
Mission Name	Blk 331P	
Inclusive Flights	8437AC	
Range data size	14.5 GB	
POS data size	268 MB	
Base data size	175 MB	
Image	64.7 MB	
Transfer date	June 4, 2016	
Solution Status		
Number of Satellites (>6)	Yes	
PDOP (<3)	Yes	
Baseline Length (<30km)	Yes	
Processing Mode (<=1)	Yes	
Smoothed Performance Metrics (in cm)		
RMSE for North Position (<4.0 cm)	1.01	
RMSE for East Position (<4.0 cm)	1.31	
RMSE for Down Position (<8.0 cm)	3.28	
Boresight correction stdev (<0.001deg)	0.001103	
IMU attitude correction stdev (<0.001deg)	0.003520	
GPS position stdev (<0.01m)	0.0248	
Minimum % overlap (>25)	31.27	
Ave point cloud density per sg.m. (>2.0)	1.84	
Elevation difference between strips (<0.20 m)	Yes	
Number of 1km x 1km blocks	155	
Maximum Height	389.81 m	
Minimum Height	40.62 m	
Classification (# of points)		
Ground	22,862,384	
Low vegetation	8,184,695	
Medium vegetation	6.978.747	
High vegetation	1.898.879	
Building	484,675	
	- ,	
Orthophoto	No	
	Engr. Analyn Naldo, Alion Rei Araneta.	
Processed by	Engr. Monalyne Rabino	

Figure A-8.79. Smoothed Performance Metric Parameters

Figure A-8.81. Coverage of LiDAR Data

Figure A-8.82. Image of data overlap

Figure A-8.83. Density map of merged LiDAR data

Figure A-8.84. Elevation difference between flight lines

Table A-8.13. Mission Report for Mission Blk 331P_additional		
Flight Area	Catarman_Reflights	
Mission Name	Blk 331P_additional	
Inclusive Flights		
Range data size	6.53 GB	
POS data size	90.5 MB	
Base data size	89.9 MB	
Image	NA	
Transfer date	June 4, 2016	
Solution Status		
Number of Satellites (>6)	Yes	
PDOP (<3)	Yes	
Baseline Length (<30km)	No	
Processing Mode (<=1)	Yes	
Smoothed Performance Metrics (in cm)		
RMSE for North Position (<4.0 cm)	0.96	
RMSE for East Position (<4.0 cm)	1.15	
RMSE for Down Position (<8.0 cm)	3.55	
Boresight correction stdev (<0.001deg)	0.001113	
IMU attitude correction stdev (<0.001deg)	0.001619	
GPS position stdev (<0.01m)	0.0023	
Minimum % overlap (>25)	24.76	
Ave point cloud density per sq.m. (>2.0)	2.68	
Elevation difference between strips (<0.20 m)	Yes	
Number of 1km x 1km blocks	64	
Maximum Height	140.01 m	
Minimum Height	n Height 42.96 m	
Classification (# of points)		
Ground	18,860,283	
Low vegetation	16,932,036	
Medium vegetation	22.803.385	
High vegetation	11.366.282	
Building	529.796	
	· ·	
Orthophoto	No	
Processed by	Engr. Sheila-Maye Santillan, Engr. Justine Francisco, Engr. Karl Adrian Vergara	

Figure A-8.86. Smoothed Performance Metric Parameters

Figure A-8.88. Coverage of LiDAR Data

Figure A-8.90. Density map of merged LiDAR data

Figure A-8.91. Elevation difference between flight lines

Table A-8.14. Mission Report for Mission Blk 331QR		
Flight Area	Catarman_Reflights	
Mission Name	Blk 331QR	
Inclusive Flights	8426AC, 8427AC	
Range data size	19.23 GB	
POS data size	364 MB	
Base data size	390 MB	
Image	85.4 MB	
Transfer date	May 11, 2016	
Solution Status		
Number of Satellites (>6)	Yes	
PDOP (<3)	Yes	
Baseline Length (<30km)	No	
Processing Mode (<=1)	No	
Smoothed Performance Metrics (in cm)		
RMSE for North Position (<4.0 cm)	1.09	
RMSE for East Position (<4.0 cm)	1.61	
RMSE for Down Position (<8.0 cm)	3.35	
Boresight correction stdev (<0.001deg)	0.000477	
IMU attitude correction stdev (<0.001deg)	0.002325	
GPS position stdev (<0.01m)	0.0032	
Minimum % overlap (>25)	37.29	
Ave point cloud density per sq.m. (>2.0)	3.92	
Elevation difference between strips (<0.20 m)	Yes	
Number of 1km x 1km blocks	202	
Maximum Height	258.74 m	
Minimum Height	30.45 m	
Classification (# of points)		
Ground	131,837,691	
Low vegetation	71,548,975	
Medium vegetation	134,732,121	
High vegetation	142,956,423	
Building	1,946,574	
Orthophoto	No	
Processed by	Engr. Sheila-Maye Santillan, Engr. Velina Angela Bemida, Maria Tamsyn Malabanan	

Figure A-8.93. Smoothed Performance Metric Parameters

Figure A-8.97. Density map of merged LiDAR data

Figure A-8.98. Elevation difference between flight lines

Flight Area	Catarman Reflights	
Mission Name	Blk 33V	
Inclusive Flights	8428AC	
Range data size	8.9 GB	
POS data size	255 MB	
Base data size	123 MB	
Image	34.5 MB	
Transfer date	May 11, 2016	
Solution Status		
Number of Satellites (>6)	Yes	
PDOP (<3)	Yes	
Baseline Length (<30km)	Yes	
Processing Mode (<=1)	No	
Smoothed Performance Metrics (in cm)		
RMSE for North Position (<4.0 cm)	1.084	
RMSE for East Position (<4.0 cm)	1.414	
RMSE for Down Position (<8.0 cm)	2.458	
Boresight correction stdev (<0.001deg)	NA	
IMU attitude correction stdev (<0.001deg)	NA	
GPS position stdev (<0.01m)	NA	
Minimum % overlap (>25)	31.29%	
Ave point cloud density per sq.m. (>2.0)	4.02	
Elevation difference between strips (<0.20 m)	Yes	
Number of 1km x 1km blocks	94	
Maximum Height	305.94 m	
Minimum Height	40.66 m	
Classification (# of points)		
Ground	59,338,115	
Low vegetation	26,696,360	
Medium vegetation	48,936,170	
High vegetation	85,681,014	
Building	1,143,210	
Orthophoto	No	
Processed by	Engr. Irish Cortez, Engr. Velina Angela Bemida, Marie Denise Bueno	

Figure A-8.100. Smoothed Performance Metric Parameters

Figure A-8.101. Best Estimated Trajectory

Figure A-8.102. Coverage of LiDAR Data

Figure A-8.104. Density map of merged LiDAR data

Figure A-8.105. Elevation difference between flight lines

Table A-8.16. Mission Report for Mission Blk 33W		
Flight Area	Catarman Reflights	
Mission Name	Blk 33W	
Inclusive Flights	3913G	
Range data size	14.1 GB	
POS data size	163 MB	
Base data size	184 MB	
Image	NA	
Transfer date	May 11, 2016	
Solution Status		
Number of Satellites (>6)	Yes	
PDOP (<3)	Yes	
Baseline Length (<30km)	Yes	
Processing Mode (<=1)	No	
Smoothed Performance Metrics (in cm)		
RMSE for North Position (<4.0 cm)	1.215	
RMSE for East Position (<4.0 cm)	1.810	
RMSE for Down Position (<8.0 cm)	3.612	
Boresight correction stdev (<0.001deg)	0.007389	
IMU attitude correction stdev (<0.001deg)	0.035496	
GPS position stdev (<0.01m)	0.0255	
Minimum % overlap (>25)	27.77%	
Ave point cloud density per sq.m. (>2.0)	3.54	
Elevation difference between strips (<0.20 m) Yes		
Number of 1km x 1km blocks	170	
Maximum Height	365.59 m	
Minimum Height	57.17 m	
Classification (# of points)		
Ground	56,834,412	
Low vegetation	8,583,452	
Medium vegetation	74,612.658	
High vegetation	279,700,858	
Building	267,913	
-		
Orthophoto	No	
Processed by	Engr. Analyn Naldo, Engr. Velina Angela Bemida, Engr. Vincent Louise Azucena	

Figure A-8.107. Smoothed Performance Metric Parameters

Figure A-8.111. Density map of merged LiDAR data

Figure A-8112. Elevation difference between flight lines

Flight Area	Catarman Reflights
Mission Name	Blk 33X
Inclusive Flights	8443AC
Range data size	10.7 GB
POS data size	249 MB
Base data size	89.9 MB
Image	43.8 MB
Transfer date	August 4, 2016
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	Yes
Processing Mode (<=1)	No
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	1.215
RMSE for East Position (<4.0 cm)	1.810
RMSE for Down Position (<8.0 cm)	3.612
Boresight correction stdev (<0.001deg)	0.000733
IMU attitude correction stdev (<0.001deg)	0.004623
GPS position stdev (<0.01m)	0.0106
Minimum % overlap (>25)	34.54%
Ave point cloud density per sq.m. (>2.0)	3.68
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	104
Maximum Height	283.47 m
Minimum Height	37.25 m
Classification (# of points)	
Ground	51,194,759
Low vegetation	19,949,246
Medium vegetation	52,409,159
High vegetation	118,007,375
Building	1,979,529
Orthophoto	No
Processed by	Engr. Jennifer Saguran, Engr. Chelou Prado, Marie Denise Bueno

Figure A-8.114. Smoothed Performance Metric Parameters

Figure A-8.116. Coverage of LiDAR Data

Figure A-8.118. Density map of merged LiDAR data

Figure A-8.119. Elevation difference between flight lines

Table A-8.18. Mission Report for Mission Blk 33Y		
Flight Area	Catarman Reflights	
Mission Name	Blk 33Y	
Inclusive Flights	8441AC	
Range data size	12.8 GB	
POS data size	246 MB	
Base data size	91.8 MB	
Image	64.7 MB	
Transfer date	August 4, 2016	
Solution Status		
Number of Satellites (>6)	Yes	
PDOP (<3)	Yes	
Baseline Length (<30km)	Yes	
Processing Mode (<=1)	No	
Smoothed Performance Metrics (in cm)		
RMSE for North Position (<4.0 cm)	1.215	
RMSE for East Position (<4.0 cm)	1.810	
RMSE for Down Position (<8.0 cm)	3.612	
Boresight correction stdev (<0.001deg)	0.000415	
IMU attitude correction stdev (<0.001deg)	0.001983	
GPS position stdev (<0.01m)	0.0083	
Minimum % overlap (>25)	39.49%	
Ave point cloud density per sq.m. (>2.0)	3.94	
Elevation difference between strips (<0.20 m)	Yes	
Number of 1km x 1km blocks	120	
Maximum Height	286.55 m	
Minimum Height	39.1 m	
Classification (# of points)		
Ground	79,088,740	
Low vegetation	35,252,922	
Medium vegetation	61,825,140	
High vegetation	151,550,762	
Building	2,922,352	
Orthophoto	No	
Processed by	Engr. Jennifer Saguran, Engr. Edgardo Gubatanga Jr., Engr. Elainne Lopez	

Figure A-8.121. Smoothed Performance Metric Parameters

Figure A-8.125. Density map of merged LiDAR data

Figure A-8.126. Elevation difference between flight lines

Table A-8.19. Mission Report for Mission Blk 33Y_supplement		
Flight Area	Catarman Reflights	
Mission Name	Blk 33Y_supplement	
Inclusive Flights	8442AC	
Range data size	5.04 GB	
POS data size	122 MB	
Base data size	91.8 MB	
Image	15.8 MB	
Transfer date	August 4, 2016	
Solution Status		
Number of Satellites (>6)	Yes	
PDOP (<3)	Yes	
Baseline Length (<30km)	Yes	
Processing Mode (<=1)	No	
Smoothed Performance Metrics (in cm)		
RMSE for North Position (<4.0 cm)	1.215	
RMSE for East Position (<4.0 cm)	1.810	
RMSE for Down Position (<8.0 cm)	3.612	
Boresight correction stdev (<0.001deg)	0.000824	
IMU attitude correction stdev (<0.001deg)	0.002066	
GPS position stdev (<0.01m)	0.0129	
Minimum % overlap (>25)	29.41%	
Ave point cloud density per sq.m. (>2.0)	3.75	
Elevation difference between strips (<0.20 m)	Yes	
Number of 1km x 1km blocks	71	
Maximum Height	243 m	
Minimum Height	36.84 m	
Classification (# of points)		
Ground	24,664,888	
Low vegetation	15,843,803	
Medium vegetation	27,631,021	
High vegetation	50,739,496	
Building	824,601	
Orthophoto	No	
Processed by	Engr. Jennifer Saguran, Engr. Velina Angela Bemida, Maria Tamsyn Malabanan	

Figure A-8.128. Smoothed Performance Metric Parameters

Figure A-8.129. Best Estimated Trajectory

Figure A-8.130. Coverage of LiDAR Data

Figure A-8.132. Density map of merged LiDAR data

Figure A-8.133. Elevation difference between flight lines

Table A-8.20. Mission Report for Mission Blk 33T	
Flight Area	Catarman Reflights
Mission Name	Blk 33T
Inclusive Flights	3971G
Range data size	22.4 GB
POS data size	255 MB
Base data size	195 MB
Image	NA
Transfer date	May 11, 2016
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	Yes
Processing Mode (<=1)	No
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	1.215
RMSE for East Position (<4.0 cm)	1.810
RMSE for Down Position (<8.0 cm)	3.612
Boresight correction stdev (<0.001deg)	NA
IMU attitude correction stdev (<0.001deg)	NA
GPS position stdev (<0.01m)	NA
Minimum % overlap (>25)	47.26%
Ave point cloud density per sq.m. (>2.0)	6.24
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	76
Maximum Height	734.77 m
Minimum Height	60.09 m
Classification (# of points)	
Ground	28,287,661
Low vegetation	8,722,696
Medium vegetation	69,188,358
High vegetation	19,993,326
Building	0
Orthophoto	No
Processed by	Engr. Kenneth Solidum, Engr. Chelou Prado, Engr. Elainne Lopez

Figure A-8.135. Smoothed Performance Metric Parameters

Figure A-8.137. Coverage of LiDAR Data

Figure A-8.139. Density map of merged LiDAR data

Figure A-8.140. Elevation difference between flight lines

Table A-8.21. Mission Report for Mission Blk 33U		
Flight Area	Catarman Reflights	
Mission Name	Blk 33U	
Inclusive Flights	3917G	
Range data size	22.4 GB	
POS data size	255 MB	
Base data size	195 MB	
Image	NA	
Transfer date	May 11, 2016	
Solution Status		
Number of Satellites (>6)	Yes	
PDOP (<3)	Yes	
Baseline Length (<30km)	Yes	
Processing Mode (<=1)	No	
Smoothed Performance Metrics (in cm)		
RMSE for North Position (<4.0 cm)	1.215	
RMSE for East Position (<4.0 cm)	1.810	
RMSE for Down Position (<8.0 cm)	3.612	
Boresight correction stdev (<0.001deg)	0.004863	
IMU attitude correction stdev (<0.001deg)	0.016438	
GPS position stdev (<0.01m)	0.0162	
Minimum % overlap (>25)	40.34%	
Ave point cloud density per sq.m. (>2.0)	6.17	
Elevation difference between strips (<0.20 m)	Yes	
Number of 1km x 1km blocks	63	
Maximum Height	375.38 m	
Minimum Height	61.44 m	
Classification (# of points)		
Ground	21,804,943	
Low vegetation	12,515,556	
Medium vegetation	78,395,558	
High vegetation	122,618,926	
Building	49,789	
Orthophoto	No	
Dracesond by	Engr. Kenneth Solidum, Engr. Ma.	
Processed by	Joanne Balaga, Engr. Elainne Lopez	

Figure A-8.142. Smoothed Performance Metric Parameters

Figure A-8.144. Coverage of LiDAR Data

Figure A-8.146. Density map of merged LiDAR data

Figure A-8.147. Elevation difference between flight lines

Table A-8.22. Mission Report for Mission Blk 33P		
Flight Area	Catarman Reflights	
Mission Name	Blk 33P	
Inclusive Flights	8431AC	
Range data size	12.5 GB	
POS data size	237 MB	
Base data size	118 MB	
Image	NA	
Transfer date	August 4, 2016	
Solution Status		
Number of Satellites (>6)	Yes	
PDOP (<3)	Yes	
Baseline Length (<30km)	Yes	
Processing Mode (<=1)	No	
Smoothed Performance Metrics (in cm)		
RMSE for North Position (<4.0 cm)	1.215	
RMSE for East Position (<4.0 cm)	1.810	
RMSE for Down Position (<8.0 cm)	3.612	
Boresight correction stdev (<0.001deg)	0.000386	
IMU attitude correction stdev (<0.001deg)	0.002274	
GPS position stdev (<0.01m)	0.00072	
Minimum % overlap (>25)	39.46%	
Ave point cloud density per sq.m. (>2.0)	4.25	
Elevation difference between strips (<0.20 m)	Yes	
Number of 1km x 1km blocks	124	
Maximum Height	359.03 m	
Minimum Height	36.5 m	
Classification (# of points)		
Ground	55,230,816	
Low vegetation	53,022,783	
Medium vegetation	86,171,794	
High vegetation	134,845,707	
Building	2,941,531	
Orthophoto	No	
Processed by	Engr. Kenneth Solidum, Engr. Merven Matthew Natino, Engr. Elainne Lopez	

Figure A-8.149. Smoothed Performance Metric Parameters

Figure A-8.151. Coverage of LiDAR Data

Figure A-8.153. Density map of merged LiDAR data

Figure A-8.154. Elevation difference between flight lines

Table A-8.23. Mission Report for Mission Blk331R_additional		
Flight Area	Catarman_Reflights	
Mission Name	Blk331R_additional	
Inclusive Flights	8448AC	
Range data size	4.52 GB	
POS data size	132 MB	
Base data size	86.7 MB	
Image	NA	
Transfer date	June 4, 2016	
Solution Status		
Number of Satellites (>6)	Yes	
PDOP (<3)	Yes	
Baseline Length (<30km)	Yes	
Processing Mode (<=1)	No	
Smoothed Performance Metrics (in cm)		
RMSE for North Position (<4.0 cm)	0.91	
RMSE for East Position (<4.0 cm)	1.27	
RMSE for Down Position (<8.0 cm)	2.41	
Boresight correction stdev (<0.001deg)	0.000945	
IMU attitude correction stdev (<0.001deg)	0.003045	
GPS position stdev (<0.01m)	0.0147	
Minimum % overlap (>25)	26	
Ave point cloud density per sq.m. (>2.0)	4.51	
Elevation difference between strips (<0.20 m)	Yes	
Number of 1km x 1km blocks	38	
Maximum Height	259.06 m	
Minimum Height	53.57 m	
Classification (# of points)		
Ground	11,929,616	
Low vegetation	4,932,890	
Medium vegetation	15,281,795	
High vegetation	29,590,863	
Building	439,345	
Orthophoto	No	
Processed by	Engr. Analyn Naldo, Engr. Velina Angela Bemida, Engr. Melissa Fernandez	

Figure A-8.156. Smoothed Performance Metric Parameters

Figure A-8.157. Best Estimated Trajectory

Figure A-8.158. Coverage of LiDAR Data

Figure A-8.159. Image of data overlap

Figure A-8.160. Density map of merged LiDAR data

Figure A-8.161. Elevation difference between flight lines

Table A-8.24. Mission Report for Missio	on Blk331S_additional
Flight Area	Catarman_Reflights
Mission Name	Blk331S_additional
Inclusive Flights	8447AC
Range data size	9.16 GB
POS data size	226 MB
Base data size	56.7 MB
Image	19.5 MB
Transfer date	June 4, 2016
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	No
Processing Mode (<=1)	Yes
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	1.18
RMSE for East Position (<4.0 cm)	1.41
RMSE for Down Position (<8.0 cm)	3.28
Boresight correction stdev (<0.001deg)	0.000687
IMU attitude correction stdev (<0.001deg)	0.441705
GPS position stdev (<0.01m)	0.0042
Minimum % overlap (>25)	43.92
Ave point cloud density per sq.m. (>2.0)	4.92
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	64
Maximum Height	321.85 m
Minimum Height	54.41 m
Classification (# of points)	
Ground	21,902,044
Low vegetation	24,584,954
Medium vegetation	27,710,995
High vegetation	66,578,770
Building	2,130,235
Orthophoto	No
Processed by	Engr. Sheila-Maye Santillan, Engr. Merven Matthew Natino, Jovy Narisma

Figure A-8.163. Smoothed Performance Metric Parameters

Figure A-8.165. Coverage of LiDAR Data

Figure A-8.167. Density map of merged LiDAR data

Figure A-8.168. Elevation difference between flight lines

Table A-8.25. Mission Report for Missio	n Blk 3311_additional
Flight Area	Catarman_Reflights
Mission Name	Blk 331T_additional
Inclusive Flights	8447AC
Range data size	9.16 GB
POS data size	226 MB
Base data size	86.7 MB
Image	19.5 MB
Transfer date	June 4, 2016
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	No
Processing Mode (<=1)	Yes
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	1.18
RMSE for East Position (<4.0 cm)	1.52
RMSE for Down Position (<8.0 cm)	3.30
Boresight correction stdev (<0.001deg)	0.002200
IMU attitude correction stdev (<0.001deg)	0.023276
GPS position stdev (<0.01m)	0.0031
Minimum % overlap (>25)	19.61
Ave point cloud density per sq.m. (>2.0)	4.11
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	56
Maximum Height	248.42 m
Minimum Height	64.05 m
Classification (# of points)	
Ground	13,130,446
Low vegetation	5,423,631
Medium vegetation	14,804,580
High vegetation	46,747,577
Building	816,139
Orthophoto	No
Processed by	Engr. Sheila-Maye Santillan, Engr. Velina Angela Bemida, Engr. Elainne Lopez

Figure A-8.170. Smoothed Performance Metric Parameters

Figure A-8.171. Best Estimated Trajectory

Figure A-8.172. Coverage of LiDAR Data

Figure A-8.174. Density map of merged LiDAR data

Figure A-8.175. Elevation difference between flight lines

Flight Area	Catarman_Reflights
Mission Name	Blk 331U_additional
Inclusive Flights	8446AC
Range data size	4.64 GB
POS data size	128 MB
Base data size	77.8 MB
Image	19.5 MB
Transfer date	June 4, 2016
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	Yes
Processing Mode (<=1)	No
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	1.01
RMSE for East Position (<4.0 cm)	1.18
RMSE for Down Position (<8.0 cm)	3.82
Boresight correction stdev (<0.001deg)	0.000910
IMU attitude correction stdev (<0.001deg)	0.000253
GPS position stdev (<0.01m)	0.0404
Minimum % overlap (>25)	23.00
Ave point cloud density per sq.m. (>2.0)	4.1
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	37
Maximum Height	258.63 m
Minimum Height	73.22 m
Classification (# of points)	
Ground	11,168,621
Low vegetation	2,354,960
Medium vegetation	8,733,973
High vegetation	31,492,896
Building	821,514
-	
Orthophoto	No
Processed by	Engr. Analyn Naldo, Engr. Velina Angela Bemida, Engr. Ma. Ailyn Olanda

Figure A-8.177. Smoothed Performance Metric Parameters

Figure A-8.179. Coverage of LiDAR Data

Figure A-8.181. Density map of merged LiDAR data

Figure A-8.182. Elevation difference between flight lines

Table A-8.27. Mission Report	for Mission 33W_additional
Flight Area	Catarman_Reflight
Mission Name	33W_additional
Inclusive Flights	3913G
Range data size	14.1 GB
POS	163 MB
Base data size	184 MB
Image	NA
Transfer date	May 11, 2016
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	No
Processing Mode (<=1)	Yes
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	1.3 cm
RMSE for East Position (<4.0 cm)	1.1 cm
RMSE for Down Position (<8.0 cm)	3.3 cm
Boresight correction stdev (<0.001deg)	0.007389
IMU attitude correction stdev (<0.001deg)	0.035496
GPS position stdev (<0.01m)	0.0221
Minimum % overlap (>25)	27.77%
Ave point cloud density per sq.m. (>2.0)	2.71
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	44
Maximum Height	261.13
Minimum Height	56.45
Classification (# of points)	
Ground	10091117
Low vegetation	3351405
Medium vegetation	11240304
High vegetation	21435057
Building	8837
Orthophoto	No
Processed by	Engr. Analyn M. Naldo, Engr. Harmond Santos, Engr. Gladys Mae Apat

Figure A-8.186. Coverage of LIDAR data

Figure A-8.188. Density map of merged LIDAR data

Figure A-8.189. Elevation difference between flight lines

				Table A-9.1	. Catubig Model	Basin Parame	ters			
Sub-basin	SCS	S Curve Numb	ber	Clark Unit F	łydrograph			Recession B	aseflow	
	Initial Abstraction	Curve Number	Impervious	Time of Concentration	Storage Coefficient	Initial Type	Initial Discharge (m3/s)	Recession Constant	Threshold Type	Ratio to Peak
W260	6.2787	78	0	2.636	1.0755	Discharge	4.112	0.4	Ratio to Peak	0.48
W270	7.7403	78	0	4.1778	1.70453	Discharge	6.3953	0.4	Ratio to Peak	0.48
W280	11.887	78	0	2.2006	0.89786	Discharge	6.6183	0.4	Ratio to Peak	0.48
W290	12.375	78	0	1.8043	0.73616	Discharge	6.9127	0.4	Ratio to Peak	0.48
W300	10.492	78	0	4.9132	1.8504	Discharge	6.5381	0.4	Ratio to Peak	0.48
W310	10.547	78	0	0.21171	0.34551	Discharge	4.4583	0.4	Ratio to Peak	0.48
W320	13.68	78	0	0.7278	1.1877	Discharge	10.703	0.4	Ratio to Peak	0.48
W330	23.357132	78	0	1.1113	1.81362	Discharge	2.8297	0.4	Ratio to Peak	0.48
W340	21.521	78	0	1.3396	2.18622	Discharge	8.2853	0.4	Ratio to Peak	0.48
W350	33.867	78	0	3.664	5.98	Discharge	4.7879	0.4	Ratio to Peak	0.48
W360	17	78	0	0.8947	1.46017	Discharge	4.2985	0.4	Ratio to Peak	0.48
W370	34.068	68	0	1.3587	2.21748	Discharge	19.462	0.4	Ratio to Peak	0.48
W380	36.876	68	0	1.7271	2.8187	Discharge	7.3825	0.4	Ratio to Peak	0.48
W390	27.705	68	0	9.7093	15.8456	Discharge	5.1267	0.4	Ratio to Peak	0.48
W400	35.102983	68	0	5.8087	9.47979	Discharge	4.4743	0.4	Ratio to Peak	0.48
W410	35.982	68	0	6.9182	11.29046	Discharge	19.784822	0.4	Ratio to Peak	0.48
W420	33.867	68	0	5.7064	9.31	Discharge	10.15	0.4	Ratio to Peak	0.48
W430	33.867	68	0	2.4417	3.98	Discharge	4.9814	0.4	Ratio to Peak	0.48
W440	33.867	68	0	5.9523	9.71	Discharge	6.7648	0.4	Ratio to Peak	0.48
W450	33.867	72	0	6.9728	11.38	Discharge	1.6348	0.4	Ratio to Peak	0.48
W460	33.867	88	0	3.5146	5.74	Discharge	5.3884	0.4	Ratio to Peak	0.48
W470	33.867	88	0	4.8772	7.96	Discharge	2.191	0.4	Ratio to Peak	0.48
W480	33.867	88	0	11.6931	19.08	Discharge	4.1498	0.4	Ratio to Peak	0.48

Annex 9. Catubig Model Basin Parameters

	Ratio to Peak	0.48	0.48
aseflow	Threshold Type	Ratio to Peak	Ratio to Peak
Recession B	Recession Constant	0.4	0.4
	Initial Discharge (m3/s)	8.4089	0.46105
	Initial Type	Discharge	Discharge
Hydrograph	Storage Coefficient	9.73	8.71
Clark Unit H	Time of Concentration	5.9603	5.3355
er	Impervious	0	0
Curve Numb	Curve Number	88	88
SCS	Initial Abstraction	33.867	33.867
Sub-basin		W490	W500

Annex 10. Catubig Model Reach Parameters

Reach	Time Step Method	Length	Slope	Manning's n	Shape	Width	Side Slope
R10	Automatic Fixed Interval	704.47	0.010608	0.04	Trapezoid	70.932	45
R30	Automatic Fixed Interval	5827.4	0.000250275	0.04	Trapezoid	54.488	45
R50	Automatic Fixed Interval	2562.2	0.0016713	0.04	Trapezoid	43.846	45
R60	Automatic Fixed Interval	1495.9	0.000250275	0.04	Trapezoid	41.234	45
R100	Automatic Fixed Interval	6910.8	0.0027958	0.04	Trapezoid	39.58	45
R110	Automatic Fixed Interval	5093.2	0.0019849	0.04	Trapezoid	26.052	45
R120	Automatic Fixed Interval	4839.7	0.000250275	0.04	Trapezoid	18.146	45
R130	Automatic Fixed Interval	7307.2	0.0091268	0.04	Trapezoid	20.342	45
R140	Automatic Fixed Interval	16426	0.0043083	0.04	Trapezoid	10.06	45
R160	Automatic Fixed Interval	2330.7	0.0734835	0.04	Trapezoid	10.06	45
R170	Automatic Fixed Interval	4644.2	0.0178226	0.04	Trapezoid	7.628	45
R200	Automatic Fixed Interval	6818.5	0.0194253	0.04	Trapezoid	17.376	45

Table A-10.1. Catubig Model Reach Parameters

Annex 11. Catubig Field Validation Points

Table A-11.1. Catubig Field Validation Points

S	Coordi	nates	Model	Validation	2022 1	Eucont /Data	Rain Return /
de	Latitude	Longitude	Var (m)	Points (m)	5		Scenario
5	12.51745	125.0304	2	7	1	Heavy Rainfall/December 16-17, 2016	100-Year
9	12.52227	125.0313	1.07	1	0.07	Heavy Rainfall/December 16-17, 2016	100-Year
1	12.52275	125.0317	0.85	1	-0.15	Heavy Rainfall/December 16-17, 2016	100-Year
6	12.52419	125.0314	0.85	1	-0.15	Heavy Rainfall/December 16-17, 2016	100-Year
33	12.33555	125.0304	4.63	1.5	3.13	Heavy Rainfall/December 16-17, 2016	100-Year
54	12.3468	125.0353	2.62	0.5	2.12	Heavy Rainfall/December 16-17, 2016	100-Year
/3	12.34913	125.0349	2.69	0.5	2.19	Heavy Rainfall/December 16-17, 2016	100-Year
33	12.34987	125.0355	2.42	1	1.42	Heavy Rainfall/December 16-17, 2016	100-Year
33	12.35118	125.0355	2.54	1.5	1.04	Heavy Rainfall/December 16-17, 2016	100-Year
33	12.35906	125.0389	3.41	2	1.41	Heavy Rainfall/December 16-17, 2016	100-Year
22	12.36257	125.0478	2.98	2	0.98	Heavy Rainfall/December 16-17, 2016	100-Year
33	12.36209	125.0481	3.95	2	1.95	Heavy Rainfall/December 16-17, 2016	100-Year
:3	12.36281	125.0488	3.92	2	1.92	Heavy Rainfall/December 16-17, 2016	100-Year
3	12.3628	125.0498	4.34	2	2.34	Heavy Rainfall/December 16-17, 2016	100-Year
3	12.34503	125.032	3.56	1	2.56	Heavy Rainfall/December 16-17, 2016	100-Year
33	12.34853	125.0258	0.03	0	0.03	Heavy Rainfall/December 16-17, 2016	100-Year
33	12.35011	125.0225	2.85	0	2.85	Heavy Rainfall/December 16-17, 2016	100-Year
33	12.35047	125.0213	2.32	0	2.32	Heavy Rainfall/December 16-17, 2016	100-Year
[4	12.33574	125.0341	1.04	1.5	-0.46	Heavy Rainfall/December 16-17, 2016	100-Year
5	12.35077	125.0195	2.32	0	2.32	Heavy Rainfall/December 16-17, 2016	100-Year
3	12.35279	125.0202	0.03	0	0.03	Heavy Rainfall/December 16-17, 2016	100-Year
33	12.34527	125.0341	6.65	0.5	6.15	Heavy Rainfall/December 16-17, 2016	100-Year
13	12.34672	125.0342	6.57	0.5	6.07	Heavy Rainfall/December 16-17, 2016	100-Year
3	12.36449	125.0263	0.03	0.5	-0.47	Heavy Rainfall/December 16-17, 2016	100-Year

2016 2016	100-Year 100-Year
2016	100-Year

| 100-Year |
|-------------------------------------|
| Heavy Rainfall/December 16-17, 2016 |
0.13	-0.47	0.02	0.18	2	1.18	2.83	с	3.36	2.82	4.74	0.29	3.47	5.78	0.21	0.98	0.08	0.6	0.63	-0.87	1.62	6.73	0.87	1.12	1.21	0.24	0.13	-1.13
0.5	0.5	0.5	2	0	1.5	0	0	0	1	1	1	0	1.5	0	0	0	0	0	ß	ĸ	1.5	с	0	0	0	0	1.2
0.63	0.03	0.52	2.18	2	2.68	2.83	З	3.36	3.82	5.74	1.29	3.47	7.28	0.21	0.98	0.08	0.6	0.63	2.13	4.62	8.23	3.87	1.12	1.21	0.24	0.13	0.07
125.0273	125.0269	125.0299	125.0372	125.0381	125.0355	125.0397	125.0417	125.0477	125.0493	125.05	125.0493	125.0507	125.0301	125.0477	125.0479	125.0478	125.0487	125.048	125.0532	125.0533	125.0303	125.0542	125.0486	125.049	125.0488	125.0491	125.0489
12.36392	12.36517	12.36168	12.35965	12.36777	12.33527	12.36806	12.36891	12.3733	12.37549	12.37646	12.3766	12.37658	12.33815	12.38705	12.38856	12.38984	12.39041	12.39124	12.38831	12.3881	12.3393	12.38768	12.39449	12.39664	12.39777	12.39935	12.40205
463	473	482	493	503	514	515	523	543	553	563	573	583	614	615	623	633	643	653	663	673	714	715	733	743	753	763	783

| 100-Year |
|-------------------------------------|
| Heavy Rainfall/December 16-17, 2016 |
-0.86	2.42	2.3	1.97	1.1	2.25	2.14	1.98	1.5	0.15	0.89	-0.33	2.01	0.63	0.03	0.04	1.5	1.42	1.88	-0.12	-0.1	-0.1	0.49	2.53	0.38	0.32	0.06	0.11
1.2	1.2	1.5	1.2	1.2	1.2	1.2	1.2	1.2	1.2	0	1.2	0	0	0	0	1.2	1.5	1.2	1.2	1.2	1.2	1.2	1.5	0	0	0	0
0.34	3.62	3.8	3.17	2.3	3.45	3.34	3.18	2.7	1.35	0.89	0.87	2.01	0.63	0.03	0.04	2.7	2.92	3.08	1.08	1.1	1.1	1.69	4.03	0.38	0.32	0.06	0.11
125.0512	125.0548	125.0305	125.0547	125.0521	125.0541	125.0542	125.0547	125.0566	125.056	125.0542	125.053	125.0514	125.0507	125.0508	125.0506	125.0549	125.0309	125.0552	125.054	125.0531	125.0543	125.0532	125.0306	125.0516	125.0507	125.0494	125.0487
12.40286	12.40261	12.34103	12.40355	12.404	12.40501	12.40583	12.40731	12.41051	12.41108	12.41154	12.41184	12.41232	12.41251	12.41131	12.41038	12.41061	12.34078	12.40953	12.41023	12.4102	12.4094	12.40952	12.33367	12.40935	12.40879	12.40787	12.40926
793	803	814	823	833	843	863	873	903	914	933	943	953	963	973	983	1003	1014	1023	1033	1043	1053	1083	1104	1105	1115	1123	1133

| 100-Year |
|-------------------------------------|
| Heavy Rainfall/December 16-17, 2016 |
| 0.2 | 0.77 | 4.21 | 2.1 | 5.3 | 4.29 | 2.5 | 0.74 | -0.45 | 2.72 | 0.28 | 0.89 | 1.38 | 2.57 | 2.62 | 2.67 | 1.46 | -1.47 | -1.47 | -0.47 | -0.45 | 1.75 | 1.43 | 0.17 | 0.61 | 0.63 | 0.85 |

 1.5

 1.5

 1.5

 1.5

 0.5

 0.5

125.0398 125.0397 125.0408 125.0407 125.0407 125.0403

12.43394 12.43244 12.43379 12.43484 12.43551 12.43551 12.43744 12.43822

125.039

0

1.78

2.39 2.57 2.57 4.12 4.17 2.96 0.03 0.03 0.03 0.03 0.03 0.03 3.75 3.43

12.43196 12.34016 12.43339

12.43133

12.4305

100-Year

Heavy Rainfall/December 16-17, 2016

0.83

1.63 1.85 1.83

125.0369 125.0365 125.0372

12.44918

1483

12.44887

12.45004

12.45002

1493 1503

1.61

125.039 125.036

12.4442

2

125.0466

12.4407

125.047

12.43929

125.041

 0.5

 0.5

 0.5

 0.5

 1.5

 1.5

 1.5

 1.5

4.79

125.048

12.42253

12.4166

5.3

2.1

125.0452 125.0462

12.41561

1.24 1.05 4.22

125.0435 125.0392 125.0399 125.0392 125.0391 125.0391 125.0308

12.42632 12.43007

m

125.047

12.42376

0000

0.77
4.21

12.41433

125.0466

12.41498

0

0.2

125.0493 125.0468

12.41063

1143 1153 1173 1203 1215 1223 1243 1253 1263 1273 1283 1293 1314 1315 1323 1353 1393 1403 1415 1423 1433 1443 1453 1463 1473

| 100-Year |
|-------------------------------------|
| Heavy Rainfall/December 16-17, 2016 |
2.35	0.5	1.48	1.37	2.28	1.78	0.64	1.76	1.26	1.32	0.9	0.49	0.03	-0.96	0.03	-0.97	1.56	-0.97	-0.78	-0.97	-0.97	0.11	0.03	0.03	0.03	0.06	0.11	0.3
-	1	0	0	0	0	0.5	0.5	0.5	0.5	0.5	0.5	1	1	0	1	1.5	1	1	1	1	0	0	0	0	0	0	0
3.35	1.5	1.48	1.37	2.28	1.78	1.14	2.26	1.76	1.82	1.4	0.99	1.03	0.04	0.03	0.03	3.06	0.03	0.22	0.03	0.03	0.11	0.03	0.03	0.03	0.06	0.11	0.3
125.0381	125.0394	125.0351	125.0349	125.0349	125.0364	125.0329	125.0298	125.0279	125.0274	125.0289	125.0267	125.0254	125.0249	125.0238	125.0244	125.0313	125.0252	125.0256	125.0272	125.026	125.0254	125.0249	125.0238	125.0195	125.0176	125.0185	125.0194
12.44983	12.4489	12.45048	12.44838	12.45124	12.45146	12.45484	12.4616	12.46548	12.46713	12.46767	12.46854	12.4716	12.47226	12.47255	12.47295	12.3389	12.47489	12.47555	12.47884	12.47958	12.48052	12.48112	12.48178	12.48563	12.48784	12.48903	12.48972
1533	1553	1563	1573	1583	1593	1603	1615	1623	1633	1643	1653	1663	1673	1683	1693	1714	1715	1723	1743	1753	1763	1773	1783	1803	1815	1823	1833

10	1(1(1(1(1(1(1(1(1(1(1(1(1(1(1(1(1(1(1(10	1(1(1(1(1(1(10
Heavy Rainfall/December 16-17, 2016																											
0.07	-0.96	-0.86	0.67	0.23	0.03	0.37	1.22	1.61	0.57	0.03	-0.12	-0.1	0.95	-0.18	-0.04	0.44	0.11	0.33	0.1	0.41	0.9	0.08	0.49	1.57	0.09	0.05	0.05
0	1	Ч	1.5	1	0	0	0	0	0	0	0.5	0.5	1.5	0.5	0.5	0	0	0	0	0	0	0	0	1.5	0	0	0
0.07	0.04	0.14	2.17	1.23	0.03	0.37	1.22	1.61	0.57	0.03	0.38	0.4	2.45	0.32	0.46	0.44	0.11	0.33	0.1	0.41	0.9	0.08	0.49	3.07	0.09	0.05	0.05
125.0209	125.0216	125.0214	125.0325	125.0224	125.0166	125.0152	125.0024	125.0004	125.0019	125.0033	125.0104	125.013	125.0311	125.0145	125.0141	125.0005	125.0019	125.0001	125.0009	125.0021	124.9989	124.9998	124.9982	125.0346	124.998	124.9998	125.0043
12.49045	12.49086	12.49189	12.3377	12.49258	12.48876	12.49029	12.50605	12.50853	12.51368	12.52095	12.52315	12.52442	12.33784	12.52613	12.52693	12.53723	12.53838	12.53896	12.54012	12.54059	12.54461	12.54686	12.54859	12.33822	12.55353	12.55501	12.55807
1853	1863	1893	1914	1915	1933	1943	1953	1963	1973	1983	1993	2003	2014	2015	2023	2033	2043	2053	2063	2073	2082	2093	2103	2114	2115	2123	2133

| 100-Year |
|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|
| Heavy Rainfall/December 16-17. 2016 | Heavy Rainfall/December 16-17, 2016 |
| 0.07 | 0.13 | -0.39 | -0.39 | -0.38 | 0.26 | -0.42 | 2.8 | -0.41 | -0.47 | -0.45 | 3 | 0.1 | -1.97 | -1.93 | 2.4 | -1.97 | -1.14 | 0 |
| 0 | 0 | 0.5 | 0.5 | 0.5 | 0 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0 | 2 | 2 | 0.5 | 2 | 2 | 2 |
| 0.07 | 0.13 | 0.11 | 0.11 | 0.12 | 0.26 | 0.08 | 3.3 | 60.0 | 0.03 | 0.05 | 3.5 | 0.1 | 0.03 | 0.07 | 2.9 | 0.03 | 0.86 | 2 |
| 125.0057 | 125.0078 | 125.0075 | 125.0079 | 125.0092 | 125.0108 | 125.0125 | 125.0349 | 125.0134 | 125.0142 | 125.0145 | 125.0356 | 125.0068 | 125.0257 | 125.0257 | 125.0355 | 125.0263 | 125.0273 | 125.0286 |
| 12.55965 | 12.55948 | 12.56162 | 12.56306 | 12.56213 | 12.5626 | 12.5634 | 12.34312 | 12.56228 | 12.56136 | 12.56012 | 12.34248 | 12.55906 | 12.51504 | 12.51404 | 12.34544 | 12.51347 | 12.51673 | 12.51736 |
| 2143 | 2153 | 2163 | 2173 | 2183 | 2193 | 2203 | 2214 | 2215 | 2223 | 2233 | 2414 | 2483 | 2493 | 2503 | 2510 | 2511 | 2531 | 2541 |

Annex 12. Educational Institutions Affected by Flooding in Catubig Floodplain

Table A-12.1. Educational Institutions Affected by Flooding in the Catubig Floodplain – Municipality of Catubig, Northern Samar

NORTHERN SAMAR											
CATUBIG											
Duilding Nome	Demonstra	Ra	infall Scen	ario							
Building Name	Вагапдау	5-year	25-year	100-year							
Anongo Elementary School	Anongo										
Brgy. Anongo Day Care Center	Anongo	Low	Low	Medium							
Catubig Central Elementary School	Barangay 1	Medium	Medium	Medium							
Brgy. 8 Day Care Center	Barangay 7		Medium	Medium							
Bonifacio Elementary School	Bonifacio	High	High	High							
Brgy. Bonifacio Auditorium	Bonifacio	High	High	High							
Catubig Valley National High School	Cagbugna	Medium	Medium	High							
UEP PRM Campus	Cagbugna										
Barangay Cagbugna Day Care Center	Cagmanaba										
Barangay Cagmanaba Day Care Center	Cagmanaba										
Cagmanaba Elementary School	Cagmanaba		Low	Medium							
Barangay Cagugubngan Day Care Center	Cagogobngan	High	High	High							
Cagugubngan Elementary School	Cagogobngan	High	High	High							
Canuctan Elementary School	Calingnan	Medium	Medium	High							
Catubig Central Elementary School	Calingnan			Low							
Elementary School	Calingnan		Medium	Medium							
Canuctan Elementary School	Canuctan	Medium	Medium	High							
Barangay Claro M. Recto Day Care Center	Claro M. Recto										
Claro M. Recto Elementary School	Claro M. Recto										
D. Mercader Elementary School	D. Mercader	Medium	Medium	High							
Elementary School Stage	D. Mercader	Medium	Medium	High							
Barangay Guibuangan Day Care Center	Guibwangan	Low	Medium	High							
Guibuangan Elementary School	Guibwangan										
Brgy. Hiparayan Day Care Center	Hiparayan	Low	Medium	Medium							
Hiparayan Elementary School	Hiparayan	Low	Medium	Medium							
Inoburan Elementary School	Inoburan	Medium	High	High							
Barangay Irawahan Day Care Center	Irawahan	Medium	Medium	Medium							
Irawahan Elementary School	Irawahan	Medium	Medium	High							
Viena Maria Elementary School	Irawahan	High	High	High							
Brgy. Oleras Day Care Center	Lenoyahan	Medium	High	High							
Oleras Elementary School	Lenoyahan	Medium	Medium	High							
Oleras Elementary School Stage	Lenoyahan	Medium	Medium	High							
Oleras National High School	Lenoyahan	Medium	Medium	High							
Barangay Mag-ongon Day Care Center	Magongon			Low							
Mag-ongon Elementary School	Magongon										
Barangay Manering Day Care Center	Manering	High	High	High							
Nabulo Elementary School	Nabulo	High	High	High							

NORTHERN SAMAR											
CATU	BIG										
Puilding Name	Barangay	Rainfall Scenario									
	Darangay	5-year	25-year	100-year							
Barangay Nabulo Day Care Center	Nahulid	High	High	High							
Nabulo Elementary School	Nahulid	High	High	High							
Barangay Osmeña Day Care Center	Osmeña	Medium	Medium	Medium							
Osmeña Elementary School	Osmeña	Low	Medium	Medium							
Barangay Guibuangan Day Care Center	Sagudsuron	Medium	High	High							
Barangay Sagudsuron Day Care Center	Sagudsuron										
Sagudsuron Elementary School	Sagudsuron										
Barangay San Antonio Day Care Center	San Antonio										
Hibubullao National High School	San Antonio										
San Antonio Elementary School	San Antonio										
San Francisco Elementary School	San Francisco										
Barangay San Francisco Day Care Center	San Francisco										
Barangay Nahulid Day Care Center	San Jose	Medium	Medium	Medium							
Barangay San Jose Day Care Center	San Jose	Low	Medium	Medium							
Hibubullao Central Elementary School	San Jose	Medium	High	High							
Hibubullao National High School	San Jose										
Nahulid Elementary School	San Jose		Low	Medium							
Barangay Libon Day Care Center	Sulitan			Low							
Libon Elementary School	Sulitan										
Barangay D. Mercader Day Care Center	Tangbo	Medium	High	High							
Brgy. Cagdara-o Day Care Center	Tangbo										
Cagdara-o Elementary School	Tangbo	Low	Low	Low							
Lenoy-Ahan Elementary School	Tangbo	Low	Medium	High							
Opong Elementary School	Tangbo	High	High	High							
Barangay Tongodnon Day Care Center	Tungodnon	Medium	Medium	Medium							
Tongodnon Elementary School	Tungodnon										

Table A-12.2. Educational Institutions Affected by Flooding in the Catubig Floodplain – Municipality of
Laoang, Northern Samar

NORTHERN SAMAR											
LAC	DANG										
	De	Ra	infall Scen	ario							
Building Name	Barangay	5-year	25-year	100-year							
Barangay Tangbo Day Care Center	Abaton	Medium	Medium	High							
Tangbo Elementary School	Abaton	Medium	Medium	Medium							
Atipolo Elementary School	Atipolo	Low	Low	Low							
Bawang Elementary School	Bawang	Medium	High	High							
Brgy. Bawang Day Care Center	Bawang	Low	Medium	Medium							
Brgy. San Antonio Day Care Center	Bawang										
Son-og Elementary School	Bawang	Medium	Medium	Medium							
Bobolosan Elementary School	Bobolosan	Medium	Medium	Medium							
Bobolosan Elementary School Abandoned	Bobolosan	Low	Low	Low							
Brgy. Bobolosan Day Care Center	Bobolosan										
Bongliw Elementary School	Bongliw	Low	Medium	Medium							
Brgy. Bongliw Day Care Center	Bongliw										
Brgy. Burabod Day Care Center	Burabud	Low	Low	Low							
Burabod Elementary School	Burabud										
Burabod Elementary School Stage	Burabud										
Brgy. Cabago-an Day Care Center	Cabago-An										
Cabago-an Elementary School	Cabago-An										
Brgy. Cabulaloan Day Care Center	Cabulaloan	Low	Low	Low							
Cabulaloan Elementary School	Cabulaloan	Medium	Medium	Medium							
Catigbian Elementary School	Cabulaloan	Medium	Medium	Medium							
Catigbian National High School	Cabulaloan	Low	Medium	Medium							
Brgy. Cangcahipos Day Care Center	Cangcahipos	Low	Medium	Medium							
Cangcahipos Elementary School	Cangcahipos	Medium	Medium	Medium							
Brgy. Catigbian Day Care Center	Catigbian										
Catigbian Elementary School	Catigbian	Medium	Medium	Medium							
Brgy. EJ Dulay Day Care Center	E. J. Dulay	Low	Medium	High							
Bayog Elementary School	La Perla			Low							
Bayog Elementary School Stage	La Perla	Medium	Medium	High							
Brgy. La Perla Day Care Center	La Perla	Low	Medium	Medium							
La Perla National High School	La Perla	Low	Low	Low							
Brgy. Lawaan New Day Care Center	Lawaan	Low	Low	Low							
Brgy. Lawaan Old Day Care Center	Lawaan	Low	Low	Low							
Lawaan Elementary School	Lawaan			Low							
Brgy. Rawis Day Care Center	Rawis										
Junction Elementary School	Rawis										
Lagrimas Learning and Nurture Center, Inc.	Rawis										
Rawis Central School	Rawis										
Rawis National High School	Rawis										
Rawis National High School Stage	Rawis										
UAP Cable Television	Rawis										
NORTHERN SAMAR											
--------------------------------	----------	-------------------	---------	----------	--						
LAOANG											
Building Name	Barangay	Rainfall Scenario									
		5-year	25-year	100-year							
Day Care Center	Rombang										
Rombang Elementary School	Rombang	Low	Medium	Medium							
Brgy. Sibunot Day Care Center	Sibunot										
Sibunot Elementary School	Sibunot										
Brgy. Kawilan Day Care Center	Simora										
Brgy. Simora Day Care Center	Simora										
Kawilan Elementary School	Simora	Medium	Medium	Medium							
Simora Elementary School	Simora										
Simora Elementary School Stage	Simora										
Brgy. Talisay Day Care Center	Talisay										
Talisay Elementary School	Talisay										
Brgy. Tarusan Day Care Center	Tarusan	Low	Medium	Medium							
Tarusan Primary School	Tarusan	Low	Medium	Medium							
Tinoblan Elementary School	Tinoblan	Medium	Medium	High							
Tinoblan National High School	Tinoblan	Medium	Medium	High							
Brgy. Vigo Day Care Center	Vigo			Low							
Vigo Elementary School	Vigo		Low	Medium							
Vigo National High School	Vigo			Low							
Elementary School	Yapas	Low	Low	Low							

Table A-12.3. Educational Institutions Affected by Flooding in the Catubig Floodplain – Municipality of Las
Navas, Northern Samar

NORTHERN SAMAR					
LAS NAVAS					
Building Name	Barangay	Rainfall Scenario			
		5-year	25-year	100-year	
Brgy. Bugay Day Care Center	Bugay	Medium	Medium	High	
Bugay Elementary School	Bugay	Medium	Medium	High	
Brgy. Bukid Day Care Center	Bukid	Low	Low	Medium	
Brgy. Bukid Day Care Center	Bukid	Low	Low	Medium	
Bukid Elementary School	Bukid		Low	Low	
Bukid National High School	Bukid	Low	Medium	Medium	
Brgy. Bulao Day Care Center Site	Bulao			Low	
Brgy. Cuenco Day Care Center	Caputoan		Low	Medium	
Brgy. Epaw Day Care Center	Epaw		Medium	High	
Las Navas Agro-Industrial School	Quirino District	High	High	High	
Brgy. Rebong Day Care Center	Rebong	High	High	High	
Las Navas Agro-Industrial School	Rebong	High	High	High	
Las Navas National High School	Rebong	Medium	Medium	High	
Rebong Elementary School	Rebong	High	High	High	
TESDA	Rebong	Medium	Medium	High	
	San Isidro	High	High	High	
	San Miguel	Medium	Medium	Medium	
Brgy. San Miguel Day Care Center	San Miguel	Medium	Medium	Medium	
Brgy. Tagan-ayan Day Care Center	Tagan- Ayan	Low	Low	Medium	
	Victory		Medium	Medium	

Table A-12.4. Educational Institutions Affected by Flooding in the Catubig Floodplain – Municipality of Palapag, Northern Samar

NORTHERN SAMAR					
PALAPAG					
Duilding Name	Barangay	Rai	ainfall Scenario		
Building Name		5-year	25-year	100-year	
Aquino Elementary School	Asum				
Rombang Elementary School	Jangtud				
Brgy. Magsaysay Day Care Center	Magsaysay				
Bukid Elementary School	Magsaysay				
Brgy. Manajao Day Care Center	Manajao		Low	Low	
Brgy. Tinampo Day Care Center	Manajao				
Manajao Elementary School	Manajao	Low	Low	Low	
Brgy. Mabaras Day Care Center	Matambag				
Mabaras Elementary School	Matambag				
Tinampo Elementary School	Monbon				
Rombang Elementary School	Nagbobtac				
Brgy. Campedico Day Care Center	Natawo	Medium	High	High	
Brgy. Natawo Day Care Center	Natawo		Low	Low	
Brgy. Sinalaran Day Care Center	Natawo				
Campedico Elementary School	Natawo	Medium	Medium	Medium	
Natawo Elementary School	Natawo				
Sinalaran Elementary School	Natawo				
Brgy. Pangpang Day Care Center	Pangpang				
Pangpang Integrated School	Pangpang				
Barangay P. Rebadulla Day Care Center	Simora	Medium	High	High	
EJ Dulay Elementary School	Simora	Medium	Medium	High	
P. Rebadulla Elementary School	Simora				
Sinalaran Elementary School	Sinalaran				
Tinampo Elementary School	Sumoroy			Low	
Aquino Elementary School	Tinampo				

Annex 13. Medical Institutions Affected by Flooding in Catubig Floodplain

NORTHERN SAMAR					
CATUBIG					
Duilding Name	Dutiting Name	Rainfall Scenario			
Building Name	Barangay	5-year	25-year	100-year	
Brgy. Campedico Health Center	Mabaras	Medium	High	High	
Brgy. Magsaysay Health Center	Magsaysay				
Brgy. Manajao Health Center	Manajao		Low	Low	
Brgy. Mabaras Health Center	Matambag				
Brgy. Rombang Health Center	Nagbobtac				
Brgy. Pangpang Health Center	Pangpang				
Brgy. Sinalaran Health Center	Sinalaran				

Table A-13.1. Medical Institutions Affected by Flooding in the Catubig Floodplain