LiDAR Surveys and Flood Mapping of Taft River

APRIL 201

University of the Philippines Training Center for Applied Geodesy and Photogrammetry Visayas State University Department of Science and Technology

© University of the Philippines and Visayas State University 2017

Published by the UP Training Center for Applied Geodesy and Photogrammetry (TCAGP) College of Engineering University of the Philippines – Diliman Quezon City 1101 PHILIPPINES

This research projectis supported by the Department of Science and Technology (DOST) as part of its Grant-in-Aid Program and is to be cited as:

E.C. Paringit, and F.F Morales, (Eds.). (2017), LiDAR Surveys and Flood Mapping of Taft River, Quezon City: University of the Philippines Training Center for Applied Geodesy and Photogrammetry. 130 pp.

The text of this information may be copied and distributed for research and educational purposes with proper acknowledgement. While every care is taken to ensure the accuracy of this publication, the UP TCAGP disclaims all responsibility and all liability (including without limitation, liability in negligence) and costs which might incur as a result of the materials in this publication being inaccurate or incomplete in any way and for any reason.

For questions/queries regarding this report, contact:

Engr. Florentino Morales, Jr. Project Leader, PHIL-LiDAR 1 Program Visayas State University Baybay, Leyte, Philippines 6521 ffmorales_jr@yahoo.com

Enrico C. Paringit, Dr. Eng. Program Leader, PHIL-LiDAR 1 Program University of the Philippines Diliman Quezon City, Philippines 1101 E-mail: ecparingit@up.edu.ph

National Library of the Philippines ISBN: 978-621-430-218-5

TABLE OF CONTENTS

TABLE OF CONTENTS	II
LIST OF TABLES	iv
LIST OF FIGURES	v
LIST OF ACRONYMS AND ABBREVIATIONS	. vii
CHAPTER 1: OVERVIEW OF THE PROGRAM AND LIBERTAD RIVER	1
1.1 Background of the Phil-LIDAR 1 Program	1
1.2 Overview of the Libertad River Basin	1
CHAPTER 2: LIDAR DATA ACQUISITION OF THE LIBERTAD FLOODPLAIN	3
2.1 Flight Plans	3
2.2 Ground Base Stations	5
2.3 Flight Missions	9
2.4 Survey Coverage	. 10
CHAPTER 3: LIDAR DATA PROCESSING OF THE LIBERTAD FLOODPLAIN	. 12
3.1 Overview of the LIDAR Data Pre-Processing	.12
3.2 Transmittal of Acquired LiDAR Data	.13
3.3 Trajectory Computation	.14
3.4 LiDAR Point Cloud Computation	.16
3.5 LiDAR Quality Checking	. 17
3.6 LiDAR Point Cloud Classification and Rasterization	.21
3.7 LiDAR Image Processing and Orthophotograph Rectification	.23
3.8 DEM Editing and Hydro-Correction	.25
3.9 Mosaicking of Blocks	.26
3.10 Calibration and Validation of Mosaicked LiDAR DEM	.28
3.11 Integration of Bathymetric Data into the LiDAR Digital Terrain Model	.31
3.12 Feature Extraction	. 33
3.12.1 Quality Checking (QC) of Digitized Features' Boundary	.33
3.12.2 Height Extraction	.34
3.12.3 Feature Attribution	.34
3.12.4 Final Quality Checking of Extracted Features	.35
CHAPTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE LIBERTAD RIVER BASIN	.36
4.1 Summary of Activities	.36
4.2 Control Survey	. 38
4.3 Baseline Processing	.41
4.4 Network Adjustment	.42
4.5 Cross-section and Bridge As-Built survey and Water Level Marking	.44
4.6 Validation Points Acquisition Survey	
	.46
4.7 River Bathymetric Survey	.46 .48
4.7 River Bathymetric Survey CHAPTER 5: FLOOD MODELING AND MAPPING	.46 .48 .52
 4.7 River Bathymetric Survey CHAPTER 5: FLOOD MODELING AND MAPPING 5.1 Data Used for Hydrologic Modeling 	.46 .48 .52 .52
 4.7 River Bathymetric Survey CHAPTER 5: FLOOD MODELING AND MAPPING 5.1 Data Used for Hydrologic Modeling 5.1.1 Hydrometry and Rating Curves	.46 .48 .52 .52 .52
 4.7 River Bathymetric Survey CHAPTER 5: FLOOD MODELING AND MAPPING 5.1 Data Used for Hydrologic Modeling 5.1.1 Hydrometry and Rating Curves 5.1.2 Precipitation 	.46 .48 .52 .52 .52 .52
 4.7 River Bathymetric Survey CHAPTER 5: FLOOD MODELING AND MAPPING 5.1 Data Used for Hydrologic Modeling 5.1.1 Hydrometry and Rating Curves 5.1.2 Precipitation 5.1.3 Rating Curves and River Outflow 	.46 .48 .52 .52 .52 .52 .52
 4.7 River Bathymetric Survey CHAPTER 5: FLOOD MODELING AND MAPPING 5.1 Data Used for Hydrologic Modeling 5.1.1 Hydrometry and Rating Curves 5.1.2 Precipitation 5.1.3 Rating Curves and River Outflow 5.2 RIDF Station 	.46 .48 .52 .52 .52 .52 .53 .53
 4.7 River Bathymetric Survey CHAPTER 5: FLOOD MODELING AND MAPPING 5.1 Data Used for Hydrologic Modeling 5.1.1 Hydrometry and Rating Curves 5.1.2 Precipitation 5.1.3 Rating Curves and River Outflow 5.2 RIDF Station 5.3 HMS Model 	.46 .48 .52 .52 .52 .52 .52 .53 .54 .56
 4.7 River Bathymetric Survey CHAPTER 5: FLOOD MODELING AND MAPPING 5.1 Data Used for Hydrologic Modeling 5.1.1 Hydrometry and Rating Curves 5.1.2 Precipitation 5.1.3 Rating Curves and River Outflow 5.2 RIDF Station 5.3 HMS Model 5.4 Cross-section Data 	.46 .48 .52 .52 .52 .52 .53 .54 .56 .58
 4.7 River Bathymetric Survey CHAPTER 5: FLOOD MODELING AND MAPPING 5.1 Data Used for Hydrologic Modeling 5.1.1 Hydrometry and Rating Curves 5.1.2 Precipitation 5.1.3 Rating Curves and River Outflow 5.2 RIDF Station 5.3 HMS Model 5.4 Cross-section Data 5.5 Flo 2D Model 	.46 .48 .52 .52 .52 .52 .53 .54 .56 .58 .59
 4.7 River Bathymetric Survey CHAPTER 5: FLOOD MODELING AND MAPPING 5.1 Data Used for Hydrologic Modeling 5.1.1 Hydrometry and Rating Curves 5.1.2 Precipitation 5.1.3 Rating Curves and River Outflow 5.2 RIDF Station 5.3 HMS Model 5.4 Cross-section Data 5.5 Flo 2D Model 5.6 Results of HMS Calibration 	.46 .48 .52 .52 .52 .52 .53 .54 .56 .58 .59 .61
 4.7 River Bathymetric Survey CHAPTER 5: FLOOD MODELING AND MAPPING 5.1 Data Used for Hydrologic Modeling 5.1.1 Hydrometry and Rating Curves 5.1.2 Precipitation 5.1.3 Rating Curves and River Outflow 5.2 RIDF Station 5.3 HMS Model 5.4 Cross-section Data 5.5 Flo 2D Model 5.6 Results of HMS Calibration 5.7 Calculated Outflow hydrographs and Discharge Values for different Rainfall Return Periods. 	.46 .48 .52 .52 .52 .52 .53 .54 .56 .58 .59 .61 .63
 4.7 River Bathymetric Survey CHAPTER 5: FLOOD MODELING AND MAPPING 5.1 Data Used for Hydrologic Modeling 5.1.1 Hydrometry and Rating Curves 5.1.2 Precipitation 5.1.3 Rating Curves and River Outflow 5.2 RIDF Station 5.3 HMS Model 5.4 Cross-section Data 5.5 Flo 2D Model 5.6 Results of HMS Calibration 5.7 Calculated Outflow hydrographs and Discharge Values for different Rainfall Return Periods 5.7.1 Hydrograph using the Rainfall Runoff Model 	.46 .48 .52 .52 .52 .52 .53 .54 .56 .58 .59 .61 .63 .63
 4.7 River Bathymetric Survey CHAPTER 5: FLOOD MODELING AND MAPPING 5.1 Data Used for Hydrologic Modeling 5.1.1 Hydrometry and Rating Curves 5.1.2 Precipitation 5.1.3 Rating Curves and River Outflow 5.2 RIDF Station 5.3 HMS Model 5.4 Cross-section Data 5.5 Flo 2D Model 5.6 Results of HMS Calibration 5.7 Calculated Outflow hydrographs and Discharge Values for different Rainfall Return Periods 5.7.1 Hydrograph using the Rainfall Runoff Model 5.8 River Analysis (RAS) Model Simulation 	.46 .48 .52 .52 .52 .52 .53 .54 .56 .63 .63 .63
 4.7 River Bathymetric Survey CHAPTER 5: FLOOD MODELING AND MAPPING 5.1 Data Used for Hydrologic Modeling 5.1.1 Hydrometry and Rating Curves. 5.1.2 Precipitation 5.1.3 Rating Curves and River Outflow 5.2 RIDF Station 5.3 HMS Model. 5.4 Cross-section Data 5.5 Flo 2D Model 5.6 Results of HMS Calibration 5.7 Calculated Outflow hydrographs and Discharge Values for different Rainfall Return Periods 5.7.1 Hydrograph using the Rainfall Runoff Model 5.8 River Analysis (RAS) Model Simulation 5.9 Flow Depth and Flood Hazard 	.46 .48 .52 .52 .52 .53 .54 .63 .63 .63 .64 .66
 4.7 River Bathymetric Survey CHAPTER 5: FLOOD MODELING AND MAPPING 5.1 Data Used for Hydrologic Modeling 5.1.1 Hydrometry and Rating Curves 5.1.2 Precipitation 5.1.3 Rating Curves and River Outflow 5.2 RIDF Station 5.3 HMS Model 5.4 Cross-section Data 5.5 Flo 2D Model 5.6 Results of HMS Calibration 5.7 Calculated Outflow hydrographs and Discharge Values for different Rainfall Return Periods 5.7.1 Hydrograph using the Rainfall Runoff Model 5.8 River Analysis (RAS) Model Simulation 5.9 Flow Depth and Flood Hazard 5.10 Inventory of Areas Exposed to Flooding 	.46 .48 .52 .52 .52 .53 .54 .56 .63 .63 .63 .64 .66 .70
 4.7 River Bathymetric Survey CHAPTER 5: FLOOD MODELING AND MAPPING 5.1 Data Used for Hydrologic Modeling 5.1.1 Hydrometry and Rating Curves 5.1.2 Precipitation 5.1.3 Rating Curves and River Outflow 5.2 RIDF Station 5.3 HMS Model 5.4 Cross-section Data 5.5 Flo 2D Model 5.6 Results of HMS Calibration 5.7 Calculated Outflow hydrographs and Discharge Values for different Rainfall Return Periods 5.7.1 Hydrograph using the Rainfall Runoff Model 5.8 River Analysis (RAS) Model Simulation 5.9 Flow Depth and Flood Hazard 5.10 Inventory of Areas Exposed to Flooding 5.11 Flood Validation 	.46 .48 .52 .52 .52 .52 .53 .54 .56 .63 .63 .63 .64 .66 .70 .82
 4.7 River Bathymetric Survey CHAPTER 5: FLOOD MODELING AND MAPPING 5.1 Data Used for Hydrologic Modeling 5.1.1 Hydrometry and Rating Curves 5.1.2 Precipitation 5.1.3 Rating Curves and River Outflow 5.2 RIDF Station 5.3 HMS Model 5.4 Cross-section Data 5.5 Flo 2D Model 5.6 Results of HMS Calibration 5.7 Calculated Outflow hydrographs and Discharge Values for different Rainfall Return Periods 5.7.1 Hydrograph using the Rainfall Runoff Model 5.8 River Analysis (RAS) Model Simulation 5.9 Flow Depth and Flood Hazard 5.11 Flood Validation REFERENCES 	.46 .48 .52 .52 .52 .53 .54 .56 .63 .63 .63 .64 .66 .70 .82 .84
 4.7 River Bathymetric Survey CHAPTER 5: FLOOD MODELING AND MAPPING 5.1 Data Used for Hydrologic Modeling 5.1.1 Hydrometry and Rating Curves 5.1.2 Precipitation 5.1.3 Rating Curves and River Outflow 5.2 RIDF Station 5.3 HMS Model 5.4 Cross-section Data 5.5 Flo 2D Model 5.6 Results of HMS Calibration 5.7 Calculated Outflow hydrographs and Discharge Values for different Rainfall Return Periods 5.7.1 Hydrograph using the Rainfall Runoff Model 5.8 River Analysis (RAS) Model Simulation 5.9 Flow Depth and Flood Hazard 5.10 Inventory of Areas Exposed to Flooding. 5.11 Flood Validation. REFERENCES ANNEXES. 	.46 .48 .52 .52 .52 .52 .53 .54 .58 .61 .63 .63 .64 .66 .70 .82 .84 .85
 4.7 River Bathymetric Survey CHAPTER 5: FLOOD MODELING AND MAPPING 5.1 Data Used for Hydrologic Modeling 5.1 Hydrometry and Rating Curves 5.1.2 Precipitation 5.1.3 Rating Curves and River Outflow 5.2 RIDF Station 5.3 HMS Model 5.4 Cross-section Data 5.5 Flo 2D Model 5.6 Results of HMS Calibration 5.7 Calculated Outflow hydrographs and Discharge Values for different Rainfall Return Periods 5.7.1 Hydrograph using the Rainfall Runoff Model 5.8 River Analysis (RAS) Model Simulation 5.9 Flow Depth and Flood Hazard 5.10 Inventory of Areas Exposed to Flooding 5.11 Flood Validation. REFERENCES ANNEXES. Annex 1. Technical Specifications of the LIDAR Sensors used in the Libertad Floodplain Survey. 	.46 .48 .52 .52 .52 .53 .54 .58 .61 .63 .64 .66 .70 .82 .84 .85
 4.7 River Bathymetric Survey CHAPTER 5: FLOOD MODELING AND MAPPING 5.1 Data Used for Hydrologic Modeling 5.1.1 Hydrometry and Rating Curves 5.1.2 Precipitation 5.1.3 Rating Curves and River Outflow 5.2 RIDF Station 5.3 HMS Model. 5.4 Cross-section Data 5.5 Flo 2D Model 5.6 Results of HMS Calibration 5.7 Calculated Outflow hydrographs and Discharge Values for different Rainfall Return Periods 5.7.1 Hydrograph using the Rainfall Runoff Model 5.8 River Analysis (RAS) Model Simulation 5.9 Flow Depth and Flood Hazard 5.10 Inventory of Areas Exposed to Flooding 5.11 Flood Validation. REFERENCES Annex 1. Technical Specifications of the LIDAR Sensors used in the Libertad Floodplain Survey Annex 2. NAMRIA Certificate of Reference Points Used in the LiDAR Survey 	.46 .48 .52 .52 .52 .53 .54 .55 .53 .61 .63 .63 .64 .66 .82 .84 .85 .85 .87
 4.7 River Bathymetric Survey CHAPTER 5: FLOOD MODELING AND MAPPING 5.1 Data Used for Hydrologic Modeling 5.1.1 Hydrometry and Rating Curves 5.1.2 Precipitation 5.1.3 Rating Curves and River Outflow 5.2 RIDF Station 5.3 HMS Model 5.4 Cross-section Data 5.5 Flo 2D Model 5.6 Results of HMS Calibration 5.7 Calculated Outflow hydrographs and Discharge Values for different Rainfall Return Periods 5.7.1 Hydrograph using the Rainfall Runoff Model 5.8 River Analysis (RAS) Model Simulation 5.9 Flow Depth and Flood Hazard 5.10 Inventory of Areas Exposed to Flooding 5.11 Flood Validation REFERENCES ANNEXES Annex 1. Technical Specifications of the LIDAR Sensors used in the Libertad Floodplain Survey Annex 2. NAMRIA Certificate of Reference Points Used in the LiDAR Survey 	.46 .48 .52 .52 .52 .53 .54 .55 .55 .61 .63 .63 .64 .66 .70 .82 .85 .85 .87 .89

Annex 4. The LiDAR Survey Team Composition	91
Annex 5. Data Transfer Sheet for Libertad Floodplain	92
Annex 6. Flight logs for the flight missions	94
Annex 7. Flight status reports	
Annex 8. Mission Summary Reports	
Annex 9. Libertad Model Basin Parameters	115
Annex 10. Libertad Model Reach Parameters	117
Annex 11. Libertad Field Validation Points	
Annex 12. Educational Institutions affected by flooding in Libertad Flood Plain	120

LIST OF TABLES

Table 1. Flight planning parameters for Aquarius LiDAR system Table 2. Details of the recovered NAMRIA horizontal control point SME-3139 used as base station for the LiDAR acquisition	10 า 12
Table 3. Details of the recovered NAMRIA horizontal control point SE-16 used as base station for the LiDAR acquisition	17
Table 4. Ground control points used during LiDAR data acquisition	14 14
Table 5. Elight missions for LiDAR data acquisition nearest Taft floodnlain	14
Table 6. Actual parameters used during LiDAR data acquisition	15
Table 7. List of municipalities and cities surveyed during LiDAR survey nearest Taft Floodplain	15
Table 8. Self-Calibration Results values for Taft flights.	21
Table 9. List of LiDAR blocks for Taft floodplain.	22
Table 10. Taft classification results in TerraScan.	26
Table 11. LiDAR block/s with its corresponding area	30
Table 12. Shift Values of each LiDAR Block of Taft floodplain.	31
Table 13. Calibration Statistical Measures.	35
Table 14. Validation Statistical Measures.	36
Table 15. List of Reference and Control Points occupied for Taft River Survey	41
Table 16. Baseline Processing Summary Report for Taft River Survey	45
Table 17. Control Point Constraints	46
Table 18. Adjusted Grid Coordinates	46
Table 19. Adjusted Geodetic Coordinates	48
Table 20. Reference and control points used and its location (Source: NAMRIA, UP-TCAGP)	48
Table 21. RIDF values for Borongan Rain Gauge computed by PAGASA	4
Table 22. Range of Calibrated Values for Taπ	13
Table 23. Summary of the Efficiency Test of Taπ HIVIS Model	14 1
Table 24. Peak values of the fait field-fives would outlow using the factodall RIDF	10
Table 25. Multicipalities directed in Tail 1000pidin	10
Table 20. Affected Areas in Sulat Eastern Samar during 5-Year Rainfall Return Period	⊥ 1
Table 28 Affected Areas in Taft Fastern Samarduring 5-Year Rainfall Return Period	⊥ 1
Table 29 Affected Areas in Taft Fastern Samar during 5-Year Rainfall Return Period	1
Table 30. Affected Areas in Taft, Eastern Samar during 5-Year Rainfall Return Period	1
Table 31. Affected Areas in Can-avid. Eastern Samar during 25-Year Rainfall Return Period	1
Table 32. Affected Areas in Sulat, Eastern Samar during 25-Year Rainfall Return Period	1
Table 33. Table 9 Affected Areas in Taft, Eastern Samar during 25-Year Rainfall Return Period	1
Table 34. Affected Areas in Taft, Eastern Samar during 25-Year Rainfall Return Period	1
Table 35. Affected Areas in Taft, Eastern Samar during 25-Year Rainfall Return Period	1
Table 36. Affected Areas in Can-avid, Eastern Samar during 100-Year Rainfall Return Period	1
Table 37. Affected Areas in Sulat, Eastern Samar during 100-Year Rainfall Return Period	1
Table 38. Affected Areas in Taft, Eastern Samar during 100-Year Rainfall Return Period	1
Table 39. Affected Areas in Taft, Eastern Samar during 100-Year Rainfall Return Period	1
Table 40. Affected Areas in Taft, Eastern Samar during 100-Year Rainfall Return Period	1
Table 41. Area covered by each warning level with respect to the rainfall scenario	3
Table 42. Actual Flood Depth vs Simulated Flood Depth in Dipolog	6
Table 43. Summary of Accuracy Assessment in Taft	7

LIST OF FIGURES

Figure 1. Map of Taft River Basin (in brown)	.11
Figure 2. Flight plan and base stations used for Taft floodplain.	.13
Figure 3. GPS set-up over SME-3139 located along the highway in Brgy. Sto. Nino, Taft, Eastern	
Samar (a) and NAMRIA reference point SME-3139 (b) as recovered by the field team	.15
Figure 4. Actual LiDAR survey coverage nearest Taft floodplain	.18
Figure 5. Schematic Diagram for Data Pre-Processing Component	.20
Figure 6. Smoothed Performance Metric Parameters of a laft Flight 1560A.	.21
Figure 7. Solution Status Parameters of laft Flight 1560A	.22
Figure 8. Best Estimated Trajectory for Taft floodplain	.23
Figure 9. Boundary of the processed LIDAR data over Taπ Floodplain	.24
Figure 10. Image of data overlap for fait floodplain.	.25
Figure 11. Density map of merged LIDAR data for fait floodplain	.20
Figure 12. Elevation unreferice map between night lines for fait hoouplain	.27 20
Figure 15. Quality theteking for a fait hight 1500A using the Profile fool of QT Modeler.	.20
Figure 14. Thes for fait hoodplain (a) and classification results (b) in terrascan.	.29
Figure 16. The production of last return DSM (a) and DTM (b) first return DSM (c) and secondar	.29 W
DTM (d) in some portion of Taft floodplain	y 30
Figure 17 Available orthonhotographs near Taft floodplain	30
Figure 18 Sample orthophotograph tiles near Taft floodplain	31
Figure 19. Portions in the DTM of Taft floodplain – a bridge before (a) and after (b) manual editir	.σ <u>.</u> ng.
a paddy field before (c) and after (d) data retrieval: and a building before (a) and after (b) manual	al
editing	.32
Figure 20. Map of Processed LiDAR Data for Taft Flood Plain	.34
Figure 21. Map of Taft Flood Plain with validation survey points in green	.36
Figure 22. Correlation plot between calibration survey points and LiDAR data	.37
Figure 23. Correlation plot between validation survey points and LiDAR data.	.38
Figure 24. Map of Taft Flood Plain with bathymetric survey points shown in blue	.40
Figure 25. Taft River Basin Survey Extent	.42
Figure 26. Taft River Basin Control Survey Extent	.43
Figure 27. GNSS receiver setup, Trimble® SPS 855, at SME-18, located within the grounds of San	
Jose Elementary School in Brgy. Canciledes, Municipality of Hernani, Eastern Samar	.44
Figure 28. GNSS base set up, Trimble [®] SPS 882, at SMR-41, located within the grounds of	
Hinabangan Elementary School in Brgy. Fatima, Municipality of Hinabangan, Samar	.45
Figure 29. GNSS receiver setup, Trimble® SPS 855 at SE-172, located within the grounds of Nato	
Elementary School in Brgy. Nato, Municipality of Taft, Eastern Samar	.45
Figure 30. GNSS receiver setup, Trimble [®] SPS 855, at UP-BOR, located at the approach of	
Can-Obing Bridge in Brgy. Can-Abong, Borongan City, Eastern Samar	.46
Figure 31. GNSS receiver setup, Trimble [®] SPS 985, at UP-SUL, located at the approach of Sulat	
Bridge in Brgy. Maramara, Municipality of Sulat, Eastern Samar	.46
Figure 32. GNSS receiver setup, Trimble [®] SPS 855, at UP-ULO-2, located at the approach of	
Can-Avid Bridge in Brgy. Canteros, Municipality of Can-Avid, Eastern Samar	.47
Figure 33. Taft Bridge facing upstream	.51
Figure 34. Danao Bridge facing upstream	.51
Figure 35. As-built survey of Iatt Bridge	.51
Figure 36. As-built survey of Danao Bridge	.52
Figure 37. Talt Bridge cross-section diagram	.53
Figure 38. Tail Dridge cross-section location map	.54
Figure 39. Danao bridge cross-section location man	.55
Figure 40. Danao bridge cross-section location map	.50
Figure 41. Bridge as-built form of Taft Bridge	57
Figure 42. Bridge as-built form of Danao Bridge	58
Figure 43. Water-level markings onTaft Rridge	50
Figure 44. Validation points acquisition survey set up along Taft River Rasin	.60
Figure 45. Validation point acquisition survey of Taft River basin	.61
Figure 46. Bathymetric survey using a Trimble [®] SPS 882 in GNSS PPK survey technique in Taft	
River	. 62

Figure 47. Bathymetric survey of Taft River	63
Figure 48. Taft Riverbed Profile	1
Figure 49. The location map of Taft HEC-HMS model used for calibration	2
Figure 50. Cross-Section Plot of Taft Bridge	3
Figure 51. Rating Curve at Taft Bridge	3
Figure 52. Rainfall and outflow data at Taft used for modeling	4
Figure 53. Location of Borongan RIDF Station relative to Taft River Basin	5
Figure 54. Synthetic storm generated for a 24-hr period rainfall for various return periods	5
Figure 55. Soil Map of Taft River Basin	6
Figure 56. Land Cover Map of Taft River Basin	7
Figure 57. Slope Map of the Taft River Basin	8
Figure 58. Stream Delineation Map of the Taft River Basin	9
Figure 59. The Taft river basin model generated using HEC-HMS	10
Figure 60. River cross-section of Taft River generated through Arcmap HEC GeoRAS tool	11
Figure 61. Screenshot of subcatchment with the computational area to be modeled in FLO-2D	
GDS Pro	. 12
Figure 62. Outflow Hydrograph of Taft produced by the HEC-HMS model compared with	
observed outflow	13
Figure 63. Outflow hydrograph at Taft Station generated using Borongan RIDF simulated in	
HEC-HMS	. 15
Figure 64. Sample output of Taft RAS Model	16
Figure 65, 100-year Flood Hazard Map for Taft Floodplain	17
Figure 66, 100-year Flood Depth Map for Taft Floodplain	1
Figure 67, 25-year Flood Hazard Map for Taft Floodplain	2
Figure 68, 25-year Flood Depth Map for Taft Floodplain	3
Figure 69 5-year Flood Hazard Man for Taft Floodnlain	4
Figure 70 5-year Flood Denth Man for Taft Floodplain	5
Figure 71 Affected Areas in Can-avid Fastern Samar during 5-Year Rainfall Return Period	1
Figure 72 Affected Areas in Sulat Fastern Samarduring 5-Year Rainfall Return Period	1
Figure 73. Affected Areas in Taft Fastern Samar during 5-Year Rainfall Return Period	1
Figure 74. Affected Areas in Taft, Eastern Samar during 5-Vear Rainfall Return Period	1
Figure 75. Affected Areas in Taft, Eastern Samar during 5-Vear Rainfall Return Period	1
Figure 76. Affected Areas in Can avid Eastern Samar during 25 Vear Painfall Peturn Period	Z 1
Figure 70. Affected Areas in Cult-avia, Eastern Samar during 25 Year Painfall Peturn Period	⊥ 1
Figure 77. Affected Areas in Sular, Eastern Samar during 25-fed Kalifian Return Period	⊥ 1
Figure 70. Affected Areas in Taft, Eastern Samar during 25-fed Kalillali Return Period	⊥ 1
Figure 79. Affected Areas in Taft, Eastern Samar during 25-Year Rainfall Return Period	I ר
Figure 80. Affected Areas in Tait, Eastern Samar during 25-Year Rainfall Return Period	Z
Figure 01. Affected Areas in Call-avia, Eastern Samar during 100-Year Rainfall Return Period	⊥
Figure 62. Affected Areas in Sulat, Eastern Samar during 100-Year Rainfall Return Period	L
Figure 83. Affected Areas in Taft, Eastern Samar during 100-Year Kainfall Return Period	I
Figure 84. Affected Areas in Taft, Eastern Samar during 100-Year Kainfall Keturn Period	2
Figure 85. Affected Areas in Taft, Eastern Samar during 100-Year Rainfall Return Period	3
Figure 86. Validation points for 5-year Flood Depth Map of Taft Floodplain	5
Figure 87. Flood map depth vs actual flood depth	6

LIST OF ACRONYMS AND ABBREVIATIONS

AAC	Asian Aerospace Corporation			
Ab	abutment			
ALTM	Airborne LiDAR Terrain Mapper			
ARG	automatic rain gauge			
ATQ	Antique			
AWLS	Automated Water Level Sensor			
BA	Bridge Approach			
BM	benchmark			
CAD	Computer-Aided Design			
CN	Curve Number			
CSRS	Chief Science Research Specialist			
DAC	Data Acquisition Component			
DEM	Digital Elevation Model			
DENR	Department of Environment and Natural Resources			
DOST	Department of Science and Technology			
DPPC	Data Pre-Processing Component			
DREAM	Disaster Risk and Exposure Assessment for Mitigation [Program]			
DRRM	Disaster Risk Reduction and Management			
DSM	Digital Surface Model			
DTM	Digital Terrain Model			
DVBC	Data Validation and Bathymetry Component			
FMC	Flood Modeling Component			
FOV	Field of View			
GiA	Grants-in-Aid			
GCP	Ground Control Point			
GNSS	Global Navigation Satellite System			
GPS	Global Positioning System			
HEC-HMS	Hydrologic Engineering Center - Hydrologic Modeling System			
HEC-RAS	Hydrologic Engineering Center - River Analysis System			
HC	High Chord			
IDW	Inverse Distance Weighted [interpolation method]			
WGS	World Geodetic System			

IMU	Inertial Measurement Unit		
kts	knots		
LAS	LiDAR Data Exchange File format		
LC	Low Chord		
LGU	local government unit		
Lidar	Light Detection and Ranging		
LMS	LiDAR Mapping Suite		
m AGL	meters Above Ground Level		
MMS	Mobile Mapping Suite		
MSL	mean sea level		
NSTC	Northern Subtropical Convergence		
PAF	Philippine Air Force		
PAGASA	Philippine Atmospheric Geophysical and Astronomical Services Administration		
PDOP	Positional Dilution of Precision		
РРК	Post-Processed Kinematic [technique]		
PRF	Pulse Repetition Frequency		
PTM	Philippine Transverse Mercator		
QC	Quality Check		
QT	Quick Terrain [Modeler]		
RA	Research Associate		
RIDF	Rainfall-Intensity-Duration-Frequency		
RMSE	Root Mean Square Error		
SAR	Synthetic Aperture Radar		
SCS	Soil Conservation Service		
SRTM	Shuttle Radar Topography Mission		
SRS	Science Research Specialist		
SSG	Special Service Group		
TBC	Thermal Barrier Coatings		
UPC	University of the Philippines Cebu		
UP-TCAGP	University of the Philippines – Training Center for Applied Geodesy and Photogrammetry		
UTM	Universal Transverse Mercator		

CHAPTER 1: INTRODUCTION

1.1 Background of the Phil-LIDAR 1 Program

The University of the Philippines Training Center for Applied Geodesy and Photogrammetry (UP TCAGP) launched a research program entitled "Nationwide Hazard Mapping using LiDAR" or Phil-LiDAR 1 in 2014, supported by the Department of Science and Technology (DOST) Grant-in-Aid (GiA) Program. The program was primarily aimed at acquiring a national elevation and resource dataset at sufficient resolution to produce information necessary to support the different phases of disaster management. Particularly, it targeted to operationalize the development of flood hazard models that would produce updated and detailed flood hazard maps for the major river systems in the country.

The program also aimed to produce an up-to-date and detailed national elevation dataset suitable for 1:5,000 scale mapping, with 50 cm and 20 cm horizontal and vertical accuracies, respectively. These accuracies were achieved through the use of the state-of-the-art Light Detection and Ranging (LiDAR) airborne technology procured by the project through DOST. The methods applied in this report are thoroughly described in a separate publication titled Flood Mapping of Rivers in the Philippines Using Airborne LiDAR: Methods (Paringit et al., 2017) available separately.

The implementing partner university for the Phil-LiDAR 1 Program is the Visayas State University (VSU). VSU is in charge of processing LiDAR data and conducting data validation reconnaissance, cross section, bathymetric survey, validation, river flow measurements, flood height and extent data gathering, flood modeling, and flood map generation for the ______ river basins in the ______ (LiDAR covered area). The university is located in Baybay City in the province of Leyte.

1.2 Overview of the Taft River Basin

Taft River Basin covers the Municipality of Taft, and a small portion in the Municipalities of Can-Avid, Sulat, San Julian, and Borongan City in the province of Eastern Samar; in the Municipality of Hinabangan; and a small portion in the Municipalities of Calbiga and Paranas in the province of Samar. According to the DENR River Basin Control Office (2015) identified the basin to have a drainage area of 375km2and an estimated 713 million cubic meter (MCM) annual run-off.

Its main stem, Taft River, is part of the 19 river systems in Eastern Visayas Region. According to the 2015 national census of NSO, a total of 6,633 persons distributed among eight (8) Barangays in the Municipality of Taft (NSO, 2015). are residing within the immediate vicinity of the river .

Since the province of Eastern Samar is mostly coastal, its primary economic activity is fishing. Agricultural products such as coconut, copra, etc. also play important roles in their economy for domestic and international export. Furthermore, tourism is a blooming economic activity that has yet to be developed (Source: http://www.nscb.gov.ph/ru8/profiles/provincial_profiles/esamar.htm). Last December 2014, Typhoon Ruby, internationally known as Hagupit, made landfall in Eastern Samar and brought with it strong winds and storm surges. In the Municipality of Taft, 5,362 families were affected during the typhoon (Source: http://ndrrmc.gov.ph/attachments/article/1356/FINAL_REPORT_re_Effects_of_Typhoon_RUBY_(HAGUPIT)_04_-_10DEC2014.pdf).

Figure I. Map of Taft River Basin (in brown)

CHAPTER 2: LIDAR ACQUISITION IN TAFT FLOODPLAIN

Engr. Louie P. Balicanta, Engr. Christopher Cruz, Lovely Gracia Acuña, Engr. Gerome Hipolito, Engr. Christopher L. Joaquin, Ms. Mary Catherine Elizabeth M. Baliguas

The methods applied in this chapter were based on the DREAM methods manual (Ang, et. al., 2014) and further enhanced and updated in Paringit, et. al. (2017).

2.1 Flight Plans

Plans were made to acquire LiDAR data within the delineated priority area for Taft Floodplain in Eastern Samar. These missions were planned for 17 lines that ran for at most four and a half (4.5) hours including take-off, landing and turning time. The flight planning parameters for Aquarius LiDAR system are found in Table 1. Figure 2 shows the flight plan for Taft floodplain survey.

Table 1. Flight planning parameters for Aquarius LiDAR system.

B	lock ame	Flying Height (m AGL)	Overlap (%)	Field of View (θ)	Pulse Repetition Frequency (PRF) (kHz)	Scan Frequency (Hz)	Average Speed (kts)	Average Turn Time (Minutes)
BL	K33J	500	20	44	50	45	120	5

Figure 2. Flight plan and base stations used for Taft Floodplain.

2.2 Ground Base Station

The project team was able to recover one (1) NAMRIA horizontal ground control points, SME-3139 which is of fourth (4th) order accuracy and a Benchmark (SE-16) which is of first order accuracy. These benchmark was used as vertical reference point and was also established as ground control point. The certification for the NAMRIA reference point is found in Annex 2 while the baseline processing report for the established control point is found in Annex 3. These were used as base stations during flight operations for the entire duration of the survey (June 9, 2014). Base stations were observed using dual frequency GPS receivers, TRIMBLE SPS 852 and SPS 985. Flight plans and location of base stations used during the aerial LiDAR acquisition in Taft Floodplain are shown in Figure 2.

Figure 3 shows the recovered NAMRIA reference point within the area. In addition, Table 2 to Table 3 show the details about the following NAMRIA control stations and established points while Table 4 lists all ground control points occupied during the acquisition together with the dates they are utilized during the survey.

Figure 3. GPS set-up over SME-3139 located along the highway in Brgy. Sto. Nino, Taft, Eastern Samar (a) and NAMRIA reference point SME-3139 (b) as recovered by the field team.

Table 2. Details of the recovered NAMRIA horizontal control point SME-3139 used as base station for the LiDAR acquisition.

Station Name	SME-3139			
Order of Accuracy	4th Order			
Relative Error (horizontal positioning)	1:10,000			
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Latitude Longitude Ellipsoidal Height	11o 30' 17.85657" North 125o 1' 29.837339" East 26.13400 meters		
Grid Coordinates, Philippine Transverse Mercator Zone 5 (PTM Zone 5 PRS 92)	Easting Northing	502722.403 meters 1272180.079 meters		
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Latitude Longitude Ellipsoidal Height	11o 30' 13.52495" North 125o 1' 34.96980" East 87.78700 meters		
Grid Coordinates, Universal Transverse Mercator Zone 51 North	Easting Northing	720874.14 meters 1272513.40 meters		

Table 3. Details of the recovered NAMRIA horizontal control point SE-16 used as base station for the LiDAR acquisition.

Station Name	SE-16			
Order of Accuracy	4th			
Relative Error (horizontal positioning)	1:10,000			
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Latitude Longitude Ellipsoidal Height	11o 50' 03.05106" North 125o 26' 03.03429" East 0.472 meters		
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Latitude Longitude Ellipsoidal Height	11o 49' 58.67117" North 125o 26' 08.13400" East 62.301 meters		
Grid Coordinates, Universal Transverse Mercator Zone 51 North (UTM 51N WGS 1984)	Easting Northing	765219.942 meters 1309292.154 meters		

Table 4. Ground control points used during LiDAR data acquisition.

Date Surveyed	Flight Number	Mission Name	Ground Control Points
9 JUN 14	1558A	3BLK33J160A	SE-16,SME-3139
9 JUN 14	1560A	3BLK33JS160B	SE-16,SME-3139

2.3 Flight Missions

Two (2) missions were conducted to complete LiDAR data acquisition nearest Taft Floodplain, for a total of eight hours and thirty four minutes (8+34) of flying time for RP-9122. The missions were acquired using Aquarius LiDAR system. Table 5 shows the total area of actual coverage and the corresponding flying hours per mission while Table 6 presents the actual parameters used during the LiDAR data acquisition.

Table 5. Flight missions for LiDAR data acquisition nearest Taft floodplain.

Date	Flight ed Number	Flight	Flight	Flight	Surveyed	Area Surveyed	Area Surveyed Outside	No. of	Flyi Hoi	ing urs
Surveyed		Plan Area (km2)	Area (km2)	Floodplain (km2)	in Floodplain (km2)	Images (Frames)	Hr	Min		
9 JUN 14	1558A	225.57	117.98	0.54	117.44	98	4	41		
9 JUN 14	1560A	225.57	127.54	-	127.54	1294	3	53		
TOTA	L	451.14	245.52	0.54	244.98	1392	8	34		

Flight Number	Flying Height (m AGL)	Overlap (%)	FOV (θ)	PRF (KHz)	Scan Frequency (Hz)	Average Speed (kts)	Average Turn Time (Minutes)
1558A	500	30	44	50	45	120	5
1560A	500	20	44	50	45	120	5

Table 6. Actual parameters used during LiDAR data acquisition

2.4 Survey Coverage

Taft floodplain is located in the province of Eastern Samar with majority of the floodplain situated within the municipality of Taft. The list of municipalities and cities surveyed, with at least one (1) square kilometer coverage, is shown in Table 7. The actual coverage of the LiDAR acquisition for Taft Floodplain is presented in Figure 4.

Table 7. List of municipalities and cities surveyed during LiDAR survey nearest Taft Floodplain.

Province Municipality/City		Area of Municipality/City (km2)	Total Area Surveyed (km2)	Percentage of Area Surveyed
Eastern Samar	Sulat	150.05	39.95	27%
	San Julian	127.43	22.72	18%
	Borongan City	596.08	69.2	12%
	Taft	230.27	1.95	1%
Total		1,103.83	133.82	12.12%

Figure 4. Actual LiDAR survey coverage nearest Taft Floodplain.

CHAPTER 3: LIDAR DATA PROCESSING FOR TAFT FLOODPLAIN

Engr. Ma. Ailyn L. Olanda, Engr. Velina Angela S. Bemida, Jovy Anne S. Narisma, Engr. Karl Adrian P. Vergara

The methods applied in this chapter were based on the DREAM methods manual (Ang, et. al., 2014) and further enhanced and updated in Paringit, et. al. (2017).

3.1 Overview of the LIDAR Data Pre-Processing

The data transmitted by the Data Acquisition Component were checked for completeness based on the list of raw files required to proceed with the pre-processing of the LiDAR data. Upon acceptance of the LiDAR field data, georeferencing of the flight trajectory wasdone to obtain the exact location of the LiDAR sensor when the laser was shot.

Point cloud georectification was performed to incorporate correct position and orientation for each point acquired. The georectified LiDAR point clouds were subject for quality checking to ensure that the required accuracies of the program, which are the minimum point density, vertical and horizontal accuracies, are met. The point clouds were then classified into various classes before generating Digital Elevation Models such as Digital Terrain Model and Digital Surface Model.

Using the elevation of points gathered in the field, the LiDAR-derived digital models were calibrated. Portions of the river that are barely penetrated by the LiDAR system were replaced by the actual river geometry measured from the field by the Data Validation and Bathymetry Component. LiDAR acquired temporally were then mosaicked to completely cover the target river systems in the Philippines. Orthorectification of images acquired simultaneously with the LiDAR data was done through the help of the georectified point clouds and the metadata containing the time the image was captured. These processes are summarized in the flowchart shown in Figure 5.

Figure 5. Schematic Diagram for Data Pre-Processing Component

3.2 Transmittal of Acquired LiDAR Data

Data transfer sheets for all the LiDAR missions for Taft Floodplain can be found in Annex A-5. Missions flown during the survey conducted on June 2014 used the Airborne LiDAR Terrain Mapper (ALTM™ Optech Inc.) Aquarius system over Taft, Eastern Samar. The Data Acquisition Component (DAC) transferred a total of 26.3 Gigabytes of Range data, 500 Megabytes of POS data, 32.2 Megabytes of GPS base station data, and 167.9 Gigabytes of raw image data to the data server on June 9, 2014 for the survey. The Data Preprocessing Component (DPPC) verified the completeness of the transferred data. The whole dataset for Taft was fully transferred on June 19, 2014, as indicated on the Data Transfer Sheets for Taft floodplain.

3.3 Trajectory Computation

The Smoothed Performance Metricparameters of the computed trajectory for flight 1560A, one of the Taft flights, which is the North, East, and Down position RMSE values are shown in Figure 6. The x-axis corresponds to the time of flight, which is measured by the number of seconds from the midnight of the start of the GPS week, which on that week fell on June 9, 2014 00:00AM. The y-axis is the RMSE value for that particular position.

Figure 6. Smoothed Performance Metric Parameters of a Taft Flight 1560A.

The time of flight was from 529500 seconds to 538000 seconds, which corresponds to afternoon of June 9, 2014. The initial spike that is seen on the data corresponds to the time that the aircraft was getting into position to start the acquisition, and the POS system starts computing for the position and orientation of the aircraft. Redundant measurements from the POS system quickly minimized the RMSE value of the positions. The periodic increase in RMSE values from an otherwise smoothly curving RMSE values correspond to the turn-around period of the aircraft, when the aircraft makes a turn to start a new flight line. Figure 6 shows that the North position RMSE peaks at 1.62 centimeters, the East position RMSE peaks at 1.74 centimeters, and the Down position RMSE peaks at 4.26 centimeters, which are within the prescribed accuracies described in the methodology.

Figure 7. Solution Status Parameters of Taft Flight 1560A.

The Solution Statusparameters of flight 1560A, one of the Taftflights, which are the number of GPS satellites, Positional Dilution of Precision (PDOP), and the GPS processing mode used, are shown in Figure 7. The graphs indicate that the number of satellites during the acquisition did not go down to 6. Majority of the time, the number of satellites tracked was between 6 and 10. The PDOP value also did not go above the value of 3, which indicates optimal GPS geometry. The processing mode stayed at the value of 0 for majority of the survey with some peaks up to 1 attributed to the turns performed by the aircraft. The value of 0 corresponds to a Fixed, Narrow-Lane mode, which is the optimum carrier-cycle integer ambiguity resolution technique available for POSPAC MMS. All of the parameters adhered to the accuracy requirements for optimal trajectory solutions, as indicated in the methodology. The computed best estimated trajectory for all Taft flights is shown in Figure 8.

Figure8.Best Estimated Trajectory for Taft FloodplainFloodplain.

3.4 LiDAR Point Cloud Computation

The produced LAS data contains 28 flight lines, with each flight line containing one channel, since the Aquarius system contains one channel only. The summary of the self-calibration results obtained from LiDAR processing in LiDAR Mapping Suite (LMS) software for all flights over Taft Floodplain are inidicated in Table 8.

Table 8. Self-Calibration Results values for Taft flights.				
Parameter		Computed Value		
Boresight Correction stdev	(<0.001degrees)	0.000327		
IMU Attitude Correction Roll and Pitch (<0.001degrees)	0.000898			
GPS Position Z-correction stdev	(<0.01meters)	0.0098		

he optimum accuracy is obtained for all Taft flights based on the computed standard deviations of the

The optimum accuracy is obtained for all Taft flights based on the computed standard deviations of the corrections of the orientation parameters. Standard deviation values for individual blocks are available in the Annex 8.

3.5 LiDAR Quality Checking

The boundary of the processed LiDAR data on top of a SAR Elevation Data over Taft Floodplain is shown in Figure 9. The map shows gaps in the LiDAR coverage that are attributed to cloud coverage.

Figure 9. Boundary of the processed LiDAR data over Taft Floodplain

The total area covered by the Taft missions is 174.99 sq.km comprised of two (2) flight acquisitions grouped and merged into one (1) block as shown in Table 9.

LiDAR Blocks	Flight Numbers	Area (sq.km)	
	1558A	174.00	
Samar_Leyte Bik33J	1560A	174.99	
TOTAL		174.99 sq.km	

Table 9. List of LiDAR blocks for Taft Floodplain.

The overlap data for the merged LiDAR blocks, showing the number of channels that pass through a particular location is shown in Figure 10. Since the Aquarius system employs one channel, we would expect an average value of 1 (blue) for areas where there is limited overlap, and a value of 2 (yellow) or more (red) for areas with three or more overlapping flight lines.

Figure 10. Image of data overlap for Taft floodplain.

The overlap statistics per block for the Taft floodplain can be found in Annex B-1. One pixel corresponds to 25.0 square meters on the ground. For this area, the percent overlap is 36.01%, which passed the 25% requirement.

The pulse density map for the merged LiDAR data, with the red parts showing the portions of the data that satisfy the 2 points per square meter criterion is shown in Figure 11. It was determined that all LiDAR data for Taft floodplain satisfy the point density requirement, and the average density for the entire survey area is 2.71 points per square meter.

Figure 11. Pulse density map of merged LiDAR data for Taft Floodplain.

The elevation difference between overlaps of adjacent flight lines is shown in Figure 12. The default color range is from blue to red, where bright blue areas correspond to portions where elevations of a previous flight line, identified by its acquisition time, are higher by more than 0.20m relative to elevations of its adjacent flight line. Bright red areas indicate portions where elevations of a previous flight line. Areas with bright red or bright blue area by more than 0.20m relative to elevations of its adjacent flight line. Areas with bright red or bright blue area by more than 0.20m relative to elevations of its adjacent flight line. Areas with bright red or bright blue heed to be investigated further using Quick Terrain Modeler software.

Figure 12. Elevation difference map between flight lines for Taft Floodplain.

A screen capture of the processed LAS data from a Taft flight 1560A loaded in QT Modeler is shown in Figure 13. The upper left image shows the elevations of the points from two overlapping flight strips traversed by the profile, illustrated by a dashed red line. The x-axis corresponds to the length of the profile. It is evident that there are differences in elevation, but the differences do not exceed the 20-centimeter mark. This profiling was repeated until the quality of the LiDAR data becomes satisfactory. No reprocessing was done for this LiDAR dataset.

Figure 13. Quality checking for a Taft flight 1560A using the Profile Tool of QT Modeler.

3.6 LiDAR Point Cloud Classification and Rasterization

Pertinent Class	Total Number of Points		
Ground	110,486,647		
Low Vegetation	51,277,620		
Medium Vegetation	61,095,498		
High Vegetation	151,119,077		
Building	2,518,830		

Table 10. Taft classification results in TerraScan.

The tile system that TerraScan employed for the LiDAR data and the final classification image for a block near Taft Floodplain is shown in Figure 14. A total of 291 1km by 1km tiles were produced. The number of points classified to the pertinent categories is illustrated in Table 10. The point cloud has a maximum and minimum height of 248.48 meters and 49.30 meters, respectively.

Figure 14. Tiles for Taft floodplain (a) and classification results (b) in TerraScan.

An isometric view of an area before and after running the classification routines is shown in Figure 15. The ground points are in orange, the vegetation is in different shades of green, and the buildings are in cyan. It can be seen that residential structures adjacent or even below canopy are classified correctly, due to the density of the LiDAR data.

Figure 15. Point cloud before (a) and after (b) classification.

The production of last return (V_ASCII) and the secondary (T_ASCII) DTM, first (S_ASCII) and last (D_ASCII) return DSM of the area in top view display are shown in Figure 16. It shows that DTMs are the representation of the bare earth while on the DSMs, all features are present such as buildings and vegetation.

Figure 16. The production of last return DSM (a) and DTM (b), first return DSM (c) and secondary DTM (d) in some portion of Taft Floodplain.

3.7 LiDAR Image Processing and Orthophotograph Rectification

The 292 1km by 1km tiles area covered by Taft Floodplain is shown in Figure 17. After tie point selection to fix photo misalignments, color points were added to smoothen out visual inconsistencies along the seamlines where photos overlap. The Taft Floodplain has a total of 219.659 sq.km orthophotogaph coverage comprised of 2,657 images. However, the block does not have a complete set of orthophotographs and no orthophotographs cover the area of the Taft Floodplain. A zoomed in version of sample orthophotographs named in reference to its tile number is shown in Figure 18.

Figure 17. Available orthophotographs near Taft Floodplain.

Figure 18. Sample orthophotograph tiles near Taft Floodplain.

3.8 DEM Editing and Hydro-Correction

One (1) mission block was processed for Taft Floodplain. This block is aSamarLeyte block with an area of 174.99 square kilometers. Table 11 shows the name and corresponding area of the block in square kilometers.

Table 11. LiDAR block/s with its corresponding area.

LiDAR Blocks	Area (sq. km.)		
SamarLeyte_Blk33J	174.99		

Portions of DTM before and after manual editing are shown in Figure 19. The bridge (Figure 19a) is considered to be an impedance to the flow of water along the river and has to be removed (Figure 19b) in order to hydrologically correct the river. The paddy field (Figure 19c) has been misclassified and removed during classification process and has to be retrieved to complete the surface (Figure 19d) to allow the correct flow of water.

Figure 19. Portions in the DTM of Taft Floodplain – a bridge before (a) and after (b) manual editing; a paddy field before (c) and after (d) data retrieval; and a building before (a) and after (b) manual editing.

3.9 Mosaicking of Blocks

No assumed reference block was used in mosaicking because the identified reference for shifting was an existing calibrated Tacloban DEM overlapping with the blocks to be mosaicked. Table 12 shows the shift values applied to each LiDAR block during mosaicking.

Mosaicked LiDAR DTM for Taft Floodplain is shown in Figure 20. It can be seen that the entire Taft floodplain is 0.34% covered by LiDAR data while portions with no LiDAR data were patched with the available IFSAR data.

Mission Blocks	Shift Values (meters)			
IVIISSION BIOCKS	х	у	z	
Samar_Leyte_Blk33J	-1.00	2.00	-1.00	

Table 12. Shift Values of each LiDAR Block of Taft Floodplain.

Figure 20. Map of Processed LiDAR Data for Taft Floodplain.

3.10 Calibration and Validation of Mosaicked LiDAR DEM

The extent of the validation survey done by the Data Validation and Bathymetry Component (DVBC) in Taft to collect points with which the LiDAR dataset is validated is shown in Figure 21. A total of 3,494 survey points were gathered for the Taft flood plain. However, the point dataset was not used for the calibration of the LiDAR data for Taft because during the mosaicking process, each LiDAR block was referred to the calibrated Tacloban DEM. Therefore, the mosaicked DEM of Taft can already be considered as a calibrated DEM.

A good correlation between the uncalibrated Tacloban LiDAR DTM and ground survey elevation values is shown in Figure 22. Statistical values were computed from extracted LiDAR values using the selected points to assess the quality of data and obtain the value for vertical adjustment. The computed height difference between the LiDAR DTM and calibration points is 0.14 meters with a standard deviation of 0.13 meters. Calibration of Tacloban LiDAR data was done by subtracting the height difference value, 0.14 meters, to Tacloban mosaicked LiDAR data. Table 13 shows the statistical values of the compared elevation values between Tacloban LiDAR data and calibration data. These values were also applicable to the Taft DEM.

Figure 21. Map of Taft Floodplain with validation survey points in green.

Figure 22. Correlation plot between calibration survey points and LiDAR data.

Table 13. Calibration S	tatistical Measures.
-------------------------	----------------------

Calibration Statistical Measures	Value (meters)
Height Difference	0.14
Standard Deviation	0.13
Average	-0.05
Minimum	-0.32
Maximum	0.22

A total of 477 survey points were used for the validation of the calibrated Taft DTM. A good correlation between the calibrated mosaicked LiDAR elevation values and the ground survey elevation, which reflects the quality of the LiDAR DTM is shown in Figure 23. The computed RMSE between the calibrated LiDAR DTM and validation elevation values is 0.90meters with a standard deviation of 0.49meters, as shown in Table 14.

Figure 23. Correlation plot between validation survey points and LiDAR data.

Validation Statistical Measures	Value (meters)
RMSE	0.90
Standard Deviation	0.49
Average	0.76
Minimum	-1.56
Maximum	1.32

Note: Validation points lie within the IFSAR data, thus, the RMSE and Standard Deviation values are obtained are still acceptable.

3.11 Integration of Bathymetric Data into the LiDAR Digital Terrain Model

For bathy integration, centerline and zigzag data was available for Taft with 7,822 bathymetric survey points. The resulting raster surface produced was done by Kernel Interpolation with Barriers method. After burning the bathymetric data to the calibrated DTM, assessment of the interpolated surface is represented by the computed RMSE value of 0.6 meters. The extent of the bathymetric survey done by the Data Validation and Bathymetry Component (DVBC) in Taft integrated with the processed LiDAR DEM is shown in Figure 24.

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

Figure 24. Map of Taft Floodplain with bathymetric survey points shown in blue.

3.12 Feature Extraction

3.12.3 Feature Attribution

3.12.4 Final Quality Checking of Extracted Features

CHAPTER 4 LIDAR VALIDATION SURVEY AND MEASUREMENT OF THE LIBERTAD RIVER BASIN

Engr. Louie P. Balicanta, Engr. Joemarie S. Caballero, Ms. Patrizcia Mae. P. dela Cruz, Engr. Kristine Ailene B. Borromeo Engr. Mark Lester D. Rojas, Geol. Anthony Felix J. Abogado, Engr. Caren Joy S. Ordoña

The methods applied in this chapter were based on the DREAM methods manual (Ang, et. al., 2014) and further enhanced and updated in Paringit, et. al. (2017).

4.1 Summary of Activities

The DVBC conducted a field survey in Taft River on December 5 – 16, 2016 with the following scope of work: reconnaissance; control survey; cross-section and as-built surveys at Taft Bridge in Brgy. Poblacion Barangay 1, Municipality of Taft and at Danao Bridge in Brgy. Bongdo, Municipality of Taft; validation points acquisition of about 22 km starting in Barangay 12 in the Municipality of Dolores going southwards to the Municipality of Can-Avid and ending in Brgy. Mantang, Municipality of Taft; and bathymetric survey from itsupstream in Brgy. Gayam, in the Municipality of Taft, to the mouth of the river in Brgy. Nato, in the same Municipality, with an approximate length of 9.108 km using Trimble® SPS 985 GNSS PPK survey technique.

Figure 25. Taft River Basin Survey Extent

4.2 Control Survey

The GNSS network used for Taft River Basin is composed of four (4) loopsestablished on December 10, 2016, occupying the reference points: SME-18, a 2nd order NAMRIA GCP in Brgy. Canciledes, Municipality of Hernani, Eastern Samar; SMR-41, a 2nd order NAMRIA GCP in Brgy. Fatima, Municipality of Hinabangan, Samar; and,SE-172, a 1st order BM in Brgy. Nato, Municipality of Taft, Eastern Samar.

Control points were established namely UP-BOR located at the approach of Can-Obing Bridge in Brgy. Can-Abong, Borongan City, Eastern Samar; UP-SUL located at the approach of Sulat Bridge in Brgy. Maramara, Municipality of Sulat, Eastern Samar; and, UP-ULO-2 located at the approach of Can-Avid Bridge in Brgy. Canteros, Municipality of Can-Avid, Eastern Samar. These established points were also occupied to use as markers for the survey.

The summary of reference and control points and its location is summarized in Table 15 while the GNSS network established is illustrated in Figure 26.

Figure 26. Taft River Basin Control Survey Extent

Table 15. List of Reference and Control Points occupied	for Taft River Survey
(Source: NAMRIA; UP-TCAGP)	

				-			
		Geographic Coordinates (WGS 84)					
Control Order of Point Accuracy		Latitude Longitude		Ellipsoid Height (m)	Elevation (MSL) (m)	Date of Establishment	
Control Survey on December 10, 2016							
SME-18	2nd Order, GCP	11°21'43.08128"	125°36'37.41861"	78.216	17.659	12-10-16	
SMR-41	2nd Order, GCP	11°49'03.09527"	125°13'56.04672"	232.562	-	12-10-16	
SE-172	1st Order, BM	-	-	61.761	3.155	12-6-16	
UP-BOR	UP established	-	-	67.048	-	12-6-16	
UP-SUL	UP established	-	-	64.565	-	12-6-16	
UP-ULO-2	UP established	-	-	63.77	-	12-9-16	

The GNSS set-ups on recovered reference points and established control points in Taft River are shown in Figure 27 to Figure 32.

gure 28. GNSS base set up, Trimble® SPS 882, at SMR-41, located within the grounds of Hinaban Elementary School in Brgy. Fatima, Municipality of Hinabangan, Samar

Figure 29. GNSS receiver setup, Trimble® SPS 855 at SE-172, located within the grounds of Nato Elementary School in Brgy. Nato, Municipality of Taft, Eastern Samar

Figure 30. GNSS receiver setup, Trimble[®] SPS 855, at UP-BOR, located at the approach of Can-Obing Bridge in Brgy. Can-Abong, Borongan City, Eastern Samar

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

Figure 31. GNSS receiver setup, Trimble[®] SPS 985, at UP-SUL, located at the approach of Sulat Bridge in Brgy. Maramara, Municipality of Sulat, Eastern Samar

Figure 32. GNSS receiver setup, Trimble[®] SPS 855, at UP-ULO-2, located at the approach of Can-Avid Bridge in Brgy. Canteros, Municipality of Can-Avid, Eastern Samar

4.3 Baseline Processing

GNSS Baselines were processed simultaneously in TBC by observing that all baselines have fixed solutions with horizontal and vertical precisions within +/- 20 cm and +/- 10 cm requirement, respectively. In case where one or more baselines did not meet all of these criteria, masking was performed. Masking is done by removing/masking portions of these baseline data using the same processing software. It is repeatedly processed until all baseline requirements are met. If the reiteration yields out of the required accuracy, resurvey is initiated. Baseline processing result of control points in Taft River Basin is summarized in Table 16 generated by TBC software.

Observation	Date of Observation	Solution Type	H. Prec. (Meter)	V. Prec. (Meter)	Geodetic Az.	Ellipsoid Dist. (Meter)	ΔHeight (Meter)
SMR-41 SE- 172 (B1)	12-10-16	Fixed	0.003	0.019	60°19'56"	23782.994	-170.787
SMR-41 UP-ULO-2 (B2)	12-10-16	Fixed	0.004	0.027	51°26'56"	29152.677	-168.797
SE-172 UP- ULO- 2 (B3)	12-10-16	Fixed	0.003	0.014	18°29'10"	6742.890	2.008
SMR-41 SE- 172 (B6)	12-10-16	Fixed	0.003	0.017	60°19'55"	23782.982	-170.797
SMR-41 UP-SUL (B7)	12-10-16	Fixed	0.003	0.025	91°37'24"	23648.007	-168.014
SME-18 UP-SUL (B8)	12-10-16	Fixed	0.005	0.019	340°32'04"	52735.660	-13.625
UP-SUL SE- 172 (B9)	12-10-16	Fixed	0.003	0.018	346°36'16"	12792.116	-2.807
UP-BOR UP-SUL (B10)	12-10-16	Fixed	0.003	0.014	2°25'05"	23870.045	-2.491
SMR-41 UP-BOR (B11)	12-10-16	Fixed	0.003	0.018	137°16'15"	33379.379	-165.537
SME-18 UP-BOR (B12)	12-10-16	Fixed	0.003	0.012	324°17'43"	31862.093	-11.163

Table 16. Baseline Processing Summary Report for Taft River Survey

As shown in Table 16 a total of ten (10) baselines were processed withcoordinate and elevation values of SME-18, SMR-41, and SE-172 held fixed. All of them passed the required accuracy.

4.4 Network Adjustment

After the baseline processing procedure, network adjustment was performed using TBC. Looking at the Adjusted Grid Coordinates table of the TBC generated Network Adjustment Report, it is observed that the square root of the sum of the squares of x and y must be less than 20 cm and z less than 10 cm or in equation form:

$$\sqrt{((x_e)^2 + (y_e)^2)} < 20 \text{ cm and } z_e < 10 \text{ cm}$$

where:

xe is the Easting Error, ye is the Northing Error, and ze is the Elevation Error

for each control point. See the Network Adjustment Report shown in Table C-3 to Table C-6 for complete details.

The three (3) control points, UP-BOR, UP-SUL, and UP-ULO-2 were occupied and observed simultaneously to form a GNSS loop. Coordinates of SME-18 and SMR-41; elevation value of SME-18 and SE-172; and fixed values of SME-18, SMR-41, and SE-172 were held fixed during the processing of the control points as presented in Table 17. Through these reference points, the coordinates and elevation of the unknown control

Table 17. Control Point Constraints

Point ID	Туре	East σ (Meter)	North σ (Meter)	Height σ (Meter)	Elevation σ (Meter)	
SME-18	Grid	Fixed	Fixed		Fixed	
SMR-41	Global	Fixed	Fixed			
SE-172 Grid Fixed						
Fixed = 0.000001 (Meter)						

The list of adjusted grid coordinates, i.e. Northing, Easting, Elevation and computed standard errors of the control points in the network is indicated in Table 18. All fixed control points have no values for grid and elevation errors.

Table 18. Adjusted Grid Coordinates

Point ID	Easting (Meter)	Easting Error (Meter)	Northing (Meter)	Northing Error (Meter)	Elevation (Meter)	Elevation Error (Meter)	Constraint
SME-18	528987.231	?	1115622.481	?	7.275	0.040	LL
784907.431	?	1257282.043	?	17.659	?	ENe	е
SMR-41	523151.163	0.007	1112861.259	0.005	26.540	0.051	
743218.063	?	1307346.858	?	171.203	0.041	LL	
SE-172							
763795.614	0.007	1319288.604	0.006	3.155	?	е	
UP-BOR	766068.889	0.006	1282998.400	0.005	5.989	0.039	
UP-SUL	766869.986	0.007	1306865.645	0.006	5.374	0.042	
UP-ULO-2	765878.376	0.010	1325704.856	0.009	5.912	0.05	

With the mentioned equation, $[[\sqrt[n]{(x]_e)}^2+[[(y]_e)]^2]<20$ cm for horizontal and z_e<10 cm for the vertical; the computation for the accuracy are as follows:

NGE-67 a. SME-18 horizontal accuracy Fixed = Fixed vertical accuracy = SMR-41 horizontal accuracy Fixed = vertical accuracy 4.1 < 10 cm = SE-172 horizontal accuracy $\sqrt{((0.7)^2 + (0.6)^2)}$ = √ (0.49 + 0.36) = 1.77< 20 cm = vertical accuracy = Fixed UP-BOR $V((0.6)^2 + (0.5)^2)$ horizontal accuracy = √ (0.36 + 0.25) = 0.78< 20 cm = vertical accuracy 3.9 < 10 cm = UP-SUL $\sqrt{((0.7)^2 + (0.6)^2)}$ horizontal accuracy = √ (0.49 + 0.36) = 0.92< 20 cm = vertical accuracy = 4.2 < 10 cm UP-ULO-2 $\sqrt{((1)^2 + (0.9)^2)}$ horizontal accuracy = = √ (1.81 + 1.44) = 1.35< 20 cm 5.3 < 10 cm vertical accuracy =

Following the given formula, the horizontal and vertical accuracy result of the two occupied control points are within the required precision.

Point ID	Latitude	Longitude	Ellipsoid Height (Meter)	Height Error (Meter)	Constraint
SME-18	N11°21'43.08128"	E125°36'37.41861"	78.216	?	ENe
SMR-41	N11°49'03.09527"	E125°13'56.04672"	232.562	0.041	LL
SE-172	N11°55'25.95794"	E125°25'18.96211"	61.761	?	е
UP-BOR	N11°35'44.89710"	E125°26'23.64085"	67.048	0.039	
UP-SUL	N11°48'41.00280"	E125°26'56.90219"	64.565	0.042	
UP-ULO-2	N11°58'54.06226"	E125°26'29.62952"	63.770	0.053	

Table 19. Adjusted Geodetic Coordinates

The corresponding geodetic coordinates of the observed points are within the required accuracy as shown in Table 19. Based on the result of the computation, the accuracy condition is satisfied; hence, the required accuracy for the program was met.

The summary of reference and control points used is indicated in Table 20.

Table 20. Reference and control points used and its location (Source: NAMRIA, UP-TCAGP)

		Geograph	ic Coordinates (WGS 84	UTM ZONE 51 N			
Control Point	Order of Accuracy	Latitude	Longitude	Ellipsoidal Height (m)	Northing (m)	Easting (m)	BM Ortho (m)
SME-18	2nd Order, GCP	11°21'43.08128"	125°36'37.41861"	78.216	1257282.043	784907.431	17.659
SMR-41	2nd Order, GCP	11°49'03.09527"	125°13'56.04672"	232.562	1307346.858	743218.063	171.203
SE-172	1st Order, BM	11°55'25.95794"	125°25'18.96211"	61.761	1319288.604	763795.614	3.155
UP-BOR	UP established	11°35'44.89710"	125°26'23.64085"	67.048	1282998.400	766068.889	5.989
UP-SUL	UP established	11°48'41.00280"	125°26'56.90219"	64.565	1306865.645	766869.986	5.374
UP- ULO-2	UP established	11°58'54.06226"	125°26'29.62952"	63.77	1325704.856	765878.376	5.912

4.5 Cross-section and Bridge As-Built survey and Water Level Marking

Cross-section and as-built surveys were conducted on December 8, 2016 at the downstream side of Taft bridge in Brgy. Poblacion Barangay 1, Municipality of Taft, Eastern Samar; and, on the same day, at the downstream side of Danao Bridge in Brgy. Bongdo, Municipality of Taft, Eastern Samar as shown in Figure 33 and Figure 34. A survey grade GNSS receiver Trimble® SPS 985 in PPK survey technique was utilized for this survey as shown in Figure 35 and Figure 36

Figure 33. Taft Bridge facing upstream

Figure 34. Danao Bridge facing upstream

Figure 35. As-built survey of Taft Bridge

Figure 36. As-built survey of Danao Bridge

The cross-sectional line of Taft Bridge is about 187.91 m with eighty-seven (87) cross-sectional points, using the control point SE-172; while, the cross-sectional line of Danao Bridge is about 118.42 m with fifty five (55) cross-sectional points, using the control point SE-172 as GNSS base stations. The cross-section diagrams, location maps, and the bridge data forms are shown in to Figure 37 to Figure 42, respectively.

Figure 36. Deployment site, Cangabo Spillway, cross-section diagram

The water surface elevation of Libertad River was determined by a survey grade GNSS receiver Trimble[®] SPS 882 in PPK survey technique on January 29, 2016 at 2:46 PM with a value of 28.153 m in MSL. This was translated into marking on the bridge's pier as shown in Figure 37. It now serves as the reference for flow data gathering and depth gauge deployment of the University of San Carlos, the partner HEI responsible for the monitoring of the Libertad River.

Figure 40. Danao bridge cross-section location map

Shape: rectangular Number of Piers: 2 Height of column footing: N/A

	Station (Distance from BA1)	Elevation	Pier Diameter
Pier 1	72.609 m	5.934 m	1.20 m
Pier 2	118.508 m	5.87 m	1.20 m

NOTE: Use the center of the pier as reference to its station

DREAM Disaster Risk and Exposure As

Figure 41. Bridge as-built form of Taft Bridge

	Station(Distance from BA1)	Elevation		Station(Distance from BA1)	Elevation
BA1	0	5.337 m	BA3	100.237 m	5.822 m
BA2	33.442 m	5.832 m	BA4	117.347 m	5.859 m

Abutment: Is the abutment sloping? Yes; If yes, fill in the following information:

	Station (Distance from BA1)	Elevation	
Ab1	Not available	Not available	
Ab2	Not available	Not available	
	Pier (Please start your measurement from the left side of the ba	nk facing upstream)	

Shape: circular Number of Piers: 2 Height of column footing: N/A

	Station (Distance from BA1)	Elevation	Pier Diameter
Pier 1	54.734 m	5.959 m	0.80 m
Pier 2	78.791 m	5.915 m	0.80 m

E: Use the center of the pier as reference to its stat

Figure 42. Bridge as-built form of Danao Bridge

Water surface elevation of Taft River was determined by a survey grade GNSS receiver Trimble[®] SPS 882 in PPK survey technique on December 8, 2016 at 1:29 PM at Taft Bridge with a value of 0.370 m in MSL as shown in Figure 37. This was translated into marking on the bridge's deck as shown in Figure 43. The marking will serve as reference for flow data gathering and depth gauge deployment of the partner HEI responsible for Taft River, the Visayas State University.

Figure 43. Water-level markings onTaft Bridge

4.6 Validation Points Acquisition Survey

Validation points acquisition survey was conducted on December 10, 2016 using a survey-grade GNSS Rover receiver, Trimble[®] SPS 882, mounted in frontof a vehicle as shown in Figure 44. It was secured with a nylon rope to ensure that it was horizontally and vertically balanced. The antenna height was 2.305m and measured from the ground up to the bottom of notch of the GNSS Rover receiver. The PPK technique utilized for the conduct of the survey was set to continuous topo mode with UP-ULO-2 occupied as the GNSS base station in the conduct of the survey.

Figure 44. Validation points acquisition survey set up along Taft River Basin

The survey started in Barangay 12, Municipality of Dolores going south along national highway covering twenty (20) barangays in the Municipalities of Can-Avid and Taft which ended in Brgy. Mantang, Municipality of Taft, Eastern Samar. A total of 3,597 points with approximate length of 22 km using UP-ULO-2 as GNSS base station for the entire extent validation points acquisition survey as illustrated in the map in Figure 45.

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

Figure 45. Validation point acquisition survey of Taft River basin

4.7 River Bathymetric Survey

Bathymetric survey was executed on December 10, 2016 using Trimble[®] SPS 882 in GNSS PPK survey technique in continuous topo mode as illustrated in Figure 46. It started in Brgy. Gayam, Municipality of Taft with coordinates 11°53′27.55028″N, 125°22′53.47263″E, traversed down the river by boat and ended at the mouth of the river in Brgy. Nato, Municipality of Taft, Eastern Samar with coordinates 11°54′11.56061″N, 125°22′29.59274″E. The control pointsUP-ULO-2was used as GNSS base stations all throughout the entire survey.

Figure 46. Bathymetric survey using a Trimble® SPS 882 in GNSS PPK survey technique in Taft River

The bathymetric survey for Taft River gathered a total of 8,850 points covering 9.108 km of the river traversing Brgy. Gayam, Municipality of Taft, Eastern Samar.A CAD drawing was also produced to illustrate the riverbed profile of Taft River. As shown in Figure 48, the highest and lowest elevation has a 9.617-m difference. The highest elevation observed was -0.823 m below MSL located at the downstream part of the river; while the lowest was -10.44 m below MSL located in the upstream portion of the river.

Figure 47. Bathymetric survey of Taft River

CHAPTER 5: FLOOD MODELING AND MAPPING

Dr. Alfredo Mahar Lagmay, Christopher Uichanco, Sylvia Sueno, Marc Moises, Hale Ines, Miguel del Rosario, Kenneth Punay, Neil Tingin

The methods applied in this chapter were based on the DREAM methods manual (Ang, et. al., 2014) and further enhanced and updated in Paringit, et. al. (2017).

5.1 Data Used for Hydrologic Modeling

5.1.1 Hydrometry and Rating Curves

Components and data that affect the hydrologic cycle of the Taft River Basin were monitored, collected, and analyzed. Rainfall, water level, and flow in a certain period of time, which may affect the hydrologic cycle of the Taft River Basin were monitored, collected, and analyzed.

5.1.2 Precipitation

Precipitation data was taken from the automatic rain gauge (ARG) installed by the Flood modeling Component at Brgy. Malinao, Taft, Eastern Samar. The location of the rain gauges is seen in Figure 49.

Total rain from Malinao rain gauge is 173.8 mm. It peaked to 10.2 mm on 30 July 2016, 7:00 to 7:15 PM. The lag time between the peak rainfall and discharge is five hours and fifty minutes.

Figure 49. The location map of Taft HEC-HMS model used for calibration

5.1.3 Rating Curves and River Outflow

A rating curve was developed at Taft Bridge, Brgy. Poblacion, Taft, Eastern Samar. It gives the relationship between the observed water levels at Taft Bridge and outflow of the watershed at this location. For Taft Bridge, the rating curve is expressed as Q = 199.66e0.8747h as shown in Figure 51.

This rating curve equation was used to compute the river outflow at Taft Bridge for the calibration of the HEC-HMS model. Total rain from Malinao rain gauge is 173.8 mm. It peaked to 10.2 mm on 30 July 2016, 7:00 to 7:15 PM. The lag time between the peak rainfall and discharge is five hours and fifty minutes.

5.2 RIDF Station

The Philippines Atmospheric Geophysical and Astronomical Services Administration (PAGASA) computed Rainfall Intensity Duration Frequency (RIDF) values for the Borongan Rain Gauge. The RIDF rainfall amount for 24 hours was converted to a synthetic storm by interpolating and re-arranging the value in such a way certain peak value will be attained at a certain time. This station was chosen based on its proximity to the Taft watershed. The extreme values for this watershed were computed based on a 36year record.

COMPUTED EXTREME VALUES (in mm) OF PRECIPITATION									
T (yrs)	10 mins	20 mins	30 mins	1 hr	2 hrs	3 hrs	6 hrs	12 hrs	24 hrs
2	22.5	35.3	44.5	60.6	83.7	100.8	133.7	170.7	201.4
5	31.5	49.1	61	82.3	116.1	140.8	186.5	241	283.8
10	37.4	58.2	71.9	96.6	137.6	167.2	221.4	287.6	338.4
15	40.7	63.3	104.7	104.7	149.8	182.1	241.2	313.9	369.2
20	43	66.9	110.4	110.4	158.3	192.6	255	332.3	390.8
25	44.8	69.7	114.8	114.8	164.8	200.6	265.6	346.4	407.4
50	50.4	78.2	128.3	128.3	185	225.4	298.4	390.1	458.6
100	55.9	86.7	141.6	141.6	205	205	330.9	433.4	509.4

Table 21. RIDF values for Borongan Rain Gauge computed by PAGASA

5.3 HMS Model

The soil dataset was taken from and generated by the Bureau of Soils and Water Management (BSWM) under the Department of Agriculture. The land cover shape file is from the National Mapping and Resource information Authority (NAMRIA). The soil and land cover of the Taft River Basin are shown in Figures 55 and 56, respectively.

Figure 55. Soil Map of Taft River Basin

Figure 56. Land Cover Map of Taft River Basin

For Taft, the soil classes identified were clay, clay loam, sandy loam, and mountain soil. The land cover types identified were shrubland, grassland, forest plantation, open forest, closed forest, and cultivated area.

Figure 58. Stream Delineation Map of the Taft River Basin

Using the SAR-based DEM, the Taft basin was delineated and further subdivided into subbasins. The model consists of 13 sub basins, 6 reaches, and 6 junctions. The main outlet is Taft Bridge. This basin model is illustrated in Figure 59.

Figure 59. The Taft river basin model generated using HEC-HMS

5.4 Cross-section Data

Riverbed cross-sections of the watershed are crucial in the HEC-RAS model setup. The cross-section data for the HEC-RAS model was derived using the LiDAR DEM data. It was defined using the Arc GeoRAS tool and was post-processed in ArcGIS.

Figure 60. River cross-section of Taft River generated through Arcmap HEC GeoRAS tool

5.5 Flo 2D Model

The automated modelling process allowed for the creation of a model with boundaries that are almost exactly coincidental with that of the catchment area. As such, they have approximately the same land area and location. The entire area was divided into square grid elements, 10 meter by 10 meter in size. Each element was assigned a unique grid element number which served as its identifier, then attributed with the parameters required for modelling such as x-and y-coordinate of centroid, names of adjacent grid elements, Manning coefficient of roughness, infiltration, and elevation value. The elements were arranged spatially to form the model, allowing the software to simulate the flow of water across the grid elements and in eight directions (north, south, east, west, northeast, northwest, southeast, southwest).

Based on the elevation and flow direction, it is seen that the water will generally flow from the west of the model to the east, following the main channel. As such, boundary elements in those particular regions of the model were assigned as inflow and outflow elements respectively.

Figure 61. Screenshot of subcatchment with the computational area to be modeled in FLO-2D GDS Pro

The simulation was then run through FLO-2D GDS Pro. This particular model had a computer run time of 97.82812 hours. After the simulation, FLO-2D Mapper Pro was used to transform the simulation results into spatial data that shows flood hazard levels, as well as the extent and inundation of the flood. Assigning the appropriate flood depth and velocity values for Low, Medium, and High creates the following food hazard map. Most of the default values given by FLO-2D Mapper Pro are used, except for those in the Low hazard level. For this particular level, the minimum h (Maximum depth) is set at 0.2 m while the minimum vh (Product of maximum velocity (v) times maximum depth (h)) is set at 0 m2/s. The creation of a flood hazard map from the model also automatically creates a flow depth map depicting the maximum amount of inundation for every grid element. The legend used by default in Flo-2D Mapper is not a good representation of the range of flood inundation values, so a different legend is used for the layout. In this particular model, the inundated parts cover a maximum land area of 53860900.00 m2.

There is a total of 44075463.84 m3 of water entering the model. Of this amount, 27135232.81 m3 is due to rainfall while 16940231.02 m3 is inflow from other areas outside the model. 5738050.00 m3 of this water is lost to infiltration and interception, while 12268493.43 m3 is stored by the flood plain. The rest, amounting up to 9165987.51 m3, is outflow.

5.6 Results of HMS Calibration

After calibrating the Taft HEC-HMS river basin model, its accuracy was measured against the observed values. Figure 62 shows the comparison between the two discharge data.

Figure 62. Outflow Hydrograph of Taft produced by the HEC-HMS model compared with observed outflow

Enumerated in Table 22 are the adjusted ranges of values of the parameters used in calibrating the model.

Hydrologic Element	Calculation Type	Calculation Type Method Parameter		Range of Calibrated Values
	Lass	CCC Currie number	Initial Abstraction (mm)	70 - 500
	LOSS	SCS Curve number	Curve Number	60 - 98
	Transform		Time of Concentration (hr)	1 - 10
Basin		Clark Unit Hydrograph	Storage Coefficient (hr)	0.5 - 6
	Deseflerin	Dessesion	Recession Constant	0.65
	Baseflow	Recession	Ratio to Peak	0.55
Reach	Routing	Muskingum-Cunge	Manning's Coefficient	0.04

Table 22. Range of Campialeu values for fait
--

Initial abstraction defines the amount of precipitation that must fall before surface runoff. The magnitude of the outflow hydrograph increases as initial abstraction decreases. The range of values from 70mm to 500mm means that there is a high amount of infiltration or rainfall interception by vegetation.

Curve number is the estimate of the precipitation excess of soil cover, land use, and antecedent moisture. The magnitude of the outflow hydrograph increases as curve number increases. The range of 60 to 98 for curve number is advisable for Philippine watersheds depending on the soil and land cover of the area (M. Horritt, personal communication, 2012).

Time of concentration and storage coefficient are the travel time and index of temporary storage of runoff in a watershed. The range of calibrated values from 0.5 hours to 10 hours determines the reaction time of the model with respect to the rainfall. The peak magnitude of the hydrograph also decreases when these parameters are increased.

Recession constant is the rate at which baseflow recedes between storm events and ratio to peak is the ratio of the baseflow discharge to the peak discharge. Recession constant of 0.65 indicates that the basin is unlikely to quickly go back to its original discharge and instead, will be higher. Ratio to peak of 0.55 indicates an average slope of the receding limb of the outflow hydrograph.

Manning's roughness coefficient of 0.04 corresponds to the common roughness Taft watershed, which is determined to be cultivated with mature field crops (Brunner, 2010

RMSE	94
r2	0.8582
NSE	0.65
PBIAS	17.63
RSR	0.59

 Table 23. Summary of the Efficiency Test of Taft HMS Model

The Root Mean Square Error (RMSE) method aggregates the individual differences of these two measurements. It was computed as 9.4 (m3/s).

The Pearson correlation coefficient (r2) assesses the strength of the linear relationship between the observations and the model. This value being close to 1 corresponds to an almost perfect match of the observed discharge and the resulting discharge from the HEC HMS model. Here, it measured 0.8582.

The Nash-Sutcliffe (E) method was also used to assess the predictive power of the model. Here the optimal value is 1. The model attained an efficiency coefficient of 0.65.

A positive Percent Bias (PBIAS) indicates a model's propensity towards under-prediction. Negative values indicate bias towards over-prediction. Again, the optimal value is 0. In the model, the PBIAS is 17.63.

The Observation Standard Deviation Ratio, RSR, is an error index. A perfect model attains a value of 0 when the error in the units of the valuable a quantified. The model has an RSR value of 0.59.

5.7 Calculated Outflow hydrographs and Discharge Values for different Rainfall Return Periods

5.7.1 Hydrograph using the Rainfall Runoff Model

The summary graph (Figure 63) shows the Taft outflow using the Borongan RIDF in 5 different return periods (5-year, 10-year, 25-year, 50-year, and 100-year rainfall time series) based on the PAG-ASA data. The simulation results reveal significant increase in outflow magnitude as the rainfall intensity increases for a range of durations and return periods.

Figure 63. Outflow hydrograph at Taft Station generated using Borongan RIDF simulated in HEC-HMS

A summary of the total precipitation, peak rainfall, peak outflow and time to peak of the Taft discharge using the Borongan RIDF curves in five different return periods is shown in Table 24.

RIDF Period	Total Precipitation (mm)	Peak rainfall (mm)	Peak outflow (m 3/s)	Time to Peak
5-Year	278.6	33.2	591.02	6 hours, 20 minutes
10-Year	344.7	40.6	1,003.36	5 hours, 41 minutes
25-Year	428.2	50.1	1578.95	5 hours, 14 minutes
50-Year	490.2	57.1	2,038.44	5 hours, 1 minute
100-Year	551.7	64	2675.7	10 hours, 53 minutes

Table 24. Peak values of the Taft HEC-HMS Model outflow using the Tacloban RIDF

5.8 River Analysis (RAS) Model Simulation

The HEC-RAS Flood Model produced a simulated water level at every cross-section for every time step for every flood simulation created. The resulting model was used in determining the flooded areas within the model. The simulated model will be an integral part in determining real-time flood inundation extent of the river after it has been automated and uploaded on the DREAM website. For this publication, a sample output for the river flow during Typhoon Seniang was to be shown, since the model was calibrated from this event. The sample generated map of Taft River using the calibrated HEC-HMS model for Typhoon Seniang is shown in Figure 64.

Figure 64. Sample output of Taft RAS Model

5.9 Flow Depth and Flood Hazard

The resulting hazard and flow depth maps have a 10m resolution. Figure 65 to Figure 70 shows the 100-, 25-, and 5-year rain return scenarios of the Taft floodplain.

The floodplain, with an area of 196.55 sq. km., covers three municipalities namely Can-Avid, Sulat, and Taft. Table 25 shows the percentage of area affected by flooding per municipality

Municipality Total Area		Area Flooded	% Flooded
Can-Avid	285.22	35.56	12.47%
Sulat	230.27	11.7993	5.12%
Taft	150.05	149.017	99.31%

Figure 59. A 100-year Flood Hazard Map for Libertad Floodplain overlaid on Google Earth imagery.

Figure 69. 5-year Flood Hazard Map for Taft Floodplain

72

5.10 Inventory of Areas Exposed to Flooding

Affected barangays in Taft river basin, grouped by municipality, are listed below. For the said basin, 3 municipalities consisting of 34 barangays are expected to experience flooding when subjected to 5-yr rainfall return period.

For the 5-year return period, 10.42% of the municipality of Can-avid with an area of 285.22 sq. km. will experience flood levels of less 0.20 meters; 0.25% of the area will experience flood levels of 0.21 to 0.50 meters while 0.22%, 0.29%, 0.38% and 0.91% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters and more than 5 meters, respectively. Listed in Table 26 are the affected areas in square kilometres by flood depth per barangay.

Table 26. Affected Areas in Can-avid, Eastern Samar during 5-Year Rainfall Return Period

Affected Area (sq. km.) by flood depth (in m.)		Affected Barangays in Can-avid									
		Baruk	Camantang	Can-Ilay	Guibuangan	Jepaco	Salvacion				
	0.03- 0.20	5.750846761	9.138196666	6.589841248	1.880975419	4.023187915	2.351117986				
Affected Area (sq. km.)	0.21- 0.50	0.147884452	0.221562939	0.108758735	0.062506205	0.105571639	0.064972461				
	0.51- 1.00	0.088485141	0.149622715	0.094539212	0.10760313	0.080831751	0.102550191				
	1.01- 2.00	0.074576338	0.152769766	0.171569082	0.126934695	0.139364045	0.147897373				
	2.01- 5.00	0.10969214	0.267214059	0.497029102	0.036491385	0.055000229	0.110611834				
	> 5.00	0.0479	1.024748041	1.429125447	0	0	0.105873621				

Figure 72. Affected Areas in Sulat, Eastern Samarduring 5-Year Rainfall Return Period

For the municipality of Sulat, with an area of 230.27 sq. km., 3.96% will experience flood levels of less 0.20 meters. 0.32% of the area will experience flood levels of 0.21 to 0.50 meters while 0.31%, 0.47%, 0.06% and 0.0000869% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and above 5 meters, respectively.

Table 27. Affected Areas in Sulat, Eastern Samar c	during 5-Year Rainfall Return Period
--	--------------------------------------

Affected Area (sq. km.) by flood depth (in m.)		Affected Barangays in Sulat							
		Kandalakit	San Isidro	Santo Niño	Santo Tomas				
	0.03-0.20	3.064123049	3.796841066	1.068991315	1.207754				
Affected Area (sq. km.)	0.21-0.50	0.13915007	0.42912304	0.111361917	0.05065				
	0.51-1.00	0.175644168	0.31201115	0.163413035	0.072704				
	1.01-2.00	0.554305306	0.374440921	0.136727575	0.013744				
	2.01-5.00	0.061720438	0.049114285	0.017166662	0.0001				
	> 5.00	0	0.0002	0	0				

For the municipality of Taft, with an area of 150.05 sq. km., 79.896% will experience flood levels of less 0.20 meters. 3.57% of the area will experience flood levels of 0.21 to 0.50 meters while 3.44%, 4.5%, 4.56%, and 3.36% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters and more than 5 meters, respectively.

Affected Area (sq. km.) by flood depth (in m.)		Affected Barangays in Sulat									
		Batiawan	Beto	Binaloan	Bongdo	Dacul	Danao	Del Remedios	Gayam		
	0.03-0.20	0.405437492	3.80950805	21.31312987	2.300063921	9.964465947	2.606037774	5.963578799	6.187389934		
	0.21-0.50	0.0191	0.160665118	0.707051533	0.210117463	0.413421111	0.096037506	0.232415223	0.193805534		
id Are km.)	0.51-1.00	0.01749441	0.257975001	0.740567615	0.420272718	0.338565462	0.167581973	0.378312488	0.260062042		
ffecte (sq.	1.01-2.00	0.017088821	0.295439951	1.180814948	0.54294623	0.474810829	0.342680826	0.464361544	0.397644597		
A	2.01-5.00	0.0012	0.092105803	1.14636066	0.301575975	0.407992894	0.442152668	0.125014491	0.824517351		
	> 5.00	0	0	0.898155937	0.001	0.0002	0	0	0.24882891		

Table 28. Affected Areas in Taft, Eastern Samarduring 5-Year Rainfall Return Period

Table 29. Affected Areas in Taft, Eastern Samar during 5-Year Rainfall Return Period

Affected Area (sq. km.) by flood depth (in m.)		Affected Barangays in Sulat								
		Lomatud	Mabuhay	Malinao	Mantang	Nato	Pangabutan	Pob. Brgy 1	Pob. Brgy 2	
	0.03-0.20	6.097900504	6.701916161	18.17188701	8.942434915	0.973360699	3.280288384	0.663014654	0.605933468	
в	0.21-0.50	0.289528019	0.131739552	0.554176691	0.385046822	0.079775455	0.161690836	0.060528475	0.084339239	
d Are km.)	0.51-1.00	0.394347427	0.130611595	0.512124714	0.397491172	0.046962405	0.19144176	0.002260797	0.031804654	
ffecte (sq.	1.01-2.00	0.323399124	0.15568049	0.689118025	0.632660792	0.008649894	0.332484192	0	0.000277951	
A	2.01-5.00	0.356042948	0.59725528	0.736467914	0.397278419	0.000978811	0.251678556	0	0	
	> 5.00	0.099710905	1.078959459	1.883642108	0.05	0	0	0	0	

Table 30. Affected Areas in Taft, Eastern Samar during 5-Year Rainfall Return Period

Affected Area (sq. km.) by flood depth (in m.)		Affected Barangays in Sulat									
		Pob. Brgy 3	Pob. Brgy 4	Pob. Brgy 5	Pob. Brgy 6	Polangi	San Luis	San Pablo	San Rafael		
	0.03-0.20	0.209668089	0.158307052	0.307797171	1.803738514	1.759732115	1.077203919	11.96445814	4.616604748		
e	0.21-0.50	0.046234744	0.184709564	0.015559243	0.280796623	0.576838152	0.054741993	0.324979553	0.087290768		
ed Are km.)	0.51-1.00	0	0	0.028950184	0.131849665	0.130394615	0.062976046	0.460559353	0.05636009		
ffecte (sq.	1.01-2.00	0	0	0.003441074	0.110483244	0.015062777	0.1761035	0.536507197	0.053514768		
A	2.01-5.00	0	0	0.005405869	0.11989355	0.008354915	0.327506945	0.599768939	0.094907877		
	> 5.00	0	0	0.016071544	0.000584039	0.014662234	0	0.670410271	0.081927484		

Figure 75. Affected Areas in Taft, Eastern Samar during 5-Year Rainfall Return Period

For the 25-year return period, 10.12% of the municipality of Can-avid with an area of 285.22 sq. km. will experience flood levels of less 0.20 meters. 0.26% of the area will experience flood levels of 0.21 to 0.50 meters while 0.2%, 0.3%, 0.42% and 1.17% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters and more than 5 meters, respectively. Listed in Table 31are the affected areas in square kilometres by flood depth per barangay.

Table 31. Affected Areas	in Can-avid, Eastern	Samar during 25-Year	r Rainfall Return Period
--------------------------	----------------------	----------------------	--------------------------

Affected Area (sq. km.) by flood depth (in m.)		Affected Barangays in Can-avid									
		Baruk	Camantang	Can-Ilay	Guibuangan	Jepaco	Salvacion				
	0.03-0.20	5.659214055	8.849784457	6.295946038	1.843103282	3.974149407	2.239172751				
e a	0.21-0.50	0.176578655	0.238073339	0.107233878	0.054375833	0.119417623	0.05719272				
id Are km.)	0.51-1.00	0.102750044	0.1561536	0.086450837	0.073955026	0.079409027	0.074477183				
ffecte (sq.	1.01-2.00	0.07651526	0.163632179	0.135013832	0.173143654	0.127421734	0.181714062				
Ä	2.01-5.00	0.129726818	0.325344203	0.391578643	0.069933039	0.103557788	0.172938539				
	> 5.00	0.0747	1.221426407	1.874639598	0	0	0.157528211				

Figure 76. Affected Areas in Can-avid, Eastern Samar during 25-Year Rainfall Return Period

For the municipality of Sulat, with an area of 230.27 sq. km., 3.8% will experience flood levels of less 0.20 meters. 0.33% of the area will experience flood levels of 0.21 to 0.50 meters while 0.27%, 0.43%, 0.29% and 0.00013% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and above 5 meters, respectively. Listed in Table 32 are the affected areas in square kilometres by flood depth per barangay.

Affected Area (sq. km.) by flood depth (in m.)		Affected Barangays in Sulat							
		Baruk	Camantang	Can-Ilay	Guibuangan				
	0.03- 0.20	2.989252252	3.568456733	1.009559378	1.187657				
σ.	0.21- 0.50	0.125726635	0.498114189	0.104541844	0.042505				
ted Area . km.)	0.51- 1.00	0.129780751	0.295542672	0.126564406	0.074564				
Affec (sq	1.01- 2.00	0.340778713	0.394401058	0.205950525	0.040126				
	2.01- 5.00	0.40940468	0.204915811	0.05104435	0.0001				
	> 5.00	0	0.0003	0	0				

Table 32. Affected Areas in Sulat, Eastern Samar during 25-Year Rainfall Return Period

Figure 77. Affected Areas in Sulat, Eastern Samar during 25-Year Rainfall Return Period

For the municipality of Taft, with an area of 150.05 sq. km., 76.92% will experience flood levels of less 0.20 meters. 3.53% of the area will experience flood levels of 0.21 to 0.50 meters while 3.04%, 4.56%, 6.39%, and 4.88% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters and more than 5 meters, respectively.

Table 33.	Table 9 Affected	Areas in Taft	, Eastern Samar	during 25-Year	Rainfall Return Period
-----------	------------------	---------------	-----------------	----------------	------------------------

Affected Area (sq. km.) by flood depth (in m.)		Affected Barangays in Taft									
		Batiawan	Beto	Binaloan	Bongdo	Dacul	Danao	Del Remedios	Gayam		
	0.03-0.20	0.399143082	3.710009139	20.45708096	2.191217503	9.723308914	2.524547573	5.834588524	6.023927951		
с Э	0.21-0.50	0.019571507	0.137774648	0.534496716	0.160290501	0.457907711	0.077527775	0.194215431	0.174829837		
id Are km.)	0.51-1.00	0.017122903	0.1975381	0.707918895	0.232437487	0.333486062	0.108987405	0.259593966	0.173941309		
ffecte (sq.	1.01-2.00	0.019190229	0.377880711	1.061892324	0.626188958	0.446551471	0.233109656	0.521665221	0.333793496		
A	2.01-5.00	0.005293002	0.192491324	1.875280568	0.563741859	0.629668404	0.710318336	0.353583242	0.855330123		
	> 5.00	0	0	1.349411104	0.0021	0.008933681	0	3.61632E-05	0.550525652		

Table 34. Affected Areas in Taft, Eastern Samar during 25-Year Rainfall Return Period

Affected Area (sq. km.) by flood depth (in m.)		Affected Barangays in Taft										
		Lomatud	Mabuhay	Malinao	Mantang	Nato	Pangabutan	Pob. Brgy 1	Pob. Brgy 2			
	0.03-0.20	5.903461464	6.455736633	17.44046539	8.622202625	0.940128308	3.179790113	0.596238071	0.463938271			
g	0.21-0.50	0.241471208	0.135286019	0.565871827	0.40542532	0.089273926	0.146283189	0.118700381	0.184441435			
id Are km.)	0.51-1.00	0.278923391	0.119951271	0.535985731	0.368086766	0.054486727	0.149077392	0.010763308	0.063005749			
ffecte (sq.	1.01-2.00	0.472983901	0.134319051	0.670339711	0.62154487	0.024209597	0.274933227	0.000102166	0.010969856			
A	2.01-5.00	0.42799302	0.336036117	1.017196838	0.709295201	0.001628705	0.467499807	0	0			
	> 5.00	0.236095943	1.615333445	2.317856967	0.078357337	0	0	0	0			

Table 35. Affected Areas in Taft, Eastern Samar during 25-Year Rainfall Return Period

Affected Area (sq. km.) by flood depth (in m.)			Affected Barangays in Taft										
		Pob. Brgy 3	Pob. Brgy 4	Pob. Brgy 5	Pob. Brgy 6	Polangi	San Luis	San Pablo	San Rafael				
	0.03-0.20	0.178848777	0.080099203	0.303579599	1.678763591	1.578114973	1.037138036	11.5548955	4.547506514				
g	0.21-0.50	0.076554056	0.262917414	0.011301508	0.313680304	0.53551573	0.048900051	0.311063857	0.097365465				
d Are km.)	0.51-1.00	0.0005	0	0.0032808	0.163145489	0.310349264	0.051664502	0.355472521	0.061315671				
ffecte (sq.	1.01-2.00	0	0	0.033777382	0.129783144	0.055204079	0.112735138	0.625168416	0.061160513				
A	2.01-5.00	0	0	0.006392365	0.136233911	0.007149368	0.448094678	0.736548366	0.102780895				
	> 5.00	0	0	0.018893433	0.026239196	0.018711393	0	0.973534793	0.120476675				

Figure 78. Affected Areas in Taft, Eastern Samar during 25-Year Rainfall Return Period

For the 100-year return period, 9.9% of the municipality of Can-avid with an area of 285.22 sq. km. will experience flood levels of less 0.20 meters. 0.27% of the area will experience flood levels of 0.21 to 0.50 meters while 0.2%, 0.29%, 0.48% and 1.33% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters and more than 5 meters, respectively. Listed in Table 36 are the affected areas in square kilometres by flood depth per barangay.

Table 36. Affected Areas in Can-avid, Eastern Samar during 100-Year Rainfall Return Period

Affected Area (sq. km.) by flood depth (in m.)		Affected Barangays in Can-avid										
		Baruk	Camantang	Can-Ilay	Guibuangan	Јерасо	Salvacion					
	0.03- 0.20	5.599159495	8.64284424	6.087015878	1.819386362	3.93697106	2.158950761					
	0.21- 0.50	0.193337346	0.236597905	0.107479136	0.055346153	0.128474208	0.049612714					
ted Area . km.)	0.51- 1.00	0.112216895	0.152509302	0.085917484	0.065218036	0.084067631	0.067384069					
Affec (sq	1.01- 2.00	0.080000146	0.213045942	0.120728383	0.162712176	0.119108551	0.140357462					
	2.01- 5.00	0.125970949	0.359114645	0.356789089	0.111848107	0.135334129	0.265995043					
	> 5.00	0.1089	1.350402152	2.132932855	0	0	0.200723416					

Figure 81. Affected Areas in Can-avid, Eastern Samar during 100-Year Rainfall Return Period

For the municipality of Sulat, with an area of 230.27 sq. km., 3.69% will experience flood levels of less 0.20 meters. 0.36% of the area will experience flood levels of 0.21 to 0.50 meters while 0.26%, 0.42%, 0.39% and 0.00013% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and above 5 meters, respectively. Listed in Table 37 are the affected areas in square kilometres by flood depth per barangay.

Affected Area (sq. km.) by flood depth (in m.)		Affected Barangays in Sulat							
		Kandalakit	San Isidro	Santo Niño	Santo Tomas				
	0.03- 0.20	2.939111126	3.413194856	0.97728331	1.172184				
с.	0.21- 0.50 0.121565386		0.567619516	0.101787428	0.04077				
ted Area I. km.)	0.51- 1.00	0.109503145	0.302279035	0.119935774	0.064332				
Affec (sq	1.01- 2.00	0.284539501	0.391271604	0.222090602	0.067466				
	2.01- 5.00	0.540223872	0.28706545	0.076563391	0.0002				
	> 5.00	0	0.0003	0	0				

Table 37. Affected Areas in Sulat, Eastern Samar during 100-Year Rainfall Return Period

Figure 82. Affected Areas in Sulat, Eastern Samar during 100-Year Rainfall Return Period

For the municipality of Taft, with an area of 150.05 sq. km., 74.95% will experience flood levels of less 0.20 meters. 3.63% of the area will experience flood levels of 0.21 to 0.50 meters while 2.9%, 4.05%, 7.87%, and 5.92% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters and more than 5 meters, respectively.

TAFT BASIN		Affected Barangays in Taft										
		Batiawan	Beto	Binaloan	Bongdo	Dacul	Danao	Del Remedios	Gayam			
	0.03-0.20	0.395178917	3.646282885	19.91259377	2.135247673	9.554534007	2.473126474	5.737414112	5.88605481			
ŋ	0.21-0.50	0.018064165	0.137464153	0.503945591	0.143031277	0.495192295	0.069446563	0.182512141	0.168407146			
d Are km.)	0.51-1.00	0.01649441	0.160033848	0.655545545	0.17860293	0.34691105	0.087484023	0.216588575	0.147727056			
ffecte (sq.	1.01-2.00	0.02069441	0.371342732	0.864527035	0.590472053	0.386748201	0.193869062	0.379807309	0.221268978			
A	2.01-5.00	0.009888821	0.300570306	2.378835917	0.726222373	0.793122899	0.814364624	0.642051919	0.811556461			
	> 5.00	0	0	1.670832701	0.0024	0.023647791	0.0162	0.00530849	0.877333917			

Table 38. Affected Areas in Taft, Eastern Samar during 100-Year Rainfall Return Period

Table 39. Affected Areas in Taft, Eastern Samar during 100-Year Rainfall Return Period

TAFT BASIN		Affected Barangays in Taft										
		Lomatud	Mabuhay	Malinao	Mantang	Nato	Pangabutan	Pob. Brgy 1	Pob. Brgy 2			
	0.03-0.20	5.769057621	6.270902736	16.93101875	8.402429261	0.920881158	3.123415999	0.535523723	0.388959574			
g	0.21-0.50	0.218385436	0.147587355	0.572069769	0.441081412	0.094645161	0.136343831	0.172863093	0.245653361			
d Are km.)	0.51-1.00	0.238196416	0.108793119	0.536541901	0.367983794	0.058530399	0.143225767	0.016447146	0.060455075			
ffecte (sq.	1.01-2.00	0.380830307	0.135125294	0.694992025	0.570935953	0.033241841	0.223016508	0.000969964	0.027287301			
A	2.01-5.00	0.654242206	0.298998561	1.170694945	0.919264262	0.002428705	0.591581623	0	0			
	> 5.00	0.300216941	1.835255471	2.64249907	0.103217438	0	0	0	0			

Table 40. Affected Areas in Taft, Eastern Samar during 100-Year Rainfall Return Period

TAFT BASIN		Affected Barangays in Taft										
		Pob. Brgy 3	Pob. Brgy 4	Pob. Brgy 5	Pob. Brgy 6	Polangi	San Luis	San Pablo	San Rafael			
	0.03-0.20	0.155893691	0.037650612	0.299998065	1.582958491	1.478543696	1.015601633	11.30815811	4.502501446			
ø	0.21-0.50	0.097809142	0.294366004	0.013806996	0.308737574	0.546611629	0.042458295	0.28983425	0.106721447			
d Are km.)	0.51-1.00	0.0022	0.011	0.003734245	0.186556048	0.379567346	0.049716192	0.315998122	0.062881248			
ffecte (sq.	1.01-2.00	0	0	0.0016226	0.175996277	0.047955886	0.091795129	0.603339144	0.064541785			
A	2.01-5.00	0	0	0.037533958	0.139307422	0.03154498	0.498961155	0.881681811	0.104142377			
	> 5.00	0	0	0.020529222	0.054789823	0.020921271	0	1.157672011	0.149817431			

Figure 83. Affected Areas in Taft, Eastern Samar during 100-Year Rainfall Return Period

Figure 85. Affected Areas in Taft, Eastern Samar during 100-Year Rainfall Return Period

Among the barangays in the municipality of Can-avid, Camantang is projected to have the highest percentage of area that will experience flood levels at 3.84%. Meanwhile, Can-Ilay posted the second highest percentage of area that may be affected by flood depths at 3.12%.

Among the barangays in the municipality of Sulat, San Isidro is projected to have the highest percentage of area that will experience flood levels at 2.15%. Meanwhile, Kandalakit posted the second highest percentage of area that may be affected by flood depths at 1.73%.

Among the barangays in the city of Taft, Binaloan is projected to have the highest percentage of area that will experience flood levels of at 17.32%. Meanwhile, Malinao posted the second highest percentage of area that may be affected by flood depths of at 15.03%.

Moreover, the generated flood hazard maps for the Taft Floodplain were used to assess the vulnerability of the educational and medical institutions in the floodplain. Using the flood depth units of PAG-ASA for hazard maps - "Low", "Medium", and "High" - the affected institutions were given their individual assessment for each Flood Hazard Scenario (5 yr, 25 yr, and 100 yr).

Warning Level	Area Covered in sq. km.							
	5 year 25 year 100 year							
Low	6.92	6.99	7.21					
Medium	11.27	10.24	9.56					
High	19.82	26.53	30.84					

Table 41. Area covered by each warning level with respect to the rainfall scenario

For Taft, only one educational institution, which is the Brgy. Dacul Day Care Center, was identified and is not assessed to be exposed to any level of flooding.

5.11 Flood Validation

IIn order to check and validate the extent of flooding in different river systems, there is a need to perform validation survey work. Field personnel gather secondary data regarding flood occurrence in the area within the major river system in the Philippines.

From the Flood Depth Maps produced by Phil-LiDAR 1 Program, multiple points representing the different flood depths for different scenarios are identified for validation.

The validation personnel will then go to the specified points identified in a river basin and will gather data regarding the actual flood level in each location. Data gathering can be done through a local DRRM office to obtain maps or situation reports about the past flooding events or interview some residents with knowledge of or have had experienced flooding in a particular area.

After which, the actual data from the field will be compared to the simulated data to assess the accuracy of the Flood Depth Maps produced and to improve on what is needed. The flood validation consists of 170 points randomly selected all over the Taft Floodplain. It has an RMSE value of 0.98.

Figure 86. Validation points for 5-year Flood Depth Map of Taft Floodplain

Figure 87. .Flood map depth vs actual flood depth

Table 42. Actual Flood Depth vs Simulated Flood Depth in Dipolog

LIBERTAD BASIN		Modeled Flood Depth (m)							
		0-0.20	0.21-0.50	0.51-1.00	1.01-2.00	2.01-5.00	> 5.00	Total	
	0-0.20	60	9	4	4	6	0	83	
	0.21-0.50	36	3	0	1	2	1	43	
Actual	0.51-1.00	24	11	1	0	1	0	37	
Flood	1.01-2.00	3	2	0	0	2	0	7	
(m)	2.01-5.00	0	0	0	0	0	0	0	
(,	> 5.00	0	0	0	0	0	0	0	
	Total	123	25	5	5	11	1	170	

The overall accuracy generated by the flood model is estimated at 37.65% with 64 points correctly matching the actual flood depths. In addition, there were 47 points estimated one level above and below the correct flood depths while there were 32 points and 16 points estimated two levels above and below, and three or more levels above and below the correct flood. A total of 4 points were overestimated while a total of 76 points were underestimated in the modelled flood depths of Taft.

Table 43. Summary of Accuracy Assessment in Taft

	No. of Points	%
Correct	64	37.65
Overestimated	30	17.65
Underestimated	76	44.71
Total	170	100.00

REFERENCES

Ang M.O., Paringit E.C., et al. 2014. DREAM Data Processing Component Manual. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Balicanta L.P., Paringit E.C., et al. 2014. DREAM Data Validation Component Manual. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Lagmay A.F., Paringit E.C., et al. 2014. DREAM Flood Modeling Component Manual. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry. Paringit E.C, Balicanta L.P., Ang, M.O., Sarmiento, C. 2017. Flood Mapping of Rivers in the Philippines Using Airborne Lidar: Methods. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Sarmiento C., Paringit E.C., et al. 2014. DREAM Data Acquisition Component Manual. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry. UP TCAGP 2016, Acceptance and Evaluation of Synthetic Aperture Radar Digital Surface Model (SAR DSM) and Ground Control Points (GCP). Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

LDRRM Office of Siay Philippine Information Agency- IX Mines and Geosciences Bureau- IX

ANNEXES

Annex 1. Technical Specifications of the LIDAR Sensors used in the Taft Floodplain Survey

1. PEGASUS SENSOR

Table A-1.1 Parameters and Specifications

Parameter	Specification
Operational altitude	300-600 m AGL
Laser pulse repetition rate	33, 50. 70 kHz
Scan rate	0-70 Hz
Scan half-angle	0 to ± 25 °
Laser footprint on water surface	30-60 cm
Depth range	0 to > 10 m (for k < 0.1/m)
Topographic mode	
Operational altitude	300-2500
Range Capture	Up to 4 range measurements, including 1st, 2nd, 3rd, and last returns
Intensity capture	12-bit dynamic measurement range
Position and orientation system	POS AVTM 510 (OEM) includes embedded 72-channel GNSS receiver (GPS and GLONASS)
Data Storage	Ruggedized removable SSD hard disk (SATA III)
Power	28 V, 900 W, 35 A
Image capture	5 MP interline camera (standard); 60 MP full frame (optional)
Full waveform capture	12-bit Optech IWD-2 Intelligent Waveform Digitizer (optional)
Dimensions and weight	Sensor:250 x 430 x 320 mm; 30 kg;
Control rack: 591 x 485 x 578 mm; 53 kg	Removable solid state disk SSD (SATA II)
Operating temperature	0-35°C
Relative humidity	0-95% no-condensing
Operating temperature	-10°C to +35°C (with inLibertading jacket)
Relative humidity	0-95% no-condensing

Annex 2. NAMRIA Certification of Reference Points Used in the LIDAR Survey

SME-3139

NATIONAL	Environment and Natural Resources MAPPING AND RESOURCE INFORMATION A	AUTHORITY
		May 09, 2
	CERTIFICATION	
To whom it may concern:		united automa information in an follo
This is to certify that according	to the records on file in this office, the requ	Jested survey mormation is as iono
	Province: NEGROS OCCIDENTAL Station Name: NGW-87	
	Order: 2nd	Demonstra PALUCANAC
Island: VISAYAS Municipality: LA CASTELLAN/	4	Barangay: BALUCANAG
1	PRS92 Coordinates	Ellipsoidal Hot 333 32600 r
Lautude: 10" 20" 32.34942"	Longitude. 123" 6 53.05608	Emperior rgt 000.02000 l
1 otitudo: 10º 20' 28 15128"	WGS84 Coordinates	Ellipsoidal Hot: 393.14800 r
Lautode. 10-20 20.15150	DTM Coordinates	
Northing: 1143593.27 m.	Easting: 516216.608 m.	Zone: 4
	UTM Coordinates	
Northing: 1,143,192.99	Easting: 516,210.93	Zone: 51
2007; NAMRIA". The station is on Requesting Party: UP DREAM Pupose: Reference OR Number: 8796117 A T.N.: 2014-1071	Perc F Directo	RUEL DM. BELEN, MNSA r, Mapping And Geodesy Branch
		0 5 0 9 2 0 1 4 1 0 2 4 5 1
\cap	Main : Lawton Avenue, Fot Bontacio, 1634 Taguig City, Philippines Tel. No. Branch : 421 Barraca St. San Nicolas, 1010 Manila, Philippines, Tel. No. (632)	5:: (632) 810-4831 to 41) 241-3484 to 96

Annex 3. Baseline Processing Reports of Control Points used in the LIDAR Survey

SE-16

	SME-3	139 - SE-16 (6:11:	03 AM-11:0	4:02 AI	M) (S2)	
Baseline observation	1:	SME	E-3139 SE-	16 (B2)		
Processed:		6/30	0/2014 5:42:19	PM		
Solution type:		Fixe	bd			
Frequency used:		Dua	al Frequency (L	.1, L2)		
Horizontal precision:		0.00	01 m			
Vertical precision:		0.00	02 m			
RMS:		0.00	00 m			
Maximum PDOP:		3.43	34			
Ephemeris used:		Broo	adcast			
Antenna model:		Trin	nble Relative			
Processing start time	e:	6/9/	2014 6:11:10	AM (Loca	al: UTC+8hr)	
Processing stop time	E:	6/9/	2014 11:04:02	AM (Lo	cal: UTC+8hr)	
Processing duration:			52:52			
Processing interval:			1 second			
Vector Component	ts (Mark to Mark)					
From:	SME-3139					
	Grid	Lo	cal			Global
Easting	765219.591 m	Latitude	N11*50'02	.95701"	Latitude	N11*49'58.57713
Northing	1309289.260 m	Longitude	E125°26'03	3.02189"	Longitude	E125°26'08.12160
Elevation	2.987 m	Height		0.356 m	Height	62.185 n
To:	SE-16					
	Grid	Lo	cal			Global
Easting	765219.942 m	Latitude	N11°50'03	8.05106"	Latitude	N11°49′58.67117
Northing	1309292.154 m	Longitude	E125*26'03	3.03429"	Longitude	E125*26'08.13400
Elevation	3.103 m	Height	ight 0.472 m		Height	62.301 n
Vector						
ΔEasting 0.35		50 m NS Fwd Azimuth			7°23'58" ∆X	-0.028 n
∆Northing	2.89	94 m Ellipsoid Dist.		2.914 m ΔY	-0.608 n	
∆Elevation 0.11		6 m ∆Height			0.116 m ΔZ	2.852 n
Standard Errors						
Vector errors:						
σ ΔEasting	0.000 m	σ NS fwd Azimuth			0°00'35" σ ΔX	0.001 n
	0.000 m	or Ellipsoid Dist			0.000 m g AY	0.001 m
σ∆Northing	0.000 m	o Ellipsoid Disc			0.000 111 0 21	0.0011

Figure A-3.1 SE-16

Annex 4. The LIDAR Survey Team Composition

Data Acquisition Component Sub-Team	Designation	Name	Agency/ Affiliation
PHIL-LIDAR 1	Program Leader	ENRICO C. PARINGIT, D.ENG	UP-TCAGP
Data Acquisi-	Data Component Project Leader - I	ENGR. CZAR JAKIRI SARMIENTO	UP-TCAGP
tion Component Leader	Data Component Project Leader – I	ENGR. LOUIE P. BALICANTA	UP-TCAGP
	Chief Science Research Specialist (CSRS)	ENGR. CHRISTOPHER CRUZ	UP-TCAGP
Survey Supervisor	Supervising Science Research Specialist	LOVELY GRACIA ACUÑA	UP-TCAGP
	(Supervising SRS)	LOVELYN ASUNCION	UP-TCAGP
	F	FIELD TEAM	
	Research Associate (RA)	PAULINE JOANNE ARCEO	UP-TCAGP
LiDAR Operation	RA	MARY CATHERINE ELIZABETH BALIGUAS	UP-TCAGP
Ground Survey, Data Download and Transfer	RA	JERIEL PAUL ALAMBAN	UP-TCAGP
	Airborne Security	SSG. RAYMUND DOMINE	PHILIPPINE AIR FORCE (PAF)
LiDAR Operation	Pilot	CAPT. NEIL ACHILLES AGAWIN	ASIAN AEROSPACE CORPORATION (AAC)
		CAPT. JACKSON JAVIER	AAC

Table A-4.1. The LiDAR Survey Team Composition

Flight Log for 3BLK33J160A Mission.

1 LIDAR Operator: P. ArtcEo	2 ALTM Model: AtvA	3 Mission Name: 364:33 P1544	1 4 Type: VFR	5 Aircraft Type: Cesnna T206H	6 Alrcraft Identification: 412
7 Pilot: J. JAVIER 80	CO-PILOT: N . ALAWIN	9 Route:			
10 Date: 07 Jow 14	12 Airport of Departure	(Airport, Gty/Province): 1	2 Airport of Arrival	(Airport, Gtty/Province):	
13 Engine On: [0330 14	Engine Off: 1353	15 Total Engine Time: 1 3-23	6 Take off:	17 Landing:	18 Total Flight Time:
19 Weather					
20 Remarks: 21 Problems and Solutions:					
Acquisition Flight Approved	t by Acquist	ion Fileht Gertlings by	Pilot-in-Comma		idar Operator
Lever Action A	ALC Signature Revenue	C. M. D. C. C. C. C. C. P. C. C. P. C.	Signature over	Printed Name	ignature over Printed Name
			Dise	sster Risk and Exposure Assess	R E A M ment for Mitigation

Figure A-6.1 Flight Log for 3BLK33]160A Mission.

Flight Log No.: 150.04 Aircraft Mechanic/ LIDAR Technician 5 Aircraft Type: Cesnna T206H 6 Aircraft Identification: 9123 Signature over Printed Name 18 Total Flight Time: Mission completed over BLK33J ture over Printed Name 12 Airport of Arrival (Airport, City/Province): Figure A-6.2 Flight Log for 3BLK33J160A Mission. JOAR Op 17 Landing: ... 21 Remarks 3 Mission Name: 38 LK 33 4 Gog 4 Type: VFR Name 16 Take off: UR Javin O LIDAR System Maintenance O Aircraft Maintenance O Phil-LIDAR Admin Activities Signature over Pilot-in-Co 8 Co-Pilot: N. ALANIN 9 Route: 12 Airport of Departure (Airport, Gty/Province): 15 Total Engine Time: 453 20.c Others Acquisition Flight Certified by ature over Printed Name (PAF Representative) 1 UDAR Operator: C. BALIGUES 2 ALTM Model: 4 QVA Alrcraft Test Flight
 AAC Admin Flight
 Others: . 20.b Non Billable 14 Engine Off: PHIL-LIDAR 1 Data Acquisition Flight Log 2 Acquisition Flight Approved by Acquisition Flight
 Acquisition Flight
 System Test Flight
 Callbration Flight O Weather Problem
 System Problem
 System Problem
 Alcraft Problem
 Pilot Problem
 Others Signature over Printed Name (End User Representative) Flight Log for 3BLK33J160A Mission. 22 Problems and Solutions 10 Date: Of JUNE 7 Pilot: J JAVIEN 20 Flight Classification fund 13 Engine On: 20.a Billable 19 Weather

97

Annex 7. Flight status reports

FLIGHT STATUS REPORT TACLOBAN

FLIGHT NO	AREA	MISSION	OPERATOR	DATE FLOWN	REMARKS
1558A	BLK33J	3BLK33J160A	PJ ARCEO	9 JUN 14	Completed 12 lines over BLK33J
1560A	BLK33J	3BLK33JS160B	MCE BALIGUAS	9 JUN 14	Mission completed over BLK33J

Flight No. :	1558A		
Area:	BLOCK 33J		
Total Area:	115.55 sq. km.		
Mission Name:	3BLK33J60A		
Altitude:	500m		
PRF:	50 kHz	SCF:	45 Hz
Lidar FOV:	22 deg	Sidelap	:30%

Figure A-7.1. Swath Coverage of Mission 3BLK33J60A
ANNEX 8. Mission Summary Reports

Table A-8.1. Mission Sur	nmary Report for Mission Blk33J
Flight Area	Samar-Leyte
Mission Name	Blk33J
Inclusive Flights	1560A, 1558A
Range data size	26.3 GB
POS	500 MB
Image	167.9 GB
Transfer date	June 19, 2014
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	No
Processing Mode (<=1)	No
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	2.1
RMSE for East Position (<4.0 cm)	2.2
RMSE for Down Position (<8.0 cm)	3.1
Boresight correction stdev (<0.001deg)	0.000327
IMU attitude correction stdev (<0.001deg)	0.000898
GPS position stdev (<0.01m)	0.0098
Minimum % overlap (>25)	36.01%
Ave point cloud density per sq.m. (>2.0)	2.71
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	291
Maximum Height	248.48 m
Minimum Height	49.30 m
Classification (# of points)	
Ground	110,486,647
Low vegetation	51,277,620
Medium vegetation	61,095,498
High vegetation	151,119,077
Building	2,518,830
Orthophoto	Yes
Processed by	Engr. Jommer Medina, Engr. Edgardo Gubatanga Jr., Engr. Gladys Mae Apat

Figure A-8.2. Smoothed Performance Metric Parameters

Figure A-8.4. Coverage of LiDAR data

125°30'0"E

125"40'0"E

Figure A-8.6. Density map of merged LiDAR data

Figure A-8.7. Elevation difference between flight lines

Annex 9. Taft Model Basin Parameters

Table A-9.1. Taft Model Basin Parameters

	SCS Curve N	Jumber Los	ss Model	Clark Transfo	rm Model		Recessi	on Constant E	3aseflow Model	
basin Number	Initial Abstraction	Curve Number	Impervious	Time of Concentration	Storage Coefficient	lnitial Type	Initial Discharge	Recession Constant	Threshold Type	Ratio to Peak
W340	109.9177215	91.679	0.0	4.1089	2.23524	Discharge	1.2401	0.65	Ratio to Peak	0.55
W350	116.4759494	90.732	0.0	6.1497	3.3453	Discharge	2.7955	0.65	Ratio to Peak	0.55
W360	70.094	97.881	0.0	1.6441	0.89439	Discharge	0.17846	0.65	Ratio to Peak	0.55
W370	445.7347503	59.752	0.0	3.537	1.92414	Discharge	0.23532	0.65	Ratio to Peak	0.55
W380	126.443038	89.33	0.0	10.352	5.6316	Discharge	3.0362	0.65	Ratio to Peak	0.55
W390	251.1458172	74.858	0.0	5.5148	3	Discharge	1.9203	0.65	Ratio to Peak	0.55
W400	141.2168232	87.33	0.0	3.3562	1.8258	Discharge	0.98251	0.65	Ratio to Peak	0.55
W410	141.7966516	87.253	0.0	3.1187	1.69656	Discharge	1.1748	0.65	Ratio to Peak	0.55
W420	133.950592	88.302	0.0	2.0686	1.12533	Discharge	0.54151	0.65	Ratio to Peak	0.55
W430	192.768477	81.001	0.0	3.1741	1.72674	Discharge	1.3475	0.65	Ratio to Peak	0.55
W440	229.2348661	77.051	0.0	3.4721	1.88883	Discharge	0.98734	0.65	Ratio to Peak	0.55
W450	172.564312	83.369	0.0	3.3029	1.79676	Discharge	1.3574	0.65	Ratio to Peak	0.55
W460	326.5077032	68.182	0.0	8.4191	4.5801	Discharge	2.0363	0.65	Ratio to Peak	0.55
W470	138.6810943	06	0.0	3.8343	2.0859	Discharge	2.3170	0.65	Ratio to Peak	0.55
W480	320.4641423	85.842	0.0	8.828	4.8024	Discharge	2.8285	0.65	Ratio to Peak	0.55
W490	345.7193411	83.333	0.0	1.0547	0.57378	Discharge	0.0529461	0.65	Ratio to Peak	0.55
W500	499.8401003	70.722	0.0	2.924	1.59063	Discharge	0.0237982	0.65	Ratio to Peak	0.55
W510	454.4742622	74.019	0.0	3.08	1.6755	Discharge	0.13634	0.65	Ratio to Peak	0.55
W520	353.6420156	82.576	0.0	9.8632	5.3658	Discharge	2.3308	0.65	Ratio to Peak	0.55
W530	459.189361	73.6625	0.0	6.5063	3.5394	Discharge	0.14252	0.65	Ratio to Peak	0.55
W540	404.0445259	78.065	0.0	4.7614	2.5902	Discharge	2.1809	0.65	Ratio to Peak	0.55
W550	345.8778251	83.318	0.0	4.2248	2.2983	Discharge	0.83802	0.65	Ratio to Peak	0.55

0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.001
Ratio to Peak											
0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.2
1.9912	0.0995593	1.4671	0.35322	2.2058	1.1441	2.0824	1.7270	0.42717	0.91100	2.1073	0.46564
Discharge											
4.353	1.26312	2.84433	1.41576	4.8663	2.83782	3.156	3.5916	1.53054	2.76543	3.4086	1.4536
8.0021	2.3219	5.2285	2.6025	8.9453	5.2166	5.8014	6.6025	2.8135	5.0835	6.2659	5.6952
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0
83.122	71.103	78.106	76.921	82.207	78.028	82.579	83.333	83.333	83.333	83.1	35.271
347.914458	494.3893278	403.5687438	417.7715143	357.5618452	404.487937	353.6126759	345.7193411	345.7193411	345.7193411	348.1461716	11.24
W560	W570	W580	W590	W600	W610	W620	W630	W640	W650	W660	W780

		ML	uskingum Cunge	Routing Model			
Reach Number	Time Step Method	Length (m)	Slope	Manning's n	Shape	Width	Side Slope
R120	Automatic Fixed Interval	5065.7	0.00125	0.5175	Trapezoid	30	1
R140	Automatic Fixed Interval	1173.8	0.01213	0.1459	Trapezoid	30	1
R150	Automatic Fixed Interval	113.14	0.00125	0.3649	Trapezoid	30	1
R160	Automatic Fixed Interval	9527.2	0.00807	0.0129	Trapezoid	30	1
R180	Automatic Fixed Interval	1403.6	0.00125	0.0583	Trapezoid	30	1
R200	Automatic Fixed Interval	3184.3	0.00125	0.0257	Trapezoid	30	1
R220	Automatic Fixed Interval	7230.1	0.00125	0.1611	Trapezoid	30	1
R240	Automatic Fixed Interval	1209.4	0.00125	0.0964	Trapezoid	30	1
R260	Automatic Fixed Interval	2349.5	0.01865	0.0325	Trapezoid	30	1
R280	Automatic Fixed Interval	10352	0.00623	0.1623	Trapezoid	30	1
R30	Automatic Fixed Interval	3022.8	0.00414	0.0129	Trapezoid	30	1
R300	Automatic Fixed Interval	2071.9	0.00920	0.1621	Trapezoid	30	1
R40	Automatic Fixed Interval	827.31	0.00125	0.0622	Trapezoid	30	1
R70	Automatic Fixed Interval	3348.2	0.01068	0.4026	Trapezoid	30	1
R80	Automatic Fixed Interval	17777	0.00125	1	Trapezoid	30	1
R90	Automatic Fixed Interval	1236.1	0.04759	0.0331	Trapezoid	30	1

Annex 10. Taft Model Reach Parameters

Annex 11. Taft Field Validation Points

Point	Validation C	oordinates	Model	Validation			Rain
Number	Lat	Long	Var (m)	Points (m)	Error	Event/Date	Return / Scenario
1	11.9154451	125.404965	0.59	1	-0.410	Typhoon Ruby/ December 07, 2014	5 -Year
2	11.9151591	125.405401	0.03	1	-0.970	Typhoon Ruby/ December 07, 2014	5 -Year
3	11.9145189	125.400393	0.05	1	-0.950	Typhoon Ruby/ December 07, 2014	5 -Year
4	11.9139467	125.40002	0.03	1	-0.970	Typhoon Ruby/ December 07, 2014	5 -Year
5	11.9123774	125.416275	0.03	0	0.030	Typhoon Ruby/ December 07, 2014	5 -Year
6	11.9119981	125.416509	0.03	0	0.030	Typhoon Ruby/ December 07, 2014	5 -Year
26	11.9073316	125.422249	0.00	0	0.000	Typhoon Ruby/ December 07, 2014	5 -Year
28	11.9069925	125.422415	0.00	0	0.000	Typhoon Ruby/ December 07, 2014	5 -Year
29	11.9063808	125.421924	0.03	0	0.030	Typhoon Ruby/ December 07, 2014	5 -Year
30	11.9059095	125.421492	0.06	0.3	-0.240	Typhoon Ruby/ December 07, 2014	5 -Year
30	11.9059095	125.421492	0.06	0.2	-0.140	Heavy Rain/De- cember 17, 2016	5 -Year
31	11.9062626	125.421186	0.04	0.2	-0.160	Typhoon Ruby/ December 07, 2014	5 -Year
31	11.9062626	125.421186	0.04	0.1	-0.060	Heavy Rain/ December 17, 2016	5 -Year
32	11.9056867	125.423446	0.06	0.2	-0.140	Typhoon Ruby/ December 07, 2014	5 -Year
32	11.9056867	125.423446	0.06	0.1	-0.040	Heavy Rain/ December 17, 2016	5 -Year
33	11.9055197	125.426535	0.04	0.5	-0.460	Heavy Rain/ December 17, 2016	5 -Year
34	11.9054049	125.424522	0.04	0.5	-0.460	Heavy Rain/ December 17, 2016	5 -Year

Point	Validation C	oordinates	Model	Validation	_		Rain
Number	Lat	Long	Var (m)	Points (m)	Error	Event/Date	Return / Scenario
35	11.9046299	125.428528	0.00	0	0.000	Typhoon Ruby/ December 07, 2014	5 -Year
36	11.9074706	125.415482	0.06	0.3	-0.240	Typhoon Yolanda/ November 08, 2013	5 -Year
36	11.9074706	125.415482	0.06	0.6	-0.540	Typhoon Ruby/ December 07, 2014	5 -Year
37	11.9059318	125.418172	0.06	0.2	-0.140	Typhoon Yolanda/ November 08, 2013	5 -Year
37	11.9059318	125.418172	0.06	0.4	-0.340	Typhoon Ruby/ December 07, 2014	5 -Year
38	11.9052177	125.418907	0.03	0	0.030	Typhoon Ruby/ December 07, 2014	5 -Year
39	11.9046882	125.419513	0.06	0	0.060	Typhoon Ruby/ December 07, 2014	5 -Year
43	11.902181	125.421937	0.00	0.5	-0.500	Typhoon Ruby/ December 07, 2014	5 -Year
43	11.902181	125.421937	0.00	0.7	-0.700	Typhoon Yolanda/ November 08, 2013	5 -Year
44	11.9027248	125.420926	0.07	0.5	-0.430	Heavy Rain/De- cember 17, 2016	5 -Year
45	11.9037405	125.419191	0.13	0.5	-0.370	Heavy Rain/De- cember 17, 2016	5 -Year
46	11.90255	125.420212	0.09	0.4	-0.310	Typhoon Ruby/ December 07, 2014	5 -Year
46	11.90255	125.420212	0.09	0.5	-0.410	Typhoon Yolanda/ November 08, 2013	5 -Year
47	11.9027339	125.419621	0.13	0	0.130	Typhoon Ruby/ December 07, 2014	5 -Year
48	11.9029523	125.418899	0.17	0.7	-0.530	Typhoon Ruby/ December 07, 2014	5 -Year
49	11.9019971	125.4193	0.06	1	-0.940	Typhoon Ruby/ December 07, 2014	5 -Year
50	11.9022449	125.418623	0.13	0.5	-0.370	Heavy Rain/ December 17, 2016	5 -Year

Point	Validation C	oordinates	Model	Validation	_		Rain
Number	Lat	Long	Var (m)	Points (m)	Error	Event/Date	Return / Scenario
51	11.9035639	125.418675	0.17	0.5	-0.330	Heavy Rain/ December 17, 2016	5 -Year
52	11.9025265	125.418177	0.15	0.8	-0.650	Typhoon Ruby/ December 07, 2014	5 -Year
52	11.9025265	125.418177	0.15	0.5	-0.350	Typhoon Yolanda/ November 08, 2013	5 -Year
53	11.9020668	125.417988	0.11	0.8	-0.690	Heavy Rain/De- cember 17, 2016	5 -Year
54	11.9016394	125.41841	0.07	0	0.070	Typhoon Ruby/ December 07, 2014	5 -Year
55	11.9010166	125.418389	0.04	0	0.040	Typhoon Ruby/ December 07, 2014	5 -Year
56	11.9025153	125.416996	0.06	0	0.060	Typhoon Ruby/ December 07, 2014	5 -Year
57	11.9033901	125.41757	0.22	0	0.220	Typhoon Ruby/ December 07, 2014	5 -Year
58	11.9043228	125.417949	0.21	2	-1.790	Typhoon Yolanda/ November 08, 2013	5 -Year
59	11.9047765	125.416754	0.10	1.8	-1.700	Typhoon Yolanda/ November 08, 2013	5 -Year
60	11.9043565	125.416655	0.13	0.5	-0.370	Heavy Rain/De- cember 17, 2016	5 -Year
61	11.9037835	125.416528	0.22	0	0.220	Typhoon Ruby/ December 07, 2014	5 -Year
62	11.9030972	125.416233	0.22	0	0.220	Typhoon Ruby/ December 07, 2014	5 -Year
63	11.9026796	125.416093	0.13	0	0.130	Typhoon Ruby/ December 07, 2014	5 -Year
64	11.9055607	125.415959	0.08	0.6	-0.520	Heavy Rain/De- cember 17, 2016	5 -Year
65	11.9048913	125.415299	0.06	0	0.060	Typhoon Ruby/ December 07, 2014	5 -Year
66	11.9042706	125.41505	0.07	0	0.070	Typhoon Ruby/ December 07, 2014	5 -Year
67	11.9036495	125.414763	0.10	0.4	-0.300	Heavy Rain/ December 17, 2016	5 -Year

Point	Validation C	oordinates	Model	Validation	_		Rain
Number	Lat	Long	Var (m)	Points (m)	Error	Event/Date	Scenario
68	11.9032807	125.414763	0.10	0.5	-0.400	Typhoon Ruby/ December 07, 2014	5 -Year
69	11.9025048	125.414373	0.06	0.6	-0.540	Typhoon Ruby/ December 07, 2014	5 -Year
70	11.9020173	125.414835	0.10	0	0.100	Typhoon Ruby/ December 07, 2014	5 -Year
71	11.9013349	125.414358	0.06	0	0.060	Typhoon Ruby/ December 07, 2014	5 -Year
72	11.9033211	125.413377	0.09	0	0.090	Typhoon Ruby/ December 07, 2014	5 -Year
73	11.9023889	125.413384	0.03	0.5	-0.470	Heavy Rain/De- cember 17, 2016	5 -Year
74	11.9063577	125.41351	0.15	0.3	-0.150	Heavy Rain/De- cember 17, 2016	5 -Year
75	11.9055972	125.414105	0.06	0.3	-0.240	Heavy Rain/De- cember 17, 2016	5 -Year
76	11.904934	125.413528	0.04	0	0.040	Typhoon Ruby/ December 07, 2014	5 -Year
77	11.9047141	125.414529	0.05	0	0.050	Typhoon Ruby/ December 07, 2014	5 -Year
78	11.9042293	125.413211	0.05	0	0.050	Typhoon Ruby/ December 07, 2014	5 -Year
79	11.9056651	125.413024	0.13	0.6	-0.470	Typhoon Ruby/ December 07, 2014	5 -Year
80	11.913989	125.409968	0.04	0.5	-0.460	Typhoon Ruby/ December 07, 2014	5 -Year
81	11.914212	125.410517	0.04	0.5	-0.460	Typhoon Ruby/ December 07, 2014	5 -Year
82	11.9109894	125.393743	0.81	0	0.810	Typhoon Ruby/ December 07, 2014	5 -Year
83	11.9097782	125.393868	0.07	0	0.070	Typhoon Ruby/ December 07, 2014	5 -Year
84	11.9091981	125.393717	0.03	0	0.030	Typhoon Ruby/ December 07, 2014	5 -Year
85	11.9086162	125.393585	0.68	0	0.680	Typhoon Ruby/ December 07, 2014	5 -Year

Point	Validation C	Coordinates	Model	Validation			Rain
Number	Lat	Long	Var (m)	Points (m)	Error	Event/Date	Return / Scenario
86	11.9081878	125.393546	1.07	0	1.070	Typhoon Ruby/ December 07, 2014	5 -Year
87	11.9087506	125.393356	0.03	0.7	-0.670	Heavy Rain/De- cember 17, 2016	5 -Year
88	11.9086741	125.392601	0.03	0	0.030	Typhoon Ruby/ December 07, 2014	5 -Year
89	11.9072256	125.394226	0.50	0.5	0.000	Heavy Rain/De- cember 17, 2016	5 -Year
90	11.9064671	125.395523	0.03	0.7	-0.670	Heavy Rain/De- cember 17, 2016	5 -Year
91	11.9040906	125.397094	0.06	0.5	-0.440	Heavy Rain/De- cember 17, 2016	5 -Year
92	11.9035208	125.397274	0.03	0.5	-0.470	Heavy Rain/De- cember 17, 2016	5 -Year
93	11.9067258	125.394647	0.15	0.5	-0.350	Heavy Rain/De- cember 17, 2016	5 -Year
94	11.902677	125.397894	0.26	0	0.260	Typhoon Ruby/ December 07, 2014	5 -Year
95	11.9012501	125.398231	0.18	0	0.180	Typhoon Ruby/ December 07, 2014	5 -Year
96	11.8986444	125.391635	0.03	0	0.030	Typhoon Ruby/ December 07, 2014	5 -Year
97	11.8980548	125.39113	2.32	0	2.320	Typhoon Ruby/ December 07, 2014	5 -Year
98	11.8978993	125.39042	2.21	0	2.210	Typhoon Ruby/ December 07, 2014	5 -Year
99	11.897331	125.389342	1.15	0	1.150	Typhoon Ruby/ December 07, 2014	5 -Year
100	11.898088	125.388589	0.03	0	0.030	Typhoon Ruby/ December 07, 2014	5 -Year
101	11.8972108	125.389906	1.93	0	1.930	Typhoon Ruby/ December 07, 2014	5 -Year
102	11.8965517	125.393095	0.03	0	0.030	Typhoon Ruby/ December 07, 2014	5 -Year
103	11.8974797	125.388694	0.03	0	0.030	Typhoon Ruby/ December 07, 2014	5 -Year
104	11.8972295	125.38746	0.47	0	0.470	Typhoon Ruby/ December 07, 2014	5 -Year

Point	Validation C	oordinates	Model	Validation	-	5	Rain
Number	Lat	Long	Var (m)	Points (m)	Error	Event/Date	Scenario
105	11.8969647	125.388949	0.57	0	0.570	Typhoon Ruby/ December 07, 2014	5 -Year
106	11.8965823	125.38936	1.42	0	1.420	Typhoon Ruby/ December 07, 2014	5 -Year
107	11.8970201	125.388345	0.23	0	0.230	Typhoon Ruby/ December 07, 2014	5 -Year
108	11.8966356	125.388741	0.06	0	0.060	Typhoon Ruby/ December 07, 2014	5 -Year
109	11.8960476	125.388592	0.03	0.5	-0.470	Heavy Rain/De- cember 17, 2016	5 -Year
110	11.8998419	125.418887	0.09	0	0.090	Typhoon Ruby/ December 07, 2014	5 -Year
111	11.898292	125.418484	0.09	0	0.090	Typhoon Ruby/ December 07, 2014	5 -Year
112	11.8980094	125.419699	0.20	0	0.200	Typhoon Ruby/ December 07, 2014	5 -Year
113	11.8970074	125.418688	0.23	1	-0.770	Typhoon Ruby/ December 07, 2014	5 -Year
113	11.8970074	125.418688	0.23	0.6	-0.370	Heavy Rain/De- cember 17, 2016	5 -Year
114	11.8965335	125.419034	0.30	1	-0.700	Typhoon Ruby/ December 07, 2014	5 -Year
114	11.8965335	125.419034	0.30	1	-0.700	Heavy Rain/De- cember 17, 2016	5 -Year
115	11.8962157	125.419469	0.34	1	-0.660	Typhoon Ruby/ December 07, 2014	5 -Year
115	11.8962157	125.419469	0.34	1	-0.660	Heavy Rain/De- cember 17, 2016	5 -Year
116	11.895987	125.418489	0.35	0	0.350	Typhoon Ruby/ December 07, 2014	5 -Year
117	11.8954805	125.419209	0.38	0	0.380	Typhoon Ruby/ December 07, 2014	5 -Year
118	11.8947351	125.418948	0.37	1.4	-1.030	Typhoon Ruby/ December 07, 2014	5 -Year
119	11.8956061	125.417467	0.25	0	0.250	Typhoon Ruby/ December 07, 2014	5 -Year

Point	Validation C	Coordinates	Model	Validation	-	5	Rain
Number	Lat	Long	Var (m)	Points (m)	Error	Event/Date	Return / Scenario
120	11.8949163	125.417021	0.18	0	0.180	Typhoon Ruby/ December 07, 2014	5 -Year
121	11.8952306	125.384215	0.54	0	0.540	Typhoon Ruby/ December 07, 2014	5 -Year
122	11.8942225	125.384824	1.55	0.5	1.050	Heavy Rain/De- cember 17, 2016	5 -Year
123	11.8936175	125.383059	0.03	0	0.030	Typhoon Ruby/ December 07, 2014	5 -Year
124	11.8930644	125.384649	2.24	0	2.240	Typhoon Ruby/ December 07, 2014	5 -Year
125	11.8921994	125.382752	3.23	0	3.230	Typhoon Ruby/ December 07, 2014	5 -Year
126	11.8935536	125.38089	0.03	1	-0.970	Typhoon Ruby/ December 07, 2014	5 -Year
126	11.8935536	125.38089	0.03	1	-0.970	Heavy Rain/De- cember 17, 2016	5 -Year
127	11.8929391	125.380846	2.68	0.5	2.180	Heavy Rain/De- cember 17, 2016	5 -Year
128	11.8937877	125.386776	2.47	1	1.470	Heavy Rain/De- cember 17, 2016	5 -Year
129	11.8973113	125.368181	0.42	1	-0.580	Heavy Rain/De- cember 17, 2016	5 -Year
130	11.8946215	125.387908	2.22	0	2.220	Typhoon Ruby/ December 07, 2014	5 -Year
131	11.8961174	125.366975	2.98	0	2.980	Typhoon Ruby/ December 07, 2014	5 -Year
132	11.8954541	125.388143	0.03	2	-1.970	Typhoon Ruby/ December 07, 2014	5 -Year
132	11.8954541	125.388143	0.03	1.5	-1.470	Heavy Rain/De- cember 17, 2016	5 -Year
133	11.8969232	125.369638	3.96	2	1.960	Typhoon Ruby/ December 07, 2014	5 -Year
133	11.8969232	125.369638	3.96	1.5	2.460	Heavy Rain/De- cember 17, 2016	5 -Year
136	11.8766725	125.347205	3.27	0.5	2.770	Heavy Rain/De- cember 17, 2016	5 -Year
137	11.879505	125.350368	7.15	0.5	6.650	Heavy Rain/De- cember 17, 2016	5 -Year

Point Validation Coordinates		Model V	Validation	Francis	Event /Data	Rain		
Number	Lat	Long	Var (m)	Points (m)		Event/Date	Scenario	
138	11.8813008	125.354199	0.05	0	0.050	Typhoon Ruby/ December 07, 2014	5 -Year	
139	11.8819211	125.357814	0.03	0.5	-0.470	Heavy Rain/De- cember 17, 2016	5 -Year	
140	11.8480655	125.323457	0.03	0.5	-0.470	Heavy Rain/De- cember 17, 2016	5 -Year	
156	11.8941581	125.417263	0.14	0.5	-0.360	Typhoon Ruby/ December 07, 2014	5 -Year	
156	11.8941581	125.417263	0.14	0.7	-0.560	Heavy Rain/De- cember 17, 2016	5 -Year	
157	11.8924273	125.419554	0.21	0.7	-0.490	Typhoon Ruby/ December 07, 2014	5 -Year	
157	11.8924273	125.419554	0.21	0.6	-0.390	Heavy Rain/De- cember 17, 2016	5 -Year	
158	11.8922731	125.418451	0.24	0.7	-0.460	Typhoon Ruby/ December 07, 2014	5 -Year	
158	11.8922731	125.418451	0.24	0.5	-0.260	Heavy Rain/De- cember 17, 2016	5 -Year	
159	11.8932269	125.417075	0.11	0.7	-0.590	Typhoon Ruby/ December 07, 2014	5 -Year	
159	11.8932269	125.417075	0.11	0.6	-0.490	Heavy Rain/De- cember 17, 2016	5 -Year	
160	11.8921725	125.41666	0.15	0.6	-0.450	Typhoon Ruby/ December 07, 2014	5 -Year	
160	11.8921725	125.41666	0.15	0.6	-0.450	Heavy Rain/De- cember 17, 2016	5 -Year	
161	11.8905074	125.418192	0.44	0.7	-0.260	Heavy Rain/De- cember 17, 2016	5 -Year	
162	11.8912466	125.415766	0.18	0	0.180	Typhoon Ruby/ December 07, 2014	5 -Year	
169	11.9015337	125.419813	0.03	0	0.030	Typhoon Ruby/ December 07, 2014	5 -Year	
170	11.9013016	125.419678	0.00	0	0.000	Typhoon Ruby/ December 07, 2014	5 -Year	
171	11.9021843	125.420042	0.07	0	0.070	Typhoon Ruby/ December 07, 2014	5 -Year	
172	11.9035344	125.419987	0.15	0	0.150	Typhoon Ruby/ December 07, 2014	5 -Year	

Point Validation Coordinates		Model	Validation	_		Rain	
Number	Lat	Long	Var (m)	Points (m) Error		Event/Date	Return / Scenario
173	11.9045974	125.419083	0.10	0	0.100	Typhoon Ruby/ December 07, 2014	5 -Year
174	11.9053761	125.418027	0.13	0.5	-0.370	Heavy Rain/De- cember 17, 2016	5 -Year
175	11.9049994	125.418373	0.09	0.5	-0.410	Heavy Rain/De- cember 17, 2016	5 -Year
176	11.903872	125.417742	0.25	0.5	-0.250	Heavy Rain/De- cember 17, 2016	5 -Year
177	11.9018276	125.416513	0.04	0.5	-0.460	Heavy Rain/De- cember 17, 2016	5 -Year
178	11.9009725	125.417943	0.04	0.5	-0.460	Heavy Rain/De- cember 17, 2016	5 -Year
179	11.9015342	125.419082	0.03	0	0.030	Typhoon Ruby/ December 07, 2014	5 -Year
180	11.9045901	125.420143	0.03	0	0.030	Typhoon Ruby/ December 07, 2014	5 -Year
181	11.9054466	125.421008	0.03	0	0.030	Typhoon Ruby/ December 07, 2014	5 -Year
182	11.9051928	125.421589	0.03	0.7	-0.670	Typhoon Yolanda/ November 08, 2013	5 -Year
183	11.9053879	125.422668	0.06	0	0.060	Typhoon Ruby/ December 07, 2014	5 -Year
184	11.9052691	125.423185	0.06	0	0.060	Typhoon Ruby/ December 07, 2014	5 -Year
186	11.9139899	125.413149	0.03	1	-0.970	Typhoon Yolanda/ November 08, 2013	5 -Year
187	11.9070658	125.420693	0.03	1	-0.970	Typhoon Yolanda/ November 08, 2013	5 -Year
188	11.9064927	125.415863	0.06	0	0.060	Typhoon Ruby/ December 07, 2014	5 -Year
189	11.9070181	125.41526	0.03	0	0.030	Typhoon Ruby/ December 07, 2014	5 -Year
190	11.9075449	125.415999	0.06	0	0.060	Typhoon Ruby/ December 07, 2014	5 -Year
191	11.9010993	125.416062	0.03	0.3	-0.270	Typhoon Ruby/ December 07, 2014	5 -Year
191	11.9010993	125.416062	0.03	0.2	-0.170	Heavy Rain/De- cember 17, 2016	5 -Year

Point Validation Coo		oordinates	Model	Validation	_		Rain	
Number	Lat	Long	Var (m)	Points (m)	Error	Event/Date	Return / Scenario	
192	11.90091	125.42026	0.00	0.4	-0.400	Typhoon Ruby/ December 07, 2014	5 -Year	
216	11.9128013	125.415524	0.03	0	0.030	Typhoon Ruby/ December 07, 2014	5 -Year	
217	11.9149526	125.408157	0.06	0	0.060	Typhoon Ruby/ December 07, 2014	5 -Year	
218	11.9080634	125.415188	0.10	0.4	-0.300	Typhoon Ruby/ December 07, 2014	5 -Year	
218	11.9080634	125.415188	0.10	0.3	-0.200	Typhoon Yolanda/ November 08, 2013	5 -Year	
221	11.9062143	125.425513	0.04	0	0.040	Typhoon Ruby/ December 07, 2014	5 -Year	

Annex 12. Educational Institutions affected by flooding in Taft Floodplain

Table A-12.1. Educational Institutions affected by flooding in Taft Floodplain

EASTERN VISAYAS							
TAFT							
Duilding Name	Damara	Rainfall Scenario					
Building Name	Вагапдау	5-year	25-year	100-year			
Brgy. Dacul Day Care Center	Dacul						

Annex 13. Health Institutions affected by flooding in Taft Floodplain